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Abstract— This paper introduces a novel 

technique to detect spoof or fake software 

systems via the generation of a unique digital 

signature based on a direct analysis of the 

construction of the system. Specifically, we model 

a novel mechanism referred to as SortAlgo-

Metrics analysis to identify cloud-based servers. 

Experimentally, we deployed four cloud-based 

servers to run four sorting algorithms in order to 

extract features that are employed to perform 

statistical analysis upon with the aim to obtain 

their metrics which has further underpin the 

investigation of their behaviours. The model has 

been validated by comparing training data and 

unknown data, and the result has shown server 

2-4 have a strong identification with 96% 

probability, while server 1 with 55%, it is 

surmised that is could be as the result of 

insufficient sample data. However, if such a 

simple model can produce a result with this high 

probability, this shows that with more complex 

features and sufficient data pulled from cloud-

based servers, SortAlgo-Metrics model could 

generate a higher degree of basis numbers for 

ICMetrics technology entropy key generation 

and other complex systems. 

 

Keywords—Keywords: Cloud computing, 

Cloud-based servers, Spoofing, attacks, ICMetric 

Technology,  SortAlgo-Metrics Analysis, Spoofing.  

 

I. INTRODUCTION & RELATED 

WORKS 

Identifying cloud-based servers has become crucial 

as hackers are utilising the advantage of the 

vulnerabilities and threats associated with the 

clustered servers in cloud computing networks 

which has made it a complex system, and the 

benefits of cloud computing has also contributed to 

the significant malicious activities which include 

server spoofing, IP address, Datagram, Address 

Resolution Protocol (ARP)[1],[2],[3],[4],[5],[6],[7].    

     Several enterprises have adopted cloud system in 

order to heighten the operational performance. 

However, our studies have revealed that the 

spoofing of the above-stated complex components 

of cloud technology could result to the companies’ 

data confidentiality, integrity, and availability been 

corrupted, hijacked and made unavailable 

[1],[8],[9].  Consequently, this may lead to the loss 

of billions of pounds (GBP).  

     Fig I below, have demonstrated how a spoofed or 

fake web server could intercept a genuine web server 

while establishing a connection to other servers 

which include Domain Name System (DNS), 

Dynamic Configuration Host Protocol (DHCP) 

which consequently might result in distributed 

denial of service (DDoS) attack, and its effects could 

be capable of causing a total shutdown of an 

Information Technology (IT) infrastructure 

[1],[5],[8].  

     The subsequent sections of this paper are 

structured as follows; Section II Introduces 

ICMetrics Technology, its unique attributes, and 

areas of application, while section III discussed 

Metrics Analysis and its application, Section IV also 

discusses Sorting Algorithm its application,   Section 

V Presents the details of SortAlgo-Metrics 

experiment  VI section VII  discussed the Mapping 

Methodology and finally, the paper is concluded in 

section VIII. 
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                               FIG I: TYPICAL IP SPOOFING TO FLOOD THE CLOUD SERVER [5] 

 

 

 

     Our previous studies have revealed several 

researchers developed various models with diverse 

techniques to detect spoofed servers running in the 

cloud platform [1],[2],[3],[4],[5],[6],[7]. 

Conversely, still much work is needed in that 

domain. Therefore, it would be advantageous 

however to develop a system that could be employed 

on relatively simple software constructions that 

could subsequently be scaled up to generate a high 

degree of discernment for a complex system capable 

of exhibiting a high degree of entropy. 

     With the current level of clustered servers in the 

cloud environment, it makes it quite challenging to 

identify a server running in the cloud network and 

propose a security mechanism to secure it. In that 

note, we are motivated to develop an efficient 

technique that will allow us to extract potential 

properties or features from servers running in the 

cloud platform. After having conducted significant 

research in sorting algorithms and metrics analysis 

in [4]-[10]. Consequently, we derived a mechanism 

referred to as SortAlgo-Metrics analysis, which is 

the synthesis of Sorting Algorithm and Metrics 

Analysis. The term was derived base on the critical 

investigation, observation and analysis conducted on 

the roles played by these components in various 

applications, and the evident attributes in general  

[4]-[10].  

