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Abstract

This paper develops maintenance policies for a system under condition monitoring. We assume that a

number of defects may develop and the degradation process of each defect follows a gamma process,

respectively. The system is inspected periodically and maintenance actions are performed on the defects

present in the system. The effectiveness of the maintenance is assumed imperfect and it is modelled using a

geometric process. By performing these maintenance actions, different costs are incurred depending on the

type and the degradation levels of the defects. Furthermore, once a linear combination of the degradation

processes exceeds a pre-specified threshold, the system needs a special maintenance and an extra cost

is imposed. The system is renewed after several preventive maintenance activities have been performed.

The main concern of this paper is to optimise the time between renewals and the number of renewals.

Numerical examples are given to illustrate the results derived in the paper.
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1 Introduction

Condition-based maintenance has been extensively studied in the reliability literature due to the

emergence of advanced condition monitoring and data collection techniques. Many papers have been

published to either model the degradation processes of assets (Si, Wang, Hu, Zhou, & Pecht, 2012;

Ye & Chen, 2014; Deng, Barros, & Grall, 2016; Zhao, Liu, & Liu, 2018) or to optimise maintenance

policies (Caballé, Castro, Pérez, & Lanza-Gutiérrez, 2015; Liu, Wu, Xie, & Kuo, 2017; Zhao, Xu, &

Liu, 2018). To obtain a comprehensive view of the development in condition-based maintenance, the

reader is referred to review papers, see Jardine, Lin, and Banjevic (2006); Si, Wang, Hu, and Zhou

(2011); Alaswad and Xiang (2017), for example.

A number of degradation processes have been considered in condition-based maintenance policies.

Many authors investigate different maintenance policies, considering only one degradation process

such as the gamma process (Caballé & Castro, 2017), the Wiener process (Sun, Ye, & Chen, 2018),

the inverse Gaussian process (Chen, Ye, Xiang, & Zhang, 2015) and the Ornstein-Uhlenbeck process

(Deng et al., 2016). Some consider condition-based maintenance policies for assets suffering a number

of degradation processes. For example, Caballé et al. (2015) proposes a condition-based maintenance

strategy for a system subject to two dependent causes of failure, degradation and sudden shocks:

The internal degradation is reflected by the presence of multiple degradation processes in the system,

and degradation processes start at random times following a Non-homogeneous Poisson process and

their growths are modelled by using a gamma process. Huynh, Grall, and Bérenguer (2017) consider

maintenance policies monitored by a process of the average of a number of degradation processes.

In this paper, we consider a system on which many different types of defects develops over the

time. If a linear combination of the degradation processes exceeds a pre-specified threshold in an

inspection time, maintenance is carried out. There are many real-world examples behaving like that

in the real world. For example, in the civil engineering, several different types of defects, such as

fatigue cracking and pavement deformation, may develop simultaneously on a pavement network.

The mechanism of these defects may be different: fatigue cracking is caused by the failure of the

surface layer or base due to repeated traffic loading (fatigue), and pavement deformation is the result

of weakness in one or more layers of the pavement that has experienced movement after construction

(Adlinge & Gupta, 2013). As such, the deteriorating processes of these defects are different in the

sense that the parameters in the degradation processes may differ. Furthermore, both the approaches

to repairing these defects and the cost of repairing them differ from defect to defect. The time to

repair such a system may be the time when a linear combination of those defects exceeds a pre-

specified threshold. In the civil engineering literature, for example, Shah, Jain, Tiwari, and Jain

(2013) propose a linear combination of defects of pavement condition indexes and suggest that a

pavement needs maintenance once its combined condition index exceeds a pre-specified threshold.

It should also be noted that such deterioration might cause partial loss of system functionality. As
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such, there is no need to overhaul or renew the entire system unless its combined index exceeds a

threshold that is large enough.

Inspired from the above real world example, this paper develops maintenance policies for a system

with many degradation processes. The system is inspected periodically. Following an inspection, an

imperfect repair is performed. These imperfect repairs are modelled using geometric process. Costs

of repairing different defects are different and, if the linear combination of the magnitudes of a set

of defects exceeds a pre-specified threshold, an additional cost is incurred. A replacement is carried

out once the number of inspections exceeds an optimum value.

The remainder of the paper is structured as follows. Section 2 introduces the notations and as-

sumptions that will be used in the paper. Section 3 derives distributions of hitting time and considers

random effects. Section 4 derives maintenance policies and proposes methods of optimisation. Section

5 illustrates the maintenance policies with numerical examples. Section 6 concludes the paper.

2 Assumptions

This paper makes the following assumptions.

A1). Defects of n types develop through n degradation processes on a system, respectively.

A2). The system is inspected every T time units (T > 0).

A3). The system is new at time t = 0.

A4). Two types of maintenance are taken: an imperfect maintenance and a complete replacement of

the system. The imperfect maintenance restores the system to a state between a good-as-new

state (which is resulted from a replacement) and a bad-as-old state (which is resulted from a

minimal repair) and is modelled using a geometric process. The replacement completely renews

the system.

A5). On performing these maintenance actions, a sequence of costs is incurred. Repairing the k-th

(k = 1, 2, . . . , n) defect incurs two types of cost: a fixed cost, and a variable cost that depends on

the degradation level of the k-th defect. Furthermore, if the linear combination of the magnitudes

of a set of defects exceeds a pre-specified threshold, an additional cost is incurred.

A6). Imperfect maintenance actions are performed every T time units and preventive replacement is

performed at the time of the N -th inspection.

A7). Maintenance time is so short that it can be neglected.

3 Model development

Van Noortwijk and Klatter (1999) optimise inspection decisions for scour holes, on the basis of the

uncertainties in the process of occurrence of scour holes and, given that a scour hole has occurred,

of the process of current-induced scour erosion. The stochastic processes of scour-hole initiation and
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scour-hole development was regarded as a Poisson process and a gamma process, respectively. Lawless

and Crowder (2004) construct a tractable gamma-process model incorporating a random effect and

fit the model to some data on crack growth. In the following, we make similar assumptions: The

stochastic processes of defect initiation and defect development was regarded as a Poisson process

and a gamma process, respectively.

