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Cellular Structure of Wreath Product Algebras

Reuben Green∗

rmg29@kent.ac.uk

School of Mathematics, Statistics and Actuarial Science,

University of Kent, CT2 7NF, UK

Abstract

We apply the method of iterated inflations to show that the wreath
product of a cellular algebra with a symmetric group is cellular, and
obtain descriptions of the cell and simple modules together with a
semisimplicity condition for such wreath products.
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1 Introduction

The wreath product GoSn of a finite group G with a symmetric group Sn is
a natural group-theoretic construction with many applications. For example,
wreath products SmoSn of two symmetric groups are of great importance
in the representation theory of the symmetric group. It is also natural to
consider the wreath product AoSn of an algebra A with a symmetric group Sn,
see for example the work of Chuang and Tan in [1]. The notion of a cellular
algebra was introduced by Graham and Lehrer in [4] and has since found
broad application. The question arises as to whether a cellular structure
on an algebra A yields a cellular structure on the algebra AoSn, and in [3]
Geetha and Goodman showed that this is so in the case that A is not only
cellular but cyclic cellular, meaning that all of the cell modules of A are
cyclic [3, Theorem 4.1]. Their proof is quite combinatorial in nature, and
draws on the work of Dipper, James, and Mathas in [2] and of Murphy in
[11]. However, we shall prove (section 4) that AoSn is cellular for any cellular
algebra A, by exhibiting it as an iterated inflation of tensor products of group
algebras of symmetric groups. Iterated inflations were originally introduced
by König and Xi in [8], but we shall use this concept in the form given in
[5]. The advantage of taking this approach is a far simpler proof than the
one given in [3], and hence much easier access to the powerful machinery of
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cellular algebra theory which allows us to easily prove the nice results on
A o Sn given in Section 5. The price for this simplicity is that order obtained
on the set of cell indices of A oSn is somewhat cruder than the order obtained
in [3], and hence contains less representation-theoretic information; see the
discussion at the end of Section 4 for more details. Since (as far as the
author is aware) all cellular algebras which occur in practice are in fact cyclic
cellular, the result presented in this article is in effect a weaker version of
the result of Geetha and Goodman. However, we feel that the much simpler
proof afforded by the method of iterated inflations is of interest in its own
right.

We shall also obtain a convenient graphical description of a well-known
method of constructing AoSn modules (section 3), and in section 5 we bring
this description together with the cellularity result to deliver results on the
representation theory of A o Sn, in particular a description of the simple
modules and a semisimplicity condition. These results require no extra
assumptions on the field (e.g. algebraic closedness).

2 Recollections and definitions

We let k be a field of characteristic p (p may be zero or a prime). By a
k-algebra, we shall mean a finite-dimensional unital associative k-algebra; we
shall abbreviate ⊗k to ⊗; all of our modules will be right modules of finite
k-dimension. By an anti-involution on a k-algebra A, we mean a self-inverse
k-linear isomorphism a 7→ a∗ such that (ab)∗ = b∗a∗ for all a, b ∈ A.

For n a non-negative integer, a composition of n is a tuple of non-negative
integers whose sum is n, and if µ = (µ1, . . . , µt) is a tuple of non-negative
integers then we call the numbers µi the parts of µ, and define |µ| to be the
sum µ1 + · · ·+ µt, so that µ is a composition of |µ|. A composition whose
entries are positive and appear in non-increasing order is a partition. Note
that n = 0 has exactly one partition, the empty tuple, which we shall write
as ().

2.1 Cellular algebras

We refer the reader to [4] for basic information and notation on cellular
algebras. We shall refer to elements of the poset Λ indexing the cell modules
of a cellular algebra as cell indices, and we shall write the anti-involution on
a cellular algebra A as a 7→ a∗. Recall that to each cell index λ we associate a
finite set M(λ), and we have a cellular basis of A whose elements are indexed
by the disjoint union of the sets M(λ)×M(λ) for λ ∈ Λ; we write the cellular
basis element indexed by (S, T ) ∈M(λ)×M(λ) as CλS,T . We call the tuple
(Λ,M,C) the cellular data of A with respect to ∗. Since we are using right
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modules we take the multiplication rule for cellular basis elements to be

CλS,Ta ≡
∑

X∈M(λ)

Ra(T,X)CλS,X (1)

modulo cellular basis elements of lower cell index (where Ra(T,X) ∈ k).
Then the right cell module ∆λ is the vector space with basis {CT : T ∈M(λ)};
our form of the multiplication rule (1) means that the action of A on ∆λ is

CTa =
∑

X∈M(λ)

Ra(T,X)CX . (2)

Let us recall some basic results on cell modules, see [4, sections 2 and 3].
Indeed, each cell module is equipped with a bilinear form, whose radical
is either the whole cell module or else its unique maximal A-submodule;
we shall call these bilinear forms the cell forms and their radicals the cell
radicals. We let Λ0 be the set of λ ∈ Λ such that the cell radical of ∆λ does
not equal ∆λ, and for λ ∈ Λ0 we let Lλ be the quotient of ∆λ by its cell
radical; thus Lλ is a simple A-module, and the modules Lλ for λ ∈ Λ0 are
in fact a complete list of all the simple right A-modules up to isomorphism
without redundancy.

2.2 The symmetric group

We let Sn denote the symmetric group on the set {1, 2, . . . , n}, and we take
Sn to act on the right, so that the product σπ of permutations is calculated by
first applying σ and then applying π; thus we write permutations to the right
of their arguments. We shall find it convenient to represent permutations
via permutation diagrams; for example, we represent (1, 2, 3)(5, 7) ∈ S7 by
the diagram

,

where the ith node on the top row is connected by a string to the (i)σth node
on the bottom row. To calculate the product σπ in Sn using permutation
diagrams, we connect the diagram for σ above the diagram for π, and then
simplify the resulting diagram to yield the permutation diagram of σπ. For
µ a composition of n, we write Sµ for the Young subgroup of Sn associated
to µ.

Let us denote the dominance order on partitions by .. The reverse
dominance order is the order obtained by reversing all the relations in the
dominance order. The group algebra kSn is known to be a cellular algebra
[10, Theorem 3.20], with respect to the anti-involution ∗ defined by setting
σ∗ = σ−1 for σ ∈ Sn, and a tuple of cellular data including the partially
ordered set Pn consisting of all partitions of n endowed with the reverse
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dominance order. Note that [10, Theorem 3.20] mentions the dominance
order rather than the reverse dominance order, but we note that the definition
of a cellular algebra used there [10, 2.1], has the opposite convention on
the ordering of the elements of the poset of cell indices compared to [4], so
that in the sense of our definition of a cellular algebra, we do indeed have
the reverse dominance order. We shall not need the details of the cellular
basis occurring in this structure, but we note that for λ ∈ Pn, the right cell
module associated to λ by this structure, which we shall denote by Sλ, is
the (contragredient) dual of the right Specht module defined by James in
[6]1. Further, the simple modules are indexed by p-restricted partitions. If
p = 0 then all partitions are considered p-restricted, while if p > 0 then a
partition is p-restricted if the difference between any two consecutive parts
is less than p. Note that () is p-restricted for all p > 0. For λ p-restricted,
we denote the associated simple module by Dλ [10, Theorem 3.43].