 

 

 

 

Below is the typical layout of  SortAlgo-Metrics 

Mechanism 

 

 
FIG II. TYPICAL SortAlgo-Metrics  Mechanism 

 

 

 

 

 

 



                          

 

 

In Fig II above, we demonstrated SortAlgo-Metric 

Mechanism processes. Firstly,  we deployed four 

sorting algorithms in the cloud servers and generate 

random numbers to be stored in the cloud, and those 

algorithms running in the cloud server sorts the 

elements in descending order to enable features 

extraction. Finally, we compute the features using 

the statical model to arrive at metrics evaluation. 

 

II. ICMETRICS TECHNOLOGY 

This section presents ICMetrics technology and its 

characteristics  

 

A. ICMetrics technology  

   ICMetrics has a technique of generating a unique 

encryption key from the operational characteristics 

of both software and hardware systems [4],[11],[12]. 

Most importantly, it only generates its digital 

signatures during the run time.  

   Below are the succinct advantages of the 

technology; 

 The technology does not store its templates 

in a device. 

 ICMetrics do not allow back door creation 

 It cannot be compromised  

 It could regenerate the algorithm 

automatically when tampered with, 

maliciously or not. 

 The private key is not stored in the system 

but is rather regenerated on demand. 

    ICMetrics-based security system utilises the 

metrics derived from the extracted features of a 

software, hardware or the combination of both 

through a statistical model to generate a unique 

identifier for a device which would consequently be 

employed as a basis of a digital signature or an 

encryption key.  

 

III. METRICS ANALYSIS 

Metrics are measurements, in order to evaluate these 

measurements, they are required to be analysed. In 

this section, we looked at how Metrics formed an 

essential part of several experiments. [13] employed 

Metrics analysis to validate data across Fortran 

Projects including “Software Science metrics, 

cyclomatic complexity, and various traditional 

program.  A metrics analysis has been employed by 

[14] and explains that due to an exponential increase 

in power consumption a model referred to Power 

Usage Effectiveness (PUE) metrics is employed to 

evaluate power consumption at Datacenters. 

Furthermore, the authors explained that the metrics 

obtained will help the field of research gain an 

understanding of the trend of power consumption in 

the data centres. In this metrics analysis, the authors 

presented a metric data analysis on symmetric key 

cryptographic technique to analyse the line of code 

(LOC) values between the different algorithms in 

order to demonstrate the quality of the software from 

its process through the software analysis [10]. An 

experiment carried out by [4], Metrics analysis are 

employed by statistically analysing the properties 

extracted from nine servers which are simulated in 

the cloud environment to measure their numeric 

mapping. The author applied a multi-level algorithm 

to convey abnormal distribution into a normal 

Gaussian state, and “multi-dimensional 

normalization map generation algorithm 

programmed to generate a multi-dimensional 

normalisation map”. Consequently, the author 

developed a “multi-dimensional binary key mapping 

algorithm to map a measured data from multi-

dimensional space to a key vector”. [2] applied 

metric analysis in an experiment performed with an 

attempt to observe certain properties and behaviours 

of Android applications. The measurements of the 

extracted features were conducted in different stages 

include the probability of density function of the 

targeted applications, intra-sample variance, and the 

correlation. However, the result was categorised into 

two, the Low and High intra-sample variance, and 

the final result of the experiment has shown that 

ICMetric technology was able to detect the spoofed 

application, which the authors referred to as 

“identical light sensor”.  

 

IV. SORTING ALGORITHM 

Primarily, a sorting algorithm is a method used to 

order an unordered list of elements in an array, 

which could take a specific order. However, with the 

proliferation of technology, unordered data is also 

growing exponentially. Therefore, sorting 

algorithms are becoming crucial to sort these data. 

In this section, we looked at various sorting 

algorithms, applications and complexity succinctly. 

[4] deployed three sorting algorithms; Bubble sort, 

Cocktail sort and Merge sort on the cloud servers to 

investigate and analyses correlation and causalities 

of the features under observation running on those 



                          

 

 

servers as well as the time complexity of those 

algorithms. [15] demonstrated an algorithm referred 

to as a new Modified sorting algorithm, in [15] 

explained that the difference new Modified sorting 

algorithm and the generic algorithms, is the speed 

and has the efficacy to count both negative and 

positive numbers. [16] also demonstrated the 

application of the sorting algorithm to achieve 

“Super-Elastic Motion Behavior” by deploying 

provot particle position correction.  

