Baryon squashing in synthetic dimensions by effective SU(M) gauge fields

Sudeep Kumar Ghosh,* Umesh K. Yadav,† and Vijay B. Shenoy‡
Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560 012, India
(Received 27 April 2015; published 30 November 2015)

The “synthetic dimension” proposal [A. Celi et al., Phys. Rev. Lett. 112, 043001 (2014)] uses atoms with M internal states (“flavors”) in a one-dimensional (1D) optical lattice, to realize a hopping Hamiltonian equivalent to the Hofstadter model (tight-binding model with a given magnetic flux per plaquette) on an M-sites-wide square lattice strip. We investigate the physics of SU(M) symmetric interactions in the synthetic dimension system. We show that this system is equivalent to particles with SU(M) symmetric interactions experiencing an SU(M) Zeeman field at each lattice site and a non-Abelian SU(M) gauge potential that affects their hopping. This equivalence brings out the possibility of generating nonlocal interactions between particles at different sites of the optical lattice. In addition, the gauge field induces a flavor-orbital coupling, which mitigates the “baryon breaking” effect of the Zeeman field. For M particles, concomitantly, the SU(M) singlet baryon which is site localized in the usual 1D optical lattice, is deformed to a nonlocal object (“squashed baryon”). We conclusively demonstrate this effect by analytical arguments and exact (numerical) diagonalization studies. Our study promises a rich many-body phase diagram for this system. It also uncovers the possibility of using the synthetic dimension system to laboratory realize condensed-matter models such as the SU(M) random flux model, inconceivable in conventional experimental systems.

DOI: 10.1103/PhysRevA.92.051602
PACS number(s): 67.85.—d, 21.45.—v, 37.10.Jk

Emulation of quantum systems of interest to areas from condensed matter to high-energy physics is made possible with cold atoms [1], as evidenced by recent developments [2–8]. Adding to the soaring interest is the realization of systems with novel physics such as those with SU(M) (M > 2) symmetries, and yet are exceedingly difficult to realize by conventional experiments. SU(M) symmetric spin models have interesting phases and phase transitions [9–16], as do Hubbard models with SU(M) symmetry [17–20]. Several theoretical [21–28] and experimental [29–35] works have explored systems with SU(M) symmetry working with 6Li (M = 4) [36], 173Yb (M = 6) [32,35], and 87Sr (M = 10) [30,31,34].

Celi et al. [37] proposed, using atoms with M-internal states, to realize a finite strip of the Hofstadter model [38]. This was dubbed as a “synthetic dimension” (SD) since the internal state mimicked the coordinate along an additional spatial dimension. Atoms with M internal states (γ = 1, . . . , M) hop in a one-dimensional (1D) optical lattice whose γ-independent hopping t from a site j (xj = jd,d, lattice spacing) to its neighbor preserves their internal state. The states are coherently coupled by light of wave number kδ such that an atom in state γ at j can “hop” to γ + 1 at j with an amplitude Ωγ = Ωj ee−ikdj. An atom picks up a phase factor e−ikδd upon hopping around a plaquette [(j, γ) → (j + 1, γ) → (j + 1, γ + 1) → (j, γ + 1) → (j, γ)], simulating an enclosed magnetic flux. Choosing kδd = 2πp q , where p and q are relative prime integers, thus provides an alternate realization of the Hofstadter model (compare with Refs. [6,7]) with a p/q flux per plaquette. Recent experimental realization [39,40] bolsters this research direction.

The physics of SU(M) symmetric interactions in the SD system is an unexplored area. Previous studies [23,25–27] of fermions with attractive SU(M) interactions in the usual 1D lattice (no flux, i.e., Ωj = 0, Ωj = 0) shows SU(M) singlet “baryons” and their quasi-long-range color superfluidity [41]. Viewed from the SD perspective, the SU(M) interaction manifests as “infinite ranged” (distance independent) along the SD. For example, two atoms at site j with γ = 1 and 2 will interact with the same strength as γ = 1 and M. This aspect, taken together with the flux p/q, raises several intriguing open questions: What is the fate of the baryons? How is the color superfluidity affected? Are there different many-body states and interesting physics in this system? This Rapid Communication addresses these questions, and points to a plethora of possibilities of this system that would be of wide interest.

We show that the SD system [37] can be mapped to a system of M-flavor particles with SU(M) interactions hopping on the lattice with an on-site SU(M) Zeeman potential (due to Ωj) along with an SU(M) gauge field (due to flux p/q, and Ωj) that controls their hopping. Further analysis reveals, inter alia, the gauge field induces (i) a flavor-orbital coupling which mitigates the “baryon breaking” effects of the Zeeman field, and (ii) a nonlocal interaction, i.e., interaction between particles at different j sites. A crucial outcome is that under favorable circumstances, the SU(M) singlet baryon (Ωj = 0), which is an object localized at a site j but extended along the synthetic dimension, is transformed into an M-body bound state that is extended in real space (along j), which we dub as the “squashed baryon.” This is demonstrated by analytical arguments and detailed exact diagonalization calculations. These results point to different many-body phases of these systems. Our mapping further suggests opportunities of using the SD system to simulate interesting models as the SU(M) random flux model [42].