The following result may easily be proved by directly verifying the axioms
for a cellular algebra; in fact, it is merely a special case of the general result
that a tensor product of cellular algebras is cellular, see for example section
3.2 of [3].

Proposition 1. Let n1, . . . , nr be non-negative integers. Then the group
algebra k(Sn1 × · · · × Snr) is a cellular algebra with respect to the map given
by (σ1, . . . , σr) 7−→ (σ−1

1 , . . . , σ−1
r ) for σi ∈ Sni and a cellular structure

where the poset of cell indices is Pn1 × · · · × Pnr with the order where
(λ1, . . . , λr) > (µ1, . . . , µr) means λi E µi for all i; the cell module associated
to (λ1, . . . , λr) is Sλ1 ⊗ · · · ⊗ Sλr with the action

(x1 ⊗ · · · ⊗ xr) · (σ1, . . . , σr) = (x1σ1)⊗ · · · ⊗ (xrσr)

for xi ∈ Sλi, σi ∈ Sni, and the cell form is given on pure tensors by

〈x1 ⊗ · · · ⊗ xr, y1 ⊗ · · · ⊗ yr〉 = 〈x1, y1〉 · · · 〈xr, yr〉

where each bilinear form on the right hand side is the appropriate cell form
of some Sλi.

Let σ ∈ Sn. Then an inversion of σ is a transposition (i, j) in Sn such
that 1 ≤ i < j ≤ n but (i)σ > (j)σ, and the Coxeter length of σ is defined
to be the total number of inversions of σ; we shall simply call this the
length of σ. It is well-known that if µ is a composition of n, then each right
coset Sµσ of Sµ contains a unique element of minimal length, and further
that if µ = (µ1, . . . , µr), then for any given right Sµ-coset, the element of
minimal length is the unique element γ of the coset such that in the sequence

1 See [10], “Warning” on p.38 and “Note 2” on page 54, but note that the original
published text incorrectly states that the cell module obtained is the dual of the right
James Specht module associated to the conjugate of λ; see the correction to the Warning
in the author’s errata.
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(1)γ−1, . . . , (n)γ−1, the elements 1, . . . , µ1 occur in increasing order, as do
the elements µ1 + 1, . . . , µ1 + µ2, the elements µ1 + µ2 + 1, . . . , µ1 + µ2 + µ3,
and so on. Equivalently, an element σ of Sn is of minimal length in its coset
Sµσ if and only if, in its permutation diagram, the strings attached to the
first µ1 nodes on the top row do not cross each other, the strings attached
to the next µ2 nodes on the top row do not cross each other, and so on. For
example, the permutation whose diagram appears in the diagram (10) below
is of minimal length in its Sµ coset for µ = (3, 2, 3). For any µ a composition
of n, we define Rµ to be the unique system of minimal-length right Sµ-coset
representatives in Sn.

2.3 Iterated inflation of cellular algebras

Iterated inflations of cellular algebras were first introduced by König and Xi
in [8], but we shall use them as presented in [5]. We shall now summarise the
content of [5]; note however that we give the form using right cell modules,
rather than the left cell modules used in [5].

Let A be a k-algebra, with an anti-involution ∗. Suppose that we have,
up to isomorphism of k-vector spaces, a decomposition

A ∼=
⊕
µ∈I

Vµ ⊗Bµ ⊗ Vµ

of A, where I is a finite partially ordered set, each Vµ is a k-vector space, and
each Bµ is a cellular algebra over k with respect to an anti-involution ∗ and
cellular data (Λµ,Mµ, C). We shall henceforth consider A to be identified
with this direct sum of tensor products, and we shall speak of the subspace
Vµ ⊗Bµ ⊗ Vµ as the µ-th layer of A. Suppose that for each µ ∈ I, we have
a basis Vµ for Vµ and a basis Bµ for Bµ. Let A be the basis of A consisting
of all elements u⊗ b⊗w for all u,w ∈ Vµ and all b ∈ Bµ, as µ ranges over I.
Suppose that for each µ ∈ I, we have for any u,w ∈ Vµ and any b ∈ Bµ that

(u⊗ b⊗ w)∗ = w ⊗ b∗ ⊗ u, (3)

and suppose further that for any µ ∈ I we have maps φµ : Vµ ×A → Vµ and
θµ : Vµ ×A → Bµ such that for any u,w ∈ Vµ and any b ∈ Bµ, we have for
any a ∈ A that

(u⊗ b⊗ w) · a ≡ u⊗ b θµ(w, a)⊗ φµ(w, a) mod J(< µ), (4)

where J(< µ) =
⊕

α<µ Vα ⊗ Bα ⊗ Vα. Then by [5, Theorem 1], A is
cellular with respect to ∗ and the cellular data (Λ,M,C), where Λ is the
set {(µ, λ) : µ ∈ I and λ ∈ Λµ} with the lexicographic order, M(µ, λ) is

Vµ ×Mµ(λ), and C
(µ,λ)
(x,X),(y,Y ) = x⊗ CλX,Y ⊗ y.
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Further by [5, Proposition 2], for each µ ∈ I there is a unique Bµ-valued
k-bilinear form ψµ on Vµ such that for any u,w, x, y ∈ Vµ and b, c ∈ Bµ we
have ψµ(y, u) = ψµ(u, y)∗ and

(x⊗ c⊗ y)(u⊗ b⊗ w) ≡ x⊗ c ψµ(y, u)b⊗ w mod J(< µ). (5)

Finally (see [5, Proposition 3]), let (µ, λ) ∈ Λ, and let ∆λ be the right
cell module of Bi corresponding to λ. The right cell module ∆(µ,λ) of A may
be obtained by equipping ∆λ ⊗ Vµ with the action given, for a ∈ A, x ∈ Vµ
and z ∈ ∆λ, by (z ⊗ x)a = z θµ(x, a)⊗ φµ(x, a). Moreover, if 〈· , ·〉 is the cell
form on ∆λ ⊗ Vµ and 〈· , ·〉λ is the cell form on ∆λ, then for any x, y ∈ Vµ
and any z, v ∈ ∆λ, we have

〈z ⊗ x, v ⊗ y〉 = 〈z ψµ(x, y), v〉λ = 〈z, v ψµ(y, x)〉λ. (6)

3 Wreath product algebras

We recall the notion of the wreath product of an algebra with a symmetric
group from [1]. Indeed, let A be a finite-dimensional unital associative k-
algebra. Consider the k-vector space kSn ⊗A⊗n, and further let us write a
pure tensor x⊗ a1 ⊗ a2 ⊗ · · · ⊗ an in this vector space as (x ; a1, a2, . . . , an).
Then we have a well-defined multiplication which is given by

(σ; a1, a2, . . . , an)(π; b1, b2, . . . , bn) =

(σπ; a(1)π−1b1, a(2)π−1b2, . . . , a(n)π−1bn)

for σ, π ∈ Sn and ai, bi ∈ A; we define the wreath product AoSn of A and Sn
to be the unital associative k-algebra so obtained.

