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In programming, some data acts as a resource (e.g., file handles, channels) subject to usage constraints.

This poses a challenge to software correctness as most languages are agnostic to constraints on data. The

approach of linear types provides a partial remedy, delineating data into resources to be used but never

copied or discarded, and unconstrained values. Bounded Linear Logic provides a more fine-grained approach,

quantifying non-linear use via an indexed-family of modalities. Recent work on coeffect types generalises

this idea to graded comonads, providing type systems which can capture various program properties. Here,

we propose the umbrella notion of graded modal types, encompassing coeffect types and dual notions of

type-based effect reasoning via graded monads. In combination with linear and indexed types, we show that

graded modal types provide an expressive type theory for quantitative program reasoning, advancing the

reach of type systems to capture and verify a broader set of program properties. We demonstrate this approach

via a type system embodied in a fully-fledged functional language called Granule, exploring various examples.

CCS Concepts: • Theory of computation→Modal and temporal logics; Program specifications; Pro-
gram verification; Linear logic; Type theory.

Additional Key Words and Phrases: graded modal types, linear types, coeffects, implementation

ACM Reference Format:
Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019. Quantitative Program Reasoning

with Graded Modal Types. Proc. ACM Program. Lang. 3, ICFP, Article 110 (August 2019), 30 pages. https:

//doi.org/10.1145/3341714

1 INTRODUCTION
Most programming languages treat data as infinitely copiable, arbitrarily discardable, and univer-

sally unconstrained. However, this overly abstract view is naïve and can lead to software errors. For

example, some data encapsulates resources subject to protocols (e.g., file and device handles, chan-

nels); some data has confidentiality requirements and thus should not be copied or communicated

arbitrarily. Dually, some programs have non-functional properties (e.g., execution time) dependent

on data (e.g., on its size). Thus, the reality is that some data acts as a resource, subject to constraints.

In this paper we present Granule, a typed functional language that embeds a notion of data as a

resource into the type system in a way that can be specialised to different resource and dataflow

properties. Granule’s type system combines linear types, indexed types (lightweight dependent

types), and graded modal types to enable novel quantitative reasoning.

Linear types treat data like a physical resource which must be used once, and then never

again [Girard 1987; Wadler 1990]. For example, the identity function is linearly typed as it binds a

Authors’ addresses: Dominic Orchard, School of Computing, University of Kent, UK; Vilem-Benjamin Liepelt, School of

Computing, University of Kent, UK; Harley Eades III, School of Computer and Cyber Sciences, Augusta University, USA.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2019 Copyright held by the owner/author(s).

2475-1421/2019/8-ART110

https://doi.org/10.1145/3341714

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.

https://doi.org/10.1145/3341714
https://doi.org/10.1145/3341714
https://doi.org/10.1145/3341714


110:2 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III

variable then uses it, whereas the K combinator λx .λy.x is not linearly typed asy is never used. Non-

linear, unconstrained use is instead captured by the modal operator !, giving a binary view: either

values are linear (a resource) or non-linear (the traditional view of data). However, in programming,

non-linearity rapidly permeates programs. Bounded Linear Logic (BLL) instead provides a more

fine-grained view, replacing ! with a family of modal operators indexed by terms quantifying the

upper bound on usage [Girard et al. 1992], e.g., !2A capturesA values that can be used at most twice.

The proof rules manipulate these indices, accounting for contraction, weakening, and composition.

Various recent work has generalised BLL, providing a family of modalities whose indices are

drawn from an arbitrary semiring, enabling various properties to be tracked by a single system, e.g.,

bounded reuse, strictness, deconstructor use, sensitivity, and scheduling constraints in hardware

synthesis [Brunel et al. 2014; Ghica and Smith 2014; Petricek et al. 2013]. These indices are often

described as coeffects, capturing how a program consumes its context, dualising the idea of effects,

which capture how a program changes its environment. Semantically, these semiring-indexed

modalities are modelled by graded exponential comonads [Gaboardi et al. 2016; Katsumata 2018].

We propose the general terminology of graded modal types to capture these notions of semiring-

indexed !-modalities as well as graded monads [Katsumata 2014; Orchard et al. 2014; Smirnov 2008].

Graded monads generalise monads (the Curry-Howard counterpart to modal possibility [Benton

et al. 1998]) to a monoid-indexed form, describing side-effects akin to effect systems. In general,

a graded modality provides an indexed family of type operators with structure over the indices

witnessing proof/typing rules. Through the Curry-Howard lens, graded modal types carry informa-

tion about the semantic structure of programs, and along with a suitably expressive type system,

provide a mechanism for specifying and verifying properties not captured by existing type systems.

We develop this idea, presenting a type system that takes linear and indexed types as the basis.

Indexed types provide lightweight dependent types for capturing dependencies between values.

On top of this, we integrate graded modalities in two dual flavours: graded comonads/necessity

and graded monads/possibility. We focus mainly on graded necessity, which is heavily integrated

with linearity. Whilst the building blocks of this work have been studied, there have been various

limitations. Gaboardi et al. [2016] can only accomodate one graded comonad and graded monad at a

time in a simply-typed calculus; De Amorim et al. [2014] integrate indexed typing with one graded

modality for sensitivity analysis, but also restricted to a single built-in indexed type; Bernardy et al.

[2017] have a form of implicit graded modality in the context of Haskell, with GADTs and pattern

matching, but restricted to tracking reuse. Specifically, we make the following contributions:

• We define a type theory, combining graded modalities with linear, polymorphic, and indexed

types (§3, §4) for the purposes of type-based reasoning. Our work is novel in allowing multiple

different graded modalities to be used at the same time, alongside user-defined indexed types

(GADTs) in a linear language. We give an operational model (§6) and meta-theoretic results (§7).

• Based on this theory, we present Granule: a statically-typed, eager functional language. Its

reasoning powers are demonstrated through various examples (§2, §8), including tracking fine-

grained non-linearity, privacy, stateful protocols (like files and sessions), and their combinations.

• We extend the meaning of coeffects to account for pattern matching, and give new constructions

on graded modal types, including usage approximations and the combination of graded modalities.

• We provide a bidirectional type checking algorithm (§5), at the heart of our implementation,

which exploits an SMT solver to discharge theorems over the indices of graded modalities.

Section 9 discusses related work in detail and Section 10 further work. The appendix (in the auxiliary

material https://doi.org/10.1145/3341714) provides further definitions, collected rules, and proofs.

Graded modalities here are for type-based analysis; we do not consider instantiations of the

semantics with particular graded (co)monads, e.g., as in the categorical model of Gaboardi et al.
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[2016]. Our graded modalities can thus be considered to be computationally trivial, i.e., not requiring

additional underlying semantics, though we provide a graded possibility encapsulating I/O effects.

At the moment, Granule is not designed as a general-use surface-level language. Rather, our aim

is to demonstrate the reasoning power provided by combining linear, graded, and indexed types in

the context of standard language features like data types, pattern matching, and recursion.

2 A TASTE OF GRANULE
We begin with various example programs in Granule, building from the established concept of

linear types up to the graded modalities of this paper. We show how linear and graded modal types

allow us to document, discover, and enforce program properties, complementing and extending the

reasoning provided by parametric polymorphism and indexed types.

Granule syntactically resembles Haskell. Programs comprise mutually recursive definitions, with

functions given by sequences of equations, using pattern matching to distinguish their cases. Top-

level definitions must have a type signature (inference and principal types is further work, §10). The

TEX source of this section is a literate Granule file; everything here is real code. Ill-typed definitions

are marked by ✗. We invite the reader to run the type checker and interpreter themselves.
1

2.1 Linearity
To ease into the syntax, the following are two well-typed polymorphic functions in Granule:

id : ∀ {t : Type} . t → t

id x = x

flip : ∀ {a b c : Type} . (a → b → c) → b → a → c

flip f y x = f x y

Polymorphic type variables are explicit, given with their kind. These functions are both linear:

they use their inputs exactly once. The id function is the linear function par excellence and flip

switches around the order in which a function takes its arguments. From flip we can deduce that

the structural exchange rule is allowed. However, the other two structural rules, weakening and

contraction, are not available by default, as witnessed by the following two functions being rejected:

✗ drop : ∀ {t : Type} . t → ()

drop x = ()
✗ copy : ∀ {t : Type} . t → (t, t)

copy x = (x, x)

The Granule checker and interpreter gr gives us the following errors, respectively:

Linearity error: 2:1: Linearity error: 2:10:
Linear variable x is never used. Linear variable x is used more than once.

Granule’s type system is not just an extension of ML-like polymorphic systems. The quantifi-

cation ∀ {t : Type} ranges over types which may be resources, subject to consumption constraints,

precluding arbitrary copying and dropping. Having strict linearity as the default fits the rule that

the more polymorphic our inputs, the less we can assume about them. This strictness means linearity

can enforce aspects of stateful protocols not readily captured by other type systems, even dependent

types, e.g. for file handling [Walker 2005] and networking [Tov and Pucella 2010]. It can further be

leveraged to treat pure data as resource-like, constraining the space of possible implementations.

Whilst polymorphic drop and copy are disallowed, we can define monomorphic versions for data

types whose constructors are in scope, e.g. for data Bool = False | True:

dropBool : Bool → ()

dropBool False = ();

dropBool True = ()

copyBool : Bool → (Bool, Bool)

copyBool False = (False, False);

copyBool True = (True, True)

1
The gr toolchain is available at https://granule-project.github.io. To see type checker output for ill-typed examples, pass

gr the name of the environment: --literate-env grill (granule ill-typed). The frontend accepts both Unicode symbols

and their ASCII counterparts, e.g. forall for ∀ and -> for→. The documentation contains a full table of equivalences.
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Thus, data constructors—as opposed to variables—can be used freely. Values of an abstract type (i.e.,

with hidden data constructors)
2
are however subject to linearity constraints. For example, Granule

has an abstract type of file handles, supporting safe programming with files through the following

interface which guarantees that an open handle is always closed and then never used again after:

openHandle : ∀ {m : HandleType} . IOMode m → String → (Handle m) <IO>

readChar : Handle R → (Handle R, Char) <IO>

closeHandle : ∀ {m : HandleType} . Handle m → () <IO>

This is a subset of the file-handling operations in Granule. The functions openHandle and closeHandle

are polymorphic on the HandleType, an ordinary data type promoted to the type-level for statically

enforcing modes. The openHandle function creates a handle, and its dual closeHandle destroys a

handle. Linearity means we can never not close a handle: we must use closeHandle to erase it. The

readChar function takes a readable handle (indicated by the R parameter to Handle) and returns

a pair of a readable handle and a character. Logically, readChar can be thought of as consuming

and producing a handle, though at runtime these are the same handle. The <IO> type is a modality,

written postfix, which captures I/O side effects like Haskell’s IO monad [Jones 2003]. We explain

<IO> more later (§2.5) as it approximates a more fine-grained graded modality. The next two pro-

grams use Granule’s notation for sequencing effectful computations akin to Haskell’s “do” notation:

twoChars : (Char, Char) <IO>

twoChars = let

h ← openHandle ReadMode "somefile";

(h, c1) ← readChar h;

(h, c2) ← readChar h;

() ← closeHandle h

in pure (c1, c2)

✗

bad : Char <IO>

bad = let

h1 ← openHandle ReadMode "somefile";

h2 ← openHandle ReadMode "another";

() ← closeHandle h1;

(h1', c) ← readChar h1
in pure c

On the left, twoChars opens a handle, reads two characters from it and closes it, returning the two

characters in an I/O context. The pure function lifts a pure value into the <IO> type. On the right,

bad opens two handles, then closes the first, reads from it, and returns the resulting character

without closing the second handle. This program is rejected with several linearity errors: h1 is used

more than once and h2 and h1' are discarded. Thus, as is well-known, a lack of weakening and

contraction supports static reasoning about the stateful protocol of file handling [Walker 2005].

2.2 Graded Modalities
Many programs however require discarding and copying of values. Linear logic [Girard 1987]

answers this by using a modal type constructor ! to relax linearity and propagate any nonlinearity

requirements. We can rewrite the ill-typed drop and copy into less polymorphic, well-typed versions

using a necessity-like modality in Granule à la linear logic:

drop' : ∀ {t : Type} . t [] → ()

drop' [x] = ()

copy' : ∀ {t : Type} . t [] → (t, t)

copy' [x] = (x, x)

Similar to linear logic’s !, the postfix “box” constructor describes unrestricted use. Our syntax is an

allusion to necessity (□) from modal logic. Since the parameters are modal, of type t [], we can

use an “unboxing” pattern to bind a variable x of type t which can be discarded or copied freely in

the function bodies. A value of type t [] is itself still subject to linearity: it must be used, which it

is here via the unboxing pattern. This modality allows non-linearity, but it gives a coarse-grained

view: we cannot distinguish the different forms of non-linearity employed by drop' and copy'

whose parameters have the same type. Instead, we achieve this distinction via a graded modality.

2
Hiding data constructors, e.g. behind an interface, is not yet supported by Granule, but various abstract types are built in.
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To track fine-grained program information, modalities in Granule are graded by a resource algebra

whose elements and operations capture semantic program structure. One built-in algebra counts

variable use via the natural numbers semiring. This enables more precisely typed copy and drop:

drop'' : ∀ {t : Type} . t [0] → ()

drop'' [x] = ()

copy'' : ∀ {t : Type} . t [2] → (t, t)

copy'' [x] = (x, x)

These definitions replay drop' and copy' but the types now exactly specify the amount of non-

linearity: 0 and 2. The usage is easily determined statically as there is no branching control. We

will see various graded modalities in due course, including one for accommodating branching next.

2.3 Analysing Control Flow and Propagating Requirements
Data type definitions in Granule look just like those in Haskell. Consider the following data type:

data Maybe t = None | Some t

Parameterised data constructors are linear functions as each argument appears once in the result,

e.g., Some is a linear function ∀ t. t → Maybe t: if its constructed value is used exactly once, then

its argument is used exactly once—it is no more than a wrapper around existing data (similar to

Linear Haskell [Bernardy et al. 2017]). From now on we omit unambiguous kinds in quantifications.

We define a function that, given values of type t and Maybe t, returns a value of type t:

fromMaybe : ∀ t. t [0..1] → Maybe t → t

fromMaybe [_] (Some x) = x;

fromMaybe [d] None = d

✗
fromMaybe' : ∀ t. t → Maybe t → t

fromMaybe' _ (Some x) = x;

fromMaybe' d None = d

On the right, fromMaybe' as wemight define it in Haskell, is ill-typed as it discards the first parameter

in the first equation, violating linearity. The type ∀ t. t → Maybe t → t is uninhabited in Granule.

On the left, fromMaybe is the well-typed version fromGranule’s Standard Library. The first parameter

is wrapped in a graded modality using a resource algebra capturing both upper and lower bounds

of use as an interval via the _.._ constructor. Interval grades are useful in the context of control

flow, also giving a more fine-grained analysis than just the upper bounds of BLL. We can express

linear, affine, and relevant use respectively as [1..1], [0..1], and [1..∞] (via a resource algebra

of intervals over extended natural numbers). Furthermore, this graded modality allows more

permissive affinity, e.g., [0..n], and more restrictive relevance, e.g., [1..n] for some n.

The type of fromMaybe explains that the first parameter is used either 0 or 1 times (affine)

depending on control flow, and the second parameter is used linearly, i.e., there is a pattern match

for every data constructor and any contained values (e.g. x) are also used linearly. This usage

information is local to the function’s definition; fromMaybe need not consider the context in which

it is used nor how a partially applied result may be used—this is tracked at application sites.

To apply fromMaybe, we need to pass a graded modal value for the first parameter. Such values

can be constructed by promotion, written [t], which promotes a term t to a graded modal type.

For example, fromMaybe [29] uses promotion to lift a constant integer to the type Int [0..1].

This application yields a linear function of type Maybe Int → Int which itself must be used once.

Promotion propagates constraints to any free variables captured by it. For example, consider a term

(let [f] = [fromMaybe [x]] in e) where the result of partially applying fromMaybe is promoted

and bound to f. If e uses f non-linearly n times then this information is propagated through the

promotion to the type of x which must then have the grading 0..n, i.e., used 0 to n times in e. Thus,

via promotion we can compose programs, propagating information at the type level about data use.

Note that there is only one total function in Granule inhabiting this type of fromMaybe; an

erroneous definition always returning the first parameter is ill-typed. Thus, our types capture both

extensional and intensional program properties (what a program does and how it does it).
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2.4 Indexed Types, and Putting It All Together
Indexed types enable type-level access to information about data. Granule supports user-defined

indexed types in a similar style to Haskell’s GADTs [Peyton Jones et al. 2006]. We use here the classic

examples of size-indexed lists (Vec) and indexed naturals to demonstrate some novel reasoning.

data Vec (n : Nat) (a : Type) where

Nil : Vec 0 a;

Cons : a → Vec n a → Vec (n + 1) a

data N (n : Nat) where

Z : N 0;

S : N n → N (n + 1)

Some standard functions over Vec are already linear and thus have definitions and types in Granule

that look like the usual ones from non-linear languages, e.g., for append:

append : ∀ {t : Type, n : Nat, m : Nat} . Vec n t → Vec m t → Vec (n + m) t

append Nil ys = ys;

append (Cons x xs) ys = Cons x (append xs ys)

Indexed types ensure that the length of the output vector is indeed the sum of the length of the

inputs. Due to linearity this type guarantees a further property: every element from the inputs must

appear in the output, which is not guaranteed by this type in a non-linear language.

Functions which are non-linear in the elements look different to their usual counterparts. For

example when taking the length of a vector, we do not consume its elements. Either we must

discard elements as on the left, or we must reconstruct the vector and return it, on the right:

length : ∀ t, n. Vec n (t [0]) → N n

length Nil = Z;

length (Cons [_] xs) = S (length xs)

length' : ∀ t, n. Vec n t → (N n, Vec n t)

length' Nil = (Z, Nil);

length' (Cons x xs) =

let (n, xs) = length' xs in (S n, Cons x xs)

Both are provided in the standard library. These two types are incomparable, representing distinct

kinds of consumption on vectors, e.g., the type of length' allows programs which also reorder

elements in the output list. Section 8 discusses such design decisions further. A key part of Granule’s

expressive power is that grades can be computed from type indices. Consider the following (left):

rep : ∀ n t. N n → t [n] → Vec n t

rep Z [t] = Nil;

rep (S n) [t] = Cons t (rep n [t])

sub : ∀ m n. {m ⩾ n} ⇒ N m → N n → N (m - n)

sub m Z = m;

sub (S m') (S n') = sub m' n'

The rep function takes a number n and a value t, replicating the value n-times to build a vector

Vec n t. Evidently this function cannot be linear in t. Using indexing as lightweight dependent

types, we specify that the number of uses depends exactly on the size of the output vector.

On the right, sub defines subtraction on indexed naturals, demonstrating Granule’s support for

preconditions (refinements) in the context of type schemes (to the left of ⇒). These must hold

where the function is used. Such predicates are discharged by the external solver. If we include a

case “sub Z (S n') = sub Z n'” which violates the precondition m ⩾ n, then gr gives us an error:

Impossible pattern match: 3:1: Pattern match in an equation of sub is impossible as it

implies the unsatisfiable condition ∃n0 : Nat.(0 ⩾ n0 + 1)

Lastly, we put the above functions together to define a function for “left padding” a vector:

leftPad : ∀ {t : Type, m n : Nat} . {m ⩾ n} ⇒ N m → Vec n t → t [m - n] → Vec m t

leftPad n str c = let (m, str) = length' str in append (rep (sub n m) c) str

The type says that given a target length m and a vector of length less-than-or-equal to n, we consume

the padding element of type t exactly m - n times to produce an output vector of length m.
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Assuming totality, this type alone implies the correct implementation modulo reordering, via:

(1) Parametric polymorphism: ensuring that the implementation cannot depend on the concrete

padding items provided or the items of the input vector (hence we use vectors instead of strings);

(2) Indexed types: ensuring correct sizes and enabling specification of the padding element’s usage;

(3) Linear and graded modal types: ensuring that every item in the input vector appears exactly

once in the output and that the padding element is used to pad the vector exactly m - n times.

The type of leftPad is superficially similar to what we could write in GHC Haskell or a dependently-

typed language, modulo the graded modality [m - n], a minor syntactic addition here. However the

extra guarantees give us properties for free which we would otherwise have to prove separately.

2.5 Other Graded Modalities
We return to the <IO> type constructor, which is an effect-capturing modality (the “diamond” syntax

alluding to modal possibility), in the spirit of Haskell’s IOmonad. More precise reasoning is possible

in Granule via a graded possibility modality providing a graded monad [Katsumata 2014]. The indices

of this graded modality capture side effects via sets of effect labels, forming a lattice (by subset

inclusion), for which IO aliases the top element. We can give a more precise type for twoChars from

the end of Section 2.1: (Char, Char) <{Open,Read,IOExcept,Close}> which enforces that running

it cannot cause any write effects. Note that currently exceptions (IOExcept) cannot be caught and

will terminate the program, relying on the runtime/OS to reclaim the program’s resources.

So far we have seen variations of the Nat coeffect for tracking variable reuse. Another analysis is

available via the Level coeffect, representing a lattice of security levels for enforcing noninterference:

secret : Int [Private]

secret = [1234]
✗ main : Int [Public]

main = hash secret

hash : ∀ {l : Level} . Int [l] → Int [l]

hash [x] = [x*x*x]
✓ main : Int [Private]

main = hash secret

Section 8 shows more examples, including combining analyses (variable reuse and security levels).

Now that we have a taste for Granule, we set out the type system that enables all of these examples.

Section 3 describes a core simply-typed calculus first before Section 4 defines the full system.

3 A CORE SIMPLY-TYPED LINEAR CALCULUS WITH A GRADED MODALITY
To aid understanding, we first establish a subset of Granule, called GrMini, which comprises the

linear λ-calculus extended with a graded necessity modality (graded exponential comonad), resem-

bling coeffect calculi of Brunel et al. [2014] and Gaboardi et al. [2016]. Section 4 extends GrMini to

Granule core (Gr) with polymorphism, indexed types, multiple different graded modalities, and

pattern matching. The typing rules of GrMini are shown later to be specialisations of Gr’s rules.

