Electron collisions with atoms and molecules are commonplace. In the natural world they occur in lightning strikes, aurorae, and the Earth’s ionosphere in general; outside our planet they are important for similar processes in other planets. The glow of Jupiter’s aurora can clearly be seen using telescopes from the Earth. Electron collisions also form a primary process in cometary tails that are bathed in the solar wind, and in many other astrophysical processes. Plasma is the fourth state of matter which involves partial ionization of the atomic and molecular components. Plasmas occur naturally in flames, stars, and elsewhere. Humankind has increasingly harnessed the power of electron collisions in many ways: to start cars with spark plugs, in the traditional light bulb, and in many lasers. Much of modern industry is driven by the use of electron collisions to create plasmas which etch silicon and other materials into ever more complex structures or to provide surface coatings to alter, enhance, or protect the properties of materials. The quest to harness the Sun’s power on Earth via fusion involves making a vast hot plasma with a wealth of electron collision processes requiring detailed study. In the current century it has also been realized that the damage experienced by bio-systems as a consequence of all types of high energy particles and radiation is predominantly caused by collisions involving secondary electrons. These electrons are created by the ionizing effect of the original high-energy collision particle independent of the nature of the colliding species. In medical applications these collisions can be harmful, causing double strand breaks of DNA, or beneficial as in radiation therapy, which is widely used to exorcize malignant tumours.

Electrons colliding with atoms, and particularly molecules, can initiate a variety of processes. Probably the most important of these is the creation of ions (charged species) either through impact ionization or by electron attachment leading to positively and negatively charged ions respectively. These ionized species are chemically active and act as initiators of many of the processes mentioned above.

Understanding, controlling, and utilizing the full power of the collisions of electrons with atoms and molecules has thus become a major objective of many physical scientists but with benefits and applications well beyond the field of physical science. However, electron collisions with atoms and molecules are governed by the laws of quantum
mechanics. This means that the collisions do not obey the everyday laws of collisions such as those found on the billiard table but instead behave in subtle ways which require understanding of the physics at the atomic level. It is just over a hundred years since Franck and Hertz famously demonstrated that the energy levels of the mercury atom were quantized (i.e. discrete), by studying the effects of electron collisions. Since then our understanding of such processes and our ability to control and harness them has made huge progress. This progress has been achieved through the combined application of greatly improved measurement techniques and enhanced theoretical methods, fortified by the power of modern computers. Of course electron collisions also provide fundamental insights into the nature of the collision partner. There is thus now a wealth of knowledge on the processes that follow electron collisions with atoms and molecules as captured both in data sets that can form the input to detailed models of electron collisions and through general principles of what drives these processes.

I therefore welcome this book. It is written by two physicists who have studied electron collision physics over many decades gaining important insights into ionization and other processes through applications of novel theoretical and experimental methods. The book places their years of experience in a single volume in an easy and accessible manner for the education and enjoyment of the reader.

Jonathan Tennyson

FRS

Massey Professor of Physics, University College London
London (UK)
To study any system, an interaction with the system is essential. For microscopic objects and systems, which cannot be seen by the naked eye, usually the electron (or photon) beam, with known characteristics acts as the probe. At a micro-distance, the projectile particles interact/collide with the object and subsequently they are scattered in all possible directions. The scattered particles, electrons in our case, carry the signature of interaction with the object (target). Hence, the measurement of the differential cross sections, $I(\theta, \phi)$ over all possible directions, yields the total collisional cross section $\sigma(E_i)$ as a function of the incident energy E_i of the electrons. For the atomic targets, the collisions are elastic as well as inelastic, including ionization. For the molecules, the additional processes like dissociation and the dissociative ionization, etc., are also possible. Besides, the dissociative components may be in the excited state. Myriad phenomena arising out of electron scattering make the study very interesting from the manifold view-points of theory, experiment, as well as applications.

