
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

SortAlgo-Metrics: Identification of Cloud-Based

Server Via a Simple Algorithmic Analysis

Samuel D Baba, Supriya Yadav

School of Engineering and Digital Arts

University of Kent

Canterbury, UK

sb2097@kent.ac.uk

sy227@kent.ac.uk

 Gareth Howells

School of Engineering and Digital Arts

University of Kent

Canterbury, UK

W.G.J.Howells@kent.ac.uk

Abstract— This paper introduces a novel

technique to detect spoof or fake software

systems via the generation of a unique digital

signature based on a direct analysis of the

construction of the system. Specifically, we model

a novel mechanism referred to as SortAlgo-

Metrics analysis to identify cloud-based servers.

Experimentally, we deployed four cloud-based

servers to run four sorting algorithms in order to

extract features that are employed to perform

statistical analysis upon with the aim to obtain

their metrics which has further underpin the

investigation of their behaviours. The model has

been validated by comparing training data and

unknown data, and the result has shown server

2-4 have a strong identification with 96%

probability, while server 1 with 55%, it is

surmised that is could be as the result of

insufficient sample data. However, if such a

simple model can produce a result with this high

probability, this shows that with more complex

features and sufficient data pulled from cloud-

based servers, SortAlgo-Metrics model could

generate a higher degree of basis numbers for

ICMetrics technology entropy key generation

and other complex systems.

Keywords—Keywords: Cloud computing,

Cloud-based servers, Spoofing, attacks, ICMetric

Technology, SortAlgo-Metrics Analysis, Spoofing.

I. INTRODUCTION & RELATED

WORKS

Identifying cloud-based servers has become crucial

as hackers are utilising the advantage of the

vulnerabilities and threats associated with the

clustered servers in cloud computing networks

which has made it a complex system, and the

benefits of cloud computing has also contributed to

the significant malicious activities which include

server spoofing, IP address, Datagram, Address

Resolution Protocol (ARP)[1],[2],[3],[4],[5],[6],[7].

 Several enterprises have adopted cloud system in

order to heighten the operational performance.

However, our studies have revealed that the

spoofing of the above-stated complex components

of cloud technology could result to the companies’

data confidentiality, integrity, and availability been

corrupted, hijacked and made unavailable

[1],[8],[9]. Consequently, this may lead to the loss

of billions of pounds (GBP).

 Fig I below, have demonstrated how a spoofed or

fake web server could intercept a genuine web server

while establishing a connection to other servers

which include Domain Name System (DNS),

Dynamic Configuration Host Protocol (DHCP)

which consequently might result in distributed

denial of service (DDoS) attack, and its effects could

be capable of causing a total shutdown of an

Information Technology (IT) infrastructure

[1],[5],[8].

 The subsequent sections of this paper are

structured as follows; Section II Introduces

ICMetrics Technology, its unique attributes, and

areas of application, while section III discussed

Metrics Analysis and its application, Section IV also

discusses Sorting Algorithm its application, Section

V Presents the details of SortAlgo-Metrics

experiment VI section VII discussed the Mapping

Methodology and finally, the paper is concluded in

section VIII.

mailto:sb2097@kent.ac.uk

 FIG I: TYPICAL IP SPOOFING TO FLOOD THE CLOUD SERVER [5]

 Our previous studies have revealed several

researchers developed various models with diverse

techniques to detect spoofed servers running in the

cloud platform [1],[2],[3],[4],[5],[6],[7].

Conversely, still much work is needed in that

domain. Therefore, it would be advantageous

however to develop a system that could be employed

on relatively simple software constructions that

could subsequently be scaled up to generate a high

degree of discernment for a complex system capable

of exhibiting a high degree of entropy.

 With the current level of clustered servers in the

cloud environment, it makes it quite challenging to

identify a server running in the cloud network and

propose a security mechanism to secure it. In that

note, we are motivated to develop an efficient

technique that will allow us to extract potential

properties or features from servers running in the

cloud platform. After having conducted significant

research in sorting algorithms and metrics analysis

in [4]-[10]. Consequently, we derived a mechanism

referred to as SortAlgo-Metrics analysis, which is

the synthesis of Sorting Algorithm and Metrics

Analysis. The term was derived base on the critical

investigation, observation and analysis conducted on

the roles played by these components in various

applications, and the evident attributes in general

[4]-[10].