3.1 Modelling the occurrences of the defects

Denote the successive times between occurrences of the defects by the infinite sequence of non-

negative real-valued random quantities T1, T2, .... Assume the defect initiation follows a homogeneous

Poisson process. Similar to the assumptions made in Van Noortwijk and Klatter (1999), we assume

the defect inter-occurrence times are exchangeable and they exhibit the memorylessness property.

That is, the order in which the defects occur is irrelevant and the probability distribution of the

remaining time until the occurrence of the first defect does not depend on the fact that a defect has

not yet occurred since the last replacement.

According to Van Noortwijk and Klatter (1999), the joint probability density function of T1, T2, ...., Tn

is given by

pT1,T2,...,Tn(t1, ..., tn) =
∫ ∞

0

n∏
k=1

1

λ
exp

(
−tk
λ

)
pΛ(λ) dλ (1)

where (t1, t2, ...., tn) ∈ Rn
+, pΛ(λ) = 1

Γ(ν)
µνλ−(ν+1)e−ν/λ1{λ>0}, where µ and ν are parameters that

can be estimated from given observations, 1{λ>0} = 1 if λ > 0 and 1{λ>0} = 0 otherwise. With

the constraint T1, T2, ...., Tn < T , we assume that the n defects occur during time interval (0, T ).

For those defects occurring within other time intervals (kT, (k + 1)T ) (for k=1,2,...,), a similar joint

probability density function can be derived.

Table 1
Notation.

n number of defect types

T time between inspections

αk(t) shape parameter of the gamma distribution

βk scale parameter of the gamma distribution

bk weight

Xk(t) degradation process

Y (t) overall degradation

f(x; ., .) probability density function of Xk(t)

FσL(t) distribution of the first hitting time σL

ck,y cost of repairing the kth defect with deterioration level y
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3.2 Degradation processes

We consider the situation where n types of defects may develop and their degradation processes

{Xk(t), t ≥ 0} for k = 1, 2, ..., n, respectively. That is, Xk(t) is the deterioration level of the kth

degradation process at time t and {Xk(t), k=1,...,n} are independent.

Assume that Xk(t) has the following properties:

a) Xk(0) = 0;

b) the increments ∆Xk(t) = Xk(t+ ∆t)−Xk(t) are independent of t;

c) ∆Xk(t) follows a gamma distribution Gamma(αk(t + ∆t) − αk(t), βk) with shape parameter

αk(t+ ∆t)−αk(t) and scale parameter βk, where αk(t) is a given monotone increasing function

in t and αk(0) = 0.

Xk(t) has probability distribution Gamma(αk(t), βk) with mean βkαk(t), variance β2
kαk(t), and its

probability density function being given by

f(x;αk(t), βk) =
β
−αk(t)
k

Γ(αk(t))
xαk(t)−1e−x/βk1{x>0}, (2)

where Γ(.) is the gamma function.

Suppose that the system needs maintenance as long as a linear combination of the magnitudes of

the n defects exceeds a pre-specified threshold. In reality, for example, a section of pavement may

have more than n defects, some of which may be of the same type. The pavement needs maintenance

as long as the linear combination exceeds a pre-specified threshold.

We consider that the overall degradation of the system is represented by

Y (t) =
n∑
k=1

bkXk(t), t ≥ 0, bk ≥ 0, (3)

where bk (with bk > 0) is the weight of defect k. Let Yk(t) = bkXk(t). Then Y (t) =
∑n
k=1 Yk(t) and

Yk(t) has pdf f(x;αk(t), bkβk).

Then the expected value of Y (t) is given by

E(Y (t)) =
n∑
k=1

bkβkαk(t). (4)

and its variance is given by

var(Y (t)) =
n∑
k=1

b2
kβ

2
kαk(t) (5)

Furthermore, the overall degradation process {Y (t), t ≥ 0} given by Eq. (3) is a stochastic process

with the following properties.

a) Y (0) =
∑n
k=1 bkXk(0) = 0,
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b) If the increment ∆Xk(t) = Xk(t+∆t)−Xk(t) is independent of t, then ∆Y (t) =
∑n
k=1 bk∆Xk(t)

is independent of t as well,

According to Moschopoulos (1985), the density function of Y (t) can be expressed by

gY (t)(y) = D(t)
∞∑
k=0

ζk(t)β
−ρ(t)−k
0

Γ(ρ(t) + k)
yρ(t)+k−1e−y/β0 , y > 0, (6)

where β0 = min1≤k≤n bkβk. D(t) and ρ(t) are given by

D(t) =
n∏
k=1

(
β0

bkβk
)αk(t), (7)

and

ρ(t) =
n∑
k=1

αk(t), t ≥ 0, (8)

respectively, and ζk+1(t) (for k = 0, 1, 2, . . .) is obtained in a recursive way as

ζk+1(t) =
1

k + 1

k∑
j=1

jηj(t)ζk+1−j(t),

with ζ0(t) = 1 and ηk(t) is given by

ηk(t) =
n∑
j=1

αj(t)(1−
β0

bkβk
)k/k.

In the particular case that bkβk = bβ for all k, then Y (t) ∼ Gamma(
∑n
k=1 αk(t), bβ). That is, if

bkβk = bβ for all k, {Y (t), t ≥ 0} is a gamma process.

Example 1 We consider a system subject to three degradation processes {X1(t), t ≥ 0}, {X2(t), t ≥ 0}
and {X3(t), t ≥ 0}, respectively. These degradation processes start at random times according to a

homogeneous Poisson process with parameter λ = 1. The degradation processes develop according

to non-homogeneous gamma process with parameters α1 = 1.1, β1 = 1.1, α2 = 1.2, β2 = 1.2 and

α3 = 1.3, β3 = 1.3. Figure 1 shows these degradation processes and the process Y (t) =
∑3
j=1 bjXj(t)

with b1 = 1, b2 = 0.8, and b3 = 0.9.

