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ABSTRACT 

We present a mid-infrared spectral-domain optical coherence tomography system operating at 4.1 
μm central wavelength with a high axial resolution of 8.6 μm enabled by more than 1 μm bandwidth 
from 3.58-4.63 μm produced by a mid-infrared supercontinuum laser. The system produces 2D 
cross-sectional images in real-time enabled the high-brightness of the supercontinuum source in 
combination with broadband upconversion of the signal to the range 820-865 nm, where a standard 
800 nm array spectrometer can be used for fast detection. We discuss the potential applications 
within nondestructive testing in highly scattering materials and within biomedical imaging for 
achieving the in-vivo optical biopsy. 

1.  INTRODUCTION 

Optical coherence tomography (OCT) has been established as one of the most successful and 
significant optical techniques for biophotonics and clinical biomedical imaging, most notably within 
the field of ophthalmology but also within dermatology, oncology, and cardiology. OCT has the 
ability to perform real-time, non-invasive, and non-contact measurements in reflection, providing 3D 
sample visualization in a convenient reflection modality. Rapid advances in light sources, detectors, 
and components for the visible and near-infrared spectral region have enabled the development of 
advanced functional techniques, high-speed, and high-resolution in vivo imaging, including OCT. In 
this regard, OCT fills the gap between ultrasonic imaging and confocal microscopy where OCT can 
offer the non-invasive modality of ultrasound without the need for a contact medium, and high 
spatial resolution of conventional microscopy without the need for a biopsy. In that sense, OCT is 
truly an example of the non-invasive optical biopsy. On the other hand, the greatest limitation of 
OCT is its shallow imaging depth, which is dictated by the scattering of light as it passes through 
inhomogeneous media. This fundamental property of OCT limits the imaging depth from a few 
hundred microns to a few millimeters depending on the tissue composition, optical probing scheme, 
and the wavelength of light. Since scattering losses are inversely proportional to the wavelength of 
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light relative to the size of the scattering features, it has long been known that the penetration of 
OCT would benefit from employing a longer center wavelength. Current state-of-the-art 
commercially available OCT systems for e.g. dermatology operate in the 1.3 μm wavelength range, 
utilizing the low water absorption, and the maturity of optical fibers and components developed for 
telecommunications in this region [1]. At longer wavelengths, light sources and detectors are 
significantly less efficient and components are less matured. In addition, water absorption is 
generally considered to be too strong for imaging of biological tissue and other aqueous samples in 
this region, and even in absence of water many materials may have significant vibrational absorption 
bands in this region. Therefore, the combined effect of absorption and scattering on the penetration 
depth makes it non-trivial to assess whether a sample would benefit from being imaged at a longer 
wavelength.  
 
Few attempts have been made to utilize the vast potential of mid-infrared (mid-IR) OCT, such as the 
early proof of concept work of Colley et al. demonstrating the first in-depth reflectivity profiles in 
the mid-IR using time-domain OCT. In their work, a single reflectivity profile (A-scan) of a calcium 
fluoride window and a topographic image of a gold-palladium coated tissue sample were presented. 
These first measurements were based on quantum cascade laser (QCL) emission and cryogenically 
cooled mercury cadmium telluride (MCT) detection using a time-domain OCT scheme. With a 
center wavelength of 7 µm, Colley et al. achieved a 30 µm axial (depth) resolution with an 
acquisition time of 30 min for a single reflectivity profile, which was heavily affected by side lobes 
due to the heavily modulated spectral shape. More recently, spectral-domain OCT techniques has 
been reported in the mid-IR enabled by broadband supercontinuum (SC) lasers, employing either 
pyroelectric array detection [2] or mid- to- near-IR upconversion detection [3], achieving A-scan 
rates of 2.5/s and 333.3/s, respectively. 
 
Here, we present results using the mid-IR OCT system reported in [3], as well as initial results using 
a modified version of the system based on a galvanometer scanning system. 