Below is the typical layout of SortAlgo-Metrics

Mechanism

FIG II. TYPICAL SortAlgo-Metrics Mechanism

In Fig II above, we demonstrated SortAlgo-Metric

Mechanism processes. Firstly, we deployed four

sorting algorithms in the cloud servers and generate

random numbers to be stored in the cloud, and those

algorithms running in the cloud server sorts the

elements in descending order to enable features

extraction. Finally, we compute the features using

the statical model to arrive at metrics evaluation.

II. ICMETRICS TECHNOLOGY

This section presents ICMetrics technology and its

characteristics

A. ICMetrics technology

 ICMetrics has a technique of generating a unique

encryption key from the operational characteristics

of both software and hardware systems [4],[11],[12].

Most importantly, it only generates its digital

signatures during the run time.

 Below are the succinct advantages of the

technology;

 The technology does not store its templates

in a device.

 ICMetrics do not allow back door creation

 It cannot be compromised

 It could regenerate the algorithm

automatically when tampered with,

maliciously or not.

 The private key is not stored in the system

but is rather regenerated on demand.

 ICMetrics-based security system utilises the

metrics derived from the extracted features of a

software, hardware or the combination of both

through a statistical model to generate a unique

identifier for a device which would consequently be

employed as a basis of a digital signature or an

encryption key.

III. METRICS ANALYSIS

Metrics are measurements, in order to evaluate these

measurements, they are required to be analysed. In

this section, we looked at how Metrics formed an

essential part of several experiments. [13] employed

Metrics analysis to validate data across Fortran

Projects including “Software Science metrics,

cyclomatic complexity, and various traditional

program. A metrics analysis has been employed by

[14] and explains that due to an exponential increase

in power consumption a model referred to Power

Usage Effectiveness (PUE) metrics is employed to

evaluate power consumption at Datacenters.

Furthermore, the authors explained that the metrics

obtained will help the field of research gain an

understanding of the trend of power consumption in

the data centres. In this metrics analysis, the authors

presented a metric data analysis on symmetric key

cryptographic technique to analyse the line of code

(LOC) values between the different algorithms in

order to demonstrate the quality of the software from

its process through the software analysis [10]. An

experiment carried out by [4], Metrics analysis are

employed by statistically analysing the properties

extracted from nine servers which are simulated in

the cloud environment to measure their numeric

mapping. The author applied a multi-level algorithm

to convey abnormal distribution into a normal

Gaussian state, and “multi-dimensional

normalization map generation algorithm

programmed to generate a multi-dimensional

normalisation map”. Consequently, the author

developed a “multi-dimensional binary key mapping

algorithm to map a measured data from multi-

dimensional space to a key vector”. [2] applied

metric analysis in an experiment performed with an

attempt to observe certain properties and behaviours

of Android applications. The measurements of the

extracted features were conducted in different stages

include the probability of density function of the

targeted applications, intra-sample variance, and the

correlation. However, the result was categorised into

two, the Low and High intra-sample variance, and

the final result of the experiment has shown that

ICMetric technology was able to detect the spoofed

application, which the authors referred to as

“identical light sensor”.

IV. SORTING ALGORITHM

Primarily, a sorting algorithm is a method used to

order an unordered list of elements in an array,

which could take a specific order. However, with the

proliferation of technology, unordered data is also

growing exponentially. Therefore, sorting

algorithms are becoming crucial to sort these data.

In this section, we looked at various sorting

algorithms, applications and complexity succinctly.

[4] deployed three sorting algorithms; Bubble sort,

Cocktail sort and Merge sort on the cloud servers to

investigate and analyses correlation and causalities

of the features under observation running on those

servers as well as the time complexity of those

algorithms. [15] demonstrated an algorithm referred

to as a new Modified sorting algorithm, in [15]

explained that the difference new Modified sorting

algorithm and the generic algorithms, is the speed

and has the efficacy to count both negative and

positive numbers. [16] also demonstrated the

application of the sorting algorithm to achieve

“Super-Elastic Motion Behavior” by deploying

provot particle position correction.