3.2.1 First hitting time

To characterise the maintenance scheme of this system, the distribution of the hitting times of the

process {Y (t), t ≥ 0} is obtained. Starting from Y (0) = 0 and for a fixed degradation level L, the

first hitting time σL is defined as the amount of time required for the process {Y (t), t ≥ 0} to reach

the degradation level L, that is,

σL = inf(t > 0 : Y (t) ≥ L).
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Fig. 1. Degradation processes and a linear combination

The distribution of σL is obtained as

FσL(t) = P (Y (t) ≥ L)

=
∫ ∞
L

gY (t)(y)dy

=
∫ ∞
L

D(t)
∞∑
k=0

ζk(t)β
−ρ(t)−k
0

Γ(ρ(t) + k)
yρ(t)+k−1e−y/β0dy

= D(t)

 ∞∑
k=0

ζk(t)β
−ρ(t)−k
0

Γ(ρ(t) + k)

∫ ∞
L

yρ(t)+k−1e−y/β0dy


= D(t)

∞∑
k=0

ζk(t)

Γ(ρ(t) + k)
Γui(ρ(t) + k, L/β0), (9)

where Γui(ρ(t) + k, L/β0) denotes the upper incomplete gamma function, which is given by

Γui(ρ(t) + k, L/β0) =
∫ ∞
L/β0

zρ(t)+k−1e−zdz.

We can link the probability distribution FσL(t) with the probability distribution of the hitting times

for the processes Xi(t) that composes Y (t). That is, FσL(t) can be expressed by

FσL(t) = D(t)
∞∑
k=0

ζk(t)Fσ∗
L,k

(t), t ≥ 0,

where Fσ∗
L,k

(t) denotes the distribution of the first hitting time to exceed L for a gamma process with

parameters ρ(t) + k and β0, where ρ(t) is given by (8) and β0 = min1≤k≤n bkβk.
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3.3 The process of repair cost

Cost of repairing different effects, such as fatigue cracking and pavement deformation in a pavement

network, may be different. Denote ck,y as the cost of repairing the kth defect with deterioration

level y. We assume in this section that this cost is proportional to the deterioration level, that is,

ck,y = yck, where ck is the cost of repairing the kth defect per unit deterioration level. We define

U(t) =
∑n
k=1 ckbkXk(t) as the total repair cost at time t. Then {U(t), t ≥ 0} is the cost growth process

and ckbkXk(t) has pdf f(x;αk(t), ckbkβk). The expected value and the variance of U(t) can be obtained

by replacing bk with ckbk in Eq. (4) and Eq. (5), respectively. The pdf of U(t) =
∑n
k=1 ckbkXk(t) can

be obtained via replacing bk with ckbk in the pdf of Y in Eq. (6).

The covariance between Y (t) and U(t) is given by

Cov(Y (t), U(t)) =
n∑
k=1

n∑
j=1

bkbjcjcov(Xk(t), Xj(t)). (10)

Since Xk(t) for k = 1, 2, ... are independent, cov(Xk(t), Xj(t)) = 0 for k 6= j, then

Cov(Y (t), U(t)) =
n∑
k=1

ckαk(t)b
2
kβ

2
k(t). (11)

In most existing research on maintenance cost of one degradation process Y (t), once the magnitude

of the degradation Y (t) is given, the associated cost of repair may be crY (t), which is a fixed value

(where cr denotes the cost of repairing a unit of Y (t)). This is because there are many different

combinations of Yk(t) that can be summed to obtain the same value of Y (t). Correspondingly, the

different Yk(t)’s incur different repair cost ck,y. As such, for Y (t) at a given time t, its associated repair

cost U(t) is a random variable. This suggests that one may also develop a maintenance policy based

on the cost process. That is, once the cost process reaches a threshold, maintenance on the combined

degradation process Y (t) is carried out. Hence, intriguing questions may include optimisation of

maintenance intervals, for example.

The next result gives the distribution of the cost of repair, conditioning that the linear combination

of the degradation processes exceeds the pre-specified value L.

Lemma 1 The conditional probability fU(t)|Y (t)(y, z) is given by

fU(t)|Y (t)(y, u) =
1

4π2gY (t)(y)

∫ ∞
−∞

∫ ∞
−∞

(
n∏
k=1

(1− i(t1 + ckt2)bkβk)
−αk(t)

)
e−it1y−it2u dt1 dt2. (12)
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Proof. The characteristic function of the bivariate vector (Y (t), U(t)) is derived by

φY (t),U(t)(t1, t2) = E[exp(it1Y (t) + it2U(t))]

= E[exp(it1
n∑
k=1

bkXk(t) + it2
n∑
k=1

ckbkXk(t))]

= E[exp(i
n∑
k=1

(bkt1 + ckbkt2)Xk(t)]

=
n∏
k=1

E[exp(i(bkt1 + ckbkt2)Xk(t)]

=
n∏
k=1

φXk(t)(bkt1 + ckbkt2). (13)

Since φXk(t)(bkt1 + ckbkt2) = (1− i(bkt1 + ckbkt2)β−1
k )−αk(t), we can obtain

fY (t),U(t)(y, u) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

φY (t),U(t)(t1, t2)e−it1y−it2u dt1 dt2

=
1

4π2

∫ ∞
−∞

∫ ∞
−∞

(
n∏
k=1

φXk(t)(bkt1 + ckbkt2)

)
e−it1y−it2u dt1 dt2

=
1

4π2

∫ ∞
−∞

∫ ∞
−∞

(
n∏
k=1

(1− i(t1 + ckt2)bkβ
−1
k )−αk(t)

)
e−it1y−it2u dt1 dt2. (14)

Hence, the conditional probability fU(t)|Y (t)(y, u) is given by

fU(t)|Y (t)(y, u) =
fY (t),U(t)(y, u)

gY (t)(y)

=
1

4π2gY (t)(y)

∫ ∞
−∞

∫ ∞
−∞

(
n∏
k=1

(1− i(t1 + ckt2)bkβk)
−αk(t)

)
e−it1y−it2u dt1 dt2, (15)

where gY (t)(y) is given by (6). This establishes Lemma 1. �

3.4 Incorporating random effect

It is known that random environment may affect the degradation processes of a system. For exam-

ple, the deterioration processes of the defects on a pavement network may be affected by covariates

such as the weather condition (the amount of rainfall) and traffic loading. If it is possible to collect

weather condition data (eg., the amount of rainfall in a time period) and traffic loading data, one may

incorporate co-variates in modelling. In addition, we may also consider random effects to account for

possible model misspecification and individual unit variability.