Types and terms of GrMini are those of the linear λ-calculus with two additional pieces of

syntax for introducing and eliminating values of the graded necessity type □rA:

t ::= x | t1 t2 | λx .t | [t] | let [x] = t1 in t2 A,B ::= A ⊸ B | □rA (terms and types)

The usual syntax of the λ-calculus, with variables x , is extended with the term-former [t] which

promotes a term to a graded modality, typed by □rA, as shall be seen in the typing rules. The term

let [x] = t1 in t2 dually provides elimination for graded modal types. The graded modality □rA is an

indexed family of type constructors whose indices r range over the elements of a resource algebra—

in this case, a semiring (R,+, 0, · , 1)—whose operations echo the structure of the proof/typing

rules. This semiring parameterises GrMini as a meta-level entity. In contrast, Gr can internally

select different resource algebras and thus modalities. We consider here the usual natural numbers

semiring for counting exact number of uses as a running example to aid understanding.
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Typing judgments are of the form Γ ⊢ t : A with typing contexts Γ of the form:

Γ ::= ∅ | Γ, x : A | Γ, x : [A]r (contexts)

Contexts are either empty ∅, or can be extended with a linear variable assumption x : A or a

graded assumption x : [A]r . For a graded assumption, x can behave non-linearly, with substructural

behaviour captured by the semiring element r , which describes x ’s use in a term. We will denote

the domain of a context Γ, the set of variables assigned a type in the context, by |Γ |.
Typing for the linear λ-calculus fragment is then given by the rules:

x : A ⊢ x : A

var

Γ, x : A ⊢ t : B

Γ ⊢ λx .t : A ⊸ B

abs

Γ1 ⊢ t1 : A ⊸ B Γ2 ⊢ t2 : A

Γ1 + Γ2 ⊢ t1 t2 : B
app

Γ ⊢ t : A

Γ, [∆]0 ⊢ t : A
weak

Linear variables are typed in a singleton context, which enforces the behaviour that linear variables

cannot be weakened. Abstraction and application are as expected, though application employs a

partial context concatenation operation + defined as follows:

Definition 3.1. [Context concatenation] Two contexts can be concatenated if they contain disjoint

sets of linear assumptions. Furthermore, graded assumptions appearing in both contexts are

combined using the additive operation of the semiring +. Concatenation + is specified as follows:

(Γ, x : A) + Γ′ = (Γ + Γ′), x : A iff x < |Γ′ |
Γ + (Γ′, x : A) = (Γ + Γ′), x : A iff x < |Γ |

(Γ, x : [A]r ) + (Γ
′, x : [A]s) = (Γ + Γ′), x : [A](r+s)

∅ + Γ = Γ
Γ + ∅ = Γ

Note that this is a declarative specification of + rather than an algorithmic definition, since graded

assumptions for the same variable may appear in different positions within the two contexts.

The weak rule provides weakening only for graded assumptions, where [∆]0 denotes a context
containing only assumptions graded by 0. Context concatenation and weak thus provide contrac-

tion and weakening for graded assumptions using + and 0 to witness substructural behaviour

corresponding to a split in a dataflow path for a value or the end of a dataflow path. The exchange

rule, allowing contexts to be re-ordered, is implicit here (though Section 10 discusses alternatives).

The next three rules employ the remaining semiring structure, typing the additional syntax as

well as connecting linear assumptions to graded assumptions:

Γ, x : A ⊢ t : B

Γ, x : [A]1 ⊢ t : B
der

[Γ] ⊢ t : A

r · [Γ] ⊢ [t] : □rA
pr

Γ1 ⊢ t1 : □rA Γ2, x : [A]r ⊢ t2 : B

Γ1 + Γ2 ⊢ let [x] = t1 in t2 : B

let

Dereliction (der) converts a linear assumption to be graded, marked with 1. Subsequently, the

semiring element 1 relates to linearity, though in Gr (§4) it does not exactly denote linear use as

x : [A]1 ⊢ t : B does not imply x : A ⊢ t : B for all semirings once ordering is added to allow

approximation. Promotion (pr) introduces graded necessity with grade r , propagating this grade to

the assumptions via scalar multiplication of the context by r . For tracking number of uses, the rule

states that to produce the capability to reuse t of type A exactly r times requires that all the input

requirements for t are provided r times over, hence we multiply the context by r .

Definition 3.2. [Scalar context multiplication] Assuming that a context contains only graded

assumptions, denoted [Γ] in typing rules, then Γ can be multiplied by a semiring element r ∈ R:

r · ∅ = ∅ r · (Γ, x : [A]s) = (r · Γ), x : [A](r · s)

The (let) rule provides elimination for the graded modality via a kind of substitution, where a

graded value is “unboxed” and substituted into a graded assumption with matching grades. In the

context of reuse, let plugs the capability to reuse a value r times into the requirement of using a

variable r times. Since (let) has two subterms, context addition is also employed in the conclusion.
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If grades are removed, or collapsed via the singleton semiring, then this system is essentially

intuitionistic natural deduction for S4 necessity [Bierman and de Paiva 2000; Pfenning and Davies

2001], but using Terui’s technique of delineating modal assumptions via “discharged” (in our case

“graded”) assumptions [Terui 2001]. This technique avoids issues with substitution underneath

promotion, providing cut admissibility. See Section 7 for further discussion.

Any term and type derivation in the simply-typed λ-calculus can be translated into GrMini based

on Girard’s translation of the simply-typed λ-calculus into an intuitionistic linear calculus [Girard

1987]. The idea is to replace every intuitionistic arrow A → B with □ωA ⊸ B for the singleton

semiring {ω} and subsequently unbox via let in abstraction and promote when applying, e.g.

Jλ f .λx . f (f x) : (A→ A) → A→ AK = λ f ′.λx ′.let [f ] = f
′ in (let [x] = x

′ in f [f [x]])

: □ω (□ωA ⊸ A) ⊸ □ωA ⊸ A

From GrMini to Granule. Granule incorporates the GrMini syntax and rules. The graded modal

operator is written postfix in Granule with the grade inside the box: i.e., □rA is written as A [r].

The following are then some simple Granule examples using just the GrMini subset:

k : Int → Int [0] → Int

k = λx → λy' → let [y] = y' in x

foo : Int [3] → Int [6] → Int [3]

foo = λx' → λy' → let [x] = x' in let [y] = y' in [x+y+y]

In foo, the promoted term uses x once and y twice. Thus, if we promote and require three uses

of the result, as specified by the type signature, then we require 3 uses of x and 6 uses of y by

application of the promotion rule, which propagates to the types shown for x' and y'.

GrMini provides linearity with graded necessity modalities for Granule, capturing dataflow

properties of variables (and thus values) via the information of a semiring. Gr develops this idea

further (next section) to allow multiple different graded modalities within the language, as well as

indexed data types, pattern matching, polymorphism, and graded possibility.

4 THE GRANULE TYPE SYSTEM
We extend GrMini to Gr, which models Granule with some simplifications. The implementation

of Granule has the following structure:

Source
lexer/parser

//
AST

freshener

//
AST

bidirectional type checking

//
Predicate

SMT solver

//
Result

ss

Type checking, if successful, outputs a predicate capturing theorems about grading, which is

compiled to the SMT-LIB format [Barrett et al. 2010] and passed to any compatible solver (we

use Z3 [De Moura and Bjørner 2008]). Type checking and predicate solving is performed for each

top-level definition independently, assuming all other definitions are well-typed by their signatures.

We first define the syntax (§4.1), excluding user-defined data types, then resource algebras and

their instances (§4.2), before defining typing declaratively (§4.3) as an expansion of GrMini.

4.1 Syntax
A core subset of the surface-level syntax for Granule is given by the following grammar:

t ::= x | t1 t2 | λp.t︸          ︷︷          ︸
λ-calculus

| [t]︸︷︷︸
box

| n | C t0 ... tn︸        ︷︷        ︸
constructors

| let ⟨p⟩� t1 in t2 | ⟨t⟩︸                    ︷︷                    ︸
monadic metalanguage

(terms)

p ::= x︸︷︷︸
variables

| _︸︷︷︸
wildcard

| [p]︸︷︷︸
unbox

| n | C p0 ... pn︸         ︷︷         ︸
constructors

(patterns)

where ⟨t⟩ corresponds to pure t. Unlike the λ-calculus and GrMini, λ-abstraction is over a pattern

p rather than just a variable. We include integer constructors n and their corresponding patterns as
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well as data constructors C with zero or more arguments. A built-in library provides operations on

integers and other primitives, but we elide the details since they are routine.

The “boxing” (promotion) construct [t] is dualised by the unboxing pattern [p], replacing the

specialised let-binding syntax of GrMini, which is now syntactic sugar:

let [p] = t1 in t2 ≜ (λ[p].t2) t1 (syntactic sugar)

The syntax of GrMini types is extended and a syntactic category of kinds is also now included:

A,B, R, E ::= A→ B | K | α | AB | A opB | □cA | ♢εA (types)

κ ::= Type | Coeffect | Effect | Predicate | κ1 → κ2 | ↑A (kinds)

op ::= + | ∗ | − | ≤ | < | ≥ | > | = | , | ⊔ | ⊓ (type operators)

K ::= Int | Char | () | × | IO | Nat | Level | Ext | Interval (type constructors)

Types comprise function types, type constructors K , variables α (and β), application AB, binary

operators A opB, graded necessity types □cA, graded possibility types ♢εA where c and ε are

coeffect and effect grades defined in Section 4.2, and the unit type (). Functions in Gr are linear,

though we use the Cartesian function space notation→ rather than the traditional⊸ since we use

-> (or→) as a more familiar concrete syntax. Kinds comprise several constants categorising types,

grade kinds (coeffect and effect) and predicates, along with a function space for higher-kinded

types and a syntactic construct to denote a type A lifted to a kind, written ↑A.

Type constructors K comprise various built-in types (with more in the actual implementation,

e.g., file handles) and which is extended by user-defined types (§4.3.3). These built-in constructors

are grouped above by their kind (defined via the kinding rules, §4.3) with the first three of kind

Type, products × as kind-polymorphic, I/O effect labels of kind Effect, and the last four of kind

Coeffect or higher-kinded, producing types of kind Coeffect.

Similarly to ML, we provide polymorphism via type schemes allowing type quantification only at

the outer level of a type rather than higher-rank quantification (see future work, §10):

T ::= ∀{−−−→α : κ} . A | ∀−−−→α : κ . {A1, .. ,An} ⇒ B (type schemes)

where
−−−→α : κ represents a comma-separated sequence of type variables and their kinds. The second

syntactic form additionally includes a set of one or more predicates (types of the kind Predicate)

that can be used to express theorems which need to be solved implicitly by the type checker (a

kind of refinement), as seen in the sub example earlier (§2.4).

Finally, top-level definitions provide a type-scheme signature for a definition along with a

non-empty sequence of equations headed by patterns:

Def ::= x : T ;
−−−−−−−−−−−−−−−→
x pi1 . . .pin = ti (definitions)

4.2 Grading and Resource Algebras
GrMini was parameterised at the meta-level by a semiring, providing a system with one graded

necessity modality. Granule instead allows various graded modalities, with different index domains,

to be used simultaneously within the same program. The type □cA captures different graded

necessity modalities identified by the type of the grade c which is an element of a resource algebra:

a pre-ordered semiring (R, + , 0, · , 1,⊑) with monotonic multiplication and addition which may be

partial. We colour in blue general resource algebra operations, and necessity grades in typing rules.

Within types, necessity grade terms c (which we call coeffects) have the following syntax:

c ::= α | c1 + c2 | c1 · c2 | 0 | 1 | c1 ⊔ c2 | c1 ⊓ c2 | flatten(c1, R, c2, S) (coeffects)

| n | Private | Public | c1..c2 | ∞ | (c1, c2)
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The first line of syntax exposes the resource algebra operations, including syntax for (possibly

undefined) least-upper bounds (⊔) and greatest-lower bounds (⊓) derived from the pre-order.

Grades can include variables α , enabling grade-polymorphic functions shown later and in Section 8.

Our long-term goal is to allow first-class user-defined resource algebras, with varying axioma-

tisations (see §10). For now we provide several built-in resource algebras, with syntax provided

above in the second line for naturals n, security levels, intervals, infinity, and products of coeffects.

Definition 4.1. [Exact usage] The coeffect type Nat has the resource algebra given by the usual

natural numbers semiring (N,+, 0, · , 1,≡), but notably with discrete ordering ≡ giving exact usage

analysis in Granule (see §2). Thus, meet and join are only defined on matching inputs.

Definition 4.2. [Security levels] The coeffect type Level provides a way of capturing confiden-

tiality requirements and enforcing noninterference, with a three-point lattice of security levels

{Irrelevant ⊑ Private ⊑ Public} with 0 = Irrelevant, 1 = Private, + = ⊔ (join of the induced

lattice), and if r = Irrelevant or s = Irrelevant then r · s = Irrelevant otherwise r · s = r ⊔ s .
Multiplication · is such that if a value is used publicly, all of its dependencies must also be public;

a private value can depend on public and private values. Recall that + represents contraction (i.e.,

a split in the dataflow of a value). Therefore, a dependency used publicly must be permitted for

public use even if it used elsewhere privately, thus Public+Private = Public. Since 0 = Irrelevant

(bottom element), we can weaken at any level by approximation. Similarly, since 1 = Private, we

can essentially derelict at either Private or Public by approximation. The appendix (Lemma A.1)

gives the proof that this resource algebra is a preordered semiring.

Definition 4.3. [Intervals] The Interval constructor is unary, of kind Coeffect→ Coeffect, where

IntervalR is inhabited by pairs of R elements, giving lower and upper bounds. Thus, IntervalR

is the semiring over {c ..d | c ∈ R ∧ d ∈ R ∧ c ⊑R d}, i.e., pairs written with the Granule syntax

c ..d , where the first component is less than the second (according to the preorder on R). Units are
0 = 0R ..0R and 1 = 1R ..1R and the operations and pre-order are defined as in interval arithmetic:

cl ..cu +dl ..du = (cl +R dl )..(cu +R du )

cl ..cu · dl ..du = (cl ·dl ⊓R cl ·du ⊓R cu ·dl ⊓R cu ·du )..(cl ·dl ⊔R cl ·du ⊔R cu ·dl ⊔R cu ·du )

cl ..cu ⊑dl ..du = (dl ⊑R cl ) ∧ (cu ⊑R du )

For Interval Nat (used in Section 2 to capture lower and upper bounds on usage), multiplication

simplifies to cl ..cu ·dl ..du = (cl ·dl )..(cu ·du ). Whilst Nat is discrete, the implementation uses the ≤

natural number ordering to form the Interval Nat resource algebra so that it can properly capture

lower and upper bounds on use.

Definition 4.4. [Extended coeffects] For a resource algebra R, applying the unary constructor

Ext R extends the resource algebra with an element∞ (i.e., Ext R = R ∪ {∞}) with operations:

r + s =

{
∞ (r = ∞) ∨ (s = ∞)

r +R s otherwise

r · s =


0R (r = 0R ) ∨ (s = 0R )

∞ ((r = ∞) ∧ (s , 0R )) ∨ ((s = ∞) ∧ (r , 0R ))

r ·R s otherwise

The pre-order for Ext R is that of R, but with r ⊑ ∞ for all r . Some Section 2 examples used coeffects

of kind Interval (ExtNat), where 0..∞ captures arbitrary (“Cartesian” usage), providing a type

analysis akin to the ! modality of linear logic. In Granule, the type “A []” is an alias for “A [0..∞]”.

Definition 4.5. [Products] Given two resource algebras R and S , we can form a product resource

algebra R × S whose operations are the pairwise application of the operations for R and S , e.g.,
(r , s)+(r ′, s ′) = (r +R r

′, s +S s
′). This is useful for composing grades together to capture multiple

properties at once. We treat products as commutative and associative.
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Other interesting possible coeffect systems are described in the literature, including hardware

schedules [Ghica and Smith 2014], monotonicity information [Arntzenius and Krishnaswami 2016;

Atkey and Wood 2018], deconstructor usage [Petricek et al. 2013], and sensitivity [de Amorim

et al. 2017]. Future work is to make our system user extensible, but it is already straightforward to

extend the implementation with further graded modalities that match the structure here.

Finally, an inter-resource algebra operation “flatten” describes how to sequentially compose

two levels of grading, which occurs when we have nested pattern matching on nested graded

modalities—a novel feature. Consider the following example, which takes a value inside two layers

of graded modalities, pattern matches on both simultaneously, and then uses the value:

unpack : (Int [2]) [3] → Int

unpack [[x]] = x + x + x + x + x + x

Here, double unboxing computes the multiplication of the two grades, capturing that x is used six

times. What if we have two different graded modalities (i.e., graded by different coeffect types)?

The flatten operation is used here, taking two coeffect terms and their types (i.e., r : R and r
′
: R
′
),

computing a coeffect term describing composition of r and r
′
, resolved to a particular (possibly

different) coeffect type. If flatten(r, R, r ′, R′) = s : S then we can type the following:

λ[[x]].[x] : ∀{α : Type, r : ↑R, r ′ : ↑R′, s : ↑S} . □r′(□rα) → □sα

Currently, flatten is defined in Granule as follows (but can be easily extended at a later date):

Definition 4.6. For the built-in resource algebras, flatten is the symmetric congruence closure of:

flatten(r, ExtNat, s, ExtNat) = r · s : ExtNat
flatten(r, R, r1..r2, Interval R)= (r · r1)..(r · r2) : Interval R
flatten(r, R, (r1, s1), R × S) = (r · r1, s1) : R × S
flatten(s, S, (r1, s1), R × S) = (r1, s · s1) : R × S

flatten(r,Nat, s, ExtNat)= r · s : ExtNat
flatten(r,Nat, s,Nat) = r · s : Nat
flatten(r, Level, s, Level) = r ⊓ s : Level
flatten(r, R, s, S) | R , S = (r , s) : R × S

Thus for Nat we flatten using multiplication, and similarly when combining Nat with an ExtNat

(resolving to the larger type ExtNat). For levels, we take the meet, i.e., □Public(□Privateα) is flattened
to □Privateα , avoiding leakage. For two different resource algebras, flatten forms a product, giving a

composite analysis. Note, flatten is a homomorphismwith respect to the resource algebra operations.

The next section shows how flatten is used in typing.

Whilst the above resource algebras are for graded necessity, Granule also has another flavour

of graded modality: graded possibility, written ♢εA. Following the literature on graded monads

(§9), we provide graded possibility indexed by pre-ordered monoids (E,⋆, 1, ≤) with 1≤e for all
e ∈ E and monotonic ⋆. Grade terms ε have syntax capturing these operations. A built-in graded

modality for I/O has a lattice of subsets of effect labels IO = P({Open, Read, IOExcept, Close, Write})

as used in Section 2.5, with (IO,∪, ∅, ⊆). Other possible graded monads include indexing by natural

numbers for cost analysis (as in Danielsson [2008], with (N,+, 0, ≤)). We focus mainly on graded

necessity, though the system is easily extended with further graded modalities of both flavours.

4.3 Typing (Declaratively)
The declarative specification of the type system has judgments of the form:

(typing) D; Σ; Γ ⊢ t : A (kinding) Σ ⊢ A : κ

where D ranges over contexts of top-level definitions (including data constructors), Σ ranges over

contexts of type variables and Γ ranges over contexts of term variables. Term contexts Γ are defined

as in GrMini but we now include an optional type signature on graded assumptions, written

x : [A]r :R (where R is of kind Coeffect), since Granule allows various graded modalities.
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Σ ⊢ A : Type Σ ⊢ B : Type

Σ ⊢ A→ B : Type

κ→
Σ ⊢ A : κ1 → κ2 Σ ⊢ B : κ1

Σ ⊢ AB : κ2
κapp

Σ ⊢ A : κ Σ ⊢ B : κ

Σ ⊢ A × B : κ
κ×

Σ,α : κ ⊢ α : κ
κvar

Σ,α :∃ κ ⊢ α : κ
κ∃var A ∈ {Int,Char, ()}

Σ ⊢ A : Type

κTys
Σ ⊢ IO : Effect

κio

Σ ⊢ R : Coeff Σ ⊢ r : ↑R Σ ⊢ A : Type

Σ ⊢ □rA : Type

κ□
Σ ⊢ B : Effect Σ ⊢ ε : ↑B Σ ⊢ A : Type

Σ ⊢ ♢εA : Type

κ♢

op∈ {+, ∗,⊓,⊔} Σ ⊢ R : Coeff

Σ ⊢ A : ↑R Σ ⊢ B : ↑R

Σ ⊢ A opB : ↑R
κop1

op∈ {≤,=,,} Σ ⊢ R : (Co)eff

Σ ⊢ A : ↑R Σ ⊢ B : ↑R

Σ ⊢ A opB : Predicate

κop2

Σ ⊢ R : Effect

Σ ⊢ A : ↑R Σ ⊢ B : ↑R

Σ ⊢ A ∗ B : ↑R
κ∗

Σ ⊢ R : Coeff

Σ ⊢ 0 : ↑R
κ0

Σ ⊢ R : Coeff

Σ ⊢ 1 : ↑R
κ1

Σ ⊢ R : Eff

Σ ⊢ 1 : ↑R
κ1

K ∈ {Nat, Level}

Σ ⊢ K : Coeff

κCo
K ∈ {Ext, Interval}

Σ ⊢ K : Coeff → Coeff

κ
Co’

Fig. 1. Kinding rules (with shorthand Coeff for Coeffect, Eff for Effect, and (Co)eff for either Effect or Coeffect)

Type variable contexts Σ are defined as follows:

Σ ::= ∅ | Σ,α : κ | Σ,α :∃ κ (type-variable contexts)

Assumptions α : κ denote universally quantified variables and assumptions annotated with ∃ are

unification variables (existentials). Type variable contexts are concatenated by a comma.

The typing rules of GrMiniwere given in the form Γ ⊢ t : A. EveryGrMini rule is a specialisation

of the corresponding Gr rule with an empty type variable context, i.e. ∅; ∅; Γ ⊢ t : A. We first

describe the kinding relation (§4.3.1), unification and substitutions (§4.3.2), top-level definitions &

GADTs (§4.3.3), typing patterns (§4.3.4), and finally the declarative specification of typing (§4.3.5).

4.3.1 Kinding. Figure 1 defines kinding Σ ⊢ A : κ of a type A as kind κ in a context of type variables

Σ. The first two rules are standard, giving kinding of function types (κ→) and type application

(κapp). We do not have explicit kind polymorphism, but (κ×) is defined for arbitrary kinds. Products
are used at the type level in the standard way and for pairing coeffects types (see Def. 4.5). Type

variables are kinded by (κvar) and (κ∃var). The rule (κ□) gives the kinding of graded necessity

(□rA), where r has a kind which is a coeffect type R lifted to a kind, written ↑R. Thus, coeffect

terms r reside at the type level. Similarly, (κ♢) gives the kinding of graded possibility (♢εA). The
next three rules (κop1, κop2, and κ∗) give the kinds of type-level binary operators, capturing resource
algebra operations and (in)equations over (co)effect terms in the Predicate kind. For Nat, operators

−, <, and > are also available, but their kinding is elided here for brevity. The next three rules give

kinding for the resource algebra units and the remaining rules kind the built-in type constructors

K , including the types for resource algebras (see §4.2).
The composition of coeffect type constructors has some syntactic restrictions, e.g., Ext (ExtNat)

is disallowed. This is enforced via stratification of the constructors, elided here for brevity as it is

not essential to understanding the rest of the system (see appendix, Def. A.1)

Polymorphism in the type of a grade is provided by lifting types to kinds with ↑. For example:

poly : ∀ {a : Type, k : Coeffect, c : k} . a [(1+1)*c] → (a, a) [c]

poly [x] = [(x, x)]

The grade (1+1)*c is for some arbitrary resource algebra k of kind Coeffect. Internally, the type

signature c : k is interpreted as c :↑k (a type variable lifted to a kind).

