Citation for published version

DOI

https://doi.org/10.1088/1742-6596%2F635%2F7%2F072036

Link to record in KAR

https://kar.kent.ac.uk/74680/

Document Version

Publisher pdf

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html
Dissociative electron attachment dynamics of ozone using velocity slice imaging

To cite this article: Krishnendu Gope et al 2015 J. Phys.: Conf. Ser. 635 072036

View the article online for updates and enhancements.
Dissociative electron attachment dynamics of ozone using velocity slice imaging

Krishnendu Gope*, Vaibhav S Prabhudesai*, Nigel Mason† and E. Krishnakumar*

*Dept. Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
†Dept. of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK

Synopsis We report the study of dissociative electron attachment to ozone (O₃) in the energy range of 1 to 10 eV using velocity slice imaging technique. Based on the momentum images that we obtained for O⁻ and O₂⁻ channels at various electron energies we unravel the molecular dynamics leading to DEA.

Dissociative electron attachment (DEA) to ozone has been studied in the past including measurement of absolute cross-sections [1]. However, the dynamics that leads to DEA has not been reported so far. Here we report the study of DEA dynamics for ozone using velocity slice imaging technique.

Here we report the study of DEA dynamics of O₃ using velocity slice imaging [2]. The VSI spectrometer was modified with longer flight tube and larger (75 mm diameter) phosphor screen based position sensitive detector [3]. We observed O⁻ and O₂⁻ ions from the DEA measurements on Ozone formed at various electron energies. The O⁻ being the most dominant channel was found to peak around 1.4 eV along with 3 eV and 7.5 eV whereas O₂⁻ signals peaked around 1.2 eV, 3.2 eV, 7.5 eV.

We carried out the momentum imaging of various fragment ions across different resonances using velocity slice imaging. Around 3 eV peak the angular distribution shows a forward-backward asymmetry in the O⁻ channel and that asymmetry is reversed in the O₂⁻ channel as shown in Fig. 1. Around 1.5 eV there is considerable kinetic energy release (~1.4 eV) in the O⁻ channel.

In this poster we shall describe the dynamics involved in DEA to ozone using velocity slice images for both the fragments observed at various resonances.

Figure 1. Image of O⁻ and O₂⁻ from O₃ at 2.5eV and 3.7eV electron energy.

References

* E-mail: krishnendu@tifr.res.in
† E-mail: ekkumar@tifr.res.in