2.  THE SYSTEM 

The mid-IR OCT system reported in  [3] consists of five modular parts: a custom mid-IR SC source 
based on a 1.55 μm master-oscillator power amplifier (MOPA) pump laser and a single-mode 
zirconium fluoride fiber, a Michelson interferometer, a translation stage scanning system, an in-
house developed frequency upconversion module, and a silicon CMOS-based array spectrometer. 
Each subsystem is connected via optical fiber to ease the coupling and alignment between 
subsystems. The mid-IR SC source produces a continuous spectrum from 0.9-4.7 μm and is set to 
operate at 1 MHz pulse repetition rate generating 40 mW of average power above 3.5 μm. The 
spectral components below 3.5 μm are blocked by a long-pass filter, resulting in 20 mW coupled to 
the sample arm of the interferometer. The beam is focused onto the sample using a barium fluoride 
lens, and images are acquired by moving the sample using motorized translation stages. The sample 
and reference signals are collected in a single-mode indium fluoride fiber and relayed to the 
upconversion module for spectral conversion to the near-IR. The upconversion module converts a 
broad bandwidth from 3576-4625 nm to down to 820-865 nm in a single pass of the crystal. The 
upconverted signal is then coupled to a multi-mode silica fiber and imaged onto the spectrometer to 
resolve the spectrum.  
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region, which would represent an extension to the recent demonstration of mid-IR raster scanning 
imaging [7].  

4. CONCLUSION 

In conclusion, real-time spectral-domain OCT imaging in the mid-IR was demonstrated using a SC 
source in combination with broadband frequency upconversion covering more than one micron 
bandwidth from 3.58 to 4.63 μm. The upconverted signal was measured using a Si-CMOS 
spectrometer acquiring data with a line rate of 0.33 kHz, which enabled real-time B-scans at mm2/s 
speed, and 3D-scans at mm3/min acquisition rate. Furthermore, a galvanometer-based scanning 
system was implemented and tested for applications within e.g. in-vivo optical biopsy and inspection 
of bioceramic medical implants. 
 
1.   N. M. Israelsen, M. Maria, M. Mogensen, S. Bojesen, M. Jensen, M. Haedersdal, A. Podoleanu, and O. Bang, "The 

value of ultrahigh resolution OCT in dermatology - delineating the dermo-epidermal junction, capillaries in the 
dermal papillae and vellus hairs," Biomed. Opt. Express 9, 2240–2265 (2018). 

2.   I. Zorin, R. Su, A. Prylepa, J. Kilgus, M. Brandstetter, and B. Heise, "Mid-infrared Fourier-domain optical 
coherence tomography with a pyroelectric linear array," Opt. Express 26, 33428–33439 (2018). 

3.   N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. 
Pedersen, A. Podoleanu, and O. Bang, "Real-time high-resolution mid-infrared optical coherence tomography," 
Light Sci. Appl. 8, 11 (2019). 

4.   R. Su, M. Kirillin, E. W. Chang, E. Sergeeva, S. H. Yun, and L. Mattsson, "Perspectives of mid-infrared optical 
coherence tomography for inspection and micrometrology of industrial ceramics," Opt. Express 22, 15804–15819 
(2014). 

5.   R. Su, E. Chang, P. Ekberg, and L. Mattsson, "Enhancement of probing depth and measurement accuracy of optical 
coherence tomography for metrology of multi-layered ceramics," in 1st International Symposium on Optical 
Coherence Tomography for Non-Destructive Testing, (n.d.), pp. 71-73 (2013). 

6.   L. Kastl, B. Kemper, G. R. Lloyd, J. Nallala, N. Stone, V. Naranjo, F. Penaranda, and J. Schnekenburger, "Mid-
infrared spectroscopy in skin cancer cell type identification," in A. Amelink and I. A. Vitkin, eds. (2017), p. 
104130S. 

7.   C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, "Mid-
infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source," Opt. Lett. 43, 999–1002 
(2018). 

 