We also promote data types to the kind level, with data constructors lifted to type constructors.
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Σ ⊢ A′ ∼ A ▷ θ1 Σ ⊢ θ1B ∼ θ1B
′ ▷ θ2

Σ ⊢ A→ B ∼ A
′→ B

′ ▷ θ1 ⊎ θ2
U→

Σ ⊢ A ∼ A
′ ▷ θ1 Σ ⊢ θ1B ∼ θ1B

′ ▷ θ2

Σ ⊢ AB ∼ A
′
B
′ ▷ θ1 ⊎ θ2

Uapp

(α : κ) ∈ Σ

Σ ⊢ α ∼ α ▷ ∅
Uvar=

Σ ⊢ A : κ (α :∃ κ) ∈ Σ
Σ ⊢ α ∼ A ▷ α 7→ A

Uvar∃
Σ ⊢ K ∼ K ▷ ∅

Ucon

Σ ⊢ A : κ

Σ ⊢ A ∼ A ▷ ∅
U=

Σ ⊢ A ∼ A
′ ▷ θ1 Σ ⊢ θ1ε ∼ θ1ε

′ ▷ θ2

Σ ⊢ ♢εA ∼ ♢ε ′A
′ ▷ θ1 ⊎ θ2

U♢
Σ ⊢ A ∼ A

′ ▷ θ1 Σ ⊢ θ1c ∼ θ1c
′ ▷ θ2

Σ ⊢ □cA ∼ □c′A
′ ▷ θ1 ⊎ θ2

U□

Fig. 2. Type unification rules

4.3.2 Unification and Substitutions. Throughout typing we use type substitutions, ranged over

by θ , which map from type variables α to types A, with individual mappings written as α 7→ A.

Substitutions are key to polymorphism: similarly to ML, type schemes are instantiated by creating a

substitution from the universally quantified variables to fresh instance (unification) variables [Milner

et al. 1997]. Type unification then provides type equality, generating a type substitution from

unification variables to their resolved types. Much of the machinery for substitutions is standard

from the literature on polymorphism and indexed types (e.g., [Dunfield and Krishnaswami 2013;

Milner et al. 1997]), however we are not concerned with notions like most general unifier as we do

not provide inference nor consider a notion of principal types (see further work, §10).

Substitutions can be applied to types, kinds, grades, contexts Γ, type variable contexts Σ, and
substitutions themselves. Substitution application is written θA, i.e. applying the substitution θ to

the type A, yielding a type. The appendix (Definition A.2) gives the full definition, which recursively

applies a substitution anywhere type variables can occur, rewriting any matching type variables.

Substitutions can also be combined, written θ1 ⊎ θ2 (discussed below).

Figure 2 defines the type unification relation Σ ⊢ A ∼ B▷θ . Unification is essentially a congruence
over the structure of types (under a context Σ), creating substitutions from unification variables to

types, e.g., (Uvar∃) for α ∼ A (with a symmetric rule for A ∼ α elided here). Universally quantified

variables can be unified with themselves (Uvar=) and with unification variables via (Uvar∃). In multi-

premise rules, substitutions generated by unifying subterms are applied to types being unified in

later premises, e.g., as in (U→). Unification extends to grades, which may contain type variables.

We elide the definition as it is straightforward and follows a similar scheme to the figure.

Substitutions can be typed by a type-variable environment, Σ ⊢ θ (called compatibility) which

ensures that θ is well-formed for use in a particular context. Compatibility is a meta-theoretic

property, which follows from our rules. Two substitutions θ1 and θ2 may be combined as θ1 ⊎ θ2
when they are both compatible with the same type-variable environment Σ (i.e., Σ ⊢ θ1 and Σ ⊢ θ2).
If α 7→ A ∈ θ1 and α 7→ B ∈ θ2 and if A and B are unifiable Σ ⊢ A ∼ B ▷ θ then the combined

substitution θ1 ⊎ θ2 has α 7→ θA and also now includes θ . For example:

(α 7→ (Int × β)) ⊎ (α 7→ (γ × Char)) = α 7→ (Int × Char), β 7→ Char,γ 7→ Int

If two substitutions for the same variable cannot be unified, then context composition is undefined,

indicating a type error which is reported to the user in the implementation. Disjoint parts of a

substitution are simply concatenated. Composition also computes the transitive closure of the

resulting substitution. The appendix (Definition A.3) gives the full definition.

4.3.3 Top-level Definitions and Indexed Types. As seen in Section 2, Granule supports algebraic

and generalised algebraic data types (providing indexed types) in the style of Haskell [Peyton Jones

et al. 2006]. At the start of type checking, all type constructors are kind checked and all data
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constructors are type checked. In typing relations, the D environment holds type schemes for data

constructors, along with a substitution describing coercions from type variables to concrete types,

used to implement indexing. For example, the Cons data constructor of the Vec type in Section 2.4

has the type Cons : a → Vec n a → Vec (n + 1) a which is then represented as:

Cons : (∀(α : Type,n : Nat,m : Nat) . α → Vec nα → Vecmα , θκ ) ∈ D where θκ =m 7→ n + 1

We use θκ ,θ
′
κ to range over substitutions used as coercions for indexed type data constructors.

The environmentD also holds type schemes of top-level definitions. Type schemes are instantiated

to types (without quantification) by the instantiate function, creating fresh unification variables:

Definition 4.7. [Instantiation] Given a type scheme ∀{−−−→α : κ} . Awith an associated set of coercions

θκ (i.e., from a GADT constructor) then we create an instantiation from the binders and coercions:

θ , Σ,θ ′κ = instantiate(
−−−→α : κ,θκ )

where θ maps universal variables to new unification variables, Σ gives kinds to the unification

variables, and θ ′κ is a renamed coercion θκ . The type scheme is then instantiated by θA.
For example, with Cons above we get:

instantiate({α : Type,n : Nat,m : Nat},m 7→ n + 1)

= ({α 7→ α ′,n 7→ n′,m 7→m′}, {α ′ : Type,n′ : Nat,m′ : Nat}, {m′ 7→ n′ + 1})

In the case where there is no coercion, e.g., for top-level definitions which are not data constructors

or for algebraic data type constructors without coercions, we simply write: θ , Σ = instantiate(
−−−→α : κ).

4.3.4 Pattern Matching. One of Granule’s novelties is that patterns can incur consumption which

is then captured at the type level by grades. The specification of typing for patterns is similar to

other functional languages (e.g., ML [Milner et al. 1997]) but takes into account graded modalities

and witnessing of consumption in grades. Patterns are typed by judgments of the form:

D; Σ; r :?R ⊢ p : A ▷ ∆;θ (pattern typing)

A pattern p has type A in the context of definitions D and type variables Σ. It produces a variable
binding context ∆ along with a substitution θ generated by the pattern match. An additional part of

this judgement’s context r :?R captures the possibility of having an “enclosing grade”, which occurs

when we are checking a pattern nested inside an unboxing pattern. Unboxing affects whether

further nested patterns bind linear or graded variables. For example, consider the following:

copy : ∀ {a : Type} . a [2] → (a, a); copy [x] = (x, x)

The pattern match [x] creates a graded assumption x : [α]2 in the context of the body. Thus, when

checking a box pattern we push the grade of its associated graded necessity type down to the inner

patterns. This information is captured in the typing rules by optional coeffect information:

r :?R ::= − | r : R (enclosing coeffect)

where − means we are not inside a box pattern and r : R means we are inside a box pattern with

grade r of type R. Typing of variable patterns then splits into two rules depending on whether the

variable pattern occurs inside a box pattern or not:

Σ ⊢ A : Type

D; Σ;− ⊢ x : A ▷ x : A; ∅
pVar

Σ ⊢ A : Type

D; Σ; r : R ⊢ x : A ▷ x : [A]r :R; ∅
[pVar]

On the left, the variable pattern is not inside a box pattern so we can type x at any typeA producing

a linear binding context x : A (on the right of the ▷). This pattern does not produce any substitutions.
On the right, this variable pattern is nested inside a box pattern and subsequently we can check at

type A producing a binding graded by the enclosing box’s grade r : R.
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The typing of a box pattern propagates grading information to the typing of the subpattern:

D; Σ; r : R ⊢ p : A ▷ ∆;θ Σ ⊢ r : ↑R

D; Σ;− ⊢ [p] : □rA ▷ ∆;θ
p□

Thus, we can type a box pattern [p] as □rA if we can type its subpattern p at A, under the context

of the grading r : R. Subsequently, any variable bindings in p will appear in ∆ graded by r : R. Note

that this rule itself applies only in a context not enclosed by another box pattern.

Nested box patterns lead to interactions between graded modalities, handled by flatten (Def. 4.6)

with the following rule for a box pattern enclosed by another box pattern with grade r : R:

D; Σ; s : S ⊢ p : A ▷ ∆;θ Σ ⊢ r ′ : ↑R′ flatten(r, R, r ′, R′) = (s, S)

D; Σ; r : R ⊢ [p] : □r′A ▷ ∆;θ
[p□]

For example, in the case of R = R′ = Nat, flatten computes the multiplication of the two grades:

flatten(r,Nat, s,Nat) = (r · s,Nat). Note that double unboxing is distinct from composing two

successive unboxing patterns via let, e.g., for t : □r□sA then let [[x]] = t in [x] : □r · sA for any

r : Nat and s : Nat but let [x ′] = t in let [x] = x
′ in [x] is only well-typed when r = 1 as x

′
: □sA is

used only once. Thus, double unboxing (controlled via flatten) is not derivable, but an important

feature of the graded modal analysis here, capturing interaction of two graded necessities.

Depending on flatten, double unboxing and promotion form an isomorphism □r (□sA) � □(r · s)A
for some graded modalities (e.g. for Nat). This is not derivable for all graded modalities, e.g., Level.

The following rules type wildcard and integer patterns. Neither pattern produces bindings, but

they have dual notions of consumption (use) which is novelly captured by graded modal types:

Σ ⊢ A : Type 0⊑ r

D; Σ; r : R ⊢ _ : A ▷ ∅; ∅
[p_]

D; Σ;− ⊢ n : Int ▷ ∅; ∅
pInt

1⊑ r

D; Σ; r : R ⊢ n : Int ▷ ∅; ∅
[pInt]

Wildcard patterns can only appear inside a box pattern as they correspond to weakening, matching

any value and discarding rather than consuming it. Thus the enclosing coeffect must be approx-

imable by 0, as stipulated in the premise. Dually, we treat a pattern match against an integer as

triggering inspection of a value which counts as a use of the value. Thus if n is enclosed by a box

pattern with grade r , then r must approximate 1, e.g. for R = Nat it must count at least one use.

Constructor patterns are more involved as they may instantiate a polymorphic or indexed

constructor, essentially performing a dependent pattern match [McBride and McKinna 2004]:

(C : (∀{−−−→α : κ} . B0 → . . .→ Bn → KA0 . . .Am,θκ )) ∈ D θ , Σ′,θ ′κ = instantiate(
−−−→α : κ,θκ )

Σ, Σ′ ⊢ θ (KA0 . . .Am) ∼ A ▷ θ ′ D; Σ, Σ′;− ⊢ pi : (θ
′
κ ⊎ θ

′ ⊎ θ )Bi ▷ Γi;θi

D; Σ, Σ′;− ⊢ C p0 .. pn : A ▷ Γ0, .. , Γn;θ
′
κ ⊎ θ

′ ⊎ θ0 ⊎ . . . ⊎ θn
pC

Thus for matching on a data constructor C for the data type K , we instantiate its type scheme

(Def 4.7) in the first line of premises, getting θ (KA0 . . .Am) with unification variables Σ′ and
renamed coercion θ ′κ . We then unify θ (KA0 . . .Am)with the expected type A yielding a substitution

θ ′. We now have a way to rewrite the types of the constructor’s parameters Bi using the coercion θ
′
κ ,

the instantiation substitution θ , and the substitution θ ′ from unifying the type of the pattern with

the constructor’s result type. Thus we check each inner pattern pi against the type (θ
′
κ ⊎ θ

′ ⊎ θ )Bi,
yielding bindings Γi and substitutions θi which are collected for the result of pattern matching.

Note that this is the version of the rule when the constructor pattern does not occur inside a box

pattern (hence − for the enclosing coeffect grade). A variant of the rule inside a box pattern with

r : R is exactly the same but also has the premise constraint that 1⊑ r similarly to [pInt] above

since we treat directly matching a constructor as a consumption. We omit the rule here for brevity.
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Some patterns are irrefutable meaning that they always succeed. Irrefutable patterns are required

in binding positions with just one pattern, e.g., let-bindings and λ-abstractions. The following

predicate characterises these patterns and is used later in typing:

irrefutable _ irrefutable x

irrefutable p

irrefutable [p]

irrefutable pi C ∈ K cardinality K ≡ 1

irrefutable (C p0 ... pn)

The final case, for data constructor C , depends on the type K for which C is a constructor: if K has

only one possible data constructor (cardinality 1) then a pattern on C is irrefutable.

4.3.5 Typing. We describe each core typing rule in turn. Appendix A collects the rules together. The

linear λ-calculus fragment of Gr closely resembles that of GrMini but abstraction is generalised to

pattern matching on its parameter rather than just binding one variable, leveraging pattern typing.

Σ ⊢ A : Type

D; Σ; x : A ⊢ x : A

var

D; Σ;− ⊢ p : A ▷ ∆;θ
D; Σ; Γ,∆ ⊢ t : θB irrefutable p

D; Σ; Γ ⊢ λp.t : A→ B

abs

D; Σ; Γ1 ⊢ t1 : A→ B

D; Σ; Γ2 ⊢ t2 : A

D; Σ; Γ1 + Γ2 ⊢ t1 t2 : B
app

Variables and application are typed as in GrMini, but with the additional contexts for definitions

and type variables. In (abs), the substitution produced by pattern matching (e.g., from matching

against indexed-type data constructors) is applied to the result type B to type the body t. The

context ∆ generated from pattern matching is always disjoint from the existing environment (we

assume no variable names overlap, which is ensured in the implementation by a freshening phase)

thus the function body is typed under the concatenation of disjoint contexts Γ,∆.
Top-level definitions may be polymorphic and thus environments D associate names with type

schemes. Type schemes are specialised at their usage site, replacing universal variables with fresh

unification variables (see Def 4.7). There are two typings, for constructors and value definitions:

(C : (∀{−−−→α : κ} . A,θκ )) ∈ D
θ , Σ′,θ ′κ = instantiate(

−−−→α : κ,θκ )

D; Σ, Σ′; ∅ ⊢ C : (θ ′κ ⊎ θ )A
C

(x : ∀−−−→α : κ . B⇒ A) ∈ D
θ , Σ′ = instantiate(

−−−→α : κ) Σ ⊢ B : Predicate (θB)

D; Σ, Σ′; ∅ ⊢ x : θA
def

On the left, the universally quantified variables are instantiated, providing an environment Σ′ of
fresh instance variables for each α and a substitution θ mapping the universal variables to their

instance counterparts. As described in Section 4.3.3, we also have a coercion θκ for indexed types,

which gets instantiated to θ ′κ . Thus, the compound substitution θ ′κ ⊎ θ is used to instantiate the

type A in the conclusion. The right-hand rule follows a similar approach, but value definitions can

also include an additional predicate B in the type which is asserted as a premise of the rule (θB),
i.e., the predicate must hold at the usage site. There could be many such predicates stated with the

type A, thus this rule generalises in the expected way to a set of predicates. Granule does not yet

support predicates in data constructor types, but this is an easy extension.

Weakening, dereliction, and promotion rules resemble those in GrMini:

Σ ⊢ R : Coeff

D; Σ; Γ ⊢ t : A

D; Σ; Γ + [∆]0:R ⊢ t : A
weak

Σ ⊢ R : Coeff

D; Σ; Γ, x : A ⊢ t : B

D; Σ; Γ, x : [A]1:R ⊢ t : B
der

Σ ⊢ r : ↑R Σ ⊢ R : Coeff

D; Σ; [Γ] ⊢ t : A

D; Σ; r · Γ ⊢ [t] : □rA
pr

These rules now accommodate the possibility of different graded modalities: weakening, dereliction,

and promotion all occur at some coeffect type R, given by a kinding judgement. Similarly to GrMini,

promotion requires that all variables Γ in scope of the premise are graded. Differently to GrMini,

graded assumptions in the context may not all be graded at the same type R. We account for a

context of possibly varying grading types by a redefinition of scalar context multiplication:

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.



110:18 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III

Definition 4.8. [Scalar context multiplication for Gr] Given a context of graded assumptions Γ
and a semiring element r ∈ R then Γ can be multiplied by r as follows:

r · ∅ = ∅ r · (Γ, x : [A]s:S) = (r · Γ),x : [A](ι1r · ι2s) where R ⊔ S ▷ R′; ι1; ι2

On the right, the graded assumption s may have a different type S to the promoting grade’s type

R. The function R ⊔ S ▷ R′; ι1; ι2 (see appendix, Def. A.5) computes the least upper-bound type of

R and S as R′, also generating a pair of injections ι1 : R→ R
′
and ι2 : S → R

′
to inject the grades

into the upper-bound type. For example, R ⊔ (R × S) ▷ R × S; r 7→ (r, 1); id , i.e., we can promote

an assumption graded by (r1, s1) : R × S with a coeffect r : R by applying the generated injection

r 7→ (r, 1) to r (where 1 is the unit for S) and then multiplying with (r1, s1), yielding (r · r1, s1).
The typing of monadic metalanguage terms shows Gr’s support for capturing dataflow informa-

tion in an alternate way via graded possibility modalities, graded by Effect resource algebras:

Σ ⊢ E : Effect Σ ⊢ ε1 : ↑E Σ ⊢ ε2 : ↑E
D; Σ;− ⊢ p : A ▷ ∆;θ irrefutable p

D; Σ; Γ1 ⊢ t1 : ♢ε1A D; Σ; Γ2,∆ ⊢ t2 : ♢ε2θB

D; Σ; Γ1 + Γ2 ⊢ let ⟨p⟩� t1 in t2 : ♢(ε1⋆ε2)B
let♢

Σ ⊢ E : Effect

D; Σ; Γ ⊢ t : A

D; Σ; Γ ⊢ ⟨t⟩ : ♢1:EA
pure

We allow approximation of grades via their resource algebra’s pre-orders, with the following rules:

D; Σ; Γ, x : [A]r , Γ
′ ⊢ t : B r ⊑ s

D; Σ; Γ, x : [A]s, Γ
′ ⊢ t : B

⊑
D; Σ; Γ ⊢ t : ♢εB ε ≤ ε ′

D; Σ; Γ ⊢ t : ♢ε ′B
≤

For example, if we have x : [A]Private ⊢ t : A then we can conclude x : [A]Public ⊢ t : A as

Private⊑ Public (public information can flow to a private dependency, but not vice versa). Or

x : [A]1..2 ⊢ t : A can be typed as x : [A]0..3 ⊢ t : A since (1..2) ⊑ (0..3). In practice, we’ve found that

allowing the type system to perform approximation arbitrarily during type checking for graded

necessity modalities is often confusing for the programmer. Instead, in the implementation, we

allow approximation only at the level of a function definition where approximation is made explicit

by the signature. Approximation lifts to types and contexts as a congruence over their structure.

Finally, expressions are contained within the equations of top-level definitions given by one

or more function equations, along with a type scheme signature. Each equation of a top-level

definition is typed with the following rule (with the same type scheme, coming from the signature):

D;−−−→α : κ;− ⊢ pi : Bi ▷ ∆i;θi D;−−−→α : κ;∆0, .. ,∆n ⊢ t : (θ0 ⊎ . . . ⊎ θn)A

D ⊢ x p0 .. pn = t : ∀{−−−→α : κ} . (B0 → . . .→ Bn → A)
eqn

The first premise generates the binding context for each pattern, in the context of the universally

quantified type variables provided by the type scheme. The body of the equation t is then typed asA
in the context of the bindings generated from the patterns and with the substitutions generated from

patternmatching applied (which could incur dependent patternmatches, with coercions specialising

A). A type scheme can contain a predicate, in which case it is of the form ∀−−−→α : κ . {A1, .. ,An} ⇒ B.

We show the typing of equations with such predicates in the algorithmic definition of the type

system next, where we explicitly represent predicates and theorems generated by type checking.

Note that multiple different equations correspond to different control-flow branches and as such

may have different gradings. Thus the approximation rules above may be used in order to calculate

the least-upper bound gradings across the equations of a top-level definition.

5 BIDIRECTIONAL TYPE CHECKING ALGORITHM
The previous section gave a declarative definition of the Granule type system, but for an imple-

mentation we need an algorithm. The type checking algorithm is based on a bidirectional approach,
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following a similar scheme as Dunfield and Krishnaswami [2013]. Type checking is defined by

mutually recursive functions for checking and synthesis of types, of the form:

(checking) D; Σ; Γ ⊢ t ⇐ A;∆; Σ′;θ ; P (synthesis) D; Σ; Γ ⊢ t ⇒ A;∆; Σ′;θ ; P

Checking and synthesis both take as inputs the usual contexts from our declarative definition:

top-level definitions and constructors D, type-variable kinds Σ, an input context Γ of term variables,

and an input term t. Checking also takes a type A as input, whereas synthesis produces A as an

output (hence the direction of the double arrow). Both functions, if they succeed, produce an output

context ∆, an output type-variable context Σ′, output substitution θ , and a predicate P . The input
and output type variable contexts act as state for the known set of unification variables, with

the property that the output type-variable context is always a superset of the input type-variable

context. The output context ∆ records exactly the variables that were used in t and their computed

grades, following a similar approach to Hodas [1994]; Polakow [2015]. A check for each top-level

definition’s equation determines whether the output context matches the specified input context

(derived from pattern matching), shown below.

For example, an expression (x+y)+y can be checked in an input context with graded x and y:

D; Σ; x : [Int]r :Nat, y : [Int]s:Nat ⊢ (x + y) + y ⇐ Int; x : [Int]1:Nat, y : [Int]2:Nat; Σ; ∅;⊤ (1)

If this expression is the body of a top-level equation, then we generate a predicate that r = 1∧ s = 2

to be discharged by the solver (e.g., r and s might represent terms coming from a type signature).

Our algorithm can generate predicates (first-order formulas) that have the following form:

P ::= P1 ∧ P2 | P1 ∨ P2 | P1 → P2 | ⊤ | ∀ Σ . P | ∃ Σ . P | t1 ≡ t2 | t1 ⊑ t2 (predicates)

Predicates comprise propositional formulae, universal and existential quantification (over type

variables, usually of a coeffect/effect kinded type), and equality and inequality over compilable

terms (grades and types used in predicates): t ::= c | ε | A. Predicates are compiled into the SMT-LIB

format [Barrett et al. 2010] and passed to a compatible SMT solver.

Much of the definition of checking and synthesis is a detailed functionalisation of the relations

in the previous section. We highlight just a few details for a subset of the rules.

Pattern matching. Pattern matches occur in positions where the type is known, thus we can check

the type of a pattern (rather than synthesise), and doing so generates a context of free-variable

assumptions which creates a local scope. We define pattern type checking via the judgment:

D; Σ; r :?R ⊢ p : A ▷ Γ; P ;θ ; Σ′

Algorithmic pattern checking is largely the same as the declarative definition, which already had

an algorithmic style, but we now generate a predicate P which encapsulates the consumption

constraints generated by patterns which were previously premises in the declarative definition.

