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wreath product of symmetric groups

Reuben Green
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Abstract

We investigate a class of modules for the wreath product Sy, 1 S,
of two symmetric groups which are analogous to the Specht modules
of the symmetric group, and prove a range of properties for these
modules which demonstrate this analogy. In particular, we prove
analogues of the Specht module branching rule, we obtain results on
homomorphisms and extensions between these modules, and, over an
algebraically closed field whose characteristic is neither 2 nor 3, we
prove that, if a module for Sy, ! .S, has a filtration by these Specht
module analogues, then the multiplicities with which they occur do

not depend on the choice of a filtration.
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Chapter 1

Introduction and summary

The representation theory of the symmetric group S, on the set {1,...,n} is
of fundamental importance in many branches of mathematics. The study of
the symmetric group has an impressive pedigree, with a history stretching
back over a century and contributions from many distinguished mathematical
figures. In particular, the work of Young, Frobenius and Schur in the early
years of the twentieth century helped to lay the foundations of the subject,
but it is perhaps best known today in the form introduced by James in the
1970s, in which combinatorial methods and constructions figure prominently.

The main subject of this thesis is a class of modules for the wreath product
Sp 1Sy, of two symmetric groups (over some field), which are analogous to
the Specht modules for the symmetric group. Recall that the Specht modules
for the symmetric group S,, are a family of combinatorially-defined modules
which are indexed by the partitions of n. We shall write the Specht module
for S,, which is indexed by the partition A as S*. The Specht modules may be
defined in the very general setting of representation theory over a commutative
unital ring, but in this thesis we shall be working over a field, and in this

setting the Specht modules have many nice properties:
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e if the group algebra of the symmetric group is semisimple, then the
Specht modules provide a complete list of the isomorphism classes of

simple modules without redundancy

e if the group algebra of the symmetric group is not semisimple, then the

simple modules arise as the heads of a subset of the Specht modules

e if the characteristic of the field is not 2, then the Specht modules are

indecomposable even when they are not simple
e the dimensions of the Specht modules do not depend on the field

e the Specht modules behave well under induction from, and restriction to,
important subgroups of the symmetric group, admitting decompositions

described by elegant combinatorial branching rules.

Because of these and other properties, the Specht modules for S,, have been
the subject of intense study for decades, and a large and varied literature
has built up around them. Further, the Specht module construction has been
generalised in a number of ways, and the properties of the Specht modules
have inspired new approaches to various areas of representation theory.

One interesting and recent development in the theory of Specht modules
came in [19], in which Hemmer and Nakano demonstrated that, provided that
the field of coefficients is algebraically closed and its characteristic is not 2 or 3,
then for a module with a filtration by Specht modules, the multiplicities with
which the Specht modules occur will be the same for all such filtrations. This
result was originally rather surprising, but the “Hemmer-Nakano property”
has since been established for other classes of algebra (for example, the Brauer
algebra [I7]). A highlight of this thesis is a new case of this phenomenon.

Now the wreath product GS,, of a finite group G with a symmetric

group 5, is a natural group-theoretic construction with many applications.
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In particular, wreath products 5,05, of two symmetric groups are of great
importance in the representation theory of the symmetric group (see for
example [5]), and it is the representation theory of S,,0S, which is the
principal topic of this thesis. We shall study a class of modules for the wreath
product of two symmetric groups which are analogous to the Specht modules
of the symmetric group, and we shall justify this analogy by proving that
these modules for the wreath product share a range of properties with their
symmetric group counterparts. For example, these Specht modules are the cell
modules of a cellular algebra structure on the group algebra of S, 1.5, they
behave well under induction and restriction, they obey nice combinatorial

branching rules, and they exhibit the Hemmer-Nakano property.

In summary, the contents of this thesis are as follows. At the end of each
chapter, I have included a brief summary of the original research in that
chapter, in order to make clear exactly which material I am claiming as my
own work.