 

V. EXPERIMENTAL TEST BED SETUP 

We setup an experimental testbed which involved 

different phases as shown in Fig III below. We used 

the ownCloud platform to create four virtual servers 

and deployed four algorithms as listed in Table II 

with embedded applications to generate a random 

array of numbers and other applications to create 

files and store the extracted features pulled from the 

cloud servers as presented in Table II below.  

 

 
FIG. III. EXPERIMENT FRAMEWORK 

 

 

 

 

TABLE I. FOUR SORTING ALGORITHMS, 

TIME AND SPACE COMPLEXITY [17],[4],[16] 

Algorithms Average Worse Space 

Insertion 0(n2) 0(n2)  0(1) 

Quick 0(n log n) 0(n2) 0( log n) 

Bubble 0(n2) 0(n2)  0(1) 

Merge 0(n log n) 0(n log n) 0(n) 

 

A. The composition of feature extraction 

application 

To adequately extract features from the cloud-based 

server as shown in Table III below, a  range of 

programming was involved as demonstrated in Fig 

III. Including the following stages; 

 The logical design of the experimental 

framework for the entire application 

 Programming an embedded function 

call for each algorithm  

 Programming an embedded memory 

runtime usage and total memory 

capture 

 A program to capture both random 

numbers generated per execution and 

keep track of a number of pass per each 

execution. 

 Finally, an embedded program to 

generate files to collect the extracted 

features respective files 

  

B. Cloud server configuration  

To enable us to create the cloud server instances, we 

deployed a VirtualBox machine.[13] on 

Windows10. Consequently, we created four 

instances of cloud servers and configured them to 

run the four proposed algorithms as shown in Table 

I. Hence, this has allowed us to remotely access the 

servers for simulation.  As previously mentioned the 

selections of the algorithms in Table I: was 

motivated due to the significant roles the algorithms 

play in computer science such as to sort or organise 

homogenous dataset. Having said that, each of the 

server instances runs each algorithm to allow the 

extraction of features for statical analysis to compare 

the behaviours of each server as shown in Table VIII 

and IX below. 

 

 



                          

 

 

C. Feature extraction procedures  

 This section introduces the extraction processes of 

the features as presented in Fig. III. We deployed 

four algorithms in the cloud-based servers as shown 

in  Table I. For each single remote script execution, 

random numbers are generated and stored in an 

embedded file, which serves as the input file to the 

sorting algorithms as Fig III above. Therefore, each 

time the script is executed, the servers run the 

algorithms and seven features are generated and 

extracted into seven files as shown in Fig III, in 

Table IV-VII below are the extracted values metrics 

of the feature. Those values are further analysed 

statistically in section VIII. The details description 

of those features is shown in Table II, and the 

selected features used in this analysis are shown in 

Table III which are consequently used to produce 

basis number to identify servers from one another. 

 

 

TABLE II. SEVEN FEATURES EXTRACTED 

S/N Features  Description  Type of features Number of 

Samples 

1 Random number 

generated 

The embedded program calculates the total 

array of random numbers generated in the 

ownCloud server 

Discrete random 

variable 

1000 

2 Number of  iterations The embedded program calculates the total 

array of random numbers iterated by the 

sorting algorithm running in the ownCloud 

server  

Discrete random 

variable 

1000 

3 Function calls The embedded program calculates total 

function calls to sort the array by the sorting 

algorithm running in the ownCloud server  

 1000 

4 Array iteration time The embedded program calculates the 

amount of time it takes to iterate the random 

number stored in the array by the sorting 

algorithm running in the ownCloud server   

Gaussian 1000 

5 Script execution time The embedded program calculates the 

amount of time taken to sort an array of 

random numbers by the sorting algorithm 

running in the ownCloud server 

Gaussian variable 1000 

6 Execution memory 

allocation 

The embedded program calculates the 

amount of memory allocated to sort an array 

of random number by sorting algorithm 

running in the ownCloud server 

Gaussian/ 

Discrete random 

variable 

1000 

7 Total memory allocation The embedded program calculates the total 

memory allocated to the entire sorting 

algorithm script running in the ownCloud 

server 

Gaussian/ 

Discrete random 

variable 

1000 

 