Expressions. A minimal approach to bidirectional type checking provides checking just for intro-

duction forms and synthesis just for elimination forms [Dunfield and Pfenning 2004]. However, this

minimality ends up costing the programmer by way of extra type annotation. Following Dunfield

and Krishnaswami [2013], we take a more liberal view, providing checking and synthesis for

introduction forms of graded modalities and λ-terms, via an inferential style. Furthermore, we also

provide checking for application (an elimination form). Checking has four core rules:

irrefutable p P ′′=∀ Σ2 \ Σ1 . (P → P ′)
D; Σ1;− ⊢ p : A ▷ ∆; P ;θ ; Σ2

D; Σ2; Γ,∆ ⊢ t ⇐ θB;∆′; Σ3;θ
′
; P ′

D; Σ1; Γ ⊢ λp.t ⇐ A→ B;∆′\∆; Σ3;θ ⊎ θ
′
; P ′′
⇐λ

Σ1 ⊢ [Γ ∩ FV(t)]R ▷ Γ′; θ ′

Σ1 ⊢ r : ↑R Σ1 ⊢ R : Coeffect

D; Σ1; Γ
′ ⊢ t ⇐ A;∆; Σ2;θ ; P

D; Σ1; Γ ⊢ [t] ⇐ □rA; r ·∆; Σ2;θ ⊎ θ
′
; P
⇐pr
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D; Σ1; Γ ⊢ t2 ⇒ A;∆2; Σ2;θ2; P
D; Σ2; Γ ⊢ t1 ⇐ A→ B;∆1; Σ3;θ1; P

′

D; Σ1; Γ ⊢ t1 t2 ⇐ B;∆1 + ∆2; Σ3;θ1 ⊎ θ2; P ∧ P
′
⇐app

D; Σ; Γ ⊢ t ⇒ B;∆; Σ′;θ ; P
Σ ⊢ A ∼ B ▷ θ ′; P ′

D; Σ; Γ ⊢ t ⇐ A;∆; Σ′;θ ⊎ θ ′; P ∧ P ′
⇐⇒

In each rule, type variable contexts are threaded through judgements as state. Substitutions from

premises are combined in the conclusion resulting in type errors if substitutions conflict.

In (⇐λ ), we see that the predicate generated from pattern matching is used to form an implication,

implying the predicate generated from checking the body. Furthermore, any variables generated by

the pattern match (that is, Σ2 \ Σ1) are universally quantified in the scope of this implication.

In (⇐pr) for promotion, the first premise employs a function which maps contexts into graded

contexts by dereliction of linear assumptions (see Def. B.1). This is applied to the subcontext of Γ
whose variables appear free in t, yielding the input context of graded assumptions Γ′ for checking
the subterm t. The output context ∆ resulting from checking t is then scalar multiplied by r .

In (⇐app) we see that predicates generated from multiple premises are combined by conjunction.

The rule (⇐⇒) connects checking to synthesis, applying algorithmic unification Σ ⊢ A ∼ B ▷ θ ′; P
to check that the synthesised type equals the checked type, generating a further predicate P ′.
The type-checking process begins at top-level definitions with the following rule for checking

an n-arity function equation against a type scheme (withm type-refinement predicates):

D;−−−→α : κ;− ⊢ pi : Bi ▷ ∆i; Pi;θi; Σi P ′ = P0 ∧ .. ∧ Pn Σ′ = −−−→α : κ, Σ0, .. , Σn

D; Σ′;∆0, .. ,∆n ⊢ t ⇐ (θ0 ⊎ . . . ⊎ θn)A;∆; Σ
′′
;θ ; P P ′′ = (P ′ ∧ JA0, ..,AmK) → JΣ′′\Σ′K.P

D ⊢ x p0...pn = t ⇐ ∀−−−→α : κ .{A0, ..,Am} ⇒ B0 → ...→ Bn → A; (∀Σ′.P ′′) ∧ (∃Σ′.P ′) ⇐eqn

The generated predicate has two parts. The first conjunct universally quantifies all type variables

from the type scheme and unification variables generated by patternmatching (though the predicate-

to-SMT compiler strips out those of kind Type, which don’t get compiled into SMT-LIB). Under

the bindings is the implication P ′′, whose antecedent is a conjunction of the predicates for the

patterns P ′ and the predicate given by the compilation of the type-refinement predicates JA0, ..,AmK.
The succedent is then the predicate P from type-checking the body, over which we quantify

any remaining type variables Σ′′ \ Σ′ via an interpretation (existential for unification variables

and universal otherwise). The second conjunct of the predicate checks that no pattern match is

impossible: there must exist indices making the patterns’ predicates true.

The rest of the terms are covered by synthesis. Appendix B shows the rules. We highlight two

here. Variables have their type synthesised by looking up from the input context:

(x : A) ∈ Γ

D; Σ; Γ ⊢ x ⇒ A; x : A; Σ; ∅;⊤
⇒lin

Σ ⊢ r : ↑R Σ ⊢ R : Coeff (x : [A]r ) ∈ Γ

D; Σ; Γ ⊢ x ⇒ A; x : [A]1:R; Σ; ∅;⊤
⇒gr

For variables which are graded in the input context, we perform dereliction as part of synthesis,

with grade 1 : R for x in the output context.

6 OPERATIONAL SEMANTICS
Once type checking shows a program to be well-typed, its AST is interpreted, following a call-by-

values semantics. We show a small-step formulation, useful for proving type-preservation (§7).

The Granule interpreter applies a big-step version which includes built-in operations elided here

(provided by Haskell) such as arithmetic, file handling, and concurrency.

We first define the syntactic category of values v as a subset of the Gr terms:

v ::= x | n | C v0 .. vn | ⟨t⟩ | [v] | λp.t (values)
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During reduction, values can be matched against patterns given by a partial function (v ▷ p)t= t ′

meaning value v is matched against pattern p, substituting values into t to yield t
′
, defined:

(v ▷ _)t= t
▷_
(v ▷ x)t= [v/x]t

▷var
(n ▷ n)t= t

▷n
(v ▷ p)t= t ′

([v] ▷ [p])t= t ′
▷□

(vi ▷ pi)ti=ti+1
(Cv0..vn ▷Cp0..pn)t0=tn+1

▷C

Call-by-value reduction for terms is then defined by the relation t { t
′
as follows:

t1 { t
′
1

t1 t2 { t
′
1
t2

appL
t2 { t

′
2

v t2 { v t
′
2

appR
(λp.t) v { (v ▷ p)t

pβ
let ⟨p⟩� ⟨v⟩ in t2 { (v ▷ p)t2

letβ

t1 { t
′
1

let ⟨p⟩� t1 in t2 { let ⟨p⟩� t
′
1
in t2

let1

t { t
′

let ⟨p⟩� ⟨t⟩ in t2 { let ⟨p⟩� ⟨t ′⟩ in t2

let2

t { t
′

[t] { [t ′]
□

Call-by-value was chosen for simplicity and since the effectful part of Gr is necessarily CBV (to

avoid pitfalls of laziness with side effects). Previously, Brunel et al. [2014] provided a CBN abstract

machine for BLL-style coeffects where reduction is suspended at promotion, i.e., [t] is a value,

and Gaboardi et al. [2016] gave a CBN-based equational theory. This differs to our approach, but our

system does not preclude a CBN semantics, which is further work. Such a semantics would trigger

reduction when matching non-values against constructor patterns, which would cohere nicely

with the consumption constraints on grades induced by pattern matching. The CBV approach,

whilst simple, shows that our technique does not force us into the CBN semantics used previously,

suggesting that we could add graded modal types to an existing eager language. Note that we do

not parameterise our system by denotational models of the graded modalities, i.e, particular graded

(co)monads. Exploring this, and its relationship to operational models, is future work.

7 METATHEORY
We have two kinds of substitution lemma for our system, showing that substitution is well-typed

when substituting through linear and graded assumptions:

Lemma 7.1. [Well-typed linear substitution] Given D; Σ;∆ ⊢ t ′ : A and D; Σ; Γ, x : A, Γ′ ⊢ t : B
then D; Σ; Γ + ∆ + Γ′ ⊢ [t ′/x]t : B.

Lemma 7.2. [Well-typed graded substitution] GivenD; Σ; [∆] ⊢ t ′ : A andD; Σ; Γ, x : [A]r , Γ
′ ⊢ t : B

then D; Σ; Γ + r ·∆ + Γ′ ⊢ [t ′/x]t : B.

Remark Some linear type systems with the exponential modality (which we write here as □)
include a promotion rule taking □Γ ⊢ t : A to □Γ ⊢ [t] : □A where □Γ means every hypothesis

in the context is modal [Abramsky 1993]. However, in such a system, substitution is not valid

(well-typed) [Wadler 1992, 1993] (an issue also noted by Prawitz in a modal context [Prawitz 1965]).

Wadler demonstrates this problem with the following example:

not Gr

f : A→ □B, x : A ⊢ f x : □B g : □(□B→ C), y : □B ⊢ [let [h] = g in h y] : □C

g : □(□B→ C), f : A→ □B, x : A ⊢ [let [h] = g in h (f x)] : □C
[f x / y]

The premises are combined by substituting for y inside a promotion. As Wadler points out, this is

not valid since we now have a promotion which closes over linear premises f and x ; the resulting
judgment cannot be derived. Granule solves this problem via its graded assumptions, which are

a graded form of Terui’s discharged assumptions [Terui 2001] (used also in coeffect work [Brunel

et al. 2014; Gaboardi et al. 2016]). Granule’s promotion requires the second premise of this example

to have д and y as graded assumptions, rather than linear assumptions of graded modal type, i.e.,

g : [□(□B→ C)]1, y : [□B]1 ⊢ [let [h] = g in h y] : □C . Subsequently, the linear substitution lemma

cannot be applied as y is not linear and the graded substitution lemma cannot be applied as it

requires that premises of the substituted term f x must be all graded, which they are not here.
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Wadler discusses a further issue, exemplified by the following two terms which should be

equivalent by substitution (and β-reduction):

y : □□A ⊢ [let [z] = y in z] : □□A y : □□A ⊢ (λx .[x]) (let [z] = y in z) : □□A

Using a comonadic semantics, Wadler shows that these two terms have different denotations, even

though substitution makes them appear equal. This problem is avoided in Granule as λx .[x] is not
well-typed since the binding of x is linear and therefore promotion of x is disallowed.

Well-typed substitution generalises to arbitrary patterns as follows:

Lemma 7.3. [Linear pattern type safety] For patterns p where irrefutable p and D; Σ;− ⊢ p :

A ▷ Γ;θ , and values v with D; Σ; Γ2 ⊢ v : A, and terms t depending on the bindings of p with

D; Σ; Γ1, Γ ⊢ t : θB then ∃t ′ such that (v ▷ p)t= t ′ (progress) and D; Σ; Γ1 + Γ2 ⊢ t
′
: θB (preservation).

Lemma 7.4. [Graded pattern type safety] For patterns p where irrefutable p and D; Σ; r : R ⊢ p :

A ▷ Γ;θ , and values v with D; Σ; [Γ2] ⊢ v : A, and terms t depending on the bindings of p with

D; Σ; Γ1, Γ ⊢ t : θB then ∃t ′ s.t. (v ▷ p)t= t ′ (progress) and D; Σ; Γ1 + r · Γ2 ⊢ t ′ : θB (preservation).

Theorem 7.1. [Gr type safety] Progress and preservation follow from the above. For allD, Σ, Γ, t,A:

D; Σ; Γ ⊢ t : A =⇒ (value t) ∨ (∃t ′, Γ′. t { t
′ ∧ D; Σ; Γ′ ⊢ t ′ : A′ ∧ Γ′ ⊑ Γ ∧ A

′ ≤A)

where A
′≤A and Γ′ ⊑ Γ lift resource algebra preorders to types and contexts as a congruence (with

contravariance in function type parameters). The ordering Γ′ ⊑ Γ means that graded assumptions

can become more precise as reduction proceeds. For example, (0..1) ⊑ (0..∞) (for Interval Nat) thus
a reduction from Γ, x : [A]0..∞ ⊢ t : A to Γ, x : [A]0..1 ⊢ t

′
: A fits the form of the lemma.

We do not consider I/O exceptions in Gr, though Granule’s implementation of IO-graded possi-

bility includes exceptions (e.g., reading an empty file), captured by label IOExcept. Such exceptions

violate progress, thus disconnecting static notions of linearity from the runtime behaviour. Ad-

dressing this, e.g., based on [Iwama et al. 2006], is left as future work.

8 FURTHER EXAMPLES
Interaction with data structures. Graded modalities can be commuted with other data types, for

example to pull information about sub-parts of data up to the whole, or dually to push capabilities

down to sub-parts of a data type. Such notions are embodied by functions like the following,

commuting products with arbitrary graded necessity modalities:

push : ∀ {a b : Type, k : Coeffect, c : k}

. (a, b) [c] → (a [c], b [c])

push [(x, y)] = ([x], [y])

pull : ∀ {a b : Type, k : Coeffect, c : k}

. (a [c], b [c]) → (a, b) [c]

pull ([x], [y]) = [(x, y)]

A possible intuition for pull, when specialised to Nat grades, is that making c copies of a pair

requires c copies of each component (a “deep” copy). The notion of copying values can be helpful for

thinking about Nat grades, but it does not necessarily reflect an actual implementation or execution

of the program: no such copying is mandated by the rest of the system.

In practice, combinators such as push and pull are rarely used as Granule’s pattern matching can

be used directly to capture the interaction of data types and graded modalities, as in the definitions

of push/pull themselves. Consider the function that returns the first element of a nonempty vector:

head : ∀ {a : Type, n : Nat} . (Vec (n+1) a) [0..1] → a

head [Cons x _] = x

The input vector has the capability to be consumed 0 or 1 times. Via the unboxing pattern, this

capability is pushed down to the vector’s sub-parts so that every element and tail must be used 0..1

times. The ability to be used 0-times is utilised to discard the tail via the inner wildcard pattern.
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The Granule standard library
3
provides a variety of data structures including graphs, lists, stacks,

vectors. There are often different design decisions for the interaction of data structures and graded

modalities. For example, we represent stacks as vectors, with push and pop as dual linear operations

corresponding to Cons and uncons respectively, i.e., pop : ∀ n a. Vec (n+1) a → (a, Vec n a).

The above head function for vectors can then be re-used as the peek operation for stacks which,

rather than returning a pair, just returns the peeked element. We could define a version of peek

which emulates the style of pop, reusing head and returning the original stack in a pair:

peekAlt : ∀ {n : Nat, a : Type} . (Vec (n+1) a) [1..2] → (a, Vec (n+1) a)

peekAlt [x] = (head [x], x)

The definition divides the capability 1..2 into 0..1 for the head operation and 1..1 for the second

component of the pair. The head element is subsequently used twice and the rest of the stack

once. In practice, this would not be very useful—it makes more sense to just use head directly, and

non-linearly use the stack when needed, letting the type system track the usage. A useful alternative

to the head-based peek instead provides a linear interface for the stack but with non-linear elements:

peek' : ∀ {n m : Nat, a : Type} . Vec (n+1) (a [m..m+1]) → (a, Vec (n+1) (a [m..m]))

peek' (Cons [x] xs) = (x, Cons [x] xs)

The function takes a stack whose elements can be used m to m+1 times. We use this capability to

copy the head element, returning a pair of the head and a stack whose elements can be used m to m

times. This form is useful for composing functions which operate on stack elements non-linearly.

The head operation is more suited to manipulating the whole stack non-linearly, rather than just

its elements. Exploring the design space and trade-offs for data structure libraries is further work.

Grade interaction. To illustrate the interaction between different graded necessity modalities,

consider a data type for storing patient information of different privacy levels:

data Patient = Patient (String [Public]) (String [Private])

The first field gives the city for a patient (public information) and the second field gives their name

(private). We can then define a function that, e.g., extracts a sample of cities from a list of patients:

import Vec -- Granule's standard vector library

sampleCities : ∀ n k . N k → (Vec (n+k) Patient) [0..1] → Vec k (String [Public])

sampleCities Z [_] = Nil;

sampleCities (S n) [Cons (Patient [city] [name]) ps] = Cons [city] (sampleCities n [ps])

This demonstrates the use of different nested graded modalities. The outer modality declares that

the input vector is affine, since we do not necessarily use all its elements, given by an Interval Nat

modality with 0..1. The inner modalities provide the security levels of patient information. In

the inductive case, we thus get ps graded by 0..1 and by flattening city and name are graded by

products (0..1, Public) and (0..1, Private) respectively. We can thus safely collect the cities

and output a list of public city names in our database. Let us see what happens when we try to

accumulate the private name fields into a list of public data, e.g.,:

✗
getCitiesBad : ∀ n. Vec n (Patient [0..1]) → Vec n (String [Public])

getCitiesBad Nil = Nil;

getCitiesBad (Cons [Patient [city] [name]] ps) = Cons [name] (getCitiesBad ps)

The Granule interpreter gives the following type error:

Grading error: 3:55: Private value cannot be moved to level Public

3
https://github.com/granule-project/granule/blob/icfp19/StdLib
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Session types. Granule supports session types [Yoshida and Vasconcelos 2007] in the style of the GV

calculus [Gay and Vasconcelos 2010], leveraging linear types to embed session type primitives. With

graded modal types and linearity we can express novel communication properties not supported

by existing session type approaches. Granule’s builtin library provides channel primitives, where

Session is a trivial graded possibility modality for capturing communication effects:

data Protocol = Recv Type Protocol | Send Type Protocol | ...

send : ∀ {s : Protocol, a : Type} . Chan (Send a s) → a → (Chan s) <Session>

recv : ∀ {s : Protocol, a : Type} . Chan (Recv a s) → (a, Chan s) <Session>

fork : ∀ {s : Protocol, k : Coeffect, c : k} . ((Chan s) [c] → () <Session>)

→ ((Chan (Dual s)) [c]) <Session>

where Dual : Protocol → Protocol computes the dual of a protocol. Thus, send takes a channel

on which an a can be sent, returning a channel on which behaviour s can then be carried out.

Similarly, recv takes a channel on which one can receive an a value, getting back (in a pair) the

continuation channel Chan s. The fork primitive is higher-order, taking a function that uses a

channel in a way captured by some graded modality with grade c, producing a session computation.

A channel with dual capabilities is returned, that can also be used in a way captured by the grade c.

We can use these primitives to capture precisely-bounded replication in protocols:

sendVec : ∀ n a .

(Chan (Send a End)) [n]

→ Vec n a → () <Session>

sendVec [c] Nil = pure ();

sendVec [c] (Cons x xs) =

let c' ← send c x;

() ← close c'

in sendVec [c] xs

recvVec : ∀ n a . N n → (Chan (Recv a End)) [n]

→ (Vec n a) <Session>

recvVec Z [c] = pure Nil;

recvVec (S n) [c] =

let (x, c') ← recv c;

() ← close c';

xs ← recvVec n [c]

in pure (Cons x xs)

On the left, sendVec takes a channel which it uses exactly n times to send each element of the input

vector. Dually, recvVec takes a size n and a channel which it uses n times to receive values of a,

collecting these into an output vector of size n. We can then compose these processes using fork:

example : ∀ {n : Nat, a : Type} . N n → Vec n a → (Vec n a) <Session>

example n list = let c ← fork (λc → sendVec c list) in recvVec n c

This is not the only approach to session types in a linear calculus. Caires and Pfenning [2010] instead

view linear logic propositions as directly representing session types, which would be interesting to

explore within the setting of Granule in the future.

9 RELATEDWORK
Graded types. Bounded Linear Logic can be considered a graded modal system, generalising

linear logic’s exponential modality ! to a natural-number graded necessity with polynomial index

expressions [Girard et al. 1992], where !xA means A can be used at most x times. Our graded

modalities over Interval Nat provide the same reasoning power but also allow lower and upper

bounds on reuse, with general arithmetic expressions over variables. Type checking is undecidable

for us in general, but so far this has not proved to be a limitation: our standard library replicates

many standard functional programming ideas with decidable types.

In the 2010s, Bounded Linear Logic was subject to various generalisations, capturing other

program properties by changing or generalising the indices of the modality. For example, Dal Lago

and Gaboardi gave a linear PCF with modalities indexed by usage bounds, whose indices could

depend on natural number values [Dal Lago and Gaboardi 2011; Gaboardi et al. 2013]. This is a
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special case of the kind of general indexed typing Granule can exploit. De Amorim et al. [2014]

used linear types with natural-number indexed modalities to capture fine-grained analyses for

differential privacy. Our declarative type system has a similar shape to theirs, but our approach is

more general, capturing different modalities, polymorphism, and pattern matching.

At the same time as specialised efforts to build on BLL, the notion of coeffects arose in literature

almost simultaneously from three independent sources: as a dualisation of effect systems by Petricek

et al. [2013, 2014], and as a generalisation of BLL by Ghica and Smith [2014] and Brunel et al. [2014].

Each system has essentially the same structure, with a categorical semantics in terms of a graded

exponential comonad. In each, the type system is parameterised by a coeffect semiring capturing

how a program depends on its context by tracking a particular notion of variable use and thus

dataflow. Brunel et al. directly generalise BLL, replacing natural numbers indices with an arbitrary

semiring, providing graded necessity similar to here. In Petricek et al. and Ghica et al., the modalities

are implicit, with semiring elements associated to each variable binding (and annotating a function

arrow), but the systems have essentially the same expressivity. The categorical foundations of

graded exponential comonads have since been studied in more depth [Breuvart and Pagani 2015;

Katsumata 2018]. Our work focusses more on program properties captured by graded modal types,

when combined with standard programming language features and linearity.

Dual to graded comonads is the notion of graded monads which arose in the literature around the

same time, generalising monads to an indexed family of functors with monoidal structure on the

indices [Fujii et al. 2016; Katsumata 2014; Milius et al. 2015; Mycroft et al. 2016; Orchard et al. 2014;

Smirnov 2008]. Whilst graded comonads are employed to capture how programs depend on their

context and use variables, graded monads capture fine-grained information about side effects. This

information can then be used to specialise categorical models. Gaboardi et al. [2016] considered

graded distributive laws for interacting graded monads and graded comonads. Integrating and

extending this in Granule is interesting further work, and may provide a way to resolve interactions

between linearity and exceptions (e.g., IOExcept in the graded possibility here).

Linear Haskell (LH). Recent work retrofits linearity onto GHC Haskell [Bernardy et al. 2017],

modifying the Core language to support a variant of linearity that is somewhat related to Granule.

One major difference is that non-linearity in LH is introduced via a consumption multiplicity on

function types, dubbed linearity on the arrow (akin to implicit coeffects [Petricek et al. 2014]) instead

of a graded modality as in Granule. Without explicit modalities, parametric polymorphism cannot

provide the linearity polymorphism we get in Granule. LH works around this in several ways.

Compare the interface for the safe interaction with files which Bernardy et al. [2017] present, an

excerpt of which we reproduce below (left), with the equivalent in Granule (right). As in the LH

presentation, we elide the IOMode parameter which in Granule also indexes the Handle type (§2).

openLH :: String → IOL 1 File

closeLH :: File ⊸ IOL ω ()

openGr : String → Handle <Open,IOExcept>

closeGr : Handle → () <Close,IOExcept>

A monad type IOL parameterised by the multiplicity of its result is necessary in LH to propagate

linearity information. The results of openLH and closeLH are linear and unrestricted respectively:

multiplicity 1 and ω. By virtue of having one linear function arrow and graded modalities, Granule

need not index the monad by linearity information; this can be expressed within its type parameter.

LH includes multiplicity polymorphism to parameterise over the degree of nonlinearity in func-

tions (akin to our polymorphic grades). For example map, which in LH has the following two

incompatible types (on the left), can be given a most general type parameterised over multiplicity p

(right-top). Contrast this with the type of map in Granule (right-bottom). Multiplicity polymorphism

is subsumed by standard type polymorphism in Granule since a and b can be instantiated with

graded modal types to capture different modes of (non)linearity in the parameter function.
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(a ⊸ b) → List a ⊸ List b

(a → b) → List a → List b︸                                        ︷︷                                        ︸
Multiplicity monomorphic types of map in LH.