Chapter 2 is an introductory chapter in which we recall standard defini-
tions and results on finite-dimensional algebras, group representation theory,
and combinatorics.

Chapter 3 recalls basic material on the symmetric group and its Specht
modules, before dealing in more depth with some important results about
filtrations of symmetric group modules, which will be crucial tools for our
later work. Specifically, we shall consider Young’s rule and the Littlewood-
Richardson filtration rules. We then recall results on homomorphisms between
Specht modules, and further we consider extensions between Specht modules
by giving an expanded version of the arguments in [10]. Finally we recall
the notion of a stratifying system (in the sense given in [11]) and recall

the argument given in [10] to demonstrate that the Specht modules for the
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symmetric group give rise to such a stratifying system. This fact provides an
alternative proof of the above-mentioned Hemmer-Nakano property. A major
new result of this thesis is that the Specht modules of S,, ¢ S,, enjoy the same
property, and the proof of this is based on the techniques recalled here.

Chapter 4 recalls the definition and some basic properties of the wreath
product S, 1 S,, and defines some subgroups of the wreath product which
will be used later. We then give details of some well-known methods of
constructing modules for S, ! S,, from modules for S, and S,,, and use these
methods to define our wreath product Specht modules.

Chapter 5 considers the slightly more general situation of the wreath
product A1 S, of an algebra A (over a field) with a symmetric group, of which
the group algebra of S,, ¢ S, is the special case obtained by taking A to be
the group algebra of S,,,. We show that if A is a cellular algebra, then so
is Al Sy, thus re-proving (with slightly different assumptions) the result of
[12]. We consider the cell modules of A?.S,, in this case, and hence (using the
theory of cellular algebras) obtain useful results on the representation theory
of A1S,. We then apply this work to demonstrate that the group algebra
of S, 1S, is a cellular algebra whose cell modules are the Specht modules,
and we hence obtain information on the simple modules of S,, 1 S,, and their
relationship to the Specht modules. In particular, if the group algebra of
S 1S, is semisimple then the Specht modules provide a complete system of
isomorphism classes of simple modules. These properties provide justification
for our use of the name “Specht modules” for these wreath product modules,
since they mirror the properties of the Specht modules for the symmetric
group.

Chapter 6 contains results which explain how the module constructions

in Chapter 4 interact with module filtrations, and concludes by applying
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these methods to prove a wreath-product analogue of Young’s rule.

Chapter 7 develops some combinatorial theory of tableaux, which will be
used in subsequent chapters to understand cosets in 5,, 1 S,,.

In Chapter 8 we begin to use the material which we have developed
and recalled in previous chapters to prove some more substantial new results.
Indeed, an important result in the representation theory of .S, is the Specht
module branching rule, which describes how the restriction of a Specht module
from S, to S,,_1 (via the natural embedding of S,,_; into S,,) has a filtration
by Specht modules. The multiplicity of each Specht module in this filtration is
independent of the field of coefficients, and moreover has a simple and elegant
combinatorial interpretation. In Chapter 8, we prove two branching rules for
Specht modules over the wreath product S,, ¢ .S,, one for the restriction of
a Specht module to S, 1 1.5,, and one for the restriction to S,, ¢.S,_1. For
both rules, we provide a combinatorial interpretation of the multiplicities in
the filtration.

Chapter 9 is perhaps the heart of this thesis. It contains novel results
on homomorphisms and extensions between our wreath Specht modules and
wreath product analogues of the Young permutation modules of the symmetric
groups. The proofs of these results are rather complex, and make extensive
use of the material from Chapters 6 and 7.

Chapter 10 uses the results from Chapter 9 to prove that the Specht
modules for S, ¢ S,, give rise to a stratifying system in the same way as the
Specht modules for S,,. Consequently, over an algebraically closed field of
characteristic neither 2 nor 3, Specht filtration multiplicities are well-defined,
meaning that the Specht modules for the wreath product S,, ¢ .S,, exhibit the
Hemmer-Nakano property, as promised.