V. EXPERIMENTAL TEST BED SETUP

We setup an experimental testbed which involved

different phases as shown in Fig III below. We used

the ownCloud platform to create four virtual servers

and deployed four algorithms as listed in Table II

with embedded applications to generate a random

array of numbers and other applications to create

files and store the extracted features pulled from the

cloud servers as presented in Table II below.

FIG. III. EXPERIMENT FRAMEWORK

TABLE I. FOUR SORTING ALGORITHMS,

TIME AND SPACE COMPLEXITY [17],[4],[16]

Algorithms Average Worse Space

Insertion 0(n2) 0(n2) 0(1)

Quick 0(n log n) 0(n2) 0(log n)

Bubble 0(n2) 0(n2) 0(1)

Merge 0(n log n) 0(n log n) 0(n)

A. The composition of feature extraction

application

To adequately extract features from the cloud-based

server as shown in Table III below, a range of

programming was involved as demonstrated in Fig

III. Including the following stages;

 The logical design of the experimental

framework for the entire application

 Programming an embedded function

call for each algorithm

 Programming an embedded memory

runtime usage and total memory

capture

 A program to capture both random

numbers generated per execution and

keep track of a number of pass per each

execution.

 Finally, an embedded program to

generate files to collect the extracted

features respective files



B. Cloud server configuration

To enable us to create the cloud server instances, we

deployed a VirtualBox machine.[13] on

Windows10. Consequently, we created four

instances of cloud servers and configured them to

run the four proposed algorithms as shown in Table

I. Hence, this has allowed us to remotely access the

servers for simulation. As previously mentioned the

selections of the algorithms in Table I: was

motivated due to the significant roles the algorithms

play in computer science such as to sort or organise

homogenous dataset. Having said that, each of the

server instances runs each algorithm to allow the

extraction of features for statical analysis to compare

the behaviours of each server as shown in Table VIII

and IX below.

C. Feature extraction procedures

 This section introduces the extraction processes of

the features as presented in Fig. III. We deployed

four algorithms in the cloud-based servers as shown

in Table I. For each single remote script execution,

random numbers are generated and stored in an

embedded file, which serves as the input file to the

sorting algorithms as Fig III above. Therefore, each

time the script is executed, the servers run the

algorithms and seven features are generated and

extracted into seven files as shown in Fig III, in

Table IV-VII below are the extracted values metrics

of the feature. Those values are further analysed

statistically in section VIII. The details description

of those features is shown in Table II, and the

selected features used in this analysis are shown in

Table III which are consequently used to produce

basis number to identify servers from one another.