∀ (p :: Multiplicity). (a →p b) → List a →p List b︸                                                                                    ︷︷                                                                                    ︸
Multiplicity polymorphic type of map in LH.

(a → b) [] → List a → List b︸                                              ︷︷                                              ︸
Parametrically polymorphic type of map in Granule.

The Granule type is also more precise in that it expresses that the list spine is consumed linearly.

Furthermore, since Granule’s grades (multiplicities) are first-class members of the type language,

we can combine grading with indexed types to give an even more precise specification for map as

∀ a b : Type, n : Nat . (a → b) [n] → Vec n a → Vec n b. We argue that graded modalities

are a useful carrier for (non)linearity information and Bernardy et al. [2017] indeed show an

encoding via GADTs of a modality equivalent to our [] box, which becomes necessary in LH, e.g.

when passing unrestricted values through linear functions. It remains to be seen whether the idioms

that LH introduces, some of which resonate with our ideas, will transfer to mainstream Haskell.

Kind-based linearity. One approach to structuring a linear type system is to split types into

kinds of linear and unrestricted values [Wadler 1990], where kind polymorphism can be used to

make code reusable between kinds [Mazurak et al. 2010; Tov and Pucella 2011]. Such systems tend

to make a choice about how much linearity to support in the resource-sensitive world: Mazurak et

al. choose a fully linear system for F
◦
while Tov and Pucella adopt affine linearity. In Granule, we

can freely choose either affine or standard linearity via our graded modalities.

Since linearity is core to Granule, we compare briefly with Alms [Tov and Pucella 2011], an affine

linear language in the style of ML (with side effects). Recall the following from Section 2.3:

fromMaybe : ∀ {t : Type} . t [0..1] → Maybe t → t

The type explains the local usage of inputs: 0..1 for the first parameter and linear for the second.

The dataflow information captured in the types is from the perspective of the callee, rather than

the caller. Promotion then connects demands of a function with capabilities at the call site, e.g., for

let f = [fromMaybe [x]] in e where e uses the f function n times, then x must have grading 0..n.

Contrast this with the type of the analogous function in Alms [Tov and Pucella 2011, p.9]:

default : ∀α̂. α̂
U
−−−→ α̂ option

⟨α̂ ⟩
−−−→ α̂

This type says that given a parameter of type α̂ , return a function which can be used in an affine

or unrestricted manner depending on whether the first parameter is affine or unrestricted. Thus,

Alm’s kind-based approach views linearity from the caller’s perspective, contrasting with Granule’s

local, callee perspective. Subsequently, the Alms type does not explain/restrict the consumption of

the second parameter: the erroneous implementation that always returns the default argument also

satisfies this type. In Granule, fromMaybe has only one well-typed implementation—the correct one.

One might wonder whether we need multiple Granule implementations/types of fromMaybe

to account for different cases of non-linearity associated with arguments. However, only one

definition is needed (the one given in this paper). The capabilities of any arguments are connected

to requirements of a function by promotion at an application site. For example, the following two

snippets show fromMaybe used in the context of concrete arguments which are unrestricted:

mb : ∀ t. t [0..∞] → Maybe t → t

mb [d] m = fromMaybe [d] m

mb' : ∀ t. t [0..1] → (Maybe t) [0..∞] → t

mb' d [m] = fromMaybe d m

The left unboxes an unrestricted capability 0..∞, reboxing to carve out the capability of 0..1 for d.

The right takes an unrestricted second argument, from which it carves out the linear use (1..1).

Tov and Pucella [2011] state “unlimited values are the common case”. With Granule we instead

explore a system where linearity is the default, but where we add non-linearity requirements as
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needed, and more program properties besides. Furthermore, consumption can depend on other

inputs, as captured, e.g., in the type of rep (§2), providing strong reasoning principles.

Several other languages have type systems based on ideas from linear logic, though space does not

permit a proper comparison. Quill [Morris 2016] leverages quantified types to provide an expressive,

kind-polymorphic linear system. ATS [Xi 2003; Zhu and Xi 2005] focusses on combining with

dependent types and theorem proving, but avoids polymorphism over linear values. Clean [Brus

et al. 1987] on the other hand aims to be more of a general-purpose language, based on uniqueness

types. Rust [Matsakis and Klock II 2014] incorporates a static view of ownership and borrowing for

references, matching the notion here that some data should not be copied or propagated arbitrarily.

Whilst Granule is linear, our aim was not to just produce a linear language but to explore program

reasoning with graded modal types, for which linearity is a useful basis.

10 FURTHERWORK AND CONCLUSIONS
Expressivity and dependent types. A more flexible system could be provided by arbitrary rank

quantification rather than the ML-style type schemes that Granule features, e.g. via the recent

bidirectional results of Dunfield and Krishnaswami [2019]. Even more attractive is a generalisation

of our system to full Martin-Löf-style dependent types. Combining linear and dependent types

with full generality has been a long-standing challenge. Various attempts settle on the compromise

that types can depend only on non-linear values [Barber and Plotkin 1996; Cervesato and Pfenning

2002; Krishnaswami et al. 2015]. Recent work by McBride [2016], refined by Atkey [2018], however

resolves the interaction of linear and dependent types by augmenting a linear system with usage

annotations capturing the number of times a variable is used computationally, akin to grades but

in an implicit style. Usage at the type-level is accounted for by 0 of a semiring and term-level use

is tracked similarly to coeffect types. We are investigating a similar approach, extending graded

modalities to also track dependent type-level usage. Further work is to leverage dependent types to

allow user-defined resource algebras and modalities, providing an internally extendable system.

An orthogonal direction for extending Granule’s expressivity is to restrict the structural rule of

exchange, allowing stronger program properties to be enforced, e.g., thatmap on a list preserves the

order of elements. Further work is to investigate controlling exchange via an augmented resource

algebra to allow graded modalities to track and control its use.

Usability and implicit grading. Coeffect analyses in Granule are first-class via the graded box

modalities. As seen in our examples, this approach requires the programmer to sometimes promote

and unbox values. Currently we view Granule more as a language for experimenting with this

approach. Implicit-style systems such as those of Bernardy et al. [2017]; Petricek et al. [2014] are

superficially more user-friendly since there is no explicit (un)boxing. Further work is to explore

whether term-level boxing and unboxing can be inferred and thus omitted from the source language.

Conclusion. There has been a flurry of recent work on graded and quantitative types. Granule

aims to take a step forward by taking seriously the role of (indexed) data types, pattern matching,

polymorphism, and multi-modalities for real programs. There are still open questions about how to

make such programs user-friendly or sufficiently flexible for general-purpose programming. At the

very least, a language like Granule is useful for developing parts of a program that need significant

verification, for which a trade-off in flexibility is worth taking. Furthermore, Granule could be used

as a core language, into which a more user-friendly surface-level language is compiled.

Despite three decades of linearity, there is still much to yield out of its fertile ground. We have

barely scratched the surface of what can be expressed by treating data as a resource, and building

fine-grained, quantitative, extensible type systems to capture its properties. Our hope is that Granule

will be a useful research vehicle for new ideas in type-based program verification.
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A DECLARATIVE SYSTEM

Pattern typing (declarative) D; Σ; r :?R ⊢ p : A ▷ Γ;θ

Σ ⊢ A : Type

D; Σ;− ⊢ x : A ▷ x : A; ∅
pVar

Σ ⊢ A : Type

D; Σ; r : R ⊢ x : A ▷ x : [A]r :R; ∅
[pVar]

D; Σ; r : R ⊢ p : A ▷ ∆;θ
Σ ⊢ r : ↑R

D; Σ;− ⊢ [p] : □rA ▷ ∆;θ
p□

D; Σ; s : S ⊢ p : A ▷ ∆;θ
Σ ⊢ r ′ : ↑R′

flatten(r, R, r ′, R′) = (s, S)

D; Σ; r : R ⊢ [p] : □r′A ▷ ∆;θ
[p□]

D; Σ;− ⊢ n : Int ▷ ∅; ∅
pInt

1⊑ r

D; Σ; r : R ⊢ n : Int ▷ ∅; ∅
[pInt]

0⊑ r

Σ ⊢ A : Type

D; Σ; r : R ⊢ _ : A ▷ ∅; ∅
[p_]

(C : (∀{−−−→α : κ} . B0 → . . .→ Bn → KA0 . . .Am,θκ )) ∈ D
θ , Σ′,θ ′κ = instantiate(

−−−→α : κ,θκ )
Σ, Σ′ ⊢ θ (KA0 . . .Am) ∼ A ▷ θ ′ D; Σ, Σ′;− ⊢ pi : (θ

′
κ ⊎ θ

′ ⊎ θ )Bi ▷ Γi;θi

D; Σ, Σ′;− ⊢ C p0 .. pn : A ▷ Γ0, .. , Γn;θ
′
κ ⊎ θ

′ ⊎ θ0 ⊎ . . . ⊎ θn
pC

(C : (∀{−−−→α : κ} . B0 → . . .→ Bn → KA0 . . .Am,θκ )) ∈ D
θ , Σ′,θ ′κ = instantiate(

−−−→α : κ,θκ ) Σ, Σ′ ⊢ θ (KA0 . . .Am) ∼ A ▷ θ ′

1⊑ r D; Σ, Σ′; r : R ⊢ pi : (θ
′
κ ⊎ θ

′ ⊎ θ )Bi ▷ Γi;θi

D; Σ, Σ′; r : R ⊢ C p0 .. pn : A ▷ Γ0, .. , Γn;θ
′
κ ⊎ θ

′ ⊎ θ0 ⊎ . . . ⊎ θn
[pC]

Typing equations (declarative) D ⊢ Eqn : T

D;−−−→α : κ;− ⊢ pi : Bi ▷ ∆i;θi D;−−−→α : κ;∆1, .. ,∆n ⊢ t : (θ1 ⊎ . . . ⊎ θn)A

D ⊢ x p1 .. pn = t : ∀{−−−→α : κ} . (B1 → . . .→ Bn → A)
eqn

D;−−−→α : κ;− ⊢ pi : Bi ▷ ∆i;θi
A1 ∧ . . . ∧ An =⇒ D;−−−→α : κ;∆1, .. ,∆n ⊢ t : (θ1 ⊎ . . . ⊎ θn)A

D ⊢ x p1 .. pn = t : ∀−−−→α : κ . {A1, .. ,An} ⇒ (B1 → . . .→ Bn → A)
eqnP
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Typing expressions (declarative) D; Σ; Γ ⊢ t : A

Σ ⊢ A : Type

D; Σ; x : A ⊢ x : A

var

D; Σ;− ⊢ p : A ▷ ∆;θ
D; Σ; Γ,∆ ⊢ t : θB
irrefutable p

D; Σ; Γ ⊢ λp.t : A→ B

abs

D; Σ; Γ1 ⊢ t1 : A→ B

D; Σ; Γ2 ⊢ t2 : A

D; Σ; Γ1 + Γ2 ⊢ t1 t2 : B
app

(C : (∀{−−−→α : κ} . A,θκ )) ∈ D
θ , Σ′,θ ′κ = instantiate(

−−−→α : κ,θκ )

D; Σ, Σ′; ∅ ⊢ C : (θ ′κ ⊎ θ )A
C

D; Σ; ∅ ⊢ n : Int

int

(x : ∀−−−→α : κ . A⇒ B) ∈ D
θ , Σ′ = instantiate(

−−−→α : κ) Σ ⊢ A : Predicate (θA)

D; Σ, Σ′; ∅ ⊢ x : θB
def

Σ ⊢ R : Coeff

D; Σ; Γ ⊢ t : A

D; Σ; Γ + [∆]0:R ⊢ t : A
weak

Σ ⊢ R : Coeff

D; Σ; Γ, x : A ⊢ t : B

D; Σ; Γ, x : [A]1:R ⊢ t : B
der

Σ ⊢ r : ↑R Σ ⊢ R : Coeff

D; Σ; [Γ] ⊢ t : A

D; Σ; r · Γ ⊢ [t] : □rA
pr

Σ ⊢ E : Eff Σ ⊢ ε1 : ↑E Σ ⊢ ε2 : ↑E
D; Σ;− ⊢ p : A ▷ ∆;θ irrefutable p

D; Σ; Γ1 ⊢ t1 : ♢ε1A D; Σ; Γ2,∆ ⊢ t2 : ♢ε2θB

D; Σ; Γ1 + Γ2 ⊢ let ⟨p⟩� t1 in t2 : ♢(ε1⋆ε2)B
let♢

D; Σ; Γ ⊢ t : A Σ ⊢ E : Eff

D; Σ; Γ ⊢ ⟨t⟩ : ♢1:EA
pure

D; Σ; Γ, x : [A]r , Γ
′ ⊢ t : B r ⊑ s

D; Σ; Γ, x : [A]s, Γ
′ ⊢ t : B

⊑
D; Σ; Γ ⊢ t : ♢εB ε ≤ ε ′

D; Σ; Γ ⊢ t : ♢ε ′B
≤

A.1 Auxiliary definitions
Lemma A.1. [Security levels] The coeffect type Level captures a three-point lattice {Irrelevant ⊑

Private ⊑ Public} with:

0 = Irrelevant

1 = Private

r + s = r ⊔ s r · s =

{
Irrelevant r = Irrelevant ∨ s = Irrelevant

r ⊔ s otherwise

(see Definition 4.2). This defines a pre-ordered semiring.

Proof. The pre-ordering of the domain (transitive and reflexive) induces a semilattice with

least-upper bound (join) ⊔.

We then get each property of a pre-ordered semiring as follows:

• + associativity and commutativity by semi-lattice ⊔;

• 0 is the unit of + since 0 is the bottom of the lattice (0 = Irrelevant);

• 0 is absorbing for · by the above definition;

• ∗ associativity by either associativity of ⊔ or the absorbing nature of 0;
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• 1 is the unit of ∗: for Private · s if s = Private or Public then by the induced lattice Private · s = s.

If s = Irrelevant then 1 · Irrelevant = Irrelevant by absorption; the symmetric case holds since

· is symmetrically defined here.

• Distributivity of · over + , that is, r · (s + s′) = (r · s) + (r · s′);

– if r = Irrelevant then by absorption r · (s+ s′) = Irrelevant and (r · s)+ (r · s′) = Irrelevant+

Irrelevant = Irrelevant.

– Otherwise if r , Irrelevant then r · (s + s′) = r ⊔ (s ⊔ s ′) = (r ⊔ s) ⊔ (r ⊔ s ′) = (r · s)+ (r · s′).
The symmetric distributivity case holds since · is symmetrically defined here.

• Monotonicity of + is trivial since it is the join of the semilattice;

• Monotonicity of ∗ is similarly trivial (as ⊔) when neither parameter is Irrelevant. Otherwise,

for r⊑r ′ and s⊑s ′ then if either r or s is Irrelevant then r · s = Irrelevantwhich by the ordering

is thus ⊑r ′ · s. If r ′ = Irrelevant then r
′ · s = Irrelevant and by the ordering then r = Irrelevant

thus r · s = Irrelevant, and similarly for the symmetric case of s ′ = Irrelevant.

□

Definition A.1. [Stratification of coeffect type constructors (syntactic restriction)] The syntax of

types is internally restricted so that constructors of types of kind Coeffect are restricted in the

way they can be composed. This restriction is enforced via a stratification of the relevant type

constructors into levels:

• Level 0 comprises Nat and Level;

• Level 1 comprises Ext R for all level-0 coeffect types R;

• Level 2 comprises Int R for all level-1 and level-0 coeffect types R;

• Level 3 comprises R × S for all coeffect types R and S and R , S. Thus products occur only at

the top-level.

For example, Ext (ExtR) is therefore not allowed, and products cannot be nested inside other

constructors. This simplifies the number of possible combinations, with the aim of aiding user

understanding.

Definition A.2. [Type substitution] Substitution θ applied to types A:

θ (A→ B)= (θA) → (θB)
θK= K

θα=

{
A θ (α) = A

a otherwise

θ (AB)= (θA) (θB)
θ (A opB)= (θA) op (θB)
θ (□cA)= □(θ c)(θA)

θ (□c:RA)= □(θ c):θR(θA)
θ (♢εA)= ♢ε (θA)

Substitution θ applied to kinds κ:

θ (↑A) = ↑(θA)
θ (κ1 → κ2) = (θκ1) → (θκ2)

θκ = κ
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Substitution θ applied to the contexts Γ:

θ∅ = ∅

θ (Γ, x : A) = θΓ, x : θA
θ (Γ, x : [A]c) = θΓ, x : [θA](θ c)

θ (Γ, x : [A]c:R) = θΓ, x : [θA]θ c:θR

Substitution θ applied to type variable environments Σ:

θ∅ = ∅

θ (Σ,α : κ) = θΣ,α : θκ
θ (Σ,α :∃ κ) = θΣ,α :∃ θκ

Substitution θ applied to substitution θ ′:

θ∅ = ∅

θ (θ ′ ⊎ x 7→ A) = (θθ ′) ⊎ x 7→ (θA)

Substitution θ applied to coeffect term c similarly follows the recursive structure of the coeffect

terms, until it hits variables.

Definition A.3. [Substitution composition] Given two substitutions θ1 and θ2 and a type variable

context Σ such that Σ ⊢ θ1 and Σ ⊢ θ2 then we define the context composition θ1 ⊎ θ2 as follows, by
induction on θ1:

∅ ⊎ θ2 = θ2

(θ1,α 7→ A) ⊎ θ2 =

{
(θ1 ⊎ (θ2 \ x) ⊎ θ ),α 7→ θA θ2(α) = B ∧ Σ ⊢ A ∼ B ▷ θ

(θ1 ⊎ θ2),α 7→ A x < dom(θ2)

This is a partial operation which may fail if both substitutions contain a substitution for variable α
but the two substitutees are not unifiable.

Definition A.4. [Substitution compatibility] Given a type-variable context Σ and a substitution θ
then we say a substitution is compatible with the context if Σ ⊢ θ , defined:

Σ ⊢ ∅
empty

Σ ⊢ θ (α : κ) ∈ Σ Σ \ α : κ ⊢ A : κ

Σ ⊢ θ ⊎ (α 7→ A)
ext

Essentially, compatibility says that any substitutions are well kinded (i.e., do not change the kind).

The premise for calculating well-kindedness for a substituted type A includes that it is well kinded

in the context without α . This prevents recursive kinds.

Definition 4.8. [Scalar context multiplication for Gr] Given a context of graded assumptions Γ
and a semiring element r ∈ R then Γ can be multiplied by r as follows:

r · ∅ = ∅ r · (Γ, x : [A]s:S) = (r · Γ),x : [A](ι1r · ι2s) where R ⊔ S ▷ R′; ι1; ι2

DefinitionA.5. [Upper-bound on coeffect types] Given two coeffect types R and S , we can compute

their upper-bound by the following function, written R⊔R′▷ S; ι1; ι2 meaning that the upper bound
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of R and R
′
is the coeffect type S with injections ι1 : R→ S and ι2 : R

′→ S. This function is defined:

R ⊔ R ▷ R; id ; id
Interval R ⊔ R ▷ Interval R; id ; r 7→ r ..r
R ⊔ Interval R ▷ Interval R; r 7→ r ..r ; id
Nat ⊔ ExtNat ▷ ExtNat; ι⊆ ; id
ExtNat ⊔ Nat ▷ ExtNat; id ; ι⊆
(R × S) ⊔ R ▷ R × S; id ; r 7→ (r, 1)
(R × S) ⊔ S ▷ R × S; id ; s 7→ (1, s)
R ⊔ (R × S) ▷ R × S; r 7→ (r, 1); id
S ⊔ (R × S) ▷ R × S; s 7→ (1, s); id
R ⊔ S ▷ R × S; r 7→ (r, 1); s 7→ (1, s) where R , S

Note that this is defined as a function to make the ordering between cases clear.

B BIDIRECTIONAL CHECKING
B.1 Checking

Algorithmic type checking D; Σ; Γ ⊢ t ⇐ A;∆; Σ′;θ ; P

irrefutable p P ′′=∀ Σ2 \ Σ1 . (P → P ′)
D; Σ1;− ⊢ p : A ▷ ∆; P ;θ ; Σ2

D; Σ2; Γ,∆ ⊢ t ⇐ θB;∆′; Σ3;θ
′
; P ′

D; Σ1; Γ ⊢ λp.t ⇐ A→ B;∆′\∆; Σ3;θ ⊎ θ
′
; P ′′
⇐λ

D; Σ1; Γ ⊢ t2 ⇒ A;∆2; Σ2;θ2; P
D; Σ2; Γ ⊢ t1 ⇐ A→ B;∆1; Σ3;θ1; P

′

D; Σ1; Γ ⊢ t1 t2 ⇐ B;∆1 + ∆2; Σ3;θ1 ⊎ θ2; P ∧ P
′
⇐app

Σ1 ⊢ [Γ ∩ FV(t)]R ▷ Γ′; θ ′

Σ1 ⊢ r : ↑R Σ1 ⊢ R : Coeffect

D; Σ1; Γ
′ ⊢ t ⇐ A;∆; Σ2;θ ; P

D; Σ1; Γ ⊢ [t] ⇐ □rA; r ·∆; Σ2;θ ⊎ θ
′
; P
⇐pr

D; Σ; Γ ⊢ t ⇒ B;∆; Σ′;θ ; P
Σ ⊢ A ∼ B ▷ θ ′; P ′

D; Σ; Γ ⊢ t ⇐ A;∆; Σ′;θ ⊎ θ ′; P ∧ P ′
⇐⇒

P ′ = P0 ∧ .. ∧ Pn
D;−−−→α : κ;− ⊢ pi : Bi ▷ ∆i; Pi;θi; Σi Σ′ = −−−→α : κ, Σ0, .. , Σn

D; Σ′;∆0, .. ,∆n ⊢ t ⇐ (θ0 ⊎ . . . ⊎ θn)A;∆; Σ
′′
;θ ; P P ′′ = (P ′ ∧ JA0, ..,AmK)|!→JΣ′′\Σ′K.P

D ⊢ x p0...pn = t ⇐ ∀−−−→α : κ .{A0, ..,Am} ⇒ B0 → ...→ Bn → A; (∀Σ′.P ′′) ∧ (∃Σ′.P ′) ⇐eqn

Definition B.1. [Grade a context] Given a context Γ we can turn the context into a graded context

Γ′ with grades of type R, by a partial operation Σ ⊢ [Γ]R ▷ Γ
′
; θ which also produces a substitution,

where Σ ⊢ [∅]R ▷ ∅; ∅ for empty contexts, and:

Σ ⊢ [Γ]R ▷ Γ′; θ

Σ ⊢ [Γ, x : A]R ▷ Γ′, x : [A]1:R; θ
[lin]

Σ ⊢ [Γ]R ▷ Γ′; θ ′ Σ ⊢ s : ↑S Σ ⊢ R ⊔ S ▷ R′; ι1; ι2;θ

Σ ⊢ [Γ, x : [A]s]R ▷ θ (Γ
′, x : [A]ι2s); θ ⊎ θ

′
[gr]

On the left, a linear assumption is turned into an assumption graded by 1 of type R. On the right, a

graded assumption with r : R
′
can be turned into an assumption graded at r : S if and only if S is the

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.



110:36 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III

least-upper bound coeffect type of R and R
′
. For example, if x : [A]r :Nat and we are trying to grade

at ExtNat then we get x : [A]r :ExtNat since Nat ⊆ ExtNat. The judgement Σ ⊢ R ⊔ R
′ ▷ S; ι1; ι2;θ

(see Appendix A.1) generates injections into the upper bound type and also serves to unify any

type variables in coeffect types and thus produces a substitution which must be combined with the

premise’s substitution in the output.