Finally, Appendix A briefly considers some possible future directions of

17



research which stem from the material in this thesis.
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Chapter 2

Background material

In this chapter, we shall collect and review various results from elementary
representation theory and from the literature, as well as fixing conventions
and notation.

Throughout this thesis, £ will denote a field. We shall often have to take
the tensor product ®y of k-vector spaces, and we shall thus abbreviate ®;, to
®. Initially, we place no restrictions on the field, so it may have characteristic
zero or a prime, and further we shall not assume that k is algebraically closed.
However, as we progress through our arguments, we shall find it necessary to
require that the characteristic char(k) of k is not 2 or 3, and in the chapter
on stratifying systems we shall also demand that k is algebraically closed. We

shall clearly state whenever we are making these assumptions on k.

2.1 Finite-dimensional algebras over fields

This thesis is concerned with the representation theory of the wreath product
SmlSy (see Chapter {)), a finite group, over a field k. This is of course none
other than the study of the group algebra k(S,,01S,). Hence, we shall need

19



some ideas from the representation theory of algebras over a field, and we
shall recall these in this section.

By a k-algebra, we shall mean a finite-dimensional unital associative
algebra over k, such as the group algebras kS, or k(S,,05,). We shall work
with right modules over our algebras, and hence the word “module” will mean
“right module” unless stated otherwise. Since we are interested here in group
algebras, and the categories of left and right modules over a group algebra
are isomorphic, we lose nothing by considering only right modules.

Let A be a k-algebra and B a subalgebra of A. Then we have operations
which convert A-modules into B-modules and vice versa. Indeed, if U is an
A-module, then we write U Lg to denote the B-module obtained by restricting
the A-action to a B-action; we call this module the restriction of U to B.
In the opposite direction, we note that A is itself a left B-module under the
action defined by multiplication, and so if V' is a (right) B-module, we may
form the tensor product V ®p A, which is then a (right) A-module; we call
this module the induction of V' to A, and write it as VT‘;.

We shall spend much of our time considering filtrations of modules, and so
we introduce some notation to help with this. Let A be a k-algebra. Firstly,
let us recall that if M is an A-module and Xi, ..., X; are also A-modules,

then a filtration of M by the modules X1, ..., X, is a chain of submodules
M=M,2M,12M,5---2M 2M=0

such that each quotient % is isomorphic to some X;. We call n the length
of the filtration. Note in particular that we do not demand that the modules
X; be pairwise non-isomorphic in this definition. Now suppose that for each

1=1,...,1, a; is a non-negative integer. We shall write
t
i=1

20



to mean that there exists a filtration of M

M =M, 2 My 2Mp_o---2M 2My=0

and a function f: {1,...,n} — {1,...,t} such that for each [ we have
M,
=X
M,_, O]

and | f~1(4)| = oy for each 1.

We shall routinely make a slight abuse of terminology and say, for example,
that “M has a filtration M ~ F:Zl a; X;”, or talk about “the filtration
M ~ F:Zl ; X;”. In such cases, we are of course referring to some filtration
for which a function f as above exists. Further, we shall refer to the integers
a; as multiplicities, so we might for example express the situation M ~
Fz=1 ; X; by saying that “the module M has a filtration by the modules
Xi,...,X; where X; appears with multiplicity a;”. However, we note that,
since we allow there to be isomorphisms between the modules X;, these
multiplicities are not in general uniquely determined by a filtration. Further,
even in the case where the modules X, are pairwise non-isomorphic so that
the multiplicities are uniquely determined by a filtration, we note that it
is in general perfectly possible to have two filtrations M ~ ::1 a; X; and
M ~ Fﬁ:l B; X; with o; # B; for some or all 7. In general, it is only for certain
special classes of modules Xj, ..., X; (for example, the simple A-modules)
that any two filtrations of an A-module M by X;,..., X, will always have
the same multiplicities (for the simple A-modules, this is the Jordan-Hélder
Theorem,).