We assume that the reader is familiar with the notion of diagram algebras,
for example the Brauer or Temperley-Lieb algebras. We can consider AoSn
to be a kind of diagram algebra. Indeed, we may represent a pure tensor
(σ; a1, a2, . . . , an) in AoSn, where σ ∈ Sn and ai ∈ A, by a diagram obtained
by drawing the permutation diagram associated to σ, with the nodes of
the bottom row replaced by the elements ai. For example, if n = 5 and
σ = (1, 4, 3, 5, 2), then we represent the element (σ; a1, a2, a3, a4, a5) by

a1 a2 a3 a4 a5 .

Such diagrams are useful for computing products, as we now show by an
example. Indeed, keep n = 5 and σ = (1, 4, 3, 5, 2), and let π = (1, 3, 5)(2, 4).
Then to compute the product (σ; a1, a2, a3, a4, a5)(π; b1, b2, b3, b4, b5), we draw
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the diagram corresponding to the first factor above the one corresponding to
the second factor, to obtain

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

and we then slide each ai down its string to meet some bj , and then resolve
the two connected permutation diagrams into a single diagram, to obtain

a5b1 a4b2 a1b3 a2b4 a3b5

which corresponds to the element
(
(1, 2, 3)(4, 5); a5b1, a4b2, a1b3, a2b4, a3b5

)
,

which is indeed the product of the two elements we started with.
Note that, unlike the usual diagram basis of the Brauer or Temperley-Lieb

algebras, the set of all such diagrams is not a basis of AoSn. A basis of such
diagrams can be formed by fixing a basis C of A, and then taking the set of
all elements (σ; a1, . . . , an) for σ ∈ Sn and ai ∈ C; however the product of two
such basis elements will not in general be a scalar multiple of another basis
element as is the case for the diagram basis of the Brauer or Temperley-Lieb
algebras.

It is easy to show that there is a well-defined anti-involution ∗ on AoSn
given by

(σ; a1, . . . , an)∗ =
(
σ−1 ; a∗(1)σ, . . . , a

∗
(n)σ

)
, (7)

where σ ∈ Sn and a1, . . . , an ∈ A. In terms of diagrams, this map corresponds
to the operation of taking a diagram, flipping it about the horizontal line
half-way between its two rows of nodes (so that the elements ai lie on the top
row), replacing each element ai with its image a∗i under the anti-involution
on A, and then sliding each element a∗i to the bottom of its string.

Now there is a standard method of constructing modules for AoSn from
A-modules and symmetric group modules; see for example Section 3 of
[1]. Indeed, let µ be an r-part composition of n, X1, . . . , Xr be A-modules,
and for each i = 1, . . . , r let Yi be a kSµi module. We write AoSµ for the
subalgebra of AoSn spanned by all elements (σ; a1, . . . , an) where ai ∈ A and
σ ∈ Sµ. Then X⊗µ11 ⊗ · · · ⊗X⊗µrr ⊗Y1⊗ · · · ⊗Yr is naturally a AoSµ-module
via the action

(x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yr)(σ; a1, . . . , an) =

x(1)σ−1a1 ⊗ · · · ⊗ x(n)σ−1an ⊗ y1σ1 ⊗ · · · ⊗ yrσr,
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where the elements σi ∈ Sµi are such that under the natural identification
of Sµ with Sµ1 × · · · × Sµr , σ is identified with (σ1, . . . , σr). Then inducing
from AoSµ to AoSn (that is, applying the functor − ⊗AoSµ AoSn) yields a
module which we may easily see is isomorphic as a k-vector space to

X⊗µ11 ⊗ · · · ⊗X⊗µrr ⊗ Y1 ⊗ · · · ⊗ Yr ⊗ kRµ, (8)

where kRµ is the vector space on the basis Rµ of minimal-length coset
representatives, with the action given by

(x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yr ⊗ γ)(σ; a1, . . . , an) =

x(1)θ−1a(1)ζ ⊗ · · · ⊗ x(n)θ−1a(n)ζ ⊗ y1θ1 ⊗ · · · ⊗ yrθr ⊗ ζ, (9)

where γ ∈ Rµ, and ζ ∈ Rµ and θ ∈ Sµ are such that γσ = θζ. Letting X
be the tuple (X1, . . . , Xr) and Y be the tuple (Y1, . . . , Yr), we denote the
module so obtained by Θµ(X,Y ).

We now introduce a diagrammatic representation for certain pure tensors
in the module Θµ(X,Y ) which provides a very convenient and intuitive
understanding of the action of AoSn. Indeed, let us take a pure tensor
x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yr ⊗ γ in (8), where γ ∈ Rµ. We represent this
element by taking the permutation diagram of γ, labelling the nodes on
its lower row from left to right with the elements x(1)γ−1 , . . . , x(n)γ−1 , then
linking together the first µ1 nodes on the top row and labelling them with y1,
linking together the next µ2 nodes on the top row and labelling the linked
nodes with y2, and so on. For example, take n = 8, r = 3, µ = (3, 2, 3),
and γ = (2, 3, 6)(5, 8, 7) (γ may be seen to be an element of Rµ from its
permutation diagram in (10), since the strings associated to each yi do not
cross each other). We then represent the element

x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7 ⊗ x8 ⊗ y1 ⊗ y2 ⊗ y3 ⊗ γ

by the diagram

y1 y2 y3

x1 x6 x2 x4 x7 x3 x8 x5 . (10)

Note that each xi is connected to the ith node on the top row. Note also that
for each i = 1, 2, 3, the elements of Xi are attached to the strings associated to
yi. We thus identify Θµ(X,Y ) with the k-vector space spanned by diagrams
consisting of the permutation diagram of some element of Rµ where (as in
(10)) for each i = 1, . . . , r, the (µ1 + · · · + µi−1 + 1)th to (µ1 + · · · + µi)

th

nodes are connected to form a single block which is labelled by an element
of Yi, and where each node on the bottom row is replaced with an element
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of some Xj such that each top-row node in the ith block is connected to an
element of Xi on the bottom row. We note that under this identification,
the diagram in Θµ(X,Y ) whose top row has labels y1 to yr, whose bottom
row has labels u1 to un, and whose underlying permutation diagram is that
of γ ∈ Rµ represents the pure tensor u(1)γ ⊗ · · · ⊗ u(n)γ ⊗ y1 ⊗ · · · ⊗ yr ⊗ γ.
Further note that the set of all such diagrams is not linearly independent in
Θµ(X,Y ), and so they form a spanning set rather than a basis.