Bagdonavicius and Nikulin (2001) and Lawless and Crowder (2004) consider covariates in a gamma

process. When incorporating covariates, represented by vector z, for example, Bagdonavicius and

Nikulin (2001) incorporate αk(t) with αk(te
zτ δ) (where zτ is the transpose of z), Lawless and Crow-
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der (2004) replace βk with βk(z), in which z represents covariates and has the effect of rescaling X(t)

without changing the shape parameter of its gamma distribution. βk(z) may have a regression func-

tion expression such as βk(z) = exp(β′z), where β′ and z are vectors of covariates and regression

coefficients, respectively. In the following, we adopt the latter method and assume a degradation

process {X ′k(t), t ≥ 0}, which takes both covariates and random effects into consideration. Then,

X ′k(t) has density function fγ(x
′;αk(t), w0βz,k), where w0 is a random effect and βz,k represents

βk(z). One may assume that w = w−1
0 has gamma distribution Gamma(γ−1, δ) and density function

gγ−1,δ(w) = γδ

Γ(δ)
wδ−1e−γw; w has mean δ

γ
and variance σ2

z = δ
γ2

. If (X ′1, X
′
2, . . . , X

′
n, w0) has joint

density h(x1, x2, . . . , xn, w), then the conditional density of X ′1, X
′
2, . . . , X

′
n given w0 = w, is

h0(x1, x2, . . . , xn|w) =
h(x1, x2, . . . , xn, w)

gγ−1,δ(w)
. (16)

For given weather conditions and traffic loading, one can regard X1, X2, ..., Xn as independent. That

is, X ′1, X
′
2, ..., X

′
n are conditionally independent given a third event. Then,

h(x1, x2, . . . , xn, w) =h0(x1, x2, . . . , xn|w)gγ−1,δ(w)

=gγ−1,δ(w)
n∏
k=1

hk(xk|w). (17)

Since hk(xk|w) =
(
βz,k
w

)−αk(t)

Γ(αk(t))
x
αk(t)−1
k e

−w xk
βz,k , if (X ′1, X

′
2, . . . , X

′
n) has joint density function f0(x1, x2, . . . , xn),

then

f0(x1, x2, . . . , xn) =
∫ +∞

0
gγ−1,δ(w)

n∏
k=1

hk(xk|w) dw

=
∫ +∞

0

 n∏
k=1

(
βz,k
w

)−αk(t)

Γ(αk(t))
x
αk(t)−1
k

 e−w∑n

k=1

xk
βz,k gγ−1,δ(w) dw

=
n∏
k=1

β
−αk(t)
z,k

Γ(αk(t))
x
αk(t)−1
k

∫ ∞
0

γδ

Γ(δ)
wδ+ρ(t)−1 exp

{
−w

(
γ +

n∑
k=1

xk
βz,k

)}
dw (18)

=
∫ ∞

0

γδ

Γ(δ)
wδ+ρ(t)−1exp

{
−w

(
γ +

n∑
k=1

xk
βz,k

)}
dw

 n∏
k=1

β
−αk(t)
z,k

Γ(αk(t))
x
αk(t)−1
k

 (19)

=
γδ

Γ(δ)

(
γ +

n∑
k=1

xk
βz,k

)δ+ρ(t)

Γ(δ + ρ(t))

 n∏
k=1

β
−αk(t)
z,k

Γ(αk(t))
x
αk(t)−1
k

 . (20)

where ρ(t) =
∑n
k=1 αk(t).
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3.4.1 First hitting time

Next, we compute the first hitting time of the process {Y (t), t ≥ 0} to exceed a degradation level

L. Let

σL = inf(t > 0 : Y (t) ≥ L).

Then the probability distribution of FσL is given by

FσL(t) =
∫
· · ·

∫
∑n

k=1
bkXk(t)≥L

∫ +∞

0
gγ−1,δ(w)

n∏
k=1

hk(xk|w) dw dx1... dxn

=
∫
· · ·

∫
∑n

k=1
bkXk(t)≥L

∫ +∞

0

 n∏
k=1

(
βz,k
w

)−αk(t)

Γ(αk(t))
x
αk(t)−1
k

 e−w∑n

k=1

xk
βz,k gγ−1,δ(w) dw dx1... dxn

=
∫ +∞

0

 ∫
· · ·

∫
∑n

k=1
bkXk(t)≥L

 n∏
k=1

(
βz,k
w

)−αk(t)

Γ(αk(t))
x
αk(t)−1
k

 e−w∑n

k=1

xk
βz,k dx1... dxn

 gγ−1,δ(w) dw. (21)

According to Moschopoulos (1985), we have

∫
· · ·

∫
∑n

k=1
bkXk(t)<L

 n∏
k=1

(
βz,k
w

)−αk(t)

Γ(αk(t))
x
αk(t)−1
k

 e−w∑n

k=1

xk
βz,k gγ−1,δ(w) dw dx1... dxn =

∫ ∞
L

g′Y (t)(x) dx,

where g′Y (t)(x) is obtained following the same reasoning as in (6), that is,

g′Y (t)(x) = Dz(t)
∞∑
k=0

ζz,k(t)(βz,0/w)−ρz(t)−k

Γ(ρz(t) + k)
xρz(t)+k−1e−wx/βz,0 ,

and Dz(t), ζz,k, ρz(t) and βz,0 are obtained by replacing βk with βz,k in the definitions of D(t), ζk,

ρ(t) and β0, respectively.

Finally, we obtain

P (Y (t) ≥ L) =
∫ ∞

0

∫ ∞
L

g′Y (t)(y)gγ−1,δ(w) dy dw

=Dz(t)γ
δ
∞∑
k=0

ζz,k(t)β
−ρz(t)−k
z,0

B(ρz(t) + k, δ)

∫ ∞
L

xρz(t)+k−1

(
γ +

x

βz,0

)ρz(t)+k+δ

dx

=Dz(t)(βz,0γ)δ
∞∑
k=0

ζz,k(t)

B(ρz(t) + k, δ)

∫ ∞
L

xρz(t)+k−1 (βz,0γ + x)ρz(t)+k+δ dx, (22)

where B(x, y) denotes the function beta given by

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
,

and Γ(·) denotes the gamma function.
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4 Maintenance Policies

In the reliability literature, there are many models describing the effectiveness of a maintenance

activity. Such models include modification of intensity models (Doyen & Gaudoin, 2004; Wu, 2019),

reduction of age models (Kijima, Morimura, & Suzuki, 1988; Doyen & Gaudoin, 2004; Wu, 2019),

geometric processes (Lam, 1988; Wu & Wang, 2017; Wu, 2018), etc. For a system like a section of

pavement, maintenance may remove all of the defects, the degradation processes of the defects may

therefore stop. After maintenance, new defects may develop in a faster manner than before. The

effectiveness of such maintenance may be modelled by the geometric process.