Further, if r € {1,...,t} is such that f(1) =r, so that M; = X,., then we

will write

t
M ~ ‘E”'> Oéle
i=1
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Thus, this notation means that M has a filtration by the modules X; where
X; occurs with multiplicity «;, and the submodule of M at the very bottom
of the filtration is isomorphic to X,. If all of the integers «; are equal to 1,

then we shall allow ourselves to write
t t
M~ FX;, and M~ F, X
=1 i=1
The following elementary result will be used repeatedly in the sequel.

Proposition 2.1.1. Let A be a k-algebra, and let M and N be A-modules.
Suppose M has a filtration by modules Xy,...,X;, and N has a filtration
by modules Y1,...,Ys (where as above we allow the possibility that there are
isomorphisms amongst the modules X; and Y;).

1. If Homyu(X;,Y;) =0 for all i and j then Homa (M, N) = 0.

2. If Ext}(X;,Y;) = 0 for all i and j then Ext} (M, N) = 0.

iy 1y

Proof. We begin by considering some special cases. Firstly, suppose we have

an A-module Y and a short exact sequence of A-modules
00— Xy — M — Xy — 0.

We apply the (contravariant) functor Hom4(—,Y") to obtain a long exact

sequence

0 — Homy (X5,Y) ——Homyu (M,Y) — Homy (X;,Y)

/_/

Ethlél <X2>Y) EXt}L‘ (M,Y)—>Extll4 (X1’Y)_>...

and hence we see that if Hom4(X;,Y) =0 for i = 1,2 then Homu(M,Y) =0,
and that if Ext’(X;,Y) = 0 for i = 1,2 then Ext}(M,Y) = 0. Similarly, if

we have an A-module X and a short exact sequence of A-modules
0—Y  — N —Y, —0,
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then we apply the (covariant) functor Hom4 (X, —) to obtain a long exact

sequence

0 — Homy (X, Y1) — Homy (X, N) — Homy (X, Y3)

/’/

Ext! (X, Y1) Ext! (X, N) —— Ext!, (X, Y5) —— - -

and hence we see that if Hom4(X,Y;) = 0 for i = 1,2 then Homyu (X, N) =0,
and that if Ext’(X,Y;) = 0 for i = 1,2 then Ext! (X, N) = 0.

We may now easily prove, using induction on the length of the filtration
of M by the modules X;, that if we have some A-module Y such that
Homu(X;,Y) = 0 for i = 1,...,t then we have Homa(M,Y) = 0. The
general result then follows by using induction on the length of the filtration

of N by the modules Y;. m

Now recall that if A and B are k-algebras, then we may form the tensor
product algebra A ® B, which is the k-vector space A ® B together with
the multiplication defined on pure tensors by (a; ®by)(as®bs) = (a1a2 @ bybs).
Further, if M is an A-module and N is a B-module, then we may form the
A®B-module whose underlying vector space is M ® N and where the action
is given on pure tensors by (x ® y)(a ® b) = (xa) ® (yb) for a € A, b € B,
x € M and y € N. We denote this tensor product module by M X N and
we call it the outer tensor product of M and N. Note that we use the
symbol X rather than ® here to clearly distinguish this tensor product from
the inner tensor product of modules over a group algebra, which we shall
introduce below.

The following result is a direct corollary of the proof of Lemma 4.1 in [6],

and is in any case easy to prove directly.
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Lemma 2.1.2. Let A and B be k-algebras. Let M be an A-module and N a
B-module, with filtrations

t s
MN'FM i X N~ JF BiY;.
i=1

Jj=1

Then the A® B-module MXIN has filtration

MXN ~ }Z(p’q» ;3 X; K Y.
(6,5)€{1,...t} x{1,...,s}

It follows that if Ay, ..., A, are k-algebras and for each i, M; is an A;-module
with a filtration

t;
M; ~ ‘FIM Oé;X;’
j=1
then the A1® - - - ®A,-module M1X---XKM, has a filtration

MX---’M, ~ JT'Z(m o) O‘;l"'a?n X}I&---XIXJ.’";

.....