This diagram representation of Θµ(X,Y ) affords an intuitive realisation
of the action of AoSn, and we illustrate this by an example. Indeed, keeping
n = 8, r = 3, µ = (3, 2, 3) as above, let us consider the diagram

y1 y2 y3

u1 u2 u3 u4 u5 u6 u7 u8 (11)

in Θµ(X,Y ); note that this diagram represents the pure tensor

u3 ⊗ u6 ⊗ u8 ⊗ u1 ⊗ u5 ⊗ u2 ⊗ u4 ⊗ u7⊗
y1 ⊗ y2 ⊗ y3 ⊗ (1, 3, 8, 7, 4)(2, 6). (12)

Now take the element(
(1, 2, 3)(4, 6, 8, 7, 5); a1, a2, a3, a4, a5, a6, a7, a8

)
(13)

of AoS8, which is represented by the diagram

a1 a2 a3 a4 a5 a6 a7 a8 . (14)

The action of the element (14) on (11) is calculated as follows: we connect
the diagram (14) below the diagram (11) to get

y1 y2 y3

u1 u2 u3 u4 u5 u6 u7 u8

a1 a2 a3 a4 a5 a6 a7 a8 .

We slide each ui down its string and simplify the drawing of the resulting
partition diagram, to obtain

y1 y2 y3

u3a1 u1a2 u2a3 u5a4 u7a5 u4a6 u8a7 u6a8 . (15)

9



The permutation encoded in the strings of this diagram is (2, 8, 5, 4)(3, 7, 6),
which has the factorisation (2, 8, 5, 4)(3, 7, 6) = (2, 3)(7, 8) · (2, 7, 5, 4)(3, 8, 6)
where (2, 3)(7, 8) ∈ Sµ and (2, 7, 5, 4)(3, 8, 6) ∈ Rµ; we represent this factori-
sation by redrawing the diagram (15) as

y1 y2 y3

u3a1 u1a2 u2a3 u5a4 u7a5 u4a6 u8a7 u6a8

and we note that in the lower part of this diagram, which represents the
permutation (2, 7, 5, 4)(3, 8, 6), the strings associated to each yi do not cross
each other, which demonstrates that (2, 7, 5, 4)(3, 8, 6) is in Rµ. Now in
the upper part of the diagram, the arrangement of strings encodes the
permutation (2, 3) ∈ S3 below both y1 and y3, while the strings below y2

encode the identity permutation in S2. We remove the upper part of the
diagram and let these permutations act on their respective elements yi,
yielding

y1(2, 3) y2 y3(2, 3)

u3a1 u1a2 u2a3 u5a4 u7a5 u4a6 u8a7 u6a8 .

Under our mapping, this corresponds to the pure tensor

u3a1 ⊗ u8a7 ⊗ u6a8 ⊗ u1a2 ⊗ u5a4 ⊗ u2a3 ⊗ u7a5 ⊗ u4a6⊗
y1(2, 3)⊗ y2 ⊗ y3(2, 3)⊗ (2, 7, 5, 4)(3, 8, 6),

and by letting (x1, x2, x3, x4, x5, x6, x7, x8) = (u3, u6, u8, u1, u5, u2, u4, u7),
σ = (1, 2, 3)(4, 6, 8, 7, 5) and γ = (1, 3, 8, 7, 4)(2, 6), and noting as above
that then γσ = (2, 8, 5, 4)(3, 7, 6) = (2, 3)(7, 8) · (2, 7, 5, 4)(3, 8, 6) where
(2, 3)(7, 8) ∈ Sµ and (2, 7, 5, 4)(3, 8, 6) ∈ Rµ, we may verify that this is indeed
the image of (12) under the action of (13) as given by (9). In the general
case, for the AoSn-module Θµ(X,Y ), let d be the diagram formed from the
permutation diagram of γ ∈ Rµ with labels y1 to yr on the top row and labels
u1 to un on the bottom row, and let a be the element (σ; a1, . . . , an) of AoSn.
Then we have γσ = θζ where θ ∈ Sµ and ζ ∈ Rµ, and so θ corresponds to
some element (θ1, . . . , θr) of Sµ1×· · ·×Sµr under the canonical isomorphism.
Then the image of d under the action of a is the diagram formed from the
permutation diagram of ζ with top row labels y1θ1 to yrθr and bottom row
labels u(1)σ−1a1 to u(n)σ−1an; we leave it to the reader to convince themselves

that in this diagram the nodes of the ith block on the top row are connected
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to elements of Xi, and moreover that this diagram does indeed represent the
action of a on the pure tensor of Θµ(X,Y ) represented by d.

The following result will allow us to prove that the wreath product of
a cyclic cellular algebra with Sn is again cyclic cellular, thus obtaining the
result of Geetha and Goodman (albeit in a weaker form due to the different
ordering on the set of cell indices, as mentioned above).

Proposition 2. If X1, . . . , Xr are cyclic A-modules, and for each i, Yi is a
cyclic kSµi-module, then Θµ(X,Y ) is a cyclic AoSn-module for any r part
composition µ of n. Indeed, if xi is a generator for Xi and yi is a generator
for Yi, the diagram

y1

x1 x1 · · · x1

y2

x2 x2 · · · x2

· · ·

yr

xr xr · · · xr

(where each xi appears µi times) generates Θµ(X,Y ).

Proof. Let d0 be the diagram in the proposition. It is easy to see that we may
obtain any diagram in Θµ(X,Y ) by first applying an element (x; 1, . . . , 1)
of AoSn, where x ∈ kSµ, in order to replace each element yi in d0 with an
arbitrary element of Yi, then applying (γ; 1, . . . , 1) for some γ ∈ Rµ to arrange
the strings of the diagram, and finally applying an element (e; a1, . . . , an) to
replace each element xi with an arbitrary element of Xi. Since Θµ(X,Y ) is
spanned by diagrams, the proof is complete.

4 The iterated inflation structure of the wreath
product algebra

Remark 3. In this section, we work as in the rest of this article with a
k-algebra A, where k is a field. In doing so, we are conforming to the set-up
in the article [5] from which we obtain the crucial result on iterated inflations.
However, it is straightforward to check that this result ([5, Theorem 1]) is
still valid if we take k to be a commutative ring with 1. Further, the result
on the cellularity of kSn from [10] which we are using is also valid over a
commutative ring with 1, and so it follows that Theorem 6 below is valid
over a commutative ring with 1. However, for consistency with [5], we shall
formally retain the assumption that k is a field.

Now we turn to the case where our interest lies. Let A be a cellular
algebra with anti-involution ∗ and cellular data (Λ,M,C). We let r = |Λ|,
and we fix a numbering of the elements of Λ as λ1, λ2, . . . , λr, and moreover
we choose this numbering such that λi > λj implies i < j, so that our

11



numbering is in this sense compatible with the partial ordering on Λ. We
write ∆λ for the right cell module associated to λ ∈ Λ as noted above. For
convenience we may omit the cell index superscript from elements of the
cellular basis, so we write CS,T rather than CλS,T . We have a basis of AoSn
consisting of all elements of the form (σ;CS1,T1 , . . . , CSn,Tn) where σ ∈ Sn
and each CSi,Ti is some element of the cellular basis of A; note that we allow
the elements CSi,Ti to be associated to different cell indices. We shall denote
this basis by A. Now elements of A are represented by diagrams like, for
example,

CS1,T1 CS2,T2 CS3,T3 CS4,T4 CS5,T5 (16)

but we want a slightly different representation. Indeed, in the diagram (16),
we replace each CSi,Ti with the pair Si, Ti, and then move the Si up to the
top of the associated string, to get

S3 S1 S5 S2 S4

T1 T2 T3 T4 T5 .