The geometric process describes a process in which the lifetime of a system becomes shorter after

each maintenance. Its definition is given by Lam (1988), and it is shown below.

Definition 1 (Lam, 1988) Given a sequence of non-negative random variables {Xj, j = 1, 2, . . . }, if

they are independent and the cdf of Xj is given by F (aj−1x) for j = 1, 2, . . . , where a is a positive

constant, then {Xj, j = 1, 2, · · · } is called a geometric process (GP).

The parameter a in the GP plays an important role. The lifetime described by F (aj−1x) with a larger

a is shorter than that described by F (aj−1x) with a smaller a with j = 1, 2, . . ..

• If a > 1, then {Xj, j = 1, 2, · · · } is stochastically decreasing.

• If a < 1, then {Xj, j = 1, 2, · · · } is stochastically increasing.

• If a = 1, then {Xj, j = 1, 2, · · · } is a renewal process.

• If {Xj, j = 1, 2, . . . } is a GP and X1 follows the gamma distribution, then the shape parameter

of Xj for j = 2, 3, . . . remains the same as that of X1 but its scale parameter changes.

GP has been used extensively in the reliability literature to implement the effect of imperfect repairs

on a repairable system (see Castro and Pérez-Ocón (2006) and Wang and Zhang (2013), among

others).

In addition to the assumptions listed in Section 2, we make the following assumptions.

A8). Immediately after a repair, the system resets its age to 0, at which there are no defects in the

system.

A9). The initiation of the defects after the j-th imperfect repair follows a homogeneous Poisson

process with parameters λ/a1(T )j−1 with a1(T ) > 0 and a1(T ) being a non-decreasing function

in T for j = 1, 2, . . ..

A10). After the j-th repair and after the arrival of the k-th defect, the k-th defect grows according to

a gamma process with shape parameter αk(t) and scale parameter a2(T )j−1βk with a2(T )(> 0)

being a2(T ) an increasing function in T for j = 1, 2, . . ..

A11). Each inspection implies a cost of cI monetary units, ck,y corresponds to the variable cost of

repairing the k-th defect with degradation level equals to y and cf,k corresponds to the fixed

cost of repairing the k-th defect. Furthermore, if in an inspection time the “overall degradation”

of the system given by (23) exceeds the threshold L, an additional cost of cF monetary units is

12



incurred. The cost of the replacement at time NT is equal to cR.

We explain assumptions A9) and A10), respectively, in the following.

• Assumption A9) implies that the defect arrival rate relates to the inspection interval T , which

reflects the case that a1(T ) becomes bigger and the system tends to deteriorate faster for large

T than for small T .

• Assumption A10) implies that the degradation rate increases with the number of imperfect

repairs performed on the system. We denote by
{
Y ∗j (t), t ≥ 0

}
the “overall” degradation of the

maintained system after the j-th repair, and denote

Y ∗j (t) =
n∑
k=1

bkXk,j(t), 0 ≤ t ≤ T, (23)

where {Xk,j(t), t ≥ 0} stands for a gamma process with parameters αk and βka2(T )j−1. Similar

to the derivation process shown in previous section, we can compute the first hitting time to

exceed the threshold L for the process (23) following the same reasoning as in (6) replacing βk

by βka2(T )j−1. That is,

σ
(j)
L = inf

{
t ≥ 0 : Y ∗j (t) ≥ L

}
,

and we denote by F j
σL

the distribution of σ
(j)
L .

The problem is to determine the time between inspections and the number of inspections that

minimise an objective cost function. The optimisation problem is formulated in terms of the expected

cost rate per unit time.

By a replacement cycle, we mean the time between two successive replacements of the system. In

this paper, the total replacement cycle is equal to NT . Let Q0(N, T ) be the expected rate of the

total cost in a replacement cycle. Then we obtain

Q0(N, T ) =
1

NT

N∑
j=1

[
cI +

n∑
k=1

(a1(T ))j−1

λ

(
cf,k +

∫ ∞
0

ck,yf(y;αk(T ), βka2(T )j−1) dy
)

+cF
(a1(T ))j−1

λ
F j
σL

(T )

]
+

cR
NT

, (24)

where f(y;αk(T ), βka2(T )j−1) is given by (2) and F j
σL

(T ) is given by (9) replacing βk by βka2(T )j−1.

The expected variable cost per unit time in a replacement cycle is given by

CV (N, T ) =
1

NT

N∑
j=1

n∑
k=1

a1(T )j−1

λ

∫ ∞
0

ck,yf(y;αk(T ), βka2(T )j−1) dy. (25)

The optimization problem is formulated as

Q0(Nopt, Topt) = min
N=1,2,...
T>0

Q0(N, T ). (26)
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4.1 Special cases

In this section, we discuss Q0(N, T ) and CV (N, T ) under special cases of ck,y, a1(T ), a2(T ), and

αk(T ), respectively.

4.1.1 Special cases of ck,y

Different scenarios can be envisaged depending on the variable cost function ck,y.

• If ck,y = ck, then the expected variable cost rate (25) in a renewal cycle is given by

CV (N, T ) =
1

NT

N∑
j=1

n∑
k=1

a1(T )j−1

λ

∫ ∞
0

ckf(y;αk(T ), βka2(T )j−1) dy

=
1

NT

N∑
j=1

n∑
k=1

a1(T )j−1ck
λ

.