Model and mapping. Denoting the operator that creates a fermion [43] at site j with hyperfine flavor γ as $C^\dagger_{j,\gamma}$, the
Hamiltonian is $\mathcal{H} = H_t + H_\Omega + H_U$, with

$$H_t = -t \sum_{j} \sum_{\gamma=1}^{M} (C_{j+1,\gamma}^\dagger C_{j,\gamma} + H.c.),$$

$$H_\Omega = \sum_{j} \sum_{\gamma=1}^{M-1} (\Omega_j^\dagger C_{j,\gamma+1}^\dagger C_{j,\gamma} + H.c.),$$

$$H_U = -\frac{U}{2} \sum_{j\gamma\gamma'} \hat{C}_{j,\gamma}^\dagger \hat{C}_{j,\gamma'}^\dagger \hat{C}_{j,\gamma'} \hat{C}_{j,\gamma},$$

where t is the intersite hopping amplitude, and U is the strength of the attractive SU(M) interaction. The couplings $\Omega_j = \Omega_{j,t} e^{-ik}\phi_j$, where $\Omega_{j,t}$'s depend on the details [37,39,40] of the system.

A mapping gains further insights into the effects of interaction. Towards this end, we introduce the notation $\hat{C}_j = (C_{j,1}, C_{j,2}, \ldots, C_{j,M})^T$. We introduce a local unitary transformation $\hat{C}_j = \hat{W}_j \hat{b}_j$, where $\hat{W}_j = \text{Diag}(e^{ik_{\ell}\phi_j})$, $\gamma = 1, \ldots, M$, with $k_{\ell\gamma} = (\gamma-1)k_{\ell\gamma}'$, and $\hat{b}_j = (b_{j,1}, \ldots, b_{j,M})^T$ is another set of fermionic operators. This results in $H_\Omega = \sum_j \hat{b}_j^\dagger \Omega_j \hat{b}_j$, where Ω_j is a site-independent Hermitian matrix,

$$\Omega = \begin{pmatrix} \Omega_1^* & 0 & \cdots & 0 \\ 0 & \Omega_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \Omega_{M-1}^* \end{pmatrix}.$$

On diagonalization, $\Omega = S\omega S^\dagger$, where $\omega = \text{Diag}(\omega_j)$ ($\omega_j = 1, \ldots, M$) is the diagonal matrix with eigenvalues ω_j, and S is a unitary matrix. Then, $H_\Omega = \sum_j \hat{a}_j^\dagger \omega \hat{a}_j$, where $S \hat{b}_j = \hat{a}_j = (\hat{a}_{j,\gamma})^T$ is a new set of fermionic operators. Clearly, $\hat{C}_j = U_j \hat{U}_j^\dagger \hat{a}_j$, where $U_j = \hat{W}_j S$ is a unitary matrix. We now have

$$H = -t \sum_j \hat{a}_j^\dagger \hat{a}_j + H_c + \sum_j \hat{a}_j^\dagger \omega \hat{a}_j + H_U,$$

where H_U is the operator defined in Eq. (3) rewritten in terms of $a_{j,\gamma}$ owing to its SU(M) invariance. We immediately see that in terms of the transformed states \hat{a}_j, the Hamiltonian can be interpreted as that of particles in a flavor- (γ-) dependent potential ω_j [which is a SU(M) Zeeman field], and whose hopping is influenced by a non-Abelian gauge field $U_j^\dagger U_j = S^\dagger \Phi S$ ($\Phi = \text{Diag}(e^{ik\phi_j})$) that produces flavor-orbital coupling. The Zeeman field depends solely on Ω_j, while the gauge field has a crucial additional dependence on the flux [44]. The SD system is thus equivalent to SU(M)-interacting fermions experiencing SU(M) Zeeman and gauge fields (flavor-orbital coupling) [45].