B.2 Synthesis

Algorithmic type synthesis D; Σ; Γ ⊢ t ⇒ A;∆; Σ′;θ ; P

D; Σ; Γ ⊢ n⇒ Int; ∅; Σ; ∅;⊤
⇒n

(C : (∀{−−−→α : κ} . A,θκ )) ∈ D
θ , Σ′,θ ′κ = instantiate(

−−−→α : κ,θκ )

D; Σ; Γ ⊢ C ⇒ (θ ′κ ⊎ θ )A; ∅; Σ, Σ′; ∅; Jθ ′κK
⇒C

(x : A) ∈ Γ

D; Σ; Γ ⊢ x ⇒ A; x : A; Σ; ∅;⊤
⇒lin

Σ ⊢ R : Coeff

Σ ⊢ r : ↑R
(x : [A]r ) ∈ Γ

D; Σ; Γ ⊢ x ⇒ A; x : [A]1:R; Σ; ∅;⊤
⇒gr

(x : ∀−−−→α : κ . {A1, .. ,An} ⇒ B) ∈ D
θ , Σ′ = instantiate(

−−−→α : κ)

D; Σ; Γ ⊢ x ⇒ θB; ∅; Σ, Σ′; ∅; J(A1, .. ,An)K
⇒def

D; Σ1; Γ ⊢ t1 ⇒ ♢εA;∆1; Σ2;θ1; P1
D; Σ2;− ⊢ p : A ▷ ∆; P ;θ ; Σ3

irrefutable p

D; Σ3; Γ,∆ ⊢ t2 ⇒ ♢ε ′B;∆2; Σ4;θ2; P2
Γ′ ≡ (∆2 ∩ ∆)

D; Σ1; Γ ⊢ let ⟨p⟩� t1 in t2 ⇒ (♢(ε⋆ε ′)B);∆1 + (∆2\∆); Σ4;θ ⊎ θ1 ⊎ θ2; P ∧ P1 ∧ P2
⇒let

D; Σ1; Γ ⊢ t1 ⇒ A→ B;∆1; Σ2;θ1; P
D; Σ2; Γ ⊢ t2 ⇐ A;∆2; Σ3;θ2; P

′

D; Σ1; Γ ⊢ t1 t2 ⇒ θ2B;∆1 + ∆2; Σ3;θ1 ⊎ θ2; P ∧ P ′
⇒app

Σ1 ⊢ [Γ ∩ FV(t)]β ▷ Γ′; θ ′

D; Σ1; Γ
′ ⊢ t ⇒ A;∆; Σ2;θ ; P

D; Σ1; Γ ⊢ [t] ⇒ □αA;α ·∆; Σ2, β :∃ Coeffect,α :∃ ↑β ;θ ⊎ θ ′; P
⇒pr

D; Σ1;− ⊢ p : α ▷ Γ′; P ;θ ; Σ2

D; Σ2; Γ, Γ
′ ⊢ t ⇒ B;∆; Σ3;θ

′
; P ′

irrefutable p

Γ′ ≡ ∆ ∩ Γ′

D; Σ1; Γ ⊢ λp.t ⇒ θ (α → B);∆\Γ′; Σ3,α :∃ Type;θ ⊎ θ ′;∀ Σ2 \ Σ1 . (P → P ′)
⇒abs
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C PROOFS
Throughout this section we higlight the application of resource algebra properties in green to help

motivate the particular choice of algebraic structure / axioms.

C.1 Term substitution and type preservation
Lemma C.1. [Restriction Collapse] For contexts Γ1 and Γ2:

Γ1 |Γ2 + Γ1 |Γ2 = Γ1

Lemma C.2. [Context Shuffle 1] For typing contexts Γ1, Γ
′
1
, and Γ2, variable x and type A:

(Γ1, x : A, Γ′
1
) + Γ2 = (Γ1 + Γ2 |Γ1 ), x : A, (Γ′

1
+ Γ2 |Γ1 )

Lemma C.3. [Context Shuffle 2] For typing contexts Γ1, Γ2, and Γ′
2
, variable x and type A:

Γ1 + (Γ2, x : A, Γ′
2
) = ( Γ1 |Γ′

2

+ Γ2), x : A, ( Γ1 |Γ′
2

+ Γ′
2
)

Lemma C.4. [Context Shuffle 3] For typing contexts Γ1, Γ2, Γ3, and Γ4:

((Γ1, Γ2) + (Γ3, Γ4)) = ((Γ1 + Γ3 |Γ1 + Γ4 |Γ1 ), (Γ2 + Γ3 |Γ1 + Γ4 |Γ1 ))

Lemma C.5. [Distribution of Scalar Multiplication over Context Addition] For contexts Γ, and
r1, r2 ∈ R:

(r1 · Γ) + (r2 · Γ) = (r1 + r2) · Γ

Lemma C.6. [Disjoint Collapse] For contexts Γ1, ∆ and Γ2:

(Γ1 + ∆ + Γ2) = (Γ1 + ∆ |Γ1 ), ∆ |(Γ1,Γ2) , (Γ2 + ∆ |Γ2 )

Lemma 7.1. [Well-typed linear substitution] Given D; Σ;∆ ⊢ t ′ : A and D; Σ; Γ, x : A, Γ′ ⊢ t : B
then D; Σ; Γ + ∆ + Γ′ ⊢ [t ′/x]t : B.

Proof. This proof is by induction on the structure of D; Σ; Γ, x : A, Γ′ ⊢ t : B.

Case.

D; Σ; ∅ ⊢ n : Int

int

This case holds trivially, because the typing context is empty.

Case.

Σ ⊢ B : Type

D; Σ; y : B ⊢ y : B

var

In this case we know that:

– Γ = Γ′ = ∅,
– x = t = y, and

– B = A.

Thus, it suffices to show that the following holds:

D; Σ;∆ ⊢ [t ′/y]y : B

However, [t ′/y]y = t
′
, and the previous judgment holds by assumption.

Case.

(y : ∀{−−−→α : κ} . B) ∈ D
θ , Σ′ = instantiate(

−−−→α : κ)

D; Σ, Σ′; ∅ ⊢ y : θB
def

This case holds trivially, because the typing context is empty.
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Case.

(C : (∀{−−−→α : κ} . B,θκ )) ∈ D
θ , Σ′,θ ′κ = instantiate(

−−−→α : κ,θκ )

D; Σ, Σ′; ∅ ⊢ C : (θ ′κ ⊎ θ )B
C

This case holds trivially because the typing context is empty.

Case.

Σ ⊢ B1 : Predicate
(θB1)
θ , Σ′ = instantiate(

−−−→α : κ)
(y : ∀−−−→α : κ . B1 ⇒ B2) ∈ D

D; Σ, Σ′; ∅ ⊢ y : θB2
def

This case holds trivially because the typing context is empty.

Case.

D; Σ; Γ, x : A, Γ′, y : B1 ⊢ t : B2

D; Σ; Γ, x : A, Γ′ ⊢ λy.t : B1 → B2

Ty_abs

By the induction hypothesis we know the following:

D; Σ; Γ + ∆ + (Γ′, y : B1) ⊢ [t
′/x]t : B2

However, we know by the definition of context addition that (Γ +∆+ (Γ′, y : B1)) = ((Γ +∆+
Γ′), y : B1), because y is linear. Thus, the previous judgment is equivalent to the following:

D; Σ; Γ + ∆ + Γ′, y : B1 ⊢ [t
′/x]t : B2

Therefore, by reapplying the rule we know the following:

D; Σ; Γ + ∆ + Γ′ ⊢ λy.[t ′/x]t : B2

By the definition of substitution λy.[t ′/x]t = [t ′/x](λy.t), and we obtain our result.

Case.

D; Σ;− ⊢ p : B1 ▷ ∆′;θ
D; Σ; Γ, x : A, Γ′,∆′ ⊢ t : θB2
irrefutable p

D; Σ; Γ, x : A, Γ′ ⊢ λp.t : B1 → B2

abs

By the induction hypothesis we know the following:

D; Σ; Γ + ∆ + (Γ′,∆′) ⊢ [t ′/x]t : θB2

In this case, ∆′ consists of bound variables in p, and thus, must be disjoint from Γ, ∆, and Γ′.
Thus, (Γ + ∆ + (Γ′,∆′)) = ((Γ + ∆ + Γ′),∆′), and we know the following:

D; Σ; (Γ + ∆ + Γ′),∆′ ⊢ [t ′/x]t : θB2

Therefore, by reapplying the rule we know the following:

D; Σ; Γ + ∆ + Γ′ ⊢ λp.[t ′/x]t : B1 → B2

By the definition of substitution λp.[t ′/x]t = [t ′/x](λp.t), and we obtain our result.

Case.

D; Σ; Γ1 ⊢ t1 : B1 → B2

D; Σ; Γ2 ⊢ t2 : B1

D; Σ; Γ1 + Γ2 ⊢ t1 t2 : B2
app

In this case we know the following:
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– t = t1 t2,

– B = B2,

– (Γ, x : A, Γ′) = (Γ1 + Γ2).
Now by the definition of context addition and the fact that x is linear means that (x : A) ∈ Γ1
or (x : A) ∈ Γ2, but not both. Thus, we have the following two cases to consider:

– Suppose (x : A) ∈ Γ1. Then we are in the following situation:

D; Σ; Γ′
1
, x : A, Γ′′

1
⊢ t1 : B1 → B2

D; Σ; Γ2 ⊢ t2 : B1

D; Σ; (Γ′
1
, x : A, Γ′′

1
) + Γ2 ⊢ t1 t2 : B2

app

In order to ensure we obtain our expected result we must determine what Γ and Γ′ are in
this case. We know that:

(Γ, x : A, Γ′) = (Γ1 + Γ2)
= (Γ′

1
, x : A, Γ′′

1
) + Γ2

= (Γ′
1
+ Γ2 |Γ1 ), x : A, (Γ′′

1
+ Γ2 |Γ1 )

The last equation holds by Lemma C.2. The previous reasoning implies that Γ = (Γ′
1
+ Γ2 |Γ1 )

and Γ′ = (Γ′′
1
+ Γ2 |Γ1 ).

By the induction hypothesis we know the following:

D; Σ; Γ′
1
+ ∆ + Γ′′

1
⊢ [t/x]t1 : B1 → B2

Hence, pair this with the second premise above and we can reapply the rule to obtain:

D; Σ; (Γ′
1
+ ∆ + Γ′′

1
) + Γ2 ⊢ t1 t2 : B2

Finally, we must show that ((Γ′
1
+ ∆ + Γ′′

1
) + Γ2) = (Γ + ∆ + Γ′), but this follows from the

following reasoning:

(Γ + ∆ + Γ′) = ((Γ′
1
+ Γ2 |Γ1 ) + ∆ + (Γ

′′
1
+ Γ2 |Γ1 ))

= (Γ′
1
+ ∆ + Γ′′

1
+ Γ2 |Γ1 + Γ2 |Γ1 )

= (Γ′
1
+ ∆ + Γ′′

1
+ Γ2)

= ((Γ′
1
+ ∆ + Γ′′

1
) + Γ2)

The only non-trivial equation used in the previous reasoning is the third equation, but that

holds by Lemma C.1, all others hold by commutativity and associativity of context addition.

Thus, we obtain our result.

– Suppose (x : A) ∈ Γ2. Then we are in the following situation:

D; Σ; Γ1 ⊢ t1 : B1 → B2

D; Σ; Γ′
2
, x : A, Γ′′

2
⊢ t2 : B1

D; Σ; Γ1 + (Γ
′
2
, x : A, Γ′′

2
) ⊢ t1 t2 : B2

app

This case is similar to the previous case, but using Lemma C.3.

Case.

D; Σ; Γ, x : A, Γ′, y : B1 ⊢ t : B2
Σ ⊢ R : Coeffect

D; Σ; Γ, x : A, Γ′, y : [B1]1:R ⊢ t : B2
der

In this case x : A cannot be y : [B1]1:R, because x is linear. Furthermore, we know that

Γ′ = (Γ′′, y : [B1]1:R). This case then follows from first applying the induction hypothesis to

obtain:

D; Σ; Γ + ∆ + (Γ′′, y : B1) ⊢ t : B2

Proc. ACM Program. Lang., Vol. 3, No. ICFP, Article 110. Publication date: August 2019.



110:40 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III

Then noting that (Γ + ∆ + (Γ′′, y : B1)) = (Γ + ∆ + Γ′, y : B1), because y is linear, and thus,

the previous judgment is equivalent to the following:

D; Σ; Γ + ∆ + Γ′′, y : B1 ⊢ t : B2

Thus, we obtain our result by applying the rule to obtain:

D; Σ; Γ + ∆ + Γ′′, y : [B1]1:R ⊢ t : B2

Finally, because we know that y is linear we know that this is equivalent to the following

D; Σ; Γ + ∆ + (Γ′′, y : [B1]1:R) ⊢ t : B2

which is our required result.

Case.

Σ ⊢ r : ↑R Σ ⊢ R : Coeff

D; Σ; [Γ] ⊢ t : B

D; Σ; r · Γ ⊢ [t] : □rB
pr

This case holds trivially, because Γ contains only graded assumptions (by the premise), and

thus does not contain any linear variables.

Case.

D; Σ; Γ1, x : A, Γ2 ⊢ t : B
Σ ⊢ R : Coeffect

D; Σ; (Γ1, x : A, Γ2) + [∆
′]0:R ⊢ t : B

weak

In this case x : A cannot be in ∆′, because it is fully discharged. By Lemma C.2 we know the

following:

((Γ1, x : A, Γ2) + [∆
′]0:R) = ((Γ1 + ([∆

′]0:R)|Γ1 ), x : A, (Γ2 + ([∆
′]0:R)|Γ1

))

Thus, it must be the case that Γ = (Γ1 + ([∆
′]0:R) |Γ1 ) and Γ′ = (Γ2 + ([∆

′]0:R) |Γ1
).

By the induction hypothesis we know the following:

D; Σ; Γ1 + ∆ + Γ2 ⊢ [t
′/x]t : B

and after reapplying the rule we know the following:

D; Σ; (Γ1 + ∆ + Γ2) + [∆
′]0:R ⊢ [t

′/x]t : B

Finally, we must show that ((Γ1 + ∆ + Γ2) + [∆
′]0:R) = (Γ + ∆ + Γ′), but this follows from the

following reasoning:

(Γ + ∆ + Γ′) = ((Γ1 + [∆
′]0:R |Γ1 ) + ∆ + (Γ2 + [∆

′]0:R |Γ1
))

= (Γ1 + [∆
′]0:R |Γ1 + ∆ + Γ2 + [∆

′]0:R |Γ1
)

= (Γ1 + ∆ + Γ2 + ( [∆
′]0:R |Γ1 + [∆

′]0:R |Γ1
))

= (Γ1 + ∆ + Γ2 + [∆
′]0:R)

= ((Γ1 + ∆ + Γ2) + [∆
′]0:R)

The previous reasoning holds by associativity and commutativity of context addition, and

Lemma C.1. Thus, we obtain our result.
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Case.

D; Σ; Γ1 ⊢ t1 : ♢ε1B1
D; Σ;− ⊢ p : B1 ▷ ∆;θ
D; Σ; Γ2,∆ ⊢ t2 : ♢ε2θB2
irrefutable p

D; Σ; Γ1 + Γ2 ⊢ let ⟨p⟩� t1 in t2 : ♢(ε1⋆ε2)B2
let♢

This case is similar to the case for app above.

Case.

D; Σ; Γ, x : A, Γ′ ⊢ t : B′

D; Σ; Γ, x : A, Γ′ ⊢ t : ♢1B
′
pure

This case follows straightforwardly from the induction hypothesis and reapplying the rule.

Case.

D; Σ; Γ1, y : [B′]r , Γ2 ⊢ t : B
r ⊑ s

D; Σ; Γ1, y : [B′]s, Γ2 ⊢ t : B

Either (x : A) ∈ Γ1 or (x : A) ∈ Γ2, but not both. In either case, we can apply the induction

hypothesis, straightforwardly reorganise the context, and then reapply the rule.

□

Lemma7.2. [Well-typed graded substitution] GivenD; Σ; [∆] ⊢ t ′ : A andD; Σ; Γ, x : [A]r , Γ
′ ⊢ t : B

then D; Σ; Γ + r ·∆ + Γ′ ⊢ [t ′/x]t : B.

Proof. This is a proof by induction on the form of D; Σ; Γ, x : [A]r , Γ
′ ⊢ t : B.

Case.

D; Σ; ∅ ⊢ n : Int

int

This case holds trivially, because the typing context is empty.

Case.

Σ ⊢ B : Type

D; Σ; y : B ⊢ y : B

var

It cannot be the case that x = y since the premise for substitution states that the variable x is

marked as a graded assumption. Subsequently, substitution cannot be applied here since the

rest of the context is empty and so there cannot be any graded variable to substitute through.

Case.

(y : ∀{−−−→α : κ} . B) ∈ D
θ , Σ′ = instantiate(

−−−→α : κ)

D; Σ, Σ′; ∅ ⊢ y : θB
def

This case holds trivially, because the typing context is empty.

Case.

(C : (∀{−−−→α : κ} . B,θκ )) ∈ D
θ , Σ′,θ ′κ = instantiate(

−−−→α : κ,θκ )

D; Σ, Σ′; ∅ ⊢ C : (θ ′κ ⊎ θ )B
C

This case holds trivially, because the typing context is empty.
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Case.

Σ ⊢ B1 : Predicate
(θB1)
θ , Σ′ = instantiate(

−−−→α : κ)
(y : ∀−−−→α : κ . B1 ⇒ B2) ∈ D

D; Σ, Σ′; ∅ ⊢ y : θB2
def

This case holds trivially, because the typing context is empty.

Case.

D; Σ; Γ, x : [A]r , Γ
′, y : B1 ⊢ t : B2

D; Σ; Γ, x : [A]r , Γ
′ ⊢ λy.t : B1 → B2

absVar

By the induction hypothesis we know the following:

D; Σ; Γ + r ·∆ + (Γ′, y : B1) ⊢ [t/x]t : B2

However, we know that y is linear, and thus, by the definition of context addition Γ + r ·∆ +
(Γ′, y : B1) = (Γ+r ·∆+Γ

′), y : B1. Thus, the previous judgment is equivalent to the following:

D; Σ; (Γ + r ·∆ + Γ′), y : B1 ⊢ [t
′/x]t : B2

Thus, we obtain our result by reapplying the rule to obtain:

D; Σ; Γ + r ·∆ + Γ′ ⊢ λy.[t ′/x]t : B1 → B2

By the definition of substitution we know that λy.[t ′/x]t = [t ′/x](λy.t). Note, that the next
case subsumes this one, but we leave this case for illustrative purposes.

Case.

D; Σ;− ⊢ p : B1 ▷ ∆;θ
D; Σ; Γ, x : [A]r , Γ

′,∆′ ⊢ t : θB2
irrefutable p

D; Σ; Γ, x : [A]r , Γ
′ ⊢ λp.t : B1 → B2

abs

By the induction hypothesis we know the following:

D; Σ; Γ + r ·∆ + (Γ′,∆′) ⊢ [t ′/x]t : θB2

In this case, ∆′ consists of bound variables in p, and thus, must be disjoint from Γ, ∆, and Γ′.
Hence, Γ + r ·∆+ (Γ′,∆′) = (Γ + r ·∆+ Γ′),∆′, and thus, we know the following is equivalent

to the previous judgment:

D; Σ; (Γ + r ·∆ + Γ′),∆′ ⊢ [t ′/x]t : θB2

Thus, we obtain our result by reapplying the rule:

D; Σ; (Γ + r ·∆ + Γ′) ⊢ λp.[t ′/x]t : B1 → B2

By the definition of substitution we know that λp.[t ′/x]t = [t ′/x](λp.t).

Case.

D; Σ; Γ1 ⊢ t1 : B1 → B2

D; Σ; Γ2 ⊢ t2 : B1

D; Σ; Γ1 + Γ2 ⊢ t1 t2 : B2
app

In this case we know the following:

– t = t1 t2,

– B = B2, and

– (Γ, x : [A]r , Γ
′) = (Γ1 + Γ2).
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Now it could be the case that x is in |Γ1 |, or |Γ2 |, or both. Thus, we have the following cases
to consider:

– Suppose (x : [A]r ) ∈ Γ1, but x is not in |Γ2 |. Then we are in the following situation:

D; Σ; Γ′
1
, x : [A]r , Γ

′′
1
⊢ t1 : B1 → B2

D; Σ; Γ2 ⊢ t2 : B1

D; Σ; (Γ′
1
, x : [A]r , Γ

′′
1
) + Γ2 ⊢ t1 t2 : B2

app

where Γ1 = (Γ
′
1
, x : [A]r , Γ

′′
1
). First, in order to be sure we arrive at the required result we

must know what Γ and Γ′ are, but we know the following:

(Γ1 + Γ2) = (Γ′
1
, x : [A]r , Γ

′′
1
) + Γ2

= ((Γ′
1
+ Γ2 |Γ1 ), x : [A]r , (Γ

′′
1
+ Γ2 |Γ1 ))

Hence, given that we know (Γ, x : [A]r , Γ
′) = Γ1 + Γ2, then the above implies that Γ =

(Γ′
1
+ Γ2 |Γ1 ) and Γ′ = (Γ′′

1
+ Γ2 |Γ1 ).

By the induction hypothesis we know the following:

D; Σ; Γ′
1
+ r ·∆ + Γ′′

1
⊢ [t ′/x]t1 : B1 → B2

Then we can reapply the rule to obtain:

D; Σ; (Γ′
1
+ r ·∆ + Γ′′

1
) + Γ2 ⊢ ([t

′/x]t1) t2 : B2

By the definition of substitution we know that ([t ′/x]t1) t2 = [t
′/x](t1 t2). Now all we need

to show is that ((Γ′
1
+ r ·∆ + Γ′′

1
)+ Γ2) = (Γ + r ·∆ + Γ

′), but this follows from the following

reasoning:

(Γ + r ·∆ + Γ′) = ((Γ′
1
+ Γ2 |Γ1 ) + r ·∆ + (Γ

′′
1
+ Γ2 |Γ1 ))

= (Γ′
1
+ r ·∆ + Γ′′

1
+ ( Γ2 |Γ1 + Γ2 |Γ1 ))

= (Γ′
1
+ r ·∆ + Γ′′

1
+ Γ2)

= ((Γ′
1
+ r ·∆ + Γ′′

1
) + Γ2)

The above reasoning holds by associativity, commutativity, and Lemma C.1.

– Suppose (x : [A]r ) ∈ Γ2, but x is not in |Γ1 |. Then we are in the following situation:

D; Σ; Γ1 ⊢ t1 : B1 → B2

D; Σ; Γ′
2
, x : [A]r , Γ

′′
2
⊢ t2 : B1

D; Σ; Γ1 + (Γ
′
2
, x : [A]r , Γ

′′
2
) ⊢ t1 t2 : B2

app

where Γ2 = (Γ
′
2
, x : [A]r , Γ

′′
2
). This case is similar to the previous case.