• If ck,y is directly proportional to the degradation level of the k-th defect in the inspection time,

that is, ck,y = yck, then the expected variable cost (25) is equal to

CV (N, T ) =
1

NT

N∑
j=1

n∑
k=1

a1(T )j−1

λ

∫ ∞
0

ckyf(y;αk(T ), βka2(T )j−1) dy

=
1

NT

N∑
j=1

n∑
k=1

a1(T )j−1

λ
ckαk(T )a2(T )j−1βk

=
1

NT

(
(a1(T )a2(T ))N − 1

a1(T )a2(T )− 1

)
n∑
k=1

ckαk(T )βk
λ

.

• If ck,y is directly proportional to the square of the degradation level of the k-th defect in the

inspection time, that is, ck,y = y2ck. In this case, the repair cost may relate to the area of a

defect, see Van Noortwijk and Klatter (1999), for example. (25) is given by

CV (N, T ) =
1

NT

N∑
j=1

n∑
k=1

a1(T )j−1

λ

∫ ∞
0

cky
2f(y;αk(T ), βka2(T )j−1) dy

=
1

NT

N∑
j=1

n∑
k=1

a1(T )j−1

λ
ck
(
Var(Xk,j(T )) + (E(Xk,j(T )))2

)

=
1

NT

N∑
j=1

n∑
k=1

a1(T )j−1

λ
ck
(
β2
kαk(T )a2(T )2j−2 + β2

kαk(T )2a2(T )2j−2
)

=
1

NT

(
(a1(T )a2(T )2)N − 1

a1(T )a2(T )2 − 1

)
n∑
k=1

ckβ
2
k(αk(T ) + αk(T )2)

λ
.

4.1.2 Special cases of a1(T ), a2(T ), and αk(T )

The analysis of the monotonicity of Q0(N, T ) is quite tricky. To analyse it, some particular condi-

tions are imposed. We assume that a1(T ) = a1, a2(T ) = a2, αk(T ) = αkT , and ck,y = yck, Q0(N, T )
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given by (24) is then reduced to

Q0(N, T ) =
cI
T

+
cR
NT

+
(aN1 − 1)

(a1 − 1)λNT

n∑
k=1

cf,k (27)

+
(aN1 a

N
2 − 1)

λN(a1a2 − 1)

n∑
k=1

ckαkβk +
cF
λNT

N∑
j=1

aj−1
1 F (j)

σL
(T ).

We suppose that N is constant and T is variable on (0,∞). A necessary condition that a finite T ∗

minimises Q0(N, T ) given by (27) is that it satisfies

N∑
j=1

aj−1
1

(
f (j)
σL

(T )T − F (j)
σL

(T )
)

=
λ

cF

(
NcI +

aN1 − 1

λ(a1 − 1)

n∑
k=1

cf,k + cR

)

Next, we suppose that T is constant. Then a necessary condition that there exists a finite a unique

N∗ minimizing Q0(N, T ) is that N∗ satisfies

Q0(N + 1, T ) ≥ Q0(N, T ),

and

Q0(N, T ) ≥ Q0(N − 1, T ).

We get that

Q0(N + 1, T )−Q0(N, T ) =
1

λT (a1 − 1)

n∑
k=1

cf,k
N(aN+1

1 − aN1 )− aN1 + 1

N(N + 1)

+

∑n
k=1 ckαkβk

λ(a1a2 − 1)

N(aN+1
1 aN+1

2 − aN1 aN2 )− aN1 aN2 + 1

N(N + 1)

− cR
N(N + 1)T

+ cF

∑N
j=1 a

N
1 F

(N+1)
σL

(T )− aj−1
1 F (

σL
j)(T )

λN(N + 1)T
.

Hence, for fixed T , Q0((N + 1), T )−Q0(N, T ) ≥ 0 if and only if

cR < D(N, T ),

where

D(N, T ) =
1

λ

n∑
k=1

cf,k
N(aN+1

1 − aN1 )− aN1 + 1

(a1 − 1)

+ T
n∑
k=1

ckαkβk
N(aN+1

1 aN+1
2 − aN1 aN2 )− aN1 aN2 + 1

λ(a1a2 − 1)

+
cF
λ

 N∑
j=1

aN1 F
(N+1)
σL

(T )− aj−1
1 F (j)

σL
(T )

 .
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We get that, if a1 > 2, then D(N, T ) is non decreasing in N . Therefore, if

cR < D(1, T ),

then cR < D(N, T ) for all N . We get that

D(1, T ) =
(a1 − 1)

λ

n∑
k=1

cf,k +
T (a1a2 − 1)

λ

n∑
k=1

ckαkβk +
cF
λ

(
a1F

(2)
σL

(T )− F (1)
σL

(T )
)
.

Hence, if a1 > 2 and

cR <
(a1 − 1)

λ

n∑
k=1

cf,k,

then Q0(N, T ) is increasing in N .

An economic constraint is introduced in the optimisation problem formulated in (26) to limit the

variable cost in a replacement cycle. The introduction of constraints in the search of the optimal

maintenance strategy is not new in the literature. For example, Aven and Castro (2008) and Aven

and Castro (2009) introduced constraints related to the system safety in an optimisation problem. In

this paper, the constraint imposed in the optimisation is economic and it is related to the expected

variable cost imposing that this expected variables cost cannot exceed a threshold K.

Let Ω be the set of pairs (N, T ) such that CV (N, T ) ≤ K, that is,

Ω = {(N, T ) : N = 1, 2, . . . , T > 0 subject to CV (N, T ) ≤ K} , (28)

and the optimisation problem is formulated in terms of the economic constraint as

Q∗0(Topt, Nopt) = inf {Q0(N, T ) : (N, T ) ∈ Ω} . (29)

To analyse the optimisation problem given by (29), the monotonicity of the function CV (N, T ) is

studied.

4.2 Economic constraint analysis

We analyse the monotonicity of CV (N, T ) in the two variables N and T and assume that ck,y =

yf(y;αk(T ), β) (i.e., variable cost proportional to the degradation level) and a2(T ) > 1 and a1(T ) > 1

for all T .