The following result will be a vital tool for large parts of our work in

subsequent chapters.

Proposition 2.1.3. Let A and B be finite-dimensional algebras over a field
k, let M, N be A-modules, and let S,T be B-modules. Then we have isomor-

phisms of k-vector spaces
Homagp(MXS, NXT') = Hom (M, N) ® Hompg(S,T') (2.1.1)
and
Extl o5 (MRS, NXT) =

(Exty (M, N) ® Homp(S,T)) & (Homa(M, N) ® Extp(S,T)) . (2.1.2)

It follows at once that if Ay, ..., A, are finite-dimensional k-algebras, and for

each i =1,...,n, M; and N; are A;-modules, then letting A = Q) A; we
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have an isomorphism of k-vector spaces
Hom (M X - KM, Ny&- - -®IN,) = (X) Hom,, (M;, N;)
i=1

and an isomorphism of k-vector spaces

Ext) (M®- - KM, N;X- - -KN,,) =

Proof. This result is implied by [4, Chapter XI, Theorem 3.1] (see also [35,
Lemma 3.2]), but both the statement and the proof of that result take rather
a lot of effort to understand (at least, in the author’s experience). It is,
however, perfectly possible to prove and by fairly elementary
homological algebra, and we shall now explain how this may be done. As is
normal with such arguments, the essential idea of the proof is fairly simple,
but there is a substantial volume of details to check. We shall therefore
confine ourselves here to sketching the outline of such a proof.

So let us first recall that if X, and Y, are chain complexes of k-vector
spaces, then the tensor product X, ® Y, of X, and Y, is the chain complex

with n'® term

@ X; ®Y]

i+j=n

and boundary map
o= P (0 ®id) + (-1)' (id® ;).
1+j=n

Similarly if X*® and Y* are cochain complexes of k-vector spaces, then their
tensor product X® ® Y*® is the cochain complex with n'" term

P xey

1+j=n
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and boundary map
"= P (0" ®id) + (1) (ide &).
i+j=n

If X, is a chain complex of k-vector spaces, let us write H;(X,) for the
" homology of X,, and if X*® is a cochain complex of k-vector spaces, let
us write H(X*®) for the i*" cohomology of X*. Recall that if X,,Y, are
chain complexes of finite dimensional k-vector spaces, then by the well-known
homological Kinneth theorem, we have for each n an isomorphism of k-vector

spaces

H, (X, ®Y,) = @ Hi(X.)® H;(Y.). (2.1.3)

i+j=n

(See for example [33, Theorem 3.6.3]). If we let X*, Y* be cochain complexes
of finite dimensional k-vector spaces, then by elementary homological algebra,
we may obtain from ([2.1.3) a “cohomological Kiinneth theorem”, by which
we have for each n an isomorphism of k-vector spaces

H'(X*®Y*)~ @ H'(X*) @ H(Y*). (2.1.4)

i+j=n

So with A, B, M, N,S,T as in the proposition, let us take P, to be a
projective resolution of M in the category of A-modules, and ), to be a
projective resolution of S in the category of B-modules. Viewing P, and (),
as complexes of vector spaces, we can form their tensor product P, ® ¢),. But
we can regard each tensor product space P; ® ); as the A® B-module P;X@Q);,
so we can regard the complex P, ® (), as a complex of A® B-module, and we
shall denote this complex of A®B-modules by P, X (),. It is then easy using
(2.1.3) (and the easily-proved fact that if P is a projective A-module and @
is a projective B-module then P X @ is a projective A®B-module) to prove
that the complex P, X (), is a projective resolution of M X S in the category
of A® B-modules. We apply the (contravariant) functor Homep(—, N X T)
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to the complex P, X (), to obtain the cochain complex (of k-vector spaces)
Hom g p(PoX¥Q., NXT'), whose n'" cohomology is Ext'y, 5(MXS, NKT). On
the other hand, we have the cochain complex of k-vector spaces Hom4(P,, N)®
Homp(Q.,T) (where we have applied (contravariant) Hom-functors to P,

and @, to obtain cochain complexes Hom4(P,, N) and Hompg(Q,.,T)). By
([2.1.4), this complex has n*® cohomology