In the present book, written by Professors K. N. Joshipura and Nigel Mason, collisions of electrons with atoms are briefly discussed initially. In the greater part of the book, molecules are considered as targets. The study is extended to the radicals and the metastable molecules, while a few molecules of biological interest are also considered. The applications of various scattering cross sections to diverse fields like astrophysics, astrochemistry, nanotechnology, etc., are described in the last chapter.

Both the authors are experienced players in the field of electron–atom–molecule collisions. They have a good number of publications to their credit. From the theory as well as application point of view the present book should be quite useful.

S. P. Khare
Preface

Electrons are ubiquitous in nature and throughout modern industry and therefore there are wide varieties of situations in which electrons interact with atoms and molecules producing diverse physical and chemical phenomena. Extensive studies, both experimental and theoretical, have been carried out on the interactions of electrons with different atomic and molecular targets, indeed the last few decades have witnessed rapid developments in the techniques and methodology for exploring electron-atom/molecule scattering. The wider recognition of the role of fundamental electron interactions in natural phenomena (for example the observation of aurorae on other planets and the contribution of electron interactions in astrochemistry) and their role on underpinning novel technologies such as Focussed Electron Beam Induced Processing (FEBIP) and as a major source of radiation damage by ionizing radiation has led to a growth in the international community studying electron collisions in all phases of matter.

In this book our aim is to provide an overview of the field with a focus on theoretical methods used to describe the collisions of intermediate to high energy (exceeding about 15 eV) electrons. The book comprises of six chapters and begins with a discussion of the subject by outlining the necessary text-book background on atoms, molecules and quantum scattering theories. Attention has been devoted (in chapter 1) to atomic sizes or 'radii’ - something that is normally missing in most of the books and reviews of this kind. A brief survey of atomic radii, running across the periodic table of elements, is outlined.

The major part of this monograph, provides an up to date review of electron scattering from atoms and molecules, summarising recent publications. Although the title of the present book mentions ionization specifically, the contents are comprehensive in that we highlight several important inelastic processes occurring in the background of elastic scattering. For many atoms and a large number of molecules, recent theoretical results are discussed along with experimental and other data, and wherever possible recommended data are presented to provide the user with data sets for models and simulations of processes in which electron interactions play a significant role.
The book also provides a summary of basic and most used electron scattering theories and, in particular discusses an approximate theoretical formalism, called ‘Complex Scattering Potential – ionization contribution’ method, developed by the authors to derive ionization cross sections for a large variety of atomic and molecular systems typically from the first ionization energy onwards, upto 2000 eV or so.

Results for common/atmospheric atoms and molecules are presented in chapters 2 to 4, while results for polyatomic and/or exotic molecules, including hydrocarbons, fluorocarbons and biomolecules etc have been are presented in chapter 5. Of our particular interest are the reactive radicals and long-lived metastable species for which experiments are scare or non-existent and hence the theoretical cross section data hold more significance to the user community. Attempts have also been made, separately for atoms and molecules, to correlate the dynamic quantities i.e. total cross sections with some of the static properties of a variety of atomic and molecular systems.

The final chapter, chapter 6, discusses many fields of science and technology where electron interactions with atoms and molecules play a prominent role. Nature provides large veritable laboratories in the form of atmospheres of Earth, Mars, Venus, Jupiter, Saturn etc and their satellites to explore the role of electron interactions with atoms and molecules whilst their importance has also been revealed recently in comets and other astronomical systems, including the atmospheres of exoplanets.

Electron scattering is a dominant process in many technological fields such as gaseous electronics and electrical discharges, mass spectrometry, lasers and plasma systems etc. Indeed many of the plasma and related nanofabrication techniques such as the emerging FEBIP and EUV lithography are governed by electron induced processing and scattering. We also briefly discuss the role of electron scattering in regulating plasma confinement on fusion plasmas. We also briefly discuss the interaction of electrons with larger biomolecular systems, since it is now recognised that secondary electron emission and subsequent electron regulated damage to cellular DNA, is a determining factor in radiation damage and, if controlled, may provide new treatment processes in clinical radiotherapy.