Lemma 2 If αk(T ) is convex in T for all k with αk(0) = 0 and α′k(0) <∞, then

• CV (N, T ) is increasing in T for fixed N , and

• CV (N, T ) is increasing in N for fixed T .
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Proof. The expected variable cost rate is given by

CV (N, T ) =
1

N

(
n∑
k=1

ckβkαk(T )/T

λ

)N−1∑
j=0

(a1(T )a2(T ))j


=

1

N

(a1(T )a2(T ))N − 1

a1(T )a2(T )− 1

(
n∑
k=1

ckβkαk(T )/T

λ

)
. (30)

The function αk(T )/T is increasing in T as consequence of the convexity of αk(T ) along with αk(0) =

0 and α′k(0) <∞. On the one hand, since a1(T ) and a2(T ) are increasing in T , CV (N, T ) is increasing

in T . On the other hand, the function

g(N) =
1

N

N−1∑
j=1

(a1(T )a2(T ))j,

is increasing in N since

g(N + 1)− g(N) =

∑N−1
j=0 ((a1(T )a2(T ))N − (a1(T )a2(T ))j)

N(N + 1)
,

and a1(T )a2(T ) > 1, hence CV (N, T ) is increasing in N . This establishes Lemma 2. �

The first consequence of Lemma 2 is that the condition

1

λ

n∑
k=1

ckβk lim
T→0

αk(T )

T
≤ K, (31)

has to be imposed. If inequality (31) is not fulfilled, then Ω = ∅. On the other hand, if

lim
T→∞

lim
N→∞

CV (N, T ) ≤ K, (32)

then Ω = {T > 0, N = 1, 2, . . .} , and the optimisation problem in (29) is reduced to the optimisation

problem in (26). Hence, to deal with the optimisation problem with constraints, we assume that the

following inequality
1

λ

n∑
k=1

ckβk lim
T→0

αk(T )

T
≤ K < lim

T→∞
lim
N→∞

CV (N, T ), (33)

is fulfilled. If (33) is fulfilled, we denote

N1 = inf
{
N : lim

T→∞
CV (N, T ) > K

}
,

and

N2 = inf
{
N : lim

T→0
CV (N, T ) > K

}
.

We obtain that N1 ≤ N2.
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If N∗ is fixed such that N1 ≤ N∗ ≤ N2, we denote T ∗N as the root of the equation

CV (N∗, T ∗N) = K,

and the set Ω given in (28) is therefore equal to

Ω = {(N, T ) : N = 1, 2, . . . , N1 − 1} ∪ {(N, T ) : N = N1, N1 + 1, . . . , N2 − 1, T ≤ T ∗N} . (34)

5 Discussion

Below we discuss the assumption of the degradation processes, the random environment, and the

effectiveness of repair.

Degradation process. The preceding sections assume that Xk(t) follows the gamma process. Cer-

tainly, one may choose the degradation process of Xk(t) based on the real applications: for

example, in the case of the example investigated in this paper, the propagation process of a

fatigue crack evolves monotonically only in one direction, the gamma process is a good choice.

Methodologically, however, Xk(t) may be assumed to follow any other process, such as the

Wiener process (Sun et al., 2018), the inverse Gaussian process (Chen et al., 2015) and the

Ornstein-Uhlenbeck process (Deng et al., 2016). The probability distribution of
∑n
k=1 Xk(t) can

be easily derived if Xk(t)(k = 1, 2, ..., n) follow Wiener processes. In some case, a closed form of

the distribution of
∑n
k=1Xk(t) may not be easily found and therefore numerical methods may

be pursued.

One may also assume that Xk(t) may follow different degradation processes, for example, on

different k’s, some Xk(t)’s follow gamma processes and others follow Wiener processes.

Incorporation of dynamic environments. The system considered in this paper is operated under a

random environment. In addition to the method that incorporate the random environment with

the random effect method, one may also use other methods, for example, one may consider the ef-

fect of the dynamic environment on the system as external shocks using Poisson processes (Yang,

Zhao, Peng, & Ma, 2018), or as other stochastic processes, including continuous-time Markov

chain process (Bian, Gebraeel, & Kharoufeh, 2015), and Semi-Markov process (Kharoufeh, Solo,

& Ulukus, 2010). The reader is referred to Peng, Hong, and Ye (2017) for a discussion in detail.

Imperfect repair. In this paper, we consider the effectiveness of repair as imperfect. The justifica-

tion is as follows. If we consider a pavement network, all defects, such as fatigue cracking and

pavement deformation, disappear after repair. This does not suggest the pavement network is

repaired as good as new (i.e., perfect repair) or as bad as old (i.e., minimal repair). Instead,

it is more reasonable to assume that the repair is imperfect. In the literature, many methods

that model the effectiveness of imperfect maintenance have been developed (see the Introduc-
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tion section in Wu (2019)). For simplicity, this paper uses the geometric process introduced in

Lam (1988). Of course, one may other models such as the age-modification models (Kijima et

al., 1988; Doyen & Gaudoin, 2004), under which the optimisation process becomes much more

complicated.

6 Numerical examples

We consider a system subject to three different defects, all of which start at random times, following

a homogeneous Poisson process with rate λ = 1 defects per unit time. The degradation process of

the three defects is modelled using a nonhomogeneous gamma processes with shape parameters

αk(t) = αkt
ξk with ξk = 2, α1 = 1, α2 = 1, α3 = 1 and scale parameters β1 = 1, β2 = 2 and β3 = 3,

respectively. The random effect w0 is modelled with w = w−1
0 , where w follows a gamma distribution

Gamma(1, 2).

The overall degradation process of the system Y is a combination linear of the three processes

Y = 0.2X1 + 0.7X2 + 0.4X3,

and we assume that the system fails when the degradation level of Y exceeds the failure threshold

L = 20. Imperfect repairs are performed on the system every T time units and the effect of these

imperfect repairs is modelled by a geometric process with parameters a1(T ) = 1.1(1.2−0.2 exp(−T ))

for the time between arrivals and a2(T ) = 1.15(1.2 − 0.2 exp(−T )) for the effect of the imperfect

repairs on the degradation rate of the defects. Each inspection involves a cost of cI = 0.05 monetary

units. Each repair involves a fixed cost of cf,1 = 2 monetary units for the first defect, cf,2 = 2

monetary units for the second defect and cf,3 = 2 monetary units for the third defect. Each repair

involves also a variable cost depending on the degradation of the defect. The variable cost is given by

c1,y = 7y, c2,y = 7y and c3,y = 7y on the three defects, respectively, where y denotes the degradation

of the defect in the time of the repair. If the overall degradation of the system exceeds L = 20 in

the repair time, an additional cost of cF = 100 monetary units is incurred. A complete replacement

of the system by a new one is performed at the time of the N -th imperfect repair with a cost of

cR = 1000 monetary units.