P H'(Homu(P., N)) @ H’ (Homp(Q., T))

i+j=n
which is of course the same as

P Ext)y(M, N) @ Ext’y(S,T).

i+j=n
Thus to establish and it suffices to prove that there is a
cochain isomorphism between the cochains Homgp(FPs X Qo, N X T') and
Hom4(P,, N)®Hompg(Q,,T) (note that these are cochains of k-vector spaces)
and hence equate their cohomologies in degrees 0 and 1.

Now for any A-modules X,Y and B-modules U,V there is an obvious

map of k-vector spaces
Homu (X,Y) ® Homp(U, V) — Homagp(X XU, Y X V) (2.1.5)

and thus we can construct a cochain map from Homy(P,, N) ® Hompg(Q., T)
to Homagp(Pe K Qo, N X T') (the verification that this is indeed a cochain
map is a routine diagram-chasing argument). The only thing remaining is to
prove that this is a cochain isomorphism, which we do by proving that the
map is an isomorphism when both X and U are projective modules.
We do this by reducing it to the case where both X and U are indecomposable
projectives, and then using the fact that we then have X = Az and U = Bu

for idempotents x € A and u € B. H
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The following basic result in the theory of modules over finite-dimensional

algebras is well-known, and will be important in our analysis of Ext! spaces.

Proposition 2.1.4. Let A be a k-algebra and M, N be A-modules. Then the
k-vector space Extly (M, N) is in bijection with the set of equivalence classes
of extensions of M by N. In particular, Ext;(M, N) = 0 if and only if any
extension of M by N is split. Explicitly, this means that Ext! (M, N) =0 if
and only if whenever E is an A-module with a submodule X such that X = N
and E/X = M, then E has a direct sum decomposition E = X ®Y as an
A-module (where we must then have Y = M ).

2.2 Representation theory of finite groups

As mentioned above, in this thesis we shall be concerned principally with
modules for group algebras of finite groups. The theory of such modules has a
number of special features, and we recall the necessary results in this section.
We shall denote the group algebra of a group G over a field k by kG, and we
shall generally denote the identity element of a group by e.

Firstly, recall that for any group G and field k, we have the trivial kG-
module, which is just a copy of £ where all group elements act as the identity
map. We write this module as 1q, or just 1 if k is clear from the context.

Recall that if G is a finite group and U is a (right) kG-module, then
the (contragredient) dual of U is the (right) kG-module obtained by
equipping the k-vector space Homy (U, k) with the action defined by the
equation (¢g)(u) = ¢(ug™) for ¢ € Homy(U, k), g € G, u € U. We write
this dual module as U*. We further recall that (—)* (when suitably extended
to homomorphisms) is a contravariant self-inverse additive isomorphism of

categories from the category of right kG-modules to itself. In particular,
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(U =Uand (U V)*=2U*a V"

There are two common operations of “tensor product” on group modules,
and we shall use both of them. Firstly, let G be a finite group with a kG-
module X and H be a finite group with a kH-module Y. Then from the
previous section, we know that we can form the external tensor product of
X and Y, which is the (kG)®(kH )-module X X'Y. But we have a canonical
isomorphism (kG)®(kH) = k(G x H) induced by mapping the pure tensor
g ® h to (g,h), where g € G and h € H. Hence, we can regard X XY as a
k(G x H)-module, and we will do so from now on without comment. Thus
X XY is the k(G x H)-module obtained by equipping the k-vector space
X ®Y with the action given by (z ®y)(g, h) = (xvg) ® (yh) for g € G, h € H,
reX,andyeVY.