Induced interactions. We now discuss the key outcome of the mapping. Consider the $M = 2$ system with $q = 2$ flux. A rather unnatural limit of vanishing hopping $t \rightarrow 0$ reveals the main idea. The Zeeman field is $\omega = \text{Diag}(\Omega, \Omega)$. When $\Omega \ll U$, the ground state is an $M = 2$ baryon with two particles at the same site (Fig. 1, top left). The “baryon breaking” effect of the Zeeman field occurs when Ω exceeds $\Omega_c = \frac{t}{2}$ (Fig. 1, top right). The broken baryon has both particles with $\gamma = 1$, located at two distinct sites. Now, $t > 0$ with $\frac{t}{2}$ flux produces hopping, indicated by arrows in Fig. 1 (bottom left) that does not conserve the γ flavor—flavor-orbital coupling (gauge field). The degeneracy of the broken baryon states is lifted by the flavor-orbit-coupled hopping—two particles with $\gamma = 1$ on neighboring sites can gain energy by hybridizing with the degenerate baryon state (bound along the SD). This induces a nonlocal attractive interaction between particles with $\gamma = 1$ located on two neighboring sites. The outcome is a “squished baryon” state that generically has a bound state character along the synthetic and real dimension. In Fig. 1, this state is a bound state of two particles that “resonates” between the vertical and horizontal bonds (Fig. 1, bottom left), hopping on the “dual lattice” indicated by crosses in Fig. 1 (bottom right). As $\Omega \gg \Omega_c$, the bound state is primarily made of particles with $\gamma = 1$—a “fully” squished baryon, a result of the attractive interaction between near-neighbor $\gamma = 1$ states proportional to $t^2 - q^2 \sim t^2$. Indeed, longer-range interactions are also similarly generated. A repulsive U results in an induced nonlocal repulsion.

A similar physics applies to generic M. The key point is that the scale Ω_c and the resulting “broken baryon” state depend on the details of Ω_j. For a given M and Ω_j, there are special fluxes that most effectively produce nonlocal binding and baryon squishing.

Exact diagonalization. We have investigated few-body physics using numerical exact diagonalization. We consider a system with N_q lattice sites ($q = 1$) with periodic boundary conditions. For a system with M internal states, this provides $N_q M$ one-particle states. So, for N_q^p particles, the dimension of the resulting Hilbert space is $(N_q M)^{N_q^p}$. We use translational symmetry, with Q, the center-of-mass momentum, as a good quantum number. If the ground state (GS) has $Q = Q_f$,
then the binding energy is $E_b = E_\phi(Q_p, U = 0) - E_\phi(Q_\Omega, U)$, where $E_\phi(Q_p, U = 0)$ is the GS energy of the same system with $U = 0$. We also study the properties of GS by computing the moment of inertia along the x direction, $I_{xx} = \frac{1}{\Omega_1} (\sum_{i>j} \langle \Delta x_i x_j \rangle^2)$, and an average value for the synthetic coordinate $\langle \zeta \rangle = \frac{1}{\Omega_1} (\sum_i \zeta_i)$, where i’s run over the particle labels and $\Delta x_i x_j = (x_i - x_j)$. We use the following two criteria to detect an N_p-particle bound state. First, the binding energy should be positive. Second, the I_{xx} should be finite and insensitive to the spatial size of the system (N_p) [46]. The quantity $\langle \zeta \rangle$ provides a measure of squishing. For example, with $N_p = M$, $\langle \zeta \rangle = (M+1)/2$ indicates the usual SU(M)-singlet baryon, while squishing is deduced from a value of $\langle \zeta \rangle < (M+1)/2$.

Results. While we choose the simplest case $\Omega_2 = \Omega$ to illustrate the physical ideas, our calculations can be adapted to specific systems. Figure 2 shows the results for $M = 2$. In the absence of a flux $p/q \rightarrow 0$, the critical Zeeman field to break the baryon is $\Omega_2 = \frac{1}{2} (\sqrt{t^2 + 16t^2} - 4t)$. The “phase diagram” in the p/q-Ω_2 plane, shown in Figs. (a) and (b), shows that this indeed occurs at $p/q = 0$. For larger Ω_2, there is no bound state at $p/q = 0$. For $p/q = \frac{1}{2} (\frac{1}{t} \text{flux})$, the situation is entirely different. I_{xx} remains finite with the increase in Ω_2, and $\langle \zeta \rangle$ goes to unity. The baryon evolves to the squished baryon (see the inset). We have investigated the $\frac{1}{2}$-flux case in greater depth. Figures (c)–(e) clearly demonstrate that for the $\frac{1}{2}$-flux a bound state always exists (except when $t = 0$) irrespective of a large Zeeman field—a vivid example of the flavor-orbital coupling mitigating the baryon breaking effects of the Zeeman field. Figures (f) and (g) further demonstrate the squishing of the baryon by the flavor-orbital coupling. Finally, Figs. (h) and (i) discuss the case $\Omega_2 = \Omega_2$. From analytic considerations, the binding energy of the squished baryon when $t \ll U$ is $\approx 2t$, $I_{xx} \approx \frac{1}{2}$, and $\langle \zeta \rangle \approx \frac{3}{4}$. The numerical binding energy at small t is indeed in agreement, as are I_{xx} and $\langle \zeta \rangle$ [Figs. (f) and (g)].