We thus obtain a different way of representing elements of A, as diagrams of
the form

U1 U2 U3 U4 U5

W1 W2 W3 W4 W5 (17)

consisting of a permutation diagram where the nodes on the top and bottom
rows are replaced with elements Ui,Wi ∈ tλ∈ΛM(λ), such that if Ui on
the top row is connected to Wj on the bottom row, then we must have
Ui,Wj ∈ M(λ) for some λ ∈ Λ (i.e. Ui and Wj lie in the same set M(λ)).
Note that the diagram (17) represents the element(

(1, 3, 5, 4, 2); CU2,W1 , CU4,W2 , CU1,W3 , CU5,W4 , CU3,W5

)
∈ AoS5.

Now given any such diagram, for each i ∈ {1, . . . , r} we let µi be the
number of elements Uj such that Uj ∈M(λi). We thus obtain a composition
µ = (µ1, . . . , µr) of n (note that some of the parts µi may be zero in general).
We call this the layer index of the diagram, and also of the element of A
which it represents. We let kAµ be the k-span of all elements of A with
layer index µ, and we let I(n, r) be the set of all r-part compositions of n
with non-negative integer entries. Then AoSn =

⊕
µ∈I(n,r) kAµ. For a layer

index µ, we define a half diagram of type µ to be a tuple (U1, . . . , Un) of
n elements of tλ∈ΛM(λ), such that there are exactly µi elements of M(λi)
for each i. We define Vµ to be the set of all half diagrams of type µ. Now
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if (U1, . . . , Un) is a half diagram of type µ, then we may easily see that
there is a unique element ε of Rµ such that (U(1)ε, . . . , U(n)ε) lies in the set
M(λ1)µ1× · · ·×M(λr)

µr ; we shall call this ε the shape of the half diagram
(U1, . . . , Un).

Let E be the diagram with top row U1 to Un, bottom row W1 to Wn

(reading from left to right), and where σ ∈ Sn is the permutation such that
Ui is connected to W(i)σ; then E represents the element(

σ ; C[U(1)σ−1 ,W1], . . . , C[U(n)σ−1 ,Wn]
)

where to ease the notation we allow ourselves to write C[U,W ] for CU,W .
Suppose E has layer index µ. We may decompose E into three pieces of data,
namely the half diagrams (U1, . . . , Un), (W1, . . . ,Wn) of type µ, formed from
the top and bottom rows of E respectively, and the element (π1, . . . , πr) of
the group Sµi × · · · × Sµr where πi ∈ Sµi is such that (counting from left to
right) the jth element of M(λi) on the top row is connected to the (j)πi

th

element of M(λi) on the bottom row; thus πi records how the elements
of M(λi) on the top row are connected to the elements of M(λi) on the
bottom row. For example, suppose that r = 3 and that the diagram (17)
has layer index (3, 0, 2) with U1, U2, U4 ∈M(λ1) and U3, U5 ∈M(λ3). Then
(π1, π2, π3) =

(
(1, 3, 2), e, (1, 2)

)
(note that e here is the unique element of

the trivial group Sµ2 = S0). It is easy to see that if ε, δ are the shapes of
(U1, . . . , Un) and (W1, . . . ,Wn) respectively, and further if π is the image
of (π1, . . . , πr) under the natural identification of Sµi × · · · × Sµr with the
Young subgroup Sµ of Sn, then σ = ε−1πδ. If we now let Vµ be the k-vector
space with basis Vµ, then the above decomposition is easily seen to afford a
k-linear bijection

Vµ ⊗ kSµ ⊗ Vµ −→ kAµ
given by mapping

(U1, . . . , Un)⊗ π ⊗ (W1, . . . ,Wn),

to (
ε−1πδ ; C[U(1)(ε−1πδ)−1 ,W1], . . . , C[U(n)(ε−1πδ)−1 ,Wn]

)
where ε is the shape of (U1, . . . , Un) and δ is the shape of (W1, . . . ,Wn).
We thus have a decomposition AoSn =

⊕
µ∈I(n,r) Vµ ⊗ kSµ ⊗ Vµ, and this

decomposition will allow us to exhibit the desired iterated inflation structure.
For this, we need to equip the set I(n, r) with an ordering. Indeed, if
µ = (µ1, . . . , µr) and α = (α1, . . . , αr) are elements of I(n, r), then we define
µ DΛ α to mean that for each q = 1, . . . , r we have∑

i such that
λi≥λq

µi ≥
∑

i such that
λi≥λq

αi
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(and of course we define .Λ to match); we call this (partial) order the
Λ-dominance order.

Now take Vµ as above, Bµ to be kSµ and Bµ to be Sµ. We may easily see
that our basis A is indeed the basis of AoSn obtained from the bases Vµ and
Bµ as in section 2.3, and we shall now prove that our decomposition exhibits
AoSn as an iterated inflation with respect to the anti-involution given by (7)
and the cellular structure on the algebras kSµ as in Proposition 1. Thus,
we must prove that the equations (3) and (4) hold. The fact that equation
(3) holds follows easily from the description of the anti-involution on AoSn
given after equation (7). To prove that (4) holds, we shall prove the slightly
stronger result Proposition 5, below. First, we need a lemma, which will
allow us to compare layer indices of elements of A o Sn.

Lemma 4. Suppose that we have s1, . . . , sn, t1, . . . , tn ∈ {1, . . . , r} such that
λsj ≥ λtj in the poset Λ for each j. For each i = 1, . . . , r, let µi be the
number of sj which are equal to i and αi be the number of tj which are equal
to i. Let µ = (µ1, . . . , µr) and α = (α1, . . . , αr) so that α, µ ∈ I(n, r). Then
µ DΛ α, and if at least one of the inequalities λsj ≥ λtj is strict then we
have µ .Λ α.

Proof. This lemma is nothing more than simple combinatorics. We need to
show that ∑

i such that
λi≥λq

µi ≥
∑

i such that
λi≥λq

αi.

But we have for each q = 1, . . . , r that∑
i such that
λi≥λq

µi = |{j : λsj ≥ λq}|

and ∑
i such that
λi≥λq

αi = |{j : λtj ≥ λq}|

and since the set appearing in the right-hand side of the latter equation is a
subset of the corresponding set in the first equation, we have the required
inequality µ DΛ α. If there is a strict inequality λsj > λtj we clearly have
µ 6= α and hence µ .Λ α.

Proposition 5. Let µ ∈ I(n, r), and let u = (U1, . . . , Un), w = (W1, . . . ,Wn)
be elements of Vµ and π = (π1, . . . , πr) ∈ Sµ such that the element of A
corresponding to the pure tensor u⊗ π ⊗ w has layer index µ. Further, let
a = (σ; a1, . . . , an) be a pure tensor in AoSn. Then we have (u⊗ π⊗w) · a ≡
u⊗ π θµ(w, a)⊗ φµ(w, a) modulo elements of A of layer index strictly less
(in the Λ-dominance order) than µ, where θµ(w, a) ∈ Sµ and φµ(w, a) ∈ Vµ
are independent of u and π.
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Note that in the proposition we allow the a in θµ(w, a) and φµ(w, a) to
be any pure tensor in AoSn rather than just an element of A as required in
(4).