Now let G be a finite group and U,V be kG-modules. Then the internal
tensor product of U and V is the kG-module obtained by equipping the
k-vector space U ® V' with the G-action given by (v ® v)g = (ug) ® (vg) for
g€ G, ue U, and v € V. We shall write this module as U ® V', but there
should not be any chance of confusion with the plain tensor product of vector
spaces. It is immediate that U @ V =V ® U as kG-modules.

It turns out that internal and external tensor products behave well under
the operation of taking dual modules. Indeed, for modules U,V, XY as

above, we have module isomorphisms
UV =U"eV" (2.2.1)

and

(XRY) 2 X*KY" (2.2.2)

These isomorphisms are easily proved by taking k-bases of the modules

involved and working through the relevant calculations.
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We now recall some important results on the operations of inducing and
restricting modules between finite groups and their subgroups. To lighten
the notation, if G is a finite group and H is a subgroup of G, then we may
abbreviate induction and restriction of modules between kG and kH to just
1% and |§ if the field k is clear from the context. It is a standard and

easily-proved fact that if X is a kH-module then
dimy( X1%) = [G = H]dimg(X) (2.2.3)

where [G : H] = |G|/|H]| is the index of H in G.
It is immediate from the definition of the inner tensor product of group
modules that if G is a finite group with a subgroup H and U, V' are kG-modules

then we have an isomorphism of kH-modules
Uev]]S =2UlSev]s (2.2.4)

The outer tensor product behaves well with respect to the operations of
induction and restriction. The results in the following lemma are well-known

and easily proved.

Lemma 2.2.1. Let G be a finite group with a subgroup I, and H be a finite
group with a subgroup J. Let X be a kG-module, Y a kH-module, U a kI-

module, and V' a kJ-module. Then we have isomorphisms of group modules

(xmy) 7 = (x ) sl

and

RV = @T)BVT)).

We shall also make use of the fact that induction and restriction of modules
between groups and their subgroups “preserve filtrations” in the sense of the

following lemma.
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Lemma 2.2.2. Let G be a finite group and H a subgroup of G. Suppose that
we have a kG-module Y with a filtration

Y~ ﬁm ;Wi
i=1
for kG-modules W1, ..., W;. Then we have a filtration of kH-modules
V1% ~ ‘Ft@ a; WilS .
Conversely, if we have a kH-module X with a filtration
X ~ ﬁ> b;V;
for kH-modules Vi, ..., Vy, then we have a filtration of kG-modules
X1 ~ ]—71> bi Vit .

Proof. Now the operations 1% and |$ may be extended to homomorphisms in
the obvious way, and hence we see that induction and restriction are functors
between the relevant module categories. The lemma is then proved by noting
the well-known fact that both of these functors are exact. Indeed, we have by
[3, Proposition 3.3.1] and [3, Proposition 2.8.1] (which shows that the relevant
isomorphisms yield natural isomorphisms of functors) that both (1%, %) and
(1%,1%) are adjoint pairs, and hence that both functors are both right and
left exact, and thus that they are indeed exact. O]

Proposition 2.2.3. Let U, V,W be kG-modules for a finite group G. Then

we have an isomorphism of k-vector spaces
Extiy (W, U*®@V) 2 Extiy (WU, V).

Proof. Now Homy (U, V') has a natural kG-module structure given by setting
(fg)(uw) = (f(ug™))g for g € G, f € Homy(U,V) and u € U [3, p.50]. From

31



[3, p.52] we have an isomorphism Hom(U,V) = U* ® V' of kG-modules,
and combining this with [3, Proposition 3.1.8, (ii)] and the fact that ® is

commutative, we obtain the desired isomorphism. ]

From [3], we also have the Eckmann-Shapiro lemma and Mackey’s theorem.
Note that while [3] uses left modules, we give the right-module versions of
these results, which may be obtained by exactly the same arguments as the

left module versions.