 

 

 

 

 

 

 



                          

 

 

 

 

 

 

TABLE III. ANALYSED FEATURES 

 

S/N Features  Description  Type of 

features 

Number 

of 

Samples 

3 Function calls The embedded program calculates total function 

calls to sort the array by the sorting algorithm 

running in the ownCloud server  

Discrete 

random 

variable 

1000 

4 Array iteration time The embedded program calculates the amount of 

time it takes to iterate the random number array by 

the sorting algorithm running in the ownCloud 

server   

Gaussian 1000 

5 Script execution time The embedded program calculates the amount of 

time taken to sort an array of random numbers by 

the sorting algorithm running in the ownCloud 

server 

Gaussian 

variable 

1000 

6 Execution memory 

allocation 

The embedded program calculates the amount of 

memory allocated to sort an array of random 

number by sorting algorithm running in the 

ownCloud server 

Gaussian/ 

Discrete 

random 

variable 

1000 

 

 

 

TABLE IV. INSERTION SORT. 

 
 

TABLE V. QUICKSORT. 

 
 

 



                          

 

 

 

 

 

 

TABLE VI BUBBLE SORT. 

 
 

TABLE VII: MERGE SORT 

 
 

VI. MAPPING METHODOLOGY 

This section introduces the algorithm for generating 

an encryption key which has the following four 

example; Function calls, Iteration run time, Script 

run time, Run time memory as shown in Table III. 

To produce an encryption key, it is essential to 

develop suitable methods for combining selected 

features to produce unique basis number - an initial 

binary number unique to the servers from which 

actual encryption keys may be derived [9],[19]. This 

basis number may consequently be employed to 

generate encryption keys to authenticate servers. To 

achieve a high entropy,  values pulled out of multiple 

features are combined [20]. Feature Combination; 

the aim of the feature combination is to generate 

server specific identification numbers with low 

intra-sample variance (the values produced for the 

same circuit) but high inter-sample variance, (the 

values produced for different circuits) with the ideal 

case being no inter-sample overlap of potential basis 

numbers. The effectiveness of the combination plan 

depends on the stability of the basis numbers 

generated. To achieve stability in the basis numbers, 

stable bits are chosen from the monitored signals in 

the calibration phase. Due to the fact that, for any 

given server, a subset of the features the basis 

numbers generated will deviate from their ideal 

values, and the following properties will be typically 

observed for a simple addition of the values: The low 

order bits will vary widely since these will be 

governed by any feature values which have not 

measured within the ideal interval. The higher order 

bits will, in contrast, tend to be stable for a given 

server (intra-sample) but significantly dissimilar for 

differing servers (inter-sample). These stable bit are 

employed to form the required basis number as they 

have low intra-sample variance but high inter-

sample variance. The basis number generated may 

be employed to generate the encryption key.  

 

B. Feature quantization and normalization  

The proposed system operates in a two-phase 

process, first analysing typical feature values for 

known servers to produce a normalization map for 

each feature and subsequently employing the 

normalization maps to produce a code for a 

potentially unknown server. The basic concept of the 

normalization map is to map a measured series of 

feature data into a multidimensional space. In our 



                          

 

 

previous work [20], normalization maps are linear 

based, mapping each individual feature to a vector 

and concatenating them together. The goal of 

quantization is to normalize feature data, so the best 

quantization interval should exhibit the biggest 

inter-sample variance between devices. 

 

C. Multimodal distributions  

After quantization and normalization, the next step 

is to establish the form of the probability 

distribution, for example, Gaussian, bimodal or 

multimodal in nature. It is possible that a set of data 

from a particular feature is mostly multimodal in 

nature, making it difficult to generate a basis 

number. Feature values that are multi-modal in 

distribution require careful consideration with 

regards to generating a stable key. Using multi-

modal distribution, where values are chaotically 

positioned, we can normalise the feature 

distributions so we can treat the features as 

Gaussian. Following on from this is the operation 

phase, which executes when any device or service is 

required to generate its ICMetric.  

