Measuring Pension Plan Risk from an Economic Capital Perspective

Steve Bonnar, Aniketh Pittea and Pradip Tapadar

University of Waterloo and University of Kent

May 15, 2019
Funding for this project has come from a variety of sources:

- Canadian Institute of Actuaries
- Institute and Faculty of Actuaries
- International Congress of Actuaries
- Social Sciences and Humanities Research Council (SSHRC)
- Society of Actuaries
Contents

- Overall Project
- Introduction to Pension Model
- Assumptions and Methodology
- UK’s Universities Superannuation Scheme (USS)
- Stylized US Pension Plan
- Canadian Pension Plan
- Summary
Motivation for Overall Project

- Baby boomers entering retirement
 - concerns of diminished returns, compromised pensions

- Higher old-age dependency ratio may lead to
 - less saving (dissaving) and investment
 - shift in asset allocation toward low risk / low return assets
 - reduced labour force growth

- With implications for asset returns and retirement outcomes
Overall Project

Model Framework / Results – Economic Demographic Model

- Overlapping Generations Model (OLG) with:
 - aggregate uncertainty
 - two asset classes (risky and risk-free)
 - multi-pillar pension systems (saving, pay-go, earnings based)
 - endogenous labour supply

- Generates standard age-specific labour, consumption, asset holdings and portfolio allocation qualitatively consistent with data

- Older population results in moderately lower asset returns
 - Increasing survival probability for age 65+ (20% increase at oldest ages) reduces returns by approximately 4%

- Higher pension replacement ratio results in lower asset accumulations
Contents

- Overall Project
- Introduction to Pension Model
- Assumptions and Methodology
- UK’s Universities Superannuation Scheme (USS)
- Stylized US Pension Plan
- Canadian Pension Plan
- Summary
Motivation

- Typical pension plan valuation compares assets to liabilities

- This comparison looks at expected values (perhaps including some margin)

- One approach to pension plan risk assessment is Economic Capital [see Porteous, et al. (2012)]
 - Used for banking and insurance sectors under Basel 2, 3 and Solvency 2
 - Sufficient to cover 99.5th percentile outcome
Methodology

- Select a representative pension plan
 - Universities Superannuation Scheme (UK) 2014 Actuarial Valuation
 - Stylized US pension plan
 - Canadian pension plan

- Select an economic model
 - Graphical Model [see Oberoi, et al. (2019)]

- Select a mortality model
 - M7 from Cairns, et al. (2007)

- Quantify pension risk [see Porteous, et al. (2012)]
Contents

- Overall Project
- Introduction to Pension Model
- Assumptions and Methodology
- UK’s Universities Superannuation Scheme (USS)
- Stylized US Pension Plan
- Canadian Pension Plan
- Summary
Graphical Model - Background

- Graphical models are probabilistic models for which a graph expresses the conditional dependence structure between random variables.

- We use graphical models to simulate economic variables over long time horizons.

- The approach we use is:
 - transparent
 - flexible
 - easy to implement
Assumptions and Methodology

Methodology - forecasting

- Assume 3 economic variables A, B and C.
- The individual economic random variables, Z_{it}s, are modelled as:
 \[Z_{it} = \mu_i + Y_{it}, \text{ where } Y_{it} = \beta_i Y_{i(t-1)} + \varepsilon_{it} \text{ and } \varepsilon_{it} \sim N(0, \sigma_i^2). \]

- Correlation of the **error terms** is represented by a graphical model.
- The error terms:
 - are assumed to be independently distributed across time t;
 - which are directly connected to each other are dependent;
 - which are indirectly connected are still dependent, but more weakly so.
Methodology - selecting a correlation structure

- We use simultaneous p-values to select a graphical structure.

- Hojsgaard et al. (2012). provide guidance on the use of packages written in R to estimate graphical models.