Theorem 2.2.4. (Eckmann-Shapiro lemma) Let G be a finite group and H
be a subgroup of G. Let X be a right kG-module and Y be a right kH-module.
Then we have isomorphisms of k-vector spaces
Homye (Y 15, X) = Homyy (Y, X 1S)
Extlo(Y 15, X) & Exthy (Y, X 1§)
Homy(X,Y 1) = Homyp (X 19, Y)

Ethch(Xv Y Tfﬂ = Ethch(X \Lga Y)

Proof. These can be obtained easily using results from [3]. The first and
second isomorphisms are given by [3, Corollary 3.3.2]. The third and fourth
can be proved in the same way as [3, Corollary 3.3.2], using [3, Corollary
2.8.4] and the fact given in [3, Section 3.3] that the functors of induction and
co-induction (see [3, Definition 2.8.1]) coincide for modules over the group

algebra of a finite group. m

For the statement of Mackey’s Theorem, we need some definitions. Indeed,
if G is a finite group and H is a subgroup of GG, then for ¢ € G we define
HY to be the subset {g7'hg | h € H} of G. Then HY is a subgroup of G,
the conjugate subgroup of H by g, and in fact HY is isomorphic to H.
Further, if X is a kH-module, then we define X9 to be the kH%-module with
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underlying vector space X and action given by z(g~'hg) = zh for x € X and
h € H. We call this the conjugate module of X by g.

Theorem 2.2.5. (Mackey’s Theorem) Let G be a finite group with subgroups
H and K, let U be a complete non-redundant system of (H, K)-double coset
representatives in G, and let X be a right kH-module. Then we have a
decomposition of right kK -modules
X145 = P X" Uunx M uax -
uel

Proof. This is Theorem 3.3.4 of [3]. O

Proposition 2.2.6. [2, Section 8, Corollary 3] Let G be a finite group with a
subgroup H, and let k be a field (note that [2] formally assumes an algebraically
closed field, but the proof of this result does not use algebraic closedness).
Let U be a kG-module, and suppose that Uig has a kH -submodule X such
that X generates U as a kG-module. If dimy(U) = [G : H|dimg(X) (where
G : H| = |G|/|H| is as usual the index of H in G), then U is isomorphic as
a kG-module to X1% (note that [2] refers to “relatively free” modules rather

than “induced” modules, but as explained in [2] the concepts are equivalent).

Corollary 2.2.7. IfU is a kG-module with dim(U) = |G|/|H| and moreover
there is an element uw € U which generates U as a kG-module and which

satisfies uh = u for all h € H, then U = 15715,
Proof. Let X be the k-span of u and apply Proposition [2.2.6] m

An elementary but useful result on filtrations of group modules goes as

follows.
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Lemma 2.2.8. Let G be a finite group and Z, W kG-modules. Suppose W
has a kG-module filtration

t
Then the kG-module Z @ W has a filtration

t
ZoW ~ Foyai Z@ U

i=1

Symmetrically, if Z has a kG-module filtration
Z ~ ]:7{]> b;Vi
then we have a kG-module filtration
Z@W ~ F b VieoW.

i=1
Proof. Now let X,Y be kG-modules such that Y has a submodule U. Let
T be the k-subspace of the kG-module X®Y spanned by all pure tensors
of the form x ® u for x € X and u € U. Then it is easy to see that T is a
kG-submodule of X®Y' | that T'= X ® U as kG-modules via the obvious map,
and moreover that % =X ® (%) as kG-modules, again via the obvious

map. The first part of the lemma now follows via a trivial induction, and the

second part via a symmetrical argument. O]

2.3 Combinatorial definitions

We now recall some standard combinatorial definitions and notation, and also
introduce some more specialised concepts which we shall need for our work.
These non-standard definitions and notation will be recalled as they appear

in the text, but they are given here together for completeness.
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Let n,t be non-negative integers. A composition of n of length