Figure 2 shows the expected cost per unit time Q0(N, T ) versus N and T . This graphic is obtained

by simulation with 10 values for T from 1 to 7, N from 1 to 2 and 3000 simulations in each point.

By inspection, the minimal value of Q0(N, T ) are obtained for Topt = 1.9474 and Nopt = 3 with and

optimal expected cost rate of Q0(Nopt, Topt) = 332.6066 monetary units per unit time. The economic

safety constraint is introduced in this problem and it is dependent on the variable cost given by

CV (N, T ) =
1

λN

n∑
k=1

ckαkβkT
N−1∑
j=0

(a1(T )a2(T ))j. (35)
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For fixed N , the function given by (35) is non-decreasing in T . For fixed T , we get that

CV (N + 1, T )− CV (N, T ) =
n∑
k=1

ckαkβkT

λ

N−1∑
j=0

(
(a1(T )a2(T ))N − a1(T )a2(T )j

)
N(N + 1)

,

is positive. Figure 3 shows the economic safety constraint versus T and N . As we visually can check,

the variable cost is non-decreasing in N for fixed T and non-decreasing in T for fixed N .

We assume that the variable cost cannot exceed the threshold K = 130 monetary units, that is,

the optimization of Q0(N, T ) given by (24) is performed on the set Ω1, where

Ω1 = {(N, T ) such that CV (N, T ) ≤ 130} .

Inequality (33) is fulfilled since

lim
T→0

CV (1, T ) = lim
T→0

1

λ

n∑
k=1

ckβkαkT
ξk−1 = 0,
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and, therefore, limT→0CV (1, T ) ≤ K, and

lim
N→∞

lim
T→∞

CV (N, T ) =∞,

hence inequality (33) is fulfilled.

Figure 4 shows the value of CV (N, T ) for N ≤ 10. The set of the points Ω that fulfils the economic
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Fig. 4. Variable cost CV(N,T ) versus T

constraint is given by

Ω1 = {(N, T ), N ≥ 1; T ≤ T ∗N} ,

where T ∗N is the root of CV (N, T ) = K.

The point in which the global minimum is obtained in the unconstrained problem (that is, Topt =

1.9474 and Nopt = 3) presents a variable cost equals to CV (Nopt, Topt) = 147.8725 monetary units

per unit time what it implies that it is not an optimal solution for the constrained problem.

Figure 5 shows the values for the expected cost rate Q0(N, T ) for T ≤ T ∗N , that is, the expected

cost rate Q0(N, T ) in the subset Ω. The minimum of these function is reached at point Nopt = 4 and

Topt = 1.1137 with an expected cost rate equals to Q0(Topt, Nopt) = 344.4153 monetary units per unit

time.
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7 Discussion

This paper discussed the scenario where a linear combination of degradation processes was studied.

7.1 Rethinking of the assumptions

The above sections assumes the defect inter-occurrence times to be exchangeable and to exhibit

the lack of memory property. Nevertheless, both properties may be violated in the real world. If so,

one may assume that the defect inter-occurrence times follow a non-homogeneous Poisson process,

for example.

7.2 A r-out-of-n case

In Section 3.2, we discussed the case when the sum of the deterioration levels is monitored.

In practice, another scenario may be to monitor r-out-of-n deterioration processes. That is, if k-

out-of-n deterioration levels are greater than their pre-specified thresholds, respectively, mainte-

nance needs performing. Denote Y(1)(t), Y(3)(t), ..., Y(n)(t) as by sorting the values (realisations) of

Y1(t), Y2(t), ..., Yn(t) in increasing order. For simplicity, we assume that Yk(t) are i.i.d for k = 1, 2, ..., n

with cdf F (x, α(t), b−1β). The cumulative distribution function of Y(r)(t) is given by

GY(r)(t)(y) = 1−
n∑
k=r

n!

(n− r)!r!
(1− F (y, α(t), b−1β))k(F (y, α(t), b−1β))n−k. (36)

First hitting time TL2 . Let TL2 = inf(t > 0 : Y(r)(t) ≥ L2). Then the distribution of the first

passage time TL2 is given by

FTL2
(t) = P (TL2 < t)

= P (Y(r)(t) ≥ L2)

=
n∑
k=r

n!

(n− r)!r!
(1− F (L2, α(t), b−1β))k(F (L2, α(t), b−1β))n−k,

where bk ≥ 0 for all k.

8 Conclusions

This paper investigated the scenario where a system needs maintenance if a linear combination of

the degradation processes exceeds a pre-specified threshold. It derived the probability distribution

of the first hitting time and the process of repair cost. The paper then considered the degradation

processes that are affected by random effect and covariates. Imperfect repair is conducted when the

combined process exceeds a pre-specified threshold, where the imperfect repair is modelled with a

22



geometric process. The system is replaced once the number of its repair reaches a given number.

Numerical examples were given to illustrate the maintenance policies derived in the paper.

As our future work, we may investigate the case that a system needs maintenance if k out of n

degradation processes exceeds a pre-specified threshold.

References

Adlinge, S. S., & Gupta, A. (2013). Pavement deterioration and its causes. International Journal of

Innovative Research and Development , 2 (4), 437–450.

Alaswad, S., & Xiang, Y. (2017). A review on condition-based maintenance optimization models for

stochastically deteriorating system. Reliability Engineering & System Safety , 157 , 54–63.

Aven, T., & Castro, I. T. (2008). A minimal repair replacement model with two types of failure and

a safety constraint. European Journal of Operational Research, 188 (2), 506-515.

Aven, T., & Castro, I. T. (2009). A delay-time model with safety constraint. Reliability Engineering

& System Safety , 94 (2), 261-267.

Bagdonavicius, V., & Nikulin, M. S. (2001). Estimation in degradation models with explanatory

variables. Lifetime Data Analysis , 7 (1), 85–103.

Bian, L., Gebraeel, N., & Kharoufeh, J. P. (2015). Degradation modeling for real-time estimation of

residual lifetimes in dynamic environments. IIE Transactions , 47 (5), 471–486.
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