For completeness we also discuss electron scattering in the condensed phase of matter and consider scattering by the electron antiparticle, the positron. Scattering of positrons with
several atomic and molecular targets is reviewed, mainly in the spirit of providing a comparison with electron scattering.

Thus in essence, our plan in this work is to place before the scientific community, an updated overview of the status of electron interactions with atoms and molecules and the current theoretical methods for exploring such effects. Whilst we emphasize high energy theoretical research we provide the reader with a comprehensive set of references from which they can explore the field further. We have also demonstrated the wide range of applications of electron scattering from atoms and molecules and hope the data compilation will be of use to these communities whilst providing them with a description of the underlying physics. We recognize that we may have missed some results and that as new data is being published all the time this book will need updating. Suggestions and comments are most welcome in this regard.

June 2018

Kamlnayan N. Joshipura
Nigel J. Mason
Acknowledgements

The authors are highly thankful to Prof. J. Tennyson (University College, London UK) and Prof. S. P. Khare (Retd., C. C. S. University, Meerut, India) for kindly writing the Foreword to this book. Our special thanks are due to Dr. Karl K. Irikura (NIST USA) for sharing his unpublished data.

KNJ wishes to thank his teachers Prof. H. S. Desai and Dr. M. P. Maru. It is my pleasure to thank students Dr.s Minaxi Vinodkumar, Bobby Antony, Chetan Limbachiya, - who are now independent researchers on their own – together with Dr.s Foram Joshi, Siddharth Pandya, Umang Patel, Bhushit Vaishnav, Mohit Swadia and Prof. P. C. Vinodkumar (SPU) for rendering help in the preparation of this book. I also thank my wife Jagruti for her care and patience and her active support in all of my academic pursuits.

NJM wishes to thank his many colleagues with whom he has collaborated in study of electron atom and electron molecule collisions and their applications. Particular thanks to my ‘mentors’ and then colleagues Professors M Allan, E Illenberger, T D Maerk, L Sanche, E Krishnakumar, H Hotop, F Gianturco, D Field and sadly deceased, J Skalny, giants of the field but also inspiring people. I must also thank my many students and research fellows – who really do the work! It has been a pleasure to see them develop as independent researchers, many of whom are now leading the next generation of electron – atom/molecule studies, particularly Dr S Eden, M A Smialek-Telega, Professor P Vieira and my Indian ‘family’ Minaxi Vinodkumar, Bobby Antony, Chetan Limbachiya and Bhala Sivaraman. Finally My thanks to my wife, Jane, who has borne my passion for science and many absences with patience and understanding, I would not have done so much without her support.

K. N. Joshipura
N. J. Mason

Bhowmik, Pooja. 2012. ‘Theoretical studies on electron scattering processes with important atomic and molecular targets.’ Ph.D. dissertation, Sardar Patel University Vallabh Vidyanagar India; http://shodhganga.inflibnet.ac.in/handle/10603/7363

Bussery-Honvault, B., and V. Veyret. 1998. ‘Comparative studies of the lowest singlet states of (O₂)₂ including ab initio calculations of the four excited states dissociating into O₂ (1Δg)+ O₂ (1Δg).’ The Journal of chemical physics 108 (8): 3243-3248.

Engmann, Sarah, Michal Stano, Peter Papp, Michael J. Brunger, Štefan Matejčík, and Oddur Ingólfsson. 2013. ‘Absolute cross sections for dissociative electron attachment and dissociative ionization of cobalt tricarbonyl nitrosyl in the energy range from 0 eV to 140 eV.’ *The Journal of chemical physics* 138 (4): 044305.