TABLE II. SEVEN FEATURES EXTRACTED

S/N Features Description Type of features Number of

Samples

1 Random number

generated

The embedded program calculates the total

array of random numbers generated in the

ownCloud server

Discrete random

variable

1000

2 Number of iterations The embedded program calculates the total

array of random numbers iterated by the

sorting algorithm running in the ownCloud

server

Discrete random

variable

1000

3 Function calls The embedded program calculates total

function calls to sort the array by the sorting

algorithm running in the ownCloud server

 1000

4 Array iteration time The embedded program calculates the

amount of time it takes to iterate the random

number stored in the array by the sorting

algorithm running in the ownCloud server

Gaussian 1000

5 Script execution time The embedded program calculates the

amount of time taken to sort an array of

random numbers by the sorting algorithm

running in the ownCloud server

Gaussian variable 1000

6 Execution memory

allocation

The embedded program calculates the

amount of memory allocated to sort an array

of random number by sorting algorithm

running in the ownCloud server

Gaussian/

Discrete random

variable

1000

7 Total memory allocation The embedded program calculates the total

memory allocated to the entire sorting

algorithm script running in the ownCloud

server

Gaussian/

Discrete random

variable

1000

TABLE III. ANALYSED FEATURES

S/N Features Description Type of

features

Number

of

Samples

3 Function calls The embedded program calculates total function

calls to sort the array by the sorting algorithm

running in the ownCloud server

Discrete

random

variable

1000

4 Array iteration time The embedded program calculates the amount of

time it takes to iterate the random number array by

the sorting algorithm running in the ownCloud

server

Gaussian 1000

5 Script execution time The embedded program calculates the amount of

time taken to sort an array of random numbers by

the sorting algorithm running in the ownCloud

server

Gaussian

variable

1000

6 Execution memory

allocation

The embedded program calculates the amount of

memory allocated to sort an array of random

number by sorting algorithm running in the

ownCloud server

Gaussian/

Discrete

random

variable

1000

TABLE IV. INSERTION SORT.

TABLE V. QUICKSORT.

TABLE VI BUBBLE SORT.

TABLE VII: MERGE SORT

VI. MAPPING METHODOLOGY

This section introduces the algorithm for generating

an encryption key which has the following four

example; Function calls, Iteration run time, Script

run time, Run time memory as shown in Table III.

To produce an encryption key, it is essential to

develop suitable methods for combining selected

features to produce unique basis number - an initial

binary number unique to the servers from which

actual encryption keys may be derived [9],[19]. This

basis number may consequently be employed to

generate encryption keys to authenticate servers. To

achieve a high entropy, values pulled out of multiple

features are combined [20]. Feature Combination;

the aim of the feature combination is to generate

server specific identification numbers with low

intra-sample variance (the values produced for the

same circuit) but high inter-sample variance, (the

values produced for different circuits) with the ideal

case being no inter-sample overlap of potential basis

numbers. The effectiveness of the combination plan

depends on the stability of the basis numbers

generated. To achieve stability in the basis numbers,

stable bits are chosen from the monitored signals in

the calibration phase. Due to the fact that, for any

given server, a subset of the features the basis

numbers generated will deviate from their ideal

values, and the following properties will be typically

observed for a simple addition of the values: The low

order bits will vary widely since these will be

governed by any feature values which have not

measured within the ideal interval. The higher order

bits will, in contrast, tend to be stable for a given

server (intra-sample) but significantly dissimilar for

differing servers (inter-sample). These stable bit are

employed to form the required basis number as they

have low intra-sample variance but high inter-

sample variance. The basis number generated may

be employed to generate the encryption key.

B. Feature quantization and normalization

The proposed system operates in a two-phase

process, first analysing typical feature values for

known servers to produce a normalization map for

each feature and subsequently employing the

normalization maps to produce a code for a

potentially unknown server. The basic concept of the

normalization map is to map a measured series of

feature data into a multidimensional space. In our

previous work [20], normalization maps are linear

based, mapping each individual feature to a vector

and concatenating them together. The goal of

quantization is to normalize feature data, so the best

quantization interval should exhibit the biggest

inter-sample variance between devices.

C. Multimodal distributions

After quantization and normalization, the next step

is to establish the form of the probability

distribution, for example, Gaussian, bimodal or

multimodal in nature. It is possible that a set of data

from a particular feature is mostly multimodal in

nature, making it difficult to generate a basis

number. Feature values that are multi-modal in

distribution require careful consideration with

regards to generating a stable key. Using multi-

modal distribution, where values are chaotically

positioned, we can normalise the feature

distributions so we can treat the features as

Gaussian. Following on from this is the operation

phase, which executes when any device or service is

required to generate its ICMetric.

This consists of observing features that can

distinguish devices to gather their raw values. Once

the raw values have been collected the normalised

maps that were generated during the calibration

phase can be applied and this returns values that can

be combined together to derive an ICMetric. Many

features have values that change whilst the device is

in operation and when values are not static, the range

of values a feature can produce must be mapped to

some selected arbitrary value, which allows the key

that is derived to be stable enough to be used.

A simple approach to this problem is to apply a

peak-trough detection algorithm to the distribution,

where the troughs split the multimodal distribution

into separate Gaussian distributions with the peaks

forming the modes [19]. Table VIII shows the

modes after applying the peak-trough algorithm.