– Suppose (x : [A]r1 ) ∈ Γ1 and (x : [A]r2 ) ∈ Γ2 where r = r1 + r2. Then we are in the following

situation:

D; Σ; Γ′
1
, x : [A]r1 , Γ

′′
1
⊢ t1 : B1 → B2

D; Σ; Γ′
2
, x : [A]r2 , Γ

′′
2
⊢ t2 : B1

D; Σ; (Γ′
1
, x : [A]r1 , Γ

′′
1
) + (Γ′

2
, x : [A]r2 , Γ

′′
2
) ⊢ t1 t2 : B2

app

where Γ1 = (Γ
′
1
, x : [A]r1 , Γ

′′
1
) and Γ2 = (Γ

′
2
, x : [A]r2 , Γ

′′
2
). Just as we did above we first need

to know what Γ and Γ′ are. We have the following reasoning:

(Γ′
1
, x : [A]r1 , Γ

′′
1
) + (Γ′

2
, x : [A]r2 , Γ

′′
2
)

= (Γ′
1
, Γ′′

1
, x : [A]r1 ) + (Γ

′
2
, Γ′′

2
, x : [A]r2 )

= (((Γ′
1
, Γ′′

1
) + (Γ′

2
, Γ′′

2
)), x : [A](r1+r2))

= (((Γ′
1
+ Γ′

2 |Γ′
1

+ Γ′′
2 |Γ′

1

), (Γ′′
1
+ Γ′

2 |Γ′
1

+ Γ′′
2 |Γ′

1

)), x : [A](r1+r2))

= ((Γ′
1
+ Γ′

2 |Γ′
1

+ Γ′′
2 |Γ′

1

), x : [A](r1+r2), (Γ
′′
1
+ Γ′

2 |Γ′
1

+ Γ′′
2 |Γ′

1

))
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All of the reasoning in the above holds by associativity and commutativity of context

addition, the definition of context addition, and Lemma C.4. This implies that it must be

the case that up to commutativity Γ = (Γ′
1
+ Γ′

2 |Γ′
1

+ Γ′′
2 |Γ′

1

) and Γ′ = (Γ′′
1
+ Γ′

2 |Γ′
1

+ Γ′′
2 |Γ′

1

).

By the induction hypothesis we know the following:

D; Σ; Γ′
1
+ r1 ·∆ + Γ′′

1
⊢ [t ′/x]t1 : B1 → B2

D; Σ; Γ′
2
+ r2 ·∆ + Γ′′

2
⊢ [t ′/x]t2 : B1

Now we reapply the rule to obtain:

D; Σ; (Γ′
1
+ r1 ·∆ + Γ′′

1
) + (Γ′

2
+ r2 ·∆ + Γ′′

2
) ⊢ ([t ′/x]t1) ([t

′/x]t2) : B2

By the definition of substitution we know that ([t ′/x]t1) ([t
′/x]t2) = [t

′/x](t1 t2). All we

have left to do is show that (Γ′
1
+ r1 ·∆ + Γ′′

1
) + (Γ′

2
+ r2 ·∆ + Γ′′

2
) = Γ + r ·∆ + Γ′, but this

follows from the following reasoning:

Γ + r ·∆ + Γ′

= (Γ′
1
+ Γ′

2 |Γ′
1

+ Γ′′
2 |Γ′

1

) + (r1 + r2) ·∆ + (Γ
′′
1
+ Γ′

2 |Γ′
1

+ Γ′′
2 |Γ′

1

)

= ((Γ′
1
+ (r1 + r2) ·∆ + Γ′′

1
) + Γ′

2 |Γ′
1

+ Γ′
2 |Γ′

1

+ Γ′′
2 |Γ′

1

+ Γ′′
2 |Γ′

1

)

= (Γ′
1
+ (r1 + r2) ·∆ + Γ′′

1
) + (Γ′

2
+ Γ′′

2
)

= (Γ′
1
+ r1 ·∆ + r2 ·∆ + Γ′′

1
) + (Γ′

2
+ Γ′′

2
)

= ((Γ′
1
+ r1 ·∆ + Γ′′

1
) + (Γ′

2
+ r2 ·∆ + Γ′′

2
))

The previous reasoning holds by commutativity and associativity of context addition,

Lemma C.5, and Lemma C.1.

Case.

D; Σ; Γ′′, y : B
′ ⊢ t : B

Σ ⊢ R : Coeffect

D; Σ; Γ′′, y : [B′]1:R ⊢ t : B
der

In this case (Γ′′, y : [B′]1:R) = (Γ, x : [A]r , Γ
′), and thus, we have the following cases to

consider:

– Suppose Γ′′ = Γ, y : [B′]1:R = x : [A]r , and Γ′ = ∅. Then we are in the following situation:

D; Σ; Γ, x : A ⊢ t : B

Σ ⊢ R : Coeffect

D; Σ; Γ, x : [A]1:R ⊢ t : B
der

It suffices to show that D; Σ; Γ + 1 ·∆ ⊢ [t ′/x]t : B, but this is equivalent to D; Σ; Γ + ∆ ⊢
[t ′/x]t : B. This easily follows by applying Lemma 7.1 to the premise D; Σ; Γ, x : A ⊢ t : B.

– Suppose y : [B′]1:R , x : [A]r , Γ
′′ = (Γ1, x : [A]r , Γ

′
1
). Then we are in the following situation:

D; Σ; Γ1, x : [A]r , Γ
′
1
, y : B

′ ⊢ t : B

Σ ⊢ R : Coeffect

D; Σ; Γ1, x : [A]r , Γ
′
1
, y : [B′]1:R ⊢ t : B

der

This case follows similarly to the case for abstractions: apply the induction hypothesis,

reorganise the context using the fact that y is linear, and then reapply the rule.

Case.

Σ ⊢ r ′ : ↑R Σ ⊢ R : Coeff

D; Σ; [Γ1] ⊢ t : B

D; Σ; r ′ · Γ1 ⊢ [t] : □r′B
pr

In this case (r ′ · Γ1) = (Γ, x : [A]r , Γ
′). Thus, Γ1 = Γ′

1
, x : [A]r′′, Γ

′′
1
and r = r

′ · r ′′ and Γ = r
′ · Γ′

1

and Γ′ = r
′ · Γ′′

1
. We are in the following situation:
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Σ ⊢ r ′ : ↑R Σ ⊢ R : Coeff

D; Σ; [Γ′
1
, x : [A]r′′, Γ

′′
1
] ⊢ t : B

D; Σ; r ′ · (Γ′
1
, x : [A]r′′, Γ

′′
1
) ⊢ [t] : □r′B

pr

The inductive hypothesis on t gives us that:

D; Σ; Γ′
1
+ r ′′ ·∆ + Γ′′

1
⊢ [t ′/x]t : B

Thus by the definition of substitution (that [t ′/x][t] = [[t ′/x]t]), then we can apply promotion

again (since the context is still all graded) yielding:

Σ ⊢ r ′ : ↑R Σ ⊢ R : Coeff

D; Σ; Γ′
1
+ r ′′ ·∆ + Γ′′

1
⊢ [t ′/x]t : B

D; Σ; r ′ · Γ′
1
+ r ′ · (r ′′ ·∆) + r ′ · Γ′′

1
⊢ [t ′/x][t] : □r′B

pr

Satisfying the lemma statement by associativity of multiplication (such that r
′ · (r ′′ ·∆) =

(r ′ · r ′′) ·∆, and distributivity of multiplication over addition.

Case.

D; Σ; Γ′′ ⊢ t : B
Σ ⊢ R : Coeffect

D; Σ; Γ′′ + [∆′]0:R ⊢ t : B
weak

There are two cases to consider here:

– If (x : [A]r ) ∈ [∆
′]0:R, then r = 0 and x is unused by t and thus [t ′/x]t = t. Thus

∆′ = ∆1, x : [A]r ,∆2 then can re-apply weakening to the premise here, with the weakening

context ∆1 + ∆ + ∆2

– If x : [A]r < [∆
′]0:R then we have the situation:

D; Σ; Γ1, x : [A]r , Γ2 ⊢ t : B
Σ ⊢ R : Coeffect

D; Σ; (Γ1, x : [A]r , Γ2) + [∆
′]0:R ⊢ t : B

weak

where Γ′′ = (Γ1, x : [A]r , Γ2). Then by the induction hypothesis we know the following:

D; Σ; Γ1 + r ·∆ + Γ2 ⊢ [t
′/x]t : B

Then by reapplying the rule we obtain:

D; Σ; (Γ1 + r ·∆ + Γ2) + [∆
′]0:R ⊢ [t

′/x]t : B

which is our required result up to associativity of the context.

Case.

D; Σ; Γ1 ⊢ t1 : ♢ε1B
′

D; Σ;− ⊢ p : B
′ ▷ ∆′;θ

D; Σ; Γ2,∆
′ ⊢ t2 : ♢ε2θB

irrefutable p

D; Σ; Γ1 + Γ2 ⊢ let ⟨p⟩� t1 in t2 : ♢(ε1⋆ε2)B
let♢

This case follows similar to the app case, but when reorganising the context in the application

to the induction hypothesis to the third premise above we use the fact that ∆′ is disjoint from
all the other contexts just as we did the case of abs.

Case.

D; Σ; Γ, x : [A]r , Γ
′ ⊢ t : B

D; Σ; Γ, x : [A]r , Γ
′ ⊢ t : ♢1B

pure
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This case follows directly by applying the induction hypothesis, and then reapplying the rule.

Case.

D; Σ; Γ1, y : [B′]r1 , Γ2 ⊢ t : B
r1 ⊑ r2

D; Σ; Γ1, y : [B′]r2 , Γ2 ⊢ t : B
⊑

In this case (Γ, x : [A]r , Γ
′) = (Γ1, y : [B′]r2 , Γ2). Then we must consider the following cases:

– Suppose (x : [A]r ) ∈ Γ1. In this case we are in the following situation:

D; Σ; Γ′
1
, x : [A]r , Γ

′′
1
, y : [B′]r1 , Γ2 ⊢ t : B

r1 ⊑ r2

D; Σ; Γ′
1
, x : [A]r , Γ

′′
1
, y : [B′]r2 , Γ2 ⊢ t : B

⊑

By the induction hypothesis we know the following:

D; Σ; Γ′
1
+ r ·∆ + (Γ′′

1
, y : [B′]r1 , Γ2) ⊢ [t

′/x]t : B

Using Lemma C.6 we can reorganise the typing context as follows:

(Γ′
1
+ r ·∆ + (Γ′′

1
, y : [B′]r1, Γ2))

= ((Γ′
1
+ (r ·∆)|Γ′

1

), (r ·∆)
|(Γ′

1
,Γ′′
1
,y:[B′]r ,Γ2)

, (Γ′′
1
+ (r ·∆)|Γ′′

1

), ((y : [B′]r1 ) + (r ·∆)|(y:[B′]r
1
) ), (Γ2 + (r ·∆)|Γ2 ))

= ((Γ′
1
+ (r ·∆)|Γ′

1

), (r ·∆)
|(Γ′

1
,Γ′′
1
,y:[B′]r ,Γ2)

, (Γ′′
1
+ (r ·∆)|Γ′′

1

), y : [B′](r1+r3), (Γ2 + (r ·∆)|Γ2 ))

= (Γ3, y : [B′](r1+r3), Γ
′
3
)

where (r ·∆) |(y:[B′]r
1
) = y : [B′]r3 , or r3 = 0 when (r ·∆) |(y:[B′]r

1
) = ∅, Γ3 = (Γ

′
1
+

(r ·∆) |Γ′
1

), (r ·∆)
|(Γ′

1
,Γ′′

1
,y:[B′]r,Γ2)

, (Γ′′
1
+ (r ·∆) |Γ′′

1

) and Γ′
3
= (Γ2 + (r ·∆) |Γ2 ).

Hence, we know the judgment above is equivalent to the following:

D; Σ; Γ3, y : [B′](r1+r3), Γ
′
3
⊢ [t ′/x]t : B

Now after reapplying the rule we know:

D; Σ; Γ3, y : [B′](r2+r3), Γ
′
3
⊢ [t ′/x]t : B

because we r1 ⊑ r2 implies that (r1 + r3) ⊑ (r2 + r3). At this point we just need to show that

(Γ3, y : [B′](r2+r3), Γ
′
3
) = (Γ′

1
+ r ·∆ + (Γ′′

1
, y : [B′]r2 , Γ2)), but this follows by first unfolding Γ3

and Γ′
3
, and then collapsing ∆ similar to above.

– Suppose (x : [A]r ) ∈ Γ2. This case is similar to the previous case.

– Suppose x : [A]r = y : [B′]r2 . We are in the following situation:

D; Σ; Γ, x : [A]r′, Γ
′ ⊢ t : B

r
′ ⊑ r

D; Σ; Γ, x : [A]r , Γ
′ ⊢ t : B

⊑

This case straightforwardly follows by applying the induction hypothesis, and reapplying

the rule for each element of r
′ ·∆, because we know that r ·∆ is bigger.

□

Lemma C.7. [Typed value lemma] Given a term t which is a value, i.e., t = v and D; Σ; Γ ⊢ v : A

then we can conclude the following depending on A:

• (A = Int) =⇒ v = n for some integer constant n;
• (A = KA0 . . .An) =⇒ v = C v0 .. vm for some values v0 . . . vm;
• (A = ♢εB) =⇒ v = ⟨t ′⟩ for some term t

′
;

• (A = □cB) =⇒ v = [v ′] for some value v
′
;

• (A = B→ B
′) =⇒ v = λp.t for some patterns p and term t.

• otherwise v = x for some variable in Γ.
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Lemma 7.3. [Linear pattern type safety] For patterns p where irrefutable p and D; Σ;− ⊢ p :

A ▷ Γ;θ , and values v with D; Σ; Γ2 ⊢ v : A, and terms t depending on the bindings of p with

D; Σ; Γ1, Γ ⊢ t : θB then ∃t ′ such that (v ▷ p)t= t ′ (progress) and D; Σ; Γ1 + Γ2 ⊢ t
′
: θB (preservation).

Proof. This is a proof by induction on the form of D; Σ;− ⊢ p : A ▷ Γ;θ .

Case.

0⊑ r

Σ ⊢ A : Type

D; Σ; r : R ⊢ _ : A ▷ ∅; ∅
[p_]

This case holds trivially, because r : R is not −.

Case.

Σ ⊢ A : Type

D; Σ;− ⊢ x : A ▷ x : A; ∅
pVar

In this case p = x, Γ = x : A and θ = ∅. At this point we know the following:

(v ▷ x)t= [v/x]t

Thus, choose t
′ = [v/x]t. Then, since Γ = x : A, we know the following:

D; Σ; Γ1, x : A ⊢ t : θB

Thus, by Lemma 7.1 we know that D; Σ; Γ1 + Γ2 ⊢ [v/x]t : θB.

Case.

Σ ⊢ A′ : Type

D; Σ; r : R ⊢ x : A
′ ▷ x : [A′]r :R; ∅

[pVar]

This case holds trivially, because r : R is not −.

Case.

D; Σ;− ⊢ n : Int ▷ ∅; ∅
pInt

This case holds trivially, because irrefutable n is false.

Case.

1⊑ r

D; Σ; r : R ⊢ n : Int ▷ ∅; ∅
[pInt]

This case holds trivially, because r : R is not −.

Case.

D; Σ; r : R ⊢ p : A
′ ▷ Γ;θ

Σ ⊢ r : R

D; Σ;− ⊢ [p] : □rA
′ ▷ Γ;θ

p□

We know by assumption that irrefutable [p], but this implies that irrefutable p. In addition, we

know thatA = □rA
′
, and hence, by Lemma C.7 we know that v = [v ′] and Γ2 = r · Γ′

2
, this then

implies that we know D; Σ; r · Γ′
2
⊢ [v ′] : □rA

′
. So it must be the case that D; Σ; [Γ′

2
] ⊢ v ′ : A′.

Furthermore, by assumption we know that D; Σ;− ⊢ p : □rA
′ ▷ Γ;θ holds, and hence, it

must be the case that p = [p′], and by inversion we know that D; Σ; r : R ⊢ p
′
: A
′ ▷ Γ;θ .

So far from the above reasoning and the set of assumptions we know the following:

– irrefutable p,
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– D; Σ; r : R ⊢ p
′
: A
′ ▷ Γ;θ ,

– D; Σ; [Γ′
2
] ⊢ v ′ : A′,

– D; Σ; Γ1, Γ ⊢ t : θB
Then by Lemma 7.4 we know there exists a term t

′′
such that (v ′▷p′)t= t ′′ andD; Σ; Γ1+r · Γ

′
2
⊢

t
′′
: θB. Thus, choose t ′ = t

′′
. Then we know that ([v ′] ▷ [p′])t= t ′′, and we already know

that D; Σ; Γ1 + Γ2 ⊢ t
′′
: θB because Γ2 = r · Γ′

2
.

Case.

D; Σ; s : S ⊢ p : A ▷ ∆;θ
Σ ⊢ r ′ : ↑R′

flatten(r, R, r ′, R′) = (s, S)

D; Σ; r : R ⊢ [p] : □r′A ▷ ∆;θ
[p□]

This case holds trivially, because r : R is not −.

Case.

(C : (∀{−−−→α : κ} . B1 → . . .→ Bn → A
′,θκ )) ∈ D

θ , Σ′,θ ′κ = instantiate(
−−−→α : κ,θκ )

Σ, Σ′ ⊢ θA′ ∼ A ▷ θ ′

D; Σ, Σ′;− ⊢ pi : (θ
′
κ ⊎ θ

′ ⊎ θ )Bi ▷ Γi;θi

D; Σ, Σ′;− ⊢ C p1 .. pn : A ▷
−→
Γi ;θ

′
κ ⊎ θ

′ ⊎ θ1 ⊎ . . . ⊎ θn
pC

From irrefutable (C1 p0 .. pn) in the premise we conclude that irrefutable pi for all subpatterns

by the definition of irrefutability, and that C ∈ K and that cardinality K ≡ 1 and we get

Γ1 =
−→
Γi .

By the vaue lemma we then have that v = C v0 .. vn, which must have been typed by (C) with

repeated (app) such that: D; Σ; Γ′
i
⊢ vi : Bi.

Combined with irrefutable pi we then get the inductive hypotheses for all i where Γ2i gives
the typing context for each

(vi ▷ pi)ti=ti+1 ∧ D; Σ; Γ1 + r · Γ
′
i
⊢ ti+1 : A

Thus by applying (▷C ) to each inductive progress result we get progress overall with (v0 ▷
C p0 .. pn)t=ti+1.
Furthemore, by induction of i we get the final typing thatD; Σ; Γ1+r · Γ

′
0
+ · · ·+r · Γ′

n
⊢ tn+1 : A

since each substitution substituions avi in for each. Γi in the context Γ1. Thus by distributivity
of · over + gives D; Σ; Γ1 + r · Γ2 ⊢ tn+1 : A.

Case.

(C : (∀{−−−→α : κ} . B1 → . . .→ Bn → A
′,θκ )) ∈ D

1⊑ r

θ , Σ′,θ ′κ = instantiate(
−−−→α : κ,θκ )

Σ, Σ′ ⊢ θA′ ∼ A ▷ θ ′

D; Σ, Σ′; r : R ⊢ pi : (θ
′
κ ⊎ θ

′ ⊎ θ )Bi ▷ Γi;θi

D; Σ, Σ′; r : R ⊢ C p1 .. pn : A ▷
−→
Γi ;θ

′
κ ⊎ θ

′ ⊎ θ1 ⊎ . . . ⊎ θn
[pC]

This case holds trivially, because r : R is not −.

□

Lemma C.8. [Flatten is compatible with ∨] For all coeffect terms r , r ′ and types R, R′, S then:

(∃s .flatten(r, R, r ′, R′) = (s, S)) ⇔ (∃ι1, ι2. R ∨ R′ ▷ S; ι1; ι2 ∧ s ⊑ (ι1 r ) · (ι2 r
′)
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Proof. By case analysis on flatten forR andR′, using the fact that both flatten are∨ are functions,
where in each case we get the bi-implication since there is a one-to-one mapping between flatten

and ∨ cases.

• flatten(r,Nat, r ′, ExtNat) = r · r ′ : ExtNat.
By the definition of ∨, then

Nat ⊔ ExtNat ▷ ExtNat; ι⊆ ; id

(match) and (r · r ′) ≡ (ι⊆ r ) · (id r ′) (subsume as equality);

• flatten(r, ExtNat, r ′,Nat) = r · r ′ : ExtNat.
Symmetric reasoning to the above since both operations are symmetric. From now on we

therefore elide the symmetric cases.

• flatten(r, ExtNat, r ′, ExtNat) = r · r ′ : ExtNat.
By the idempotence of ∨ (generating identity injections) then we have a matching resultant

type ExtNat with (r · r ′) ≡ (id r ) · (id r ′) (equal).

• flatten(r, R, r1..r2, Interval R) = (r · r1)..(r · r2) : Interval R
By the definition of ∨:

R ⊔ Interval R ▷ Interval R; r 7→ r ..r ; id

(match) then (r · r1)..(r · r2) ≡ ((r 7→ r ..r) r ) · (id r1..r2) = (r ..r ) ∗ (r1..r2) = (r · r1)..(r · r2)

• flatten(r, R, (r1, s1), R × S) = (r · r1, s1) : R × S
By the definition of ∨:

R ⊔ (R × S) ▷ R × S; r 7→ (r, 1); id

Thus we have matching resultant type R × S, and (r · r1, s1) ≡ ((r 7→ (r, 1)) r ) · (id (r1, s1)) ≡
(r , 1) ∗ (r1, s1) ≡ (r · r1, s1).

• flatten(s, S, (r1, s1), R × S) = (r1, s · s1) : R × S
By the definition of ∨:

S ⊔ (R × S) ▷ R × S; s 7→ (1, s); id

Thus we have matching resultant type R × S, and (r1, s · s1) ≡ ((s 7→ (1, s)) s) · (id (r1, s1)) ≡
(1, s) ∗ (r1, s1) ≡ (r1, s · s1).

• flatten(r,Nat, r ′,Nat) = r · r ′ : Nat By idempotence of ∨ (generating identity injections) then

we have a matching resultant type Nat with (r · r ′) ≡ (id r ) · (id r ′) (equal).

• flatten(r, Level, r ′, Level) = r ⊓ r ′ : LevelBy the idempotence of ∨ (generating identity injections)

then we have a matching resultant type Level with (r ⊓ r ′)⊑(id r ) · (id r ′) ≡ r ⊔ r ′ by the

lattice properties.

• flatten(r, R, r ′, R′) = (r , r ′) : R × R′ (where R , R′). By the definition of ∨, then:

R ⊔ R′ ▷ R × R′; r 7→ (r, 1); r ′ 7→ (1, r ′)

Thus we have a matching resultant type R × R
′
and (r , r ′) ≡ ((r 7→ (r, 1)) r ) · ((r ′ 7→

(1, r ′)) r ′) ≡ (r , 1) ∗ (1, r ′) ≡ (r , r ′).