Franck, James, and Gustav Hertz. 1914. ‘Über Zusammenstöße zwischen Elektronen und Molekülen des Quecksilberdampfes und die Ionisierungsspannung desselben’ (in German) [On the collisions between electrons and molecules of mercury vapour and the ionization potential of the same] *Verhandlungen der Deutschen Physikalischen Gesellschaft* 16: 457–467.

Bibliography

Garca, G., C. Aragon, and J. Campos. ‘Total cross sections for electron scattering from CO in the energy range 380–5200 eV.’ Physical Review A 42 7:4400.

Gupta, Dhanoj, Heechol Choi, Mi-Young Song, Grzegorz P. Karwasz, and Jung-Sik Yoon. 2017. ‘Electron impact ionization cross section studies of C2Fx (x= 1− 6) and C3Fx (x= 1− 8) fluorocarbon species.’ The European Physical Journal D 71 (4): 88.

Gurung, Meera Devi, and W. M. Ariyasinghe. 2017. ‘Total electron scattering cross sections of some important biomolecules at 0.2–6.0 keV energies.’ Radiation Physics and Chemistry.

Bibliography

Kothari, Harshit N., and K. N. Joshipura. 2012. 'Total (complete) and ionization cross-sections of argon and krypton by positron impact from 15 to 2000 eV—theoretical investigations.' Pramana J. Phys. 79.

Lee, Young-Sook, Young-Sil Kwak, Kyung-Chan Kim, Brian Solheim, Regina Lee, and Jaejin Lee. 2017. ‘Observation of atomic oxygen O (1S) green-line emission in the summer polar upper mesosphere associated with high-energy (≥ 30 keV) electron precipitation during high-speed solar wind streams.’ Journal of Geophysical Research: Space Physics 122 (1): 1042-1054.

Bibliography

Limbachiya, Chetan, Minaxi Vinodkumar, Mohit Swadia, and Avani Barot. 2014. 'Electron impact total cross section calculations for CH₃SH (methanethiol) from threshold to 5 keV.' Molecular Physics 112 (1): 101-106.

Bibliography

Możejko, Paweł, Grzegorz Kasperski, and Czesław Szymtowski. 1996. ‘Electron collisions with germane molecules. Absolute total cross section measurements from 0.75 to 250 eV.’ *Journal of Physics B: Atomic, Molecular and Optical Physics* 29 (15): L571.

Bibliography

Schwerdtfeger, Peter. 2015. ‘Table of experimental and calculated static dipole polarizabilities for the electronic ground states of the neutral elements (in atomic units)’ Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland New Zealand; http://ctcp.massey.ac.nz/dipole-polarizabilities

Swadia, Mohit S. 2017. Private communication.

Tanuma, Shigeo, Cedric J. Powell, and D. R. Penn. 2011. ‘Calculations of electron inelastic mean free paths. IX. Data for 41 elemental solids over the 50 eV to 30 keV range.’ *Surface and Interface Analysis* 43 (3): 689-713.

Tsai, J. S., L. Lebow, and D. A. L. Paul. 1976. ‘Measurement of total cross sections (e+, Ne) and (e+, Ar).’ Canadian Journal of Physics 54 (17): 1741-1748.

Vinodkumar, Minaxi, Chetan Limbachiya, Kirti Korot, and K. N. Joshipura. 2008. ‘Theoretical electron impact elastic, ionization and total cross sections for silicon hydrides, SiH$_x$ (x= 1, 2, 3, 4) and disilane, Si$_2$H$_6$ from threshold to 5 keV.’ The European Physical Journal D-Atomic, Molecular, Optical and Plasma Physics 48 (3): 333-342.