 In TABLE VIII, the analysis has shown different

servers, first, we calculate frequency distribution of

all servers and then we apply a peak-trough

detection algorithm to the distribution. Here the

peak-troughs split the multimodal distribution into

separate Gaussian distributions with the peaks

forming the modes and then we use multivariate

normal probability density function to calculate the

probability of the sample associated with that mode

[19].

 In our experiment, the features from all servers

have bimodal and multimodal distribution. For

calculating the probability, we take the samples from

each server, calculate the mean and covariance of the

modes within the distribution of the current servers.

For example, if the server has bimodal distribution

then we have two modes and each mode has mean

and covariance. Therefore, we first determine which

of the mode the current sample falls into, then we

calculate the probability of the sample and repeat the

same process subsequent modes accordingly. We

then take the same sample from another server and

see if that sample from other server lies in which

mode of the first server and then we calculate the

probability of the sample. If the probability from the

second server is low as compared to the first server,

that means the first server is correctly identified

based on probability and we repeat the same process

for’ n’ servers. As it is shown in Table IX, the

percentages go up according to the quantity of

sample input. Consequently, we observed that the

training data and testing data were able to

differentiate between servers with 96% result based

on the probability of servers except for S1, with the

percentages of 50%, 53% and 55% proportional to

the sample input. In our opinion, this could be as the

result of insufficient data but that has not been

established yet. However, in our next phase of this

experiment, we are planning to pull more complex

features and sufficient data from the cloud-based

servers in order to further evaluate the efficiency of

SortAlgo-Metrics model.

TABLE VIII. MODES OF THE FOUR DIFFERENT FEATURE

 TABLE IX. RESULTS BASED ON DIFFERENT SERVERS DATA

VII. CONCLUSION

This paper has reviewed different types of methods

employed to detect spoofing in a cloud computing

environment. We proposed a SortAlgo-Metrics

model capable of differentiating between the servers

fours with about 96%, except S1 (server one) with

55% as the highest percentage in which we surmised

that it could be as the result of insufficient data,

although, no proof yet. However, we have further

observed that the model could produce a high degree

of probability when it takes in a high volume of data,

as shown in Table IX. This study has also shown

SortAlgo-Metrics model could be capable of

producing a basis number for ICMtrics technology

for generating a unique digital signature and other

systems that are key encrypted-based security.

Therefore, in our next phase of this experiment, we

shall pull out more data and complex features from

the cloud-based servers and employ an advanced

multidimensional space analysis in order to evaluate

the efficiency of the SortAlgo-Metrics model.

Feature Set Server1

(Modes)

Server2

(Modes)

Server3

(Modes)

Server4

(Modes)

F3 3999.0, 7793.0 1825480.0 2946.0, 5738.0 5999.0, 11690.0

F4 0.104575872 23.04747 0.5668571 .559297, 2.72663

F5 0.2792 37.335299 0.99319999 5.91230

F6 520.9,758.7 520.4,758 25.019, 762.84 529.375, 767.190

 REFERENCES

[1] F. Guo, J. Chen, and T. C. Chiueh, “Spoof

detection for preventing DoS attacks

against DNS servers,” Proc. - Int. Conf.

Distrib. Comput. Syst., vol. 2006, 2006.

[2] M. Haciosman, B. Ye, and G. Howells,

“Protecting and identifiying smartphone

apps using icmetrics,” Proc. - 2014 Int. Conf.

Emerg. Secur. Technol. EST 2014, pp. 94–98,

2014.

[3] H. S. Kang, J. H. Son, and C. S. Hong,

“Defense technique against spoofing

attacks using reliable ARP table in cloud

computing environment,” 17th Asia-Pacific

Netw. Oper. Manag. Symp. Manag. a Very

Connect. World, APNOMS 2015, no. 2, pp.

592–595, 2015.

[4] B. Ye, G. Howells, M. Haciosman, and F.

Wang, “Multi-dimensional key generation

of ICMetrics for cloud computing,” J. Cloud

Comput., vol. 4, no. 1, 2015.