- We use the following UK and US economic time series data:
 - Price Inflation
 - Salary Inflation
 - Dividend Yield
 - Dividend Growth
 - Consols Yield
Model UK: Graphical model with 6 edges.
Corresponding P-Values

<table>
<thead>
<tr>
<th>Edge</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1−2</td>
<td>0.0</td>
</tr>
<tr>
<td>1−3</td>
<td>0.1</td>
</tr>
<tr>
<td>1−4</td>
<td>0.2</td>
</tr>
<tr>
<td>1−5</td>
<td>0.3</td>
</tr>
<tr>
<td>2−3</td>
<td>0.4</td>
</tr>
<tr>
<td>2−4</td>
<td>0.5</td>
</tr>
<tr>
<td>2−5</td>
<td>0.6</td>
</tr>
<tr>
<td>3−4</td>
<td>0.7</td>
</tr>
<tr>
<td>3−5</td>
<td>0.8</td>
</tr>
<tr>
<td>4−5</td>
<td>0.9</td>
</tr>
</tbody>
</table>

1 PriceInflation
2 SalaryInflation
3 DividendYield
4 DividendGrowth
5 ConsolsYield
Model US: Graphical model with 6 edges.
Marginal distribution – Price Inflation

UK Price Inflation

US Price Inflation
Marginal distribution – Dividend Yield

UK Dividend Yield

- Year: 1924, 1964, 2004, 2044, 2084, 2124
- Values: 0.00, 0.02, 0.04, 0.06, 0.08, 0.10

US Dividend Yield

- Year: 1914, 1956, 1998, 2040, 2082, 2124
- Values: 0.00, 0.02, 0.04, 0.06, 0.08, 0.10
Marginal distribution – Long Bond Yield

UK Long Bond Yield (Consols Yield)

US Long Bond Yield
Joint distribution (1)

Figure: Plots of simulated price and salary inflation for UK and US.
Figure: Plots of simulated share and bond returns for UK and US.
Mortality Model – M7 from Cairns, et al. (2007)

\[
\logit q(t, x) = \kappa_t^{(1)} + \kappa_t^{(2)}(x - \bar{x}) + \kappa_t^{(3)}((x - \bar{x})^2 - \hat{\sigma}_x^2) + \gamma_t^{(4)}
\]

- Model assumes a functional relationship between ages (and hence smoothness).
- One of the better fit models to England and Wales data (Cairns et al. (2007)).
Mortality Model – M7 from Cairns, et al. (2007)
Economic Capital Approach

- Use asset yield at time t, discount future benefits/expenses to obtain best estimate asset requirement

- Surplus/deficit at time t (profit vector) given by

$$P_t = L_{t-1}l_{t-1,t} - X_t - L_t$$

- Present value of future profits given by:

$$V_0 = \sum_{t=1}^{T} P_t D_{(0,t)}$$
Present value of future profits, V_0, can also be expressed as follows:

$$V_0 = A_0 - \sum_{t=0}^{T} X_t D(0,t)$$

Repeat previous steps 10,000 times to obtain a distribution of V_0. The required economic capital is the 0.5th percentile of the V_0 distribution.
UK’s Universities Superannuation Scheme (USS)

Contents

- Overall Project
- Introduction to Pension Model
- Assumptions and Methodology
- UK’s Universities Superannuation Scheme (USS)
- Stylized US Pension Plan
- Canadian Pension Plan
- Summary
USS Pension Scheme – Benefits

- 1/80th final salary benefit for service to April 1, 2016
- 1/75th career revalued benefit for service from April 1, 2016
- Lump sum at retirement = 3 × annual pension
- Pension increases based on min [CPI, 5%]
- Contribution rate: 24% of salary (8% employee + 16% employer)
UK’s Universities Superannuation Scheme (USS)

USS Pension Scheme – Data

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
<th>Average pensionable salary</th>
<th>Average age</th>
<th>Average past service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Members</td>
<td>167,545</td>
<td>£42,729</td>
<td>43.8</td>
<td>12.5</td>
</tr>
<tr>
<td>Deferred Members</td>
<td>110,430</td>
<td>£2,373</td>
<td>45.1</td>
<td></td>
</tr>
<tr>
<td>Pensioners (including dependents)</td>
<td>70,380</td>
<td>£17,079</td>
<td>71.1</td>
<td></td>
</tr>
<tr>
<td>Assets</td>
<td>Benchmark Allocation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UK equities</td>
<td>16%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overseas equities</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative assets</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Property</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total real</td>
<td>73%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed interest</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total fixed</td>
<td>27%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Modelled as 70% Equities and 30% Bonds
UK’s Universities Superannuation Scheme (USS)