Bibliography

INDEX

A
Absorption cross section 28, 98
See also inelastic cross section 15
Absorption potential (V_{abs}) 28, 38
Absorption effects and scattering
by a complex potential
Absorption factor 28
Additivity rule 36, 90
modified 36
screening corrections to 112, 130, 140
Allowed transitions 67
Amplitude (see also S-matrix elements, scattering
amplitude)
Angstrom unit (Å) 7
Angular momentum 6, 7, 13
orbital 6, 7, 13
total 6, 7, 13
Astrochemistry 198, 199
Astrophysics 198
Atomic number (Z) 6, 9, 211
Atomic radii 9
Atomic targets 64
Al
Ar,
B,
Be,
Br,
C,
Cl,
Cu,
F,
Ge,
He,
I,

Kr,
N,
Ne,
O,
P,
S,
Si,
Xe
Atomic units (au) 7, 35
Atoms 6
alkali, halogen, inert gas, 10, 48, 67,
Aurora 190
On Earth 191
Jupiter 191
Mars 192
Saturn 191

B
Biomolecular targets 208
and radiation damage 208
Bessel functions, spherical 38
Bethe-Born behaviour 31
Bethe-Born cross sections 31
Binary Encounter Bethe (BEB) approximation 51
Born approximation, first 25, 71
For electron-atomic hydrogen collisions 31
Born approximation, second 26
For electron-atomic hydrogen collisions 31
Born series 25
Boundary conditions 183
Bound states 8

C
CCCBDB 9, 11, 105, 131
Collisions (see also Scattering) 31, 35
 Elastic, see Elastic scattering 15, 20
 Exchange 20
 High-energy, see High-energy collisions 144, 205
 Inelastic, see Inelastic scattering 22
 Involving identical particles
 of electrons with atomic hydrogen,
 of electrons with complex atoms, elastic
 frequency (for ionization) \((\nu_e) \) 181

Comet(s) 190
Complex phase shifts 28, 174
Complex potential, see optical potential 27
Complex Scattering Potential 29, 37, 48
 Complex Scattering Potential-ionization
correlation (CSP-ic) 37, 83
Correlation, linear 128
Correlation-polarization potential \(V_{cp} \) 33
CRC Handbook
Cross section (see also Differential cross section,
 Total cross section) 15, 27, 31, 35
 Absorption 28, 38
 Defined 15, 23
 Differential, see Differential 20
eikonal 25, 31
elastic 15
emission (\(Q_{emiss} \)) 87
First born 25, 31
with third Glauber term 25, 26
Neutral dissociation (\(Q_{NDiss} \)) 87, 115
Total, see Total (complete) cross section
 \((Q_T) \) 28, 30
 parameters of 30

D
Density operator 38
Deutsch Maerk (DM) formalism 30, 65
Differential cross section 15, 28,36, 153
 Defined 15, 37
 in Eikonal-Born series 25, 31
electron atomic hydrogen 31
elastic scattering 20
Elastic 20
First born, for electron 25, 27
atomic hydrogen 31
For electron scattering by 1
atomic hydrogen 31
Dimers 90, 105
 oxygen, and clusters 106
Dipole polarizability \((\alpha_D) \) 9, 10
Dipole moment (D) 26
Dipole potential 26, 103
 realistic 27, 103
Dissociative electron attachment (DEA) 3, 23, 139
Distorted wave Born approximation (DWBA) 34
DNA 5, 164, 172

E
Eikonal approximation 25
Eikonal-Born series (EBS) method 25, 31
Elastic scattering (see also Collisions, Scattering)
 4, 15
 and the optical potential, 28, 48, 83
 and the partial wave method 27, 34, 46
 of electrons by atomic hydrogen 31
 of electrons from helium 3, 23
 of positrons 212
Elastic scattering, see Collisions, Elastic scattering,
 Inelastic scattering, Scattering 1, 15, 22,
 future of 45
Electron volt (eV) 3, 7
Electronic states of atoms 23, 24, 25
 molecules 23, 24, 25
Exchange effect 26, 212
 \(H_2 \) molecule 35, 45
 potential \((V_{ex}) \) 33, 47
Exchange scattering amplitude, see scattering
 amplitude 17, 25, 27
Excitation 7, 20, 26
 of atomic hydrogen by electron impact 31
 of helium by electron impact 49
Excited Metastable state(s) 11, 35, 45
Expectation values 10