Proof. Let ε, δ ∈ Rµ be the shapes of u and w respectively, so that u⊗π⊗w
corresponds to the element(

ε−1πδ ; C[U(1)(ε−1πδ)−1 ,W1], . . . , C[U(n)(ε−1πδ)−1 ,Wn]
)
.

Then

(u⊗ π ⊗ w)(σ; a1, . . . , an) =(
ε−1πδ ; C[U(1)(ε−1πδ)−1 ,W1], . . . , C[U(n)(ε−1πδ)−1 ,Wn]

)(
σ; a1, . . . , an

)
=(

ε−1πδσ;C[U(1)(ε−1πδσ)−1 ,W(1)σ−1 ]a1, . . . , C[U(n)(ε−1πδσ)−1 ,W(n)σ−1 ]an
)
.

For each i = 1, . . . , n, let si ∈ {1, . . . , r} be such that U(i)(ε−1πδσ)−1 ,W(i)σ−1 ∈
M(λsi). Then by (1) we have

C[U(i)(ε−1πδσ)−1 ,W(i)σ−1 ]ai ≡
∑

Xi∈M(λsi )

Rai(W(i)σ−1 , Xi)C[U(i)(ε−1πδσ)−1 , Xi]

modulo cellular basis elements of lower cell index. Using this, we see that
(u⊗ π ⊗ w)(σ; a1, . . . , an) is congruent to

∑
X1

· · ·
∑
Xn

(
n∏
i=1

Rai
(
W(i)σ−1 , Xi

)) (
ε−1πδσ ; C[U(1)(ε−1πδσ)−1 , X1], . . . ,

C[U(n)(ε−1πδσ)−1 , Xn]
)

(18)

modulo elements of A of the form(
ε−1πδσ ;Cλt1 [S1, T1], . . . , Cλtn [Sn, Tn]

)
(19)

where for each i we have λsi ≥ λti and for at least one i this inequality is
strict. Now let α = (α1, . . . , αr) be the layer index of (19). By Lemma 4 we
have µ .Λ α, so that (u⊗ π ⊗ w)(σ; a1, . . . , an) is congruent to (18) modulo
elements of lower layer index.

Now Xi lies in the same set M(λsi) as W(i)σ−1 , and from this we may
easily see that the shape of (X1, . . . , Xn) is the unique element ζ of Rµ such
that δσ = θζ for θ ∈ Sµ. Thus in (18) we have(

ε−1πδσ ; C[U(1)(ε−1πδσ)−1 , X1], . . . , C[U(n)(ε−1πδσ)−1 , Xn]
)

=
(
ε−1πθζ ; C[U(1)(ε−1πθζ)−1 , X1], . . . , C[U(n)(ε−1πθζ)−1 , Xn]

)
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which we now see corresponds to the pure tensor u⊗ πθ⊗ (X1, . . . , Xn), and
hence (18) is equal to

u⊗ πθ ⊗

∑
X1

· · ·
∑
Xn

(
n∏
i=1

Rai
(
W(i)σ−1 , Xi

))
(X1, . . . , Xn)

 .

Thus, setting θµ(w, a) to be the unique element θ of Sµ such that δσ = θζ
for ζ ∈ Rµ and φµ(w, a) to be

∑
X1

· · ·
∑
Xn

(
n∏
i=1

Rai
(
W(i)σ−1 , Xi

))
(X1, . . . , Xn), (20)

we see that (u⊗π⊗w)(σ; a1, . . . , an) ≡ u⊗πθµ(w, a)⊗φµ(w, a) modulo lower
layers, and furthermore these values depend only on w and a, as required.

By the results in Section 2.3, we now have that AoSn is a cellular algebra;
further, we may use Proposition 1 to see that the set indexing the cell modules
of AoSn is the set of all pairs

(
µ, (ν1, . . . , νr)

)
where µ is an r-component

composition (µ1, . . . , µr) of n (recalling that r = |Λ|), and νi is a partition
of µi. Thus in any such pair we have µ = (|ν1|, . . . , |νr|), and so we lose
no information if we omit the partition µ from these pairs. Hence we may
identify the set of cell indices of AoSn with the set of all r-tuples (ν1, . . . , νr)
of partitions such that |ν1|+ · · ·+ |νr| = n (with νi = () allowed); such tuples
are called multipartitions of n of length r. We now give a statement of the
cellularity of AoSn.

Theorem 6. Let A be a cellular algebra with anti-involution ∗ and poset
Λ of cell indices. Let P̂rn denote the set of all multipartitions of n of length
r. Then AoSn is a cellular algebra with respect to a tuple of cellular data
including the anti-involution given for σ ∈ Sn and a1, . . . , an ∈ A by

(σ; a1, . . . , an)∗ =
(
σ−1 ; a∗(1)σ, . . . , a

∗
(n)σ

)
and also the poset consisting of P̂rn with the following partial order: if
(ν1, . . . , νr), (η1, . . . , ηr) ∈ P̂rn then the relation (ν1, . . . , νr) > (η1, . . . , ηr)
means that either (|ν1|, . . . , |νr|) DΛ (|η1|, . . . , |ηr|) or that |νi| = |ηi| and νi E
ηi for each i.

In the next section, we shall consider the cell modules which arise from
this structure. In particular we shall follow the work of Geetha and Goodman
by proving that if A is cyclic cellular, then so is AoSn.

We conclude this section by remarking that the most natural partial order
one might hope to have on the poset P̂rn in Theorem 6 is the Λ-dominance
order on multicompositions [3, Definition 3.1, (2)] (this is essentially an
extension of the Λ-dominance order on compositions to multicompositions).
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We also note that, subject to the assumption that A is cyclic cellular, Geetha
and Goodman obtained the Λ-dominance order in their cellularity result [3,
Theorem 4.1]. The order which we have obtained on P̂rn is somewhat crude
compared to this more subtle dominance order, and thus provides less refined
representation-theoretic information (we also note that the Λ-dominance
order on multicompositions is not a refinement of the order we have obtained,
due to the use of the reverse dominance order on partitions in the cellular
structure for the group algebra of the symmetric group). This fact is a
consequence of the use of the method of iterated inflations, and is due to the
structure of the partial orders obtained via this method.