USS Economic Capital – Sensitivity to Asset Allocation Strategy

70% equities

- Density
- Percentiles
 - 50th
 - 10th
 - 0.5th

30% equities

- Density
- Percentiles
 - 50th
 - 10th
 - 0.5th

PVFP (as a % of A_0)
UK’s Universities Superannuation Scheme (USS)

USS Economic Capital – Sensitivity to Contribution Rates

Contribution rate – 20%

Contribution rate – 25%

PVFP (as a % of A_0)

Density

Percentiles

50th

10th

0.5th

0.000

0.010

0.020

−300 −200 −100 0 100

−300 −200 −100 0 100
Contents

- Overall Project
- Introduction to Pension Model
- Assumptions and Methodology
- UK’s Universities Superannuation Scheme (USS)
- Stylized US Pension Plan
- Canadian Pension Plan
- Summary
Sylized US Pension Plan – Benefits

- Benefits based on USS pension scheme, except for the following
- 1.5% final average salary for all pension service
- No lump sum payment on retirement
- No pension increases
- Contribution rate: 10.8% of salary
US Stylized Plan Economic Capital – Sensitivity to Asset Allocation Strategy

75% equities

PVFP (as a % of A₀)

25% equities

PVFP (as a % of A₀)
US Stylized Plan Economic Capital – Sensitivity to Contribution Rate

Contribution rate – 13.3%

Contribution rate – 8.3%

PVFP (as a % of A_0)
Contents

- Overall Project
- Introduction to Pension Model
- Assumptions and Methodology
- UK’s Universities Superannuation Scheme (USS)
- Stylized US Pension Plan
- Canadian Pension Plan
- Summary
Pension payment: 1.7% of 5-year average salary benefit

Pension increases based on CPI

No lump sum payment

Contribution rate: 20.8% of salary up to YMPE and 24% for earnings exceeding YMPE.
OTPP – Data

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
<th>Average pensionable salary</th>
<th>Average age</th>
<th>Average past service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active</td>
<td>144,325</td>
<td>$90,468</td>
<td>44.4</td>
<td>14.6</td>
</tr>
<tr>
<td>Deferred Members</td>
<td>71,205</td>
<td>$1,965</td>
<td>45.1</td>
<td></td>
</tr>
<tr>
<td>Pensioners</td>
<td>129,785</td>
<td>$41,154</td>
<td>71.1</td>
<td></td>
</tr>
</tbody>
</table>
Model Canada: Graphical model with 6 edges.
OTPP Economic Capital

55% Equity

Percentiles
- 50th
- 10th
- 0.5th

Density

PVFP (as a % of A_0)
OTPP Economic Capital – Sensitivity to Asset Allocation Strategy

75% Equity

25% Equity

PVFP (as a % of A₀)

Percentiles
- 50th
- 10th
- 0.5th

Density

0.000 0.010 0.020

-400 −200 0 100

-400 −200 0 100
OTPP Economic Capital – Sensitivity to Contribution Rate

Contribution rate – 18.3%

Contribution rate – 23.3%
Contents

- Overall Project
- Introduction to Pension Model
- Assumptions and Methodology
- UK’s Universities Superannuation Scheme (USS)
- Stylized US Pension Plan
- Canadian Pension Plan
- Summary
Summary

- There is a very large range of potential results.

- The stylized US plan is more volatile than the USS:
 - Economic capital twice as large as a percentage of starting assets.
 - Economic capital also larger in absolute terms.

- The beneficial effect on economic capital of increasing the allocation to long bonds is greater in the stylized US plan:
 - Larger proportion of nominal (rather than inflation protected) benefits.

- Continuing to analyze Canadian plan results:
 - Initial results look similar to USS.
 - Will consider implications of reduced inflation protection and differing levels of plan maturity.
References