F
First born approximation, see Born approximations,
 first 25, 26, 71
Fluorocarbons 165
Flux 28, 181
Focused Electron Beam Induced Deposition 5, 179
Franck-Hertz experiment 1, 17
Furan 173, 175
G
Glauber approximation 25
 third term 26
Grand total cross section (QTO) 37, 42
H
Hara Free Electron Gas Exchange model 33
Helium, collisions of electrons with 100
 Elastic scattering of electrons by 208
High-energy collisions 25, 35
 of electrons with atomic hydrogen 31
 of electrons with complex atoms 217
 of electrons from helium 3, 23
Hydrocarbons
I
Icy solids 186
 electron scattering from 186
Independent Atom Model 35, 59, 61, 154
Inelastic scattering (see also Collisions, Cross section, Scattering) 22
 defined 23, 37
 of electrons by atomic hydrogen 31
 of electrons from helium 23
Interaction (see also Coulomb potential, Potential)
 Absorptive 21, 208,
 Interstellar medium 123, 165, 199
Ionization 16, 18
Ionosphere 192
L
Laboratory (L) 79, 177
Ionosphere 61, 177, 188
Low energy scattering 214
M
Macroscopic cross section 181
Mass spectrometry 5
Mean free path 183, 194
 Inelastic (IMFP) 15, 181
 ionization (ε) 16, 18
Metastable states 11, 45, 73
 of atoms, H+, He++, N+, O+
 of molecules, H2+, N2+, O2+ 42, 167
Molecular targets 5, 14, 83, 89, 140
Br2 100
CCl4 153
CHO, 137
CH3OH 18, 146
CH3I 146
CF3I 146
C2H2 123
C2H4 130, 140
C2H6 58, 140
C2F2 144
C2F4 135, 144
C2F6 135, 144
C3H4 142, 165
C3H6 142, 165
C4H6 167, 168
C4H8 169, 171
c-C3H8 169
C4F6 131, 167
c-C4F8 169, 171
C5H8 167
C6H8 169
C6H10 157, 158
CO 100
H2CO, 137
H2O 190, 197
H2S 58, 120, 163
H3PO4 162
I2 100
LiH 103, 198
NF3 131
NH3 119, 120, 203
N2 190
NO 190
NO2 96, 99
N2O 96, 99, 215
O2 180
O3 90, 99,
(O2)2 90, 92
SF6 162
Si(CH3)4 157, 158
Index

SiCl₄ 131, 153, 154,
SiF₄ 150, 151
SiH₄ 147
Si₂H₆ 157
SO 159,
SO₂ 159
SOₓₓᵧᵧ (X,Y=F, Cl) 159
Molecules 83
 electronic states of 38, 115, 150, 190
 of biological interest 172
Momentum transfer 15
 cross section 14,

N
NIST Database 30, 32, 49
Nanotechnologies 204
Nanotechnology 202
electrons and 202

O
Ochkur approximation, for elastic exchange
electron-atomic hydrogen scattering 26, 36
Optical model theory (see also Optical potential) 28, 83, 115, 174
Optical potential (see also optical model theory) 28, 28, 48
Optical theorem
 and the optical potential 31, 36
Optically allowed transitions 35
Optically forbidden transitions 35
Orbital angular momentum 6

P
Partial wave amplitudes 27
Partial wave analysis 28, 34
Partial wave cross section 28
Phase shifts, definition of 27, 28
 And partial wave amplitudes 27
 And scattering amplitude 17, 25, 26
 And Ramsauer-Townsend effect 49
Calculation of 44
Complex 27
Plasma 202, 206
electron scattering in 202
Polarizability, atomic dipole 47
Polarization effects 47, 183
Polarization potential 33, 40, 47
Positron scattering 214, 216
 Elastic, from atomic hydrogen 31
Positronium
 formation cross section (QPs) 215