5 The cell and simple modules of the wreath prod-
uct algebra

Recall that the cell modules ∆λi of A are indexed by the cell indices
λ1, λ2, . . . , λr. In the sequel we shall also allow ourselves to write ∆λi as
∆(λi) when this makes our formulae more readable. We shall now consider
the cell modules of AoSn. We know that these are indexed by length r
multipartitions of n; let (ν1, . . . , νr) be such a multipartition and µ the com-
position (|ν1|, . . . , |νr|), so that µi = |νi|. We shall show that the cell module
∆(ν1,...,νr) is isomorphic to the module Θµ

(
(∆λ1 , . . . ,∆λr), (Sν1 , . . . , Sνr)

)
[3,

Theorem 4.27].
Now we know from Proposition 1 and the results in section 2.3 that, as a

k-vector space, ∆(ν1,...,νr) may naturally be identified with

Sν1 ⊗ · · · ⊗ Sνr ⊗ Vµ, (21)

so let us consider the structure of the vector space Vµ. Indeed, let α1, . . . αn
be elements of Λ such that

(α1, . . . , αn) = (λ1, λ1, . . . , λ1︸ ︷︷ ︸
µ1 places

, λ2, . . . , λ2︸ ︷︷ ︸
µ2 places

, λ3, . . . , λr, . . . , λr︸ ︷︷ ︸
µr places

). (22)

Let (X1, . . . , Xn) be a half diagram in Vµ. Then the shape of (X1, . . . , Xn)
is the unique element γ of Rµ such that (X1, . . . , Xn) lies in M(α(1)γ−1)×
· · · ×M(α(n)γ−1). We now see that

Vµ =
⊔
γ∈Rµ

M(α(1)γ−1)× · · · ×M(α(n)γ−1)

and hence if we identify the half diagram (X1, . . . , Xn) with the pure tensor
CX1 ⊗ · · · ⊗ CXn , we obtain a natural identification of k-vector spaces

Vµ =
⊕
γ∈Rµ

∆(α(1)γ−1)⊗ · · · ⊗∆(α(n)γ−1). (23)

17



We shall henceforth consider these two vector spaces to be thus identified;
further, we shall abuse terminology and use the term pure tensor in Vµ to
mean any pure tensor in any of the summands in the right hand side of
(23). For example, using (2), we can show easily using (20) that under the
identification (23) we have

φµ
(
CW1⊗· · ·⊗CWn , (σ; a1, . . . , an)

)
= CW(1)σ−1 a1⊗· · ·⊗CW(n)σ−1 an. (24)

In light of (21), we shall further speak of a pure tensor in ∆(ν1,...,νr) to mean
any pure tensor of the form

w1 ⊗ · · · ⊗ wr ⊗ u1 ⊗ · · · ⊗ un,

where wi ∈ Sνi and u1 ⊗ · · · ⊗ un is a pure tensor in Vµ. Using (24) and the
expression for θµ(w, a) given near the end of the proof of Proposition 5, we
may now verify that the map taking the pure tensor

x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yr ⊗ γ

in Θµ
(
(∆λ1 , . . . ,∆λr), (Sν1 , . . . , Sνr)

)
(where γ ∈ Rµ) to the pure tensor

y1 ⊗ · · · ⊗ yr ⊗ x(1)γ−1 ⊗ · · · ⊗ x(n)γ−1

in ∆(ν1,...,νr) is an isomorphism of AoSn-modules (but note that in order to
apply the formula given in section 2.3 for the action of an iterated inflation
on its cell modules, the arguments w and a in θµ(w, a) and φµ(w, a) must be
elements of the bases A and Vµ, respectively). We may now use Proposition
2 and the fact that all Specht modules are cyclic to obtain the following
result. Of course, this is a weaker result than the corresponding result in [3],
since (as already mentioned) Geetha and Goodman obtain the Λ-dominance
order on their cell indices.

Proposition 7. (compare [3, Theorem 4.1]) If A is cyclic cellular then so
is AoSn.

Now by equation (5), we know that the multiplication within each layer
of AoSn is determined by a bilinear form, ψµ. Let (U1, . . . , Un), (W1, . . . ,Wn)
be half diagrams in Vµ, so that u = CU1⊗· · ·⊗CUn and w = CW1⊗· · ·⊗CWn

are pure tensors in Vµ. Now by equation (5),

(u⊗ e⊗ u)(w ⊗ e⊗ w) ≡ u⊗ ψµ(u,w)⊗ w (25)

modulo lower layers. The element u⊗ e⊗ u of AoSn is represented by the
diagram

U1 U2 · · · Un

U1 U2 · · · Un

=

· · ·

CU1,U1CU2,U2 · · · CUn,Un
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and of course the element w⊗ e⊗w is represented by a diagram which is the
same except that each U is replaced with a W . Thus we find by concatenating
and simplifying these diagrams that the product (u ⊗ e ⊗ u)(w ⊗ e ⊗ w)
corresponds to

· · ·

CU1,U1CW1,W1 CU2,U2CW2,W2 · · · CUn,UnCWn,Wn . (26)

We may expand each of the products CUj ,UjCWj ,Wj in terms of the cellular
basis of A and use these expansions to write (26) as a linear combination of
diagrams of the form

· · ·

CX1,Y1 CX2,Y2 · · · CXn,Yn .

Now for j = 1, . . . , n, let sj be such that Uj ∈ M(λsj ). The we know that
each product CUj ,UjCWj ,Wj is a linear combination of cellular basis elements

C
λtj
X,Y where λtj ≤ λsj . It follows by Lemma 4 that all such diagrams have

layer index at most µ (in the Λ-dominance order). Moreover, Lemma 4
also tells us that, if for any j the element Wj do not lie in M(λsj ) (so that

CUj ,UjCWj ,Wj is a linear combination of cellular basis elements C
λtj
X,Y where

λtj < λsj ), then all of the diagrams in the expansion have layer index strictly
less than µ, and hence by (25) we see that we must have ψµ(u,w) = 0 in this
case. Suppose now that Wj ∈M(λsj ) for each j. By (2.4.1) in [4], we know
that CUj ,UjCWj ,Wj is congruent to 〈CUj , CWj 〉CUj ,Wj modulo cellular basis
elements of lower cell index, where 〈·, ·〉 is the appropriate cell form. Using
Lemma 4 as above, we see that (26) is congruent modulo lower layers to

〈CU1 , CW1〉〈CU2 , CW2〉 · · · 〈CUn , CWn〉
U1 U2 · · · Un

W1 W2 · · · Wn ,

which represents the element 〈CU1 , CW1〉〈CU2 , CW2〉 · · · 〈CUn , CWn〉u⊗ e⊗w,
and hence we find that in this case

ψµ(u,w) = 〈CU1 , CW1〉〈CU2 , CW2〉 · · · 〈CUn , CWn〉.