[5] O. A. Osanaiye and M. Dlodlo, “TCP/IP

header classification for detecting spoofed

DDoS attack in Cloud environment,” Proc. -

EUROCON 2015, pp. 1–6, 2015.

[6] H. Basim and T. Ahmed, “An Improved

Strategy for Detection and Prevention IP

Spoofing Attack,” Int. J. Comput. Appl., vol.

182, no. 9, pp. 28–31, 2018.

[7] N. Tripathi, M. Swarnkar, and N. Hubballi,

“DNS spoofing in local networks made

easy,” 11th IEEE Int. Conf. Adv. Networks

Telecommun. Syst. ANTS 2017, no. January,

pp. 1–6, 2018.

[8] O. A. Osanaiye, “Short Paper: IP spoofing

detection for preventing DDoS attack in

Cloud Computing,” 2015 18th Int. Conf.

Intell. Next Gener. Networks, ICIN 2015, pp.

139–141, 2015.

[9] R. Tahir, H. Hu, D. Gu, K. McDonald-Maier,

and G. Howells, “A scheme for the

generation of strong cryptographic key

pairs based on ICMetrics,” Internet Technol.

Secur. Trans. 2012 Int. Conferece, pp. 168–

174, 2012.

[10] B. Dhanuja and G. Sathiya, “Software metric

LOC data analysis for symmetric key

cryptographic technique,” 2017 Innov.

Power Adv. Comput. Technol. i-PACT 2017,

vol. 2017-Janua, pp. 1–5, 2018.

[11] Y. Kovalchuk and K. Mcdonald-maier,

“Overview of ICmetrics Technology –

Security Infrastructure for Autonomous and

Intelligent Healthcare System,” Sci.

Technol., vol. 4, no. 3, pp. 49–61, 2011.

[12] S. Yadav and G. Howells, “Analysis of

ICMetrics features/technology for

wearable devices IOT sensors,” Proc. - 2017

7th Int. Conf. Emerg. Secur. Technol. EST

2017, pp. 175–178, 2017.

[13] V. R. Basili, R. W. Selby, and T. Y. Phillips,

“Metric Analysis and Data Validation Across

Fortran Projects,” IEEE Trans. Softw. Eng.,

vol. SE-9, no. 6, pp. 652–663, 1983.

[14] R. C. Zoie, R. D. Mihaela, and S. Alexandru,

“An analysis of the power usage

effectiveness metric in data centers,” Proc.

- 2017 5th Int. Symp. Electr. Electron. Eng.

ISEEE 2017, vol. 2017-Decem, pp. 1–6,

2017.

[15] Y. Gugale, “Super Sort Sorting Algorithm,”

2018 3rd Int. Conf. Converg. Technol. I2CT

2018, pp. 1–5, 2018.

[16] H. Han, J. Wang, K. Liu, and L. Zhou,

“Particle Sorting Algorithm Based on

Stretching Tensor,” 2016 12th Int. Conf.

Comput. Intell. Secur., pp. 689–692, 2016.

[17] Y. Yang, P. Yu, and Y. Gan, “Experimental

study on the five sort algorithms,” 2011 2nd

Int. Conf. Mech. Autom. Control Eng. MACE

2011 - Proc., pp. 1314–1317, 2011.

[18] Vasudevan M. S., B. R. Mohan, and D. K.

Damodaran, “Performance Measuring and

Comparison of VirtualBox and VMware,”

Int. Proc. Comput. Sci. Inf. Technol., vol. 27,

no. Icicn, pp. 42–46, 2012.

[19] Y. Kovalchuk et al., “Investigation of

properties of ICmetrics features,” Proc. -

3rd Int. Conf. Emerg. Secur. Technol. EST

2012, pp. 115–120, 2012.

[20] G. Howells, E. Papoutsis, A. Hopkins, and K.

McDonald-Maier, “Normalizing discrete

circuit features with statistically

independent values for incorporation

within a highly secure encryption system,”

Proc. - 2007 NASA/ESA Conf. Adapt. Hardw.

Syst. AHS-2007, no. Ahs, pp. 97–102, 2007.