Q
Quadrupole potential 11, 86
Quantum mechanics, 2, 10, 25

R
R-matrix method, 115, 141
Radial Schrödinger equation, 2
 And the partial wave analysis for scattering by a central potential, 27, 34, 49
Radial wave functions, 9, 31
 and the partial wave analysis for scattering by central potential, 17
Radiation therapy, 211
Radicals 84
 CFₓ (x=1,2,3), 135, 203
 CHₓ (x=1,2,3), 114, 117
 H₂O₂, 105, 110, 140
 HO₂, 105, 110, 140
 (H₂O)ₓ, 105, 110, 113
 NFₓ (x=1,2), 131, 135
 NHₓ (x=1,2), 119, 120, 203
 OH, 105, 110, 197, 209
 SiClₓ (x = 1, 2, 3), 153, 154
Radiotherapy, 210
Ramsauer-Townsend effect, 49
 and RT minimum, 49
Reaction, cross section, absorption, 14, 28
Reactive targets,
 BF, 123, 124
 CN, 24, 123, 124, 197
 CₓNₓ, 123, 215
 HCN, 123, 124, 197
 HNC, 123, 124
Resonances, 23, 83, 172
Rotational excitation, 14, 23, 27, 103
cross section, 15, 27, 31, 35
Roothan-Hartree-Fock wave functions, 9
Rydberg states, 8, 82, 180

S
Satellite(s) planetary, 163, 190, 192,
S-matrix, 27
Scattering (see also Collisions, Cross section, Differential cross section, Reaction), 15, 28, 147
Amplitude, 25, 27
Angles, 15, 18, 20
By optical potential, 28, 29
Elastic, 15
Exchange, 20, 26
High energy, see high energy collisions, 31, 35
Inelastic, see inelastic scattering, 22
Involving systems in mixed states, 64
Low energy, see Low-energy scattering, 3, 214
Of electrons by atomic hydrogen, 31
Of electrons from complex atoms, elastic, 217
Of electrons from helium, 3, 23
Of positrons from atomic hydrogen, 8
Phase shifts, 27, 28, 174
Scattering amplitude (see also partial wave amplitudes, Transition matrix elements), 17, 25
Born approximation for, in electron-atomic hydrogen direct scattering, 25
Scattering cross section, see Cross section, 14
Differential cross section, Total cross section for electron-atomic hydrogen scattering, 15
Scattering experiment, 16
Scattering phase shifts, see Phase shifts, 27, 174
Scattering theory, formal, 26
Scattering wave function, asymptotic behaviour of, 30
Schrödinger equation (see also Radial Schrödinger equation), 2, 17, 28
Second Born approximation, see Born approximation, second, 25
Single-centre wave function, 126, 135 solids, 183
electron scattering from, 186
Spin of electrons, 12
Static potential, and the optical potential, 31, 28
Super-elastic collisions (Δ), 81
T
T-matrix, Titan, 5, 123, 190
Total angular momentum, 7
Total cross section (QT), 14
Absorption, 28
And the optical theorem, 36
Bethe-Born, for 1s-2p excitation of atomic hydrogen by fast electrons, 31, 45
First Born, for electron-atomic hydrogen, 25, elastic scattering, 25
Elastic (QTel), 15
Excitation (Qexc), 29
Inelastic (Qinel), 15
Ionization (Qion), 16
U
Uncertainty experimental, 17
in theoretical evaluation, 68
V
Variable phase method, 40
W
Wave function (see also Scattering wave function, State vector), 6, 9, 30
Wave vector transfer (see also Momentum transfer), 25, 26, 31
X
X-ray aurora, 192
X-rays therapeutic, 209, 210
Y
Young’s double slit, 35
Yukikazu potential...