Note in particular that ψµ is thus in all cases k-valued. We can now use
these values for ψµ, together with equation (6) and Proposition 1 to compute
the values of the cell form on the cell module ∆(ν1,...,νr); indeed, if y1 ⊗ · · · ⊗
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yr ⊗ u1 ⊗ · · · ⊗ un and z1 ⊗ · · · ⊗ zr ⊗ w1 ⊗ · · · ⊗ wn are pure tensors in the
cell module ∆(ν1,...,νr), then we see that

〈y1 ⊗ · · · ⊗ yr ⊗ u1 ⊗ · · · ⊗ un, z1 ⊗ · · · ⊗ zr ⊗ w1 ⊗ · · · ⊗ wn〉 =

〈y1, z1〉 · · · 〈yr, zr〉〈u1, w1〉 · · · 〈un, wn〉 (27)

if uj and wj lie in the same ∆(λ) for each i = 1, . . . , n, and

〈y1 ⊗ · · · ⊗ yr ⊗ u1 ⊗ · · · ⊗ un, z1 ⊗ · · · ⊗ zr ⊗ w1 ⊗ · · · ⊗ wn〉 = 0 (28)

otherwise.
Next we seek to describe the cell radical of ∆(ν1,...,νr). Using (21) and

(23), we have isomorphisms of k-vector spaces

∆(ν1,...,νr) ∼= Sν1 ⊗ · · · ⊗ Sνr ⊗ Vµ
∼=
⊕
γ∈Rµ

Sν1 ⊗ · · · ⊗ Sνr ⊗∆(α(1)γ−1)⊗ · · · ⊗∆(α(n)γ−1). (29)

For γ ∈ Rµ, let Ωγ = Sν1 ⊗ · · · ⊗ Sνr ⊗∆(α(1)γ−1)⊗ · · · ⊗∆(α(n)γ−1). Now
we see from (28) that if γ, β are distinct elements of Rµ and u ∈ Ωγ , w ∈ Ωβ

then 〈u,w〉 = 0. It follows that, if we let Rγ be the radical of the restriction
to Ωγ of 〈·, ·〉, then the cell radical of ∆(ν1,...,νr) is

⊕
γ∈Rµ Rγ .

Let us fix a basis in each ∆λ and each Sν ; from these bases we obtain
a basis of pure tensors in each Ωγ . Let Gνi be the Gram matrix of the cell
form of Sνi and Gαi be the Gram matrix of the cell form of ∆αi , with respect
to our chosen bases. If we let Bγ be the Gram matrix of the restriction of
the cell form to Ωγ with respect to our basis, then we see by (27) that Bγ is
the matrix Kronecker product Gν1 ⊗ · · · ⊗ Gνr ⊗ Gα(1)γ−1 ⊗ · · · ⊗ Gα(n)γ−1 .
By fixing some total order on the set Rγ and concatenating our bases of
the Ωγ in this order, we obtain a basis of ∆(ν1,...,νr); using (28), we see that
its Gram matrix with respect to this basis is of block diagonal form with
diagonal blocks Bγ for γ ∈ Rµ. From this we see (using the fact that the
rank of the Kronecker product of two matrices is the product of their ranks)
that the rank of the cell form on ∆(ν1,...,νr) is |Rµ| times the product of the
ranks of the cell forms of the cell modules Sν1 , . . . , Sνr ,∆α1 , . . . ,∆αn .

Now in constructing the basis of pure tensors for ∆(ν1,...,νr) as above, we
may choose our basis of each cell module of A and kSn by taking a basis of
the cell radical and extending this to a basis of the whole cell module. If we
do this, then we see that an element y1⊗ · · · ⊗ yr ⊗ u1⊗ · · · ⊗ un of the basis
of pure tensors for ∆(ν1,...,νr) must lie in the cell radical if any yi or ui is an
element of the cell radical of the cell module in which it lies. By the above
calculation of the rank of the cell form on ∆(ν1,...,νr), we see that the number
of such elements must be equal to the dimension of the cell radical, and so
we have now found a basis of the cell radical inside a basis of the whole cell
module.

20



We can now use the theory of cellular algebras from section 3 of [4]
together with our basis of ∆(ν1,...,νr) to deduce some results about the simple
modules L(ν1,...,νr) and semisimplicity of AoSn. These results are already
known for wreath products AoSn with A a general (i.e. not cellular) algebra
given extra assumptions on the field (see for example [1, Lemma 3.4]), and in
particular for the case k

(
GoSn

) ∼= (kG)oSn where G is a finite group (see for
example Chapter 4 of [7] for the case where the field is algebraically closed).
However, if A is cellular then our work shows that these results hold with no
restriction on the field at all. Given the importance of cellular algebras in
certain areas of representation theory we are confident that they will prove
useful.

Recall that Λ0 indexes the simple modules of A. Let
(
P̂rn)0 denote the

set of elements (ν1, . . . , νr) ∈ P̂rn such that the cell radical of ∆(ν1,...,νr) is a
proper submodule of ∆(ν1,...,νr), so that

(
P̂rn
)

0
indexes the simple modules of

AoSn. Recall that our field k has characteristic p, which may be zero or a
prime.

Theorem 8. The set
(
P̂rn
)

0
indexing the simple modules of AoSn consists

exactly of those (ν1, . . . , νr) ∈ P̂rn such that νi = () whenever λi ∈ Λ \Λ0 and
all νi are p-restricted (recall that () is p-restricted for any p).

In light of Theorem 8, we see that if we let s be the number of simple
modules of A and we let λ̂1, λ̂2, · · · , λ̂s be the subsequence of the sequence
λ1, λ2, . . . , λr consisting of the elements of Λ0, then the simple AoSn-modules
may in fact be indexed by the set P̂sn(p) consisting of all length s multiparti-
tions of n with p-restricted entries. The main idea of the following theorem
is well known: see [9, p.204] and also [1, Proposition 3.7] and [3, Theorem
4.25]. As mentioned above, the version presented here is notable for its lack
of conditions on the field.

Theorem 9. Let (ν1, . . . , νr) ∈
(
P̂rn
)

0
. Then corresponding to the isomor-

phism (29), we have an isomorphism of k-vector spaces

L(ν1,...,νr) ∼=
⊕
γ∈Rµ

Dν1 ⊗ · · · ⊗Dνr ⊗ Lα(1)γ−1 ⊗ · · · ⊗ Lα(n)γ−1

(where α1, . . . , αn are as in (22)). Moreover, L(ν1,...,νr) has a representation
by diagrams of the form (11) in exactly the same way as ∆(ν1,...,νr), by
simply using elements of Dνi rather than Sνi and elements of Lαi rather
than ∆αi; the action on such diagrams is exactly the same as described
above. We thus see that L(ν1,...,νr) is isomorphic as an AoSn-module to
Θµ
(
(Lλ

1
, . . . , Lλ

r
), (Dν1 , . . . , Dνr)

)
, where µ = (|ν1|, . . . , |νr|) (a composition

of n), and for convenience we let Lλ = 0 for λ ∈ Λ \ Λ0.

We thus see that if we index the simple modules by P̂sn(p) as above,
then the simple indexed by (ν̂1, . . . , ν̂s) (where each ν̂i is thus a p-restricted
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partition) is isomorphic to Θµ̂
(
(Lλ̂

1
, . . . , Lλ̂

s
), (Dν̂1 , . . . , Dν̂s)

)
, where µ̂ =

(|ν̂1|, . . . , |ν̂s|).

Theorem 10. Let (ν1, . . . , νr) ∈
(
P̂rn
)

0
. Then we have L(ν1,...,νr) ∼= ∆(ν1,...,νr)

if and only if Dνi ∼= Sνi for each i = 1, . . . , r and whenever we have νi 6= ()
we have Lλi ∼= ∆λi.

Our final result is a criterion for semisimplicity; compare [1, Lemma 3.5].

Theorem 11. If A is a cellular algebra, then AoSn is semisimple if and only
if both kSn and A are semisimple.
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