□
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Lemma C.9. [Associativity of join] For all coeffect types R, R′, S′ then there exists coeffect types

R1, R2, R3 and injections: ι1 : R′ → R1, ι2 : S ′ → R1, ι3 : R → R3, ι4 : R1 → R3, ι5 : R → R2,

ι6 : R
′→ R2, ι7 : R2→ R3, ι8 : S

′→ R3, such that:

(R′ ⊔ S′ ▷ R1; (ι1, ι2) ∧ R ⊔ R1 ▷ R3; (ι3, ι4)) ⇔ (R ⊔ R′ ▷ R2; (ι5, ι6) ∧ R2 ⊔ S
′ ▷ R3; (ι7, ι8))

and the following commutes through R3:

R3

R1

ι4``

R

ι3

>>

ι5 ��
R′

ι1
>>

ι6~~
S ′

ι2``

ι8
~~

R2

ι7   
R3

Proof. By case analysis over the definition of upper-bound on coeffect types (Def. A.5). The

proof exploits the fact that we treat products as associative and the syntactic restriction over which

coeffect type constructors can be composed (Def. A.1). □

Lemma C.10. [Monoidal action of flattening with respect to scalar multiplication] For coeffect

types R, R′, S and grades r : R, r
′
: R
′
and contexts Γ, then if flatten(r, R, r ′, R′) = (s, S), we have:

(s : S) · Γ ⊑ (r : R) · ((r ′ : R′) · Γ)

Proof. This proof combines Lemma C.9 (associativity of ∨) with Lemma C.8 (compatibility of

flatten and ∨), along with the definition of scalar multiplication in Gr (Definition 4.8).

Without loss of generality we can focus on the Γ = y : [A]s′:S′ . We then have two facts:

(1) Expanding the definition of scalar multiplication, Def 4.8, yields that R
′ ⊔ S′ ▷ R1; (ι1, ι2) and

R ⊔ R1 ▷ R3; (ι3, ι4) then by associativity of ∨ (Lemma C.9) we have R ⊔ R
′ ▷ R2; (ι5, ι6) and

R2 ⊔ S
′ ▷ R3; (ι7, ι8)

(2) By Lemma C.8, with flatten(r, R, r ′, R′) = (s, S) then we have that: ∃ι′
1
, ι′
2
. R ∨ R′ ▷ S; ι′

1
; ι′
2
and

s ⊑ (ι′
1
r ) · (ι′

2
r ′).

Since ∨ is a function then it must be that S = R2 and thus ι′
1
= ι5 and ι

′
2
= ι6 (from the above).

We then proceed by expanding the right hand side of the lemma statement (r : R) · ((r ′ : R′) · Γ):

(r : R) · ((r ′ : R′) · y : [A]s′:S′)

{Def. 4.8} = (r : R) · (y : [A]ι1r′ · ι2s′)

{Def. 4.8} = y : [A]ι3r · ι4(ι1r′ · ι2s′)

{Lem. C.9 (fact 1)} = y : [A]ι7(ι5r · ι6r′) · ι8s′

{Lem. C.8 (fact 2) and · monotonicity } ⊒ y : [A]ι7s · ι8s′

= (s : S) · y : [A]s′:S′

We can then apply this reasoning to a general context Γ since each graded assumption is independent.

□

Lemma 7.4. [Graded pattern type safety] For patterns p where irrefutable p and D; Σ; r : R ⊢ p :

A ▷ Γ;θ , and values v with D; Σ; [Γ2] ⊢ v : A, and terms t depending on the bindings of p with

D; Σ; Γ1, Γ ⊢ t : θB then ∃t ′ s.t. (v ▷ p)t= t ′ (progress) and D; Σ; Γ1 + r · Γ2 ⊢ t ′ : θB (preservation).
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Proof. This is a proof by induction on the form of D; Σ; r : R ⊢ p : A ▷ Γ;θ .

Case.

0⊑ r

Σ ⊢ A : Type

D; Σ; r : R ⊢ _ : A ▷ ∅; ∅
[p_]

In this case, t
′ = t, because (v ▷ _)t= t.

Now we also know by assumption that D; Σ; Γ1 ⊢ t : θB, thus we can apply weakening

to get D; Σ; Γ1 + [Γ2]0:R ⊢ t : θB, and finally, we can apply the approximation rule to get

D; Σ; Γ1 + r · Γ2 ⊢ t : θB, because we know that 0⊑ r from the premise of [p_].

Case.

Σ ⊢ A : Type

D; Σ;− ⊢ x : A ▷ x : A; ∅
pVar

This case holds trivially, because − is not r : R.

Case.

Σ ⊢ A′ : Type

D; Σ; r : R ⊢ x : A ▷ x : [A]r :R; ∅
[pVar]

In this case we know that p = x, Γ = x : [A]r :R, and θ = ∅. We know that (v ▷ p)t =

(v ▷ x)t= [v/x]t. Thus, choose t ′ = [v/x]t. Now we know that D; Σ; Γ1, x : [A]r :R ⊢ t : B and

D; Σ; [Γ2] ⊢ v : A imply by Lemma 7.2 that D; Σ; Γ1 + r · Γ2 ⊢ [v/x]t : B.

Case.

D; Σ;− ⊢ n : Int ▷ ∅; ∅
pInt

This case holds trivially, because − is not r : R.

Case.

1⊑ r

D; Σ; r : R ⊢ n : Int ▷ ∅; ∅
[pInt]

This case holds trivially, because irrefutable n is false.

Case.

D; Σ; r : R ⊢ p : A
′ ▷ Γ;θ

Σ ⊢ r : R

D; Σ;− ⊢ [p] : □rA
′ ▷ Γ;θ

p□

This case holds trivially, because − is not r : R.

Case.

D; Σ; s : S ⊢ p : A
′ ▷ ∆;θ

Σ ⊢ r ′ : ↑R′

flatten(r, R, r ′, R′) = (s, S)

D; Σ; r : R ⊢ [p] : □r′A
′ ▷ ∆;θ

[p□]

We know from the assumptions that irrefutable [p], which implies that irrefutable p. In

addition, we know that A = □r′A
′
, and hence, by Lemma C.7 we know that v = [v ′]. There

are three possibilities for the typing of [v ′]:

(1) (promotion)
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Case.

Σ ⊢ r ′ : ↑R′ Σ ⊢ R′ : Coeff
D; Σ; [Γ′

2
] ⊢ v ′ : A′

D; Σ; r ′ · Γ′
2
⊢ [v ′] : □r′A

′
pr

where Γ2 = r
′ · Γ′

2

By induction on D; Σ; s : S ⊢ p : A
′ ▷ ∆;θ with D; Σ; Γ′

2
⊢ v ′ : A′, we then get the following:

(v ′ ▷ p)t= t ′

∧ D; Σ; Γ1 + s · Γ
′
2
⊢ t ′ : θB

From this we can conclude that we have progress:

(v ′ ▷ p)t= t ′

([v ′] ▷ [p])t= t ′
▷□

For preservation, our goal is to get D; Σ; Γ1 + r · Γ2 ⊢ t
′
: θB which is equal to D; Σ; Γ1 +

r · (r ′ · Γ′
2
) ⊢ t ′ : θB.

Given that flatten(r, R, r ′, R′) = (s, S), we apply Lemma C.10 with the induction hypothesis

to get:

(s : S) · Γ ⊑(r : R) · ((r ′ : R′) · Γ)

(2) (weakening) If we conclude with weakening, then there must have still been an application

applied previously, i.e.:

Σ ⊢ R : Coeff

Σ ⊢ r ′ : ↑R′ Σ ⊢ R′ : Coeff
D; Σ; [Γ′

2
] ⊢ v ′ : A′

D; Σ; r ′ · Γ′
2
⊢ [v ′] : □r′A

′
pr

D; Σ; r ′ · Γ′
2
+ [∆]0:R ⊢ [v] : □r′A

weak

i.e. Γ2 = r
′ · Γ′

2
+ [∆]0:R. We can thus apply our lemma to the promotion rule (see case (1))

above yielding, ([v ′] ▷ [p])t= t ′ and then reapply weakening:

Σ ⊢ R : Coeff

D; Σ; Γ1 + r
′ · Γ′

2
⊢ t ′ : θB

D; Σ; Γ1 + r
′ · Γ′

2
+ [∆]0:R ⊢ t

′
: θB

weak

which by absorption has the context equal to Γ1 + r
′ · (Γ′

2
+ [∆]0:R) reaching our goal.

(3) (approximation) If we conclude with approximation, then the approximation must still be

applied to a promotion since syntactically we have [v ′], thus there must be a derivation

such that:

Σ ⊢ r ′ : ↑R′ Σ ⊢ R′ : Coeff
D; Σ; [Γ′

2
] ⊢ v ′ : A′

D; Σ; r ′ · Γ′
2
⊢ [v ′] : □r′A

′
pr

r
′ ⊑ s

D; Σ; s · Γ′
2
⊢ [v] : □r′A

′
⊑

The reasoning is then similar to above, applying the lemma to the promotion rule of [v ′]
and then reapply approximation.
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Case.

(C : (∀{−−−→α : κ} . B0 → . . .→ Bn → KA0 . . .Am,θκ )) ∈ D
θ , Σ′,θ ′κ = instantiate(

−−−→α : κ,θκ )
Σ, Σ′ ⊢ θ (KA0 . . .Am) ∼ A ▷ θ ′

D; Σ, Σ′;− ⊢ pi : (θ
′
κ ⊎ θ

′ ⊎ θ )Bi ▷ Γi;θi

D; Σ, Σ′;− ⊢ C p0 .. pn : A ▷
−→
Γi ;θ

′
κ ⊎ θ

′ ⊎ θ0 ⊎ . . . ⊎ θn
pC

This case holds trivially, because − is not r : R.

Case.

(C : (∀{−−−→α : κ} . B0 → . . .→ Bn → KA0 . . .Am,θκ )) ∈ D
1⊑ r

θ , Σ′,θ ′κ = instantiate(
−−−→α : κ,θκ )

Σ, Σ′ ⊢ θ (KA0 . . .Am) ∼ A ▷ θ ′

D; Σ, Σ′; r : R ⊢ pi : (θ
′
κ ⊎ θ

′ ⊎ θ )Bi ▷ Γi;θi

D; Σ, Σ′; r : R ⊢ C p0 .. pn : A ▷
−→
Γi ;θ

′
κ ⊎ θ

′ ⊎ θ0 ⊎ . . . ⊎ θn
[pC]

From irrefutable (C1 p0 .. pn) in the premise we conclude that irrefutable pi for all subpatterns

by the definition of irrefutability, and that C ∈ K and that cardinality K ≡ 1 and we get

Γ1 =
−→
Γi .

By the value lemma we then have that v = C v0 .. vn, which must have been typed by (C)

with repeated (app) such that: D; Σ; Γ′
i
⊢ vi : Bi.

Combined with irrefutable pi we then get inductive hypotheses for all i where Γ2i gives the
typing context for each

(vi ▷ pi)ti=ti+1 ∧ D; Σ; Γ1 + r · Γ
′
i
⊢ ti+1 : A

Thus by applying (▷C ) to each inductive progress result we get progress overall with (v0 ▷
C p0 .. pn)t=ti+1.
Furthermore, by induction of i we get the final typing that D; Σ;G1 + r ∗G ′0 + . . . r ∗G ′n | −
tn + 1 : A since each substitution substitutions a vi in for each. Γi in the context Γ1. Thus by
distributivity of · over + gives D; Σ; Γ1 + r · Γ2 ⊢ tn+1 : A.

□

Theorem 7.1. [Gr type safety] Progress and preservation follow from the above. For allD, Σ, Γ, t,A:

D; Σ; Γ ⊢ t : A =⇒ (value t) ∨ (∃t ′, Γ′. t { t
′ ∧ D; Σ; Γ′ ⊢ t ′ : A′ ∧ Γ′ ⊑ Γ ∧ A

′ ≤A)

where A
′≤A and Γ′ ⊑ Γ lift resource algebra preorders to types and contexts as a congruence (with

contravariance in function type parameters). The ordering Γ′ ⊑ Γ means that graded assumptions

can become more precise as reduction proceeds. For example, (0..1) ⊑ (0..∞) (for Interval Nat) thus
a reduction from Γ, x : [A]0..∞ ⊢ t : A to Γ, x : [A]0..1 ⊢ t

′
: A fits the form of the lemma.

Proof. By induction on the typing derivation of t:

• Case (int). value n

• Case (var) (def) (def) . value x

• Case (abs) . value (λp.t)
• Case (app)

D; Σ; Γ1 ⊢ t1 : A→ B

D; Σ; Γ2 ⊢ t2 : A

D; Σ; Γ1 + Γ2 ⊢ t1 t2 : B
app
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– Case value t1 and therefore t1 = λp.t ′
1
, and therefore we must have a derivation ended in

the (abs) rule for t1, i.e.:

D; Σ;− ⊢ p : A ▷ ∆;θ
D; Σ; Γ1,∆ ⊢ t

′
1
: θB

irrefutable p

D; Σ; Γ1 ⊢ λp.t
′
1
: A→ B

abs

∗ Case value t2 therefore let t2 = v.

By Lemma 7.3 and the derivation for p and t1 we can then reduce with (pβ) (λp.t ′
1
) v {

(v ▷ p)t ′
1
which is well-typed by Lemma 7.3 as:

D; Σ; Γ1 + Γ2 ⊢ (v ▷ p)t
′
1
: B

∗ Case ¬value t2. The inductive hypothesis on t2 then provides:

∃t ′
2
, Γ′

2
,A′.t2 { t

′
2
∧ D; Σ; Γ′

2
⊢ t ′

2
: A
′ ∧ Γ′

2
⊑Γ2 ∧ A

′≤A (ih)

We can then take a step with (appR ):

t2 { t
′
2

v t2 { v t
′
2

appR

and we can give the following typing (applying the congruence of ≤ with respect to

types):

D; Σ; Γ1 ⊢ v : A→ B

D; Σ; Γ′
2
⊢ t ′

2
: A
′

A
′≤A

D; Σ; Γ′
2
⊢ t ′

2
: A

≤

D; Σ; Γ1 + Γ′
2
⊢ v t ′

2
: B

app

and by monotonicity, from Γ′
2
⊑Γ2 we get (Γ1 + Γ′

2
)⊑(Γ1 + Γ2).

– Case ¬value t1.

The inductive hypothesis on t1 then provides:

∃t ′
1
, Γ′

1
,A′,B′. t1 { t

′
1
∧ D; Σ; Γ′

1
⊢ t ′

1
: A
′→ B

′ ∧ Γ′
1
⊑Γ1 ∧ (A

′→ B
′)≤(A→ B) (ih)

Deconstructing the congruence of ≤ on types, which is contravariant on function arguments,

gives us that A≤A′ and B
′≤B.

We can then take a step with (appL):

t1 { t
′
1

t1 t2 { t
′
1
t2

appL

and we can give the typing by:

D; Σ; Γ′
1
⊢ t ′

1
: A
′→ B

′

D; Σ; Γ2 ⊢ t2 : A A≤A′

D; Σ; Γ2 ⊢ t2 : A
′

≤

D; Σ; Γ′
1
+ Γ2 ⊢ t

′
1
t2 : B

′
app

and by monotonicity, from Γ′
1
⊑Γ1 we have that: Γ

′
1
+ Γ2⊑Γ1 + Γ2.

– Case (der).

D; Σ; Γ, x : A ⊢ t : B

Σ ⊢ R : Coeffect

D; Σ; Γ, x : [A]1:R ⊢ t : B
der
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The induction hypothesis implies:

(value t) ∨ ∃t ′, Γ′,B′. t { t
′ ∧ D; Σ; Γ′ ⊢ t ′ : B′ ∧ Γ′⊑(Γ, x : A) ∧ B

′≤B (ih)

If value t, then we are done, and so suppose the latter. Since x is linear, then Γ′ = (Γ′′, x : A),

and we know D; Σ; Γ′′, x : A ⊢ t ′ : B′. Finally, by reapplying the dereliction typing rule we

get our goal:

D; Σ; Γ′′, x : [A]1:R ⊢ t
′
: B
′

– Case (pr)

Σ ⊢ R : Coeffect

Σ ⊢ r : ↑R
D; Σ; [Γ] ⊢ t : A

D; Σ; r · Γ ⊢ [t] : □rA
pr

The induction hypothesis implies:

(value t) ∨ ∃t ′, Γ′′,A′. t { t
′ ∧ D; Σ; Γ′′ ⊢ t ′ : A′ ∧ Γ′′⊑Γ ∧ A

′≤A (ih)

If value t, then we are done, so suppose the latter. Then we know that t { t
′
implies that

[t] { [t ′], and Γ′ is discharged, because of the grading operation on [Γ]. We can therefore

apply the promotion rule to get:

Σ ⊢ r : ↑R Σ ⊢ R : Coeff

D; Σ; [Γ′′] ⊢ t ′ : A′

D; Σ; r · Γ′′ ⊢ [t ′] : □rA
′

pr

By monotonicity of ·, from Γ′′⊑Γ we have r · Γ′′⊑r · Γ and by congruence of ≤ from A
′≤A

we have that □rA
′ ≤ □rA.

– Case (let♢)

D; Σ; Γ1 ⊢ t1 : ♢ε1A
D; Σ;− ⊢ p : A ▷ ∆;θ
D; Σ; Γ2,∆ ⊢ t2 : ♢ε2θB
irrefutable p

D; Σ; Γ1 + Γ2 ⊢ let ⟨p⟩� t1 in t2 : ♢(ε1⋆ε2)B
let♢

Applying the induction hypothesis to the first premise implies:

(value t1) ∨ ∃t ′1, Γ′1 , ♢ε ′
1

A
′. t1 { t

′
1
∧ D; Σ; Γ′

1
⊢ t ′

1
: ♢ε ′

1

A
′ ∧ Γ′

1
⊑Γ1 ∧ ♢ε ′

1

A
′ ≤ ♢ε1A (ih)

We have two cases to consider:

∗ Suppose value t1. Thus by the value lemma ∃t ′
1
such that t1 = ⟨t

′
1
⟩. In this case, (since

t1) is well typed, we must have a typing derivation for t
′
1
, why by inversion gives:

D; Σ; Γ′
1
⊢ t ′

1
: A.

By induction, we then know that:

(value t ′
1
) ∨ ∃t ′′

1
, Γ′′

1
A
′′. t ′

1
{ t

′′
1
∧ D; Σ; Γ′′

1
⊢ t ′′

1
: A
′′ ∧ Γ′′

1
⊑Γ1 ∧ A

′′≤A (ih)

· Case value t ′
1
then t

′
1
= v
′
1
and t1 = ⟨v

′
1
⟩ then we can reduce by letβ :

let ⟨p⟩� ⟨v ′
1
⟩ in t2 { (v

′
1
▷ p)t2

letβ
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Since a typing derivation for ⟨v ′
1
⟩ must either conclude with pure or can have pure

followed by approximation or weakening, we know that we have a judgment D; Σ; Γ1 ⊢
t1 : ♢1A, thus ε1 = 1 and then we by Lemma 7.3 we then have that

D; Σ; Γ′
1
+ Γ′

2
⊢ (v ′

1
▷ p)t2 : ♢ε2 (θB)

with 1⋆ ε2 = ε2 by unitality.

· Otherwise, t ′
1
{ t

′′
1
thus, we can apply (let2) to reduce inside the modality:

t
′
1
{ t

′′
1

let ⟨p⟩� ⟨t ′
1
⟩ in t2 { let ⟨p⟩� ⟨t ′′

1
⟩ in t2

let2

Then by the inductive hypothesis we have that giving:

D; Σ; Γ′′
1
⊢ t ′′

1
: A
′′

We can then give the following typing derivation:

D; Σ; Γ′
1
⊢ t ′′

1
: A
′′

D; Σ; Γ′
1
⊢ ⟨t ′′

1
⟩ : ♢1A

′′
pure

D; Σ; Γ′
1
⊢ ⟨t ′′

1
⟩ : ♢ε1A

′′
≤

D; Σ;− ⊢ p : A ▷ ∆;θ
D; Σ; Γ2,∆ ⊢ t2 : ♢ε2θB
irrefutable p

D; Σ; Γ′′
1
+ Γ2 ⊢ let ⟨p⟩� ⟨t ′′1 ⟩ in t2 : ♢(ε1⋆ε2)B

let♢

where by monotonicity Γ′′
1
⊑Γ1 implies Γ′′

1
+ Γ2⊑Γ1 + Γ2.

∗ Suppose ¬(value t1). Recalling from above that t1 has the following smaller typing

derivation:

D; Σ; Γ1 ⊢ t1 : ♢ε1A

Thus, by applying the induction hypothesis we know the following:

(value t1) ∨ (∃t ′, Γ′. t1 { t
′
1
∧ D; Σ; Γ′

1
⊢ t ′

1
: ♢ε ′

1

A
′ ∧ Γ′

1
⊑ Γ1 ∧ ♢ε ′

1

A
′ ≤ ♢ε1A)

But, we know ¬(value t1) by assumption, thus, we know the following must be the case:

∃t ′, Γ′. t1 { t
′
1
∧ D; Σ; Γ′

1
⊢ t ′

1
: ♢ε ′

1

A
′ ∧ Γ′

1
⊑ Γ1 ∧ ♢ε ′

1

A
′ ≤ ♢ε1A

Thus, by let1 we have the following:

t1 { t
′
1

let ⟨p⟩� t1 in t2 { let ⟨p⟩� t
′
1
in t2

let1

It suffices to show that:

D; Σ; Γ′′
1
+ Γ′′

2
⊢ let ⟨p⟩� t

′
1
in t2 : ♢(ε ′′

1
⋆ε ′′

2
)B

for some Γ′′
1
, Γ′′

2
, ε ′′

1
, and ε ′′

2
such that (Γ′′

1
+ Γ′′

2
) ⇐ (Γ1 + Γ2) and (ε

′′
1
⋆ ε ′′

2
) ⇐ (ε1 ⋆ ε2).

Recall that the application to the induction hypothesis above yielded:

∃t ′, Γ′. t1 { t
′
1
∧ D; Σ; Γ′

1
⊢ t ′

1
: ♢ε ′

1

A
′ ∧ Γ′

1
⊑ Γ1 ∧ ♢ε ′

1

A
′ ≤ ♢ε1A

Using this we know the following:

· D; Σ; Γ′
1
⊢ t ′

1
: ♢ε ′

1

A
′

· A′⊑A

· ♢ε ′
1

A
′ ≤ ♢ε1A

The final two imply that (ε ′
1
⋆ ε2) ⇐ (ε1 ⋆ ε2) and D; Σ; Γ

′
1
⊢ t ′

1
: ♢ε ′

1

A. Using the latter, we

can now apply the let♢ typing rule to obtain:

D; Σ; Γ′
1
+ Γ2 ⊢ let ⟨p⟩� t

′
1
in t2 : ♢(ε ′

1
⋆ε2)B

Thus, we obtain our result.
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– Case (pure)

D; Σ; Γ ⊢ t : A

D; Σ; Γ ⊢ t : ♢1A
pure

This case follows from the induction hypothesis, and reapplying the rule.

– Case (⊑)

D; Σ; Γ, x : [A]r , Γ
′ ⊢ t : B

r ⊑ s

D; Σ; Γ, x : [A]s, Γ′ ⊢ t : B
⊑

Applying the induction hypothesis implies:

(value t) ∨ ∃t ′, Γ′
1
, Γ′

2
, s′,B′. t { t

′ ∧ D; Σ; Γ′
1
, x : [A]r′, Γ

′
2
⊢ t ′ : B′ (ih)

∧ (Γ′
1
, x : [A]r′, Γ

′
2
)⊑(Γ, x : [A]r , Γ

′)

∧ B
′≤B

If value t, then we are done, so suppose the latter. Then from the above we have that r
′⊑r

which by transitivity with approximation in the premise implies r
′⊑s thus the inductive

hypothesis D; Σ; Γ′
1
, x : [A]r′, Γ

′
2
⊢ t ′ : B′ satisfies the form of the lemma.

□
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