This consists of observing features that can 

distinguish devices to gather their raw values. Once 

the raw values have been collected the normalised 

maps that were generated during the calibration 

phase can be applied and this returns values that can 

be combined together to derive an ICMetric. Many 

features have values that change whilst the device is 

in operation and when values are not static, the range 

of values a feature can produce must be mapped to 

some selected arbitrary value, which allows the key 

that is derived to be stable enough to be used.  

A simple approach to this problem is to apply a 

peak-trough detection algorithm to the distribution, 

where the troughs split the multimodal distribution 

into separate Gaussian distributions with the peaks 

forming the modes [19]. Table VIII shows the 

modes after applying the peak-trough algorithm. 

 

 

 

 

 

 

 

 

 

 

    In TABLE VIII, the analysis has shown different 

servers, first, we calculate frequency distribution of 

all servers and then we apply a peak-trough 

detection algorithm to the distribution. Here the 

peak-troughs split the multimodal distribution into 

separate Gaussian distributions with the peaks 

forming the modes and then we use multivariate 

normal probability density function to calculate the 

probability of the sample associated with that mode 

[19]. 

    In our experiment, the features from all servers 

have bimodal and multimodal distribution. For 

calculating the probability, we take the samples from 

each server, calculate the mean and covariance of the 

modes within the distribution of the current servers. 

For example, if the server has bimodal distribution 

then we have two modes and each mode has mean 

and covariance. Therefore, we first determine which 

of the mode the current sample falls into, then we 

calculate the probability of the sample and repeat the 

same process subsequent modes accordingly. We 

then take the same sample from another server and 

see if that sample from other server lies in which 

mode of the first server and then we calculate the 

probability of the sample. If the probability from the 

second server is low as compared to the first server, 

that means the first server is correctly identified 

based on probability and we repeat the same process 

for’ n’ servers. As it is shown in Table IX, the 

percentages go up according to the quantity of 

sample input. Consequently, we observed that the 

training data and testing data were able to 

differentiate between servers with 96% result based 

on the probability of servers except for S1, with the 

percentages of 50%, 53% and 55% proportional to 

the sample input. In our opinion, this could be as the 

result of insufficient data but that has not been 

established yet.  However, in our next phase of this 

experiment, we are planning to pull more complex 

features and sufficient data from the cloud-based 

servers in order to further evaluate the efficiency of  

SortAlgo-Metrics model. 

 

 

 

 

 

 

 

 

 



                          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE VIII. MODES  OF THE FOUR DIFFERENT FEATURE

 

          TABLE IX. RESULTS BASED ON DIFFERENT SERVERS DATA 

 

 

 

 

 

 

 

VII. CONCLUSION 

This paper has reviewed different types of methods 

employed to detect spoofing in a cloud computing 

environment. We proposed a SortAlgo-Metrics 

model capable of differentiating between the servers 

fours with about 96%, except S1 (server one) with 

55% as the highest percentage in which we surmised 

that it could be as the result of insufficient data, 

although, no proof yet. However, we have further 

observed that the model could produce a high degree 

of probability when it takes in a high volume of data, 

as shown in Table IX. This study has also shown 

SortAlgo-Metrics model could be capable of 

producing a basis number for ICMtrics technology 

for generating a unique digital signature and other 

systems that are key encrypted-based security. 

Therefore, in our next phase of this experiment, we 

shall pull out more data and complex features from 

the cloud-based servers and employ an advanced 

multidimensional space analysis in order to evaluate 

the efficiency of the SortAlgo-Metrics model.

 

 

 

 

 

 

Feature Set Server1 

(Modes) 

Server2  

(Modes) 

Server3 

(Modes) 

Server4 

(Modes) 

F3 3999.0, 7793.0 1825480.0 2946.0, 5738.0 5999.0,   11690.0 

F4 0.104575872 23.04747 0.5668571 .559297, 2.72663 

F5 0.2792 37.335299 0.99319999 5.91230 

F6 520.9,758.7 520.4,758 25.019, 762.84 529.375, 767.190 
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