$M = 3$. Here, when $t = 0$, $\Omega_2 = \frac{U}{\sqrt{\Omega_2}}$ with a peculiar feature. Three distinct states are degenerate at Ω_2. These are the usual $M = 3$ baryons [27], a completely broken baryon with three particles at different sites (“1 + 1 + 1”), and partially broken “2 + 1” baryon which has two particles at a given site with $\xi = 1$ and 2 and the third particle at a different site with $\xi = 1$. Figures (a) and (b) show the phase diagram in the p/q-Ω_2 plane. Again, the squashing effect is clearly seen. Figures (c) and (d) are for the case with a $\frac{1}{2}$ flux ($t/U = 0.1$), which show the squishing of the baryon continuously (most rapidly near Ω_2) with an increase of Ω_2. The process does not go on forever, and at a value of Ω_2 somewhat larger than Ω_2, the baryon completely breaks up. Therefore, the gauge field produced by the $\frac{1}{2}$ flux is unable to entirely prevent the pair breaking effect. Most interestingly, the situation changes completely if one introduces a $\frac{1}{2}$ flux. Squishing occurs smoothly [Figs. (e) and (f)], and in fact, we believe that there is a bound state for all Ω_2 (we cannot verify this as I_{xx} becomes large at large Ω_2). Further, at Ω_2, E_b for small t can be analytically inferred to be proportional to t. This is due to the hybridization between the “2 + 1” baryon hybridizing with a “1 + 1 + 1” aided by the $1/3$-gauge field (flavor-orbital coupling). This is, again, in excellent agreement with our numerical result (not shown).

$M = 4$. The distinct aspect here is the presence of two critical Zeeman fields Ω_{1} and Ω_{2}. When $t = 0$, the usual 4-baryon is destabilized to a state with two 2-baryons (each of which can be located at any site) at $\Omega_1 = \frac{2t}{\sqrt{3}}$. At $\Omega_2 = U$, this state is again broken into a 1 + 1 + 1 + 1 state where each particle can be at any site distinct from others with $\xi = 1$. Figures (a) and (b) show the phase diagram in the p/q-Ω_2 plane. A $\frac{1}{2}$ flux has a smooth change from the usual 4-baryon to a 2 + 2 baryon (bound state of 2-baryons)—another good example of squishing. However, the $\frac{1}{2}$ flux is not able to mitigate the effects of the Zeeman field; near Ω_2 the squished 2 + 2 baryon is broken up [Figs. (c) and (d)]. Remarkably, for a flux of $\frac{1}{2}$, this transition is prevented [Figs. (e) and (f)], and our calculations suggest a bound state for any Ω (checking this requires larger computational resources). At Ω_2, it can be shown that the binding energy is proportional to t^2 (in order to
What are the general criteria required to produce squishing? To produce squishing, the flavor-orbital coupling induced by the flux must be able to hybridize the degenerate states that occur at the critical Zeeman fields. For example, for $M = 4$, the flavor-orbital coupling with a $\frac{1}{2}$ flux does hybridize the $2 + 2$ state with the $1 + 1 + 1$ state, and hence the baryon is squished (unlike the $\frac{1}{2}$ flux). For a given Ω_{γ}, an appropriate flux can be chosen to achieve this.

In the many-body setting, there is clearly a rich collection of states and crossovers to be explored. For attractive interactions, many-body states with squished baryons are likely to hold interesting physics. The repulsive nonlocal interactions for repulsive U should sustain density waves [47]. The results developed here can be used as a guide for such studies, particularly in the dilute limit.

We conclude this Rapid Communication by pointing out an interesting possibility to use the SD system to create a class of Hamiltonians called “random flux” models [42]. The idea is to introduce some randomness in Ω_{γ}, which in turn will make the gauge fields [Eq. (5)] also random. For a two-dimensional square optical lattice, the Hamiltonian of the type [Eq. (5)] realized will be similar to a “random flux” model.

S.K.G. and U.K.Y. acknowledge support from CSIR, India via a SRF grant and UGC, India via a DSKPDF grant, respectively, and V.B.S. is grateful to DST, India and DAE, India (SRC grant). We thank Sambuddha Sanyal for discussions regarding the random flux model, and Adhip Agarwala for comments on the manuscript.

[43] While we discuss fermionic physics in this Rapid Communication, many of our conclusions will be applicable also to bosonic systems.
[44] The mapping holds for any flux \(k_d = 2\pi \phi \).
[45] See also T. Graß, A. Celi, and M. Lewenstein, Phys. Rev. A 90, 043628 (2014). We thank the referee for bringing this work to our attention.
[46] In a completely unbound state, such as that obtained with \(U = 0 \), \(I_{\mu} \sim N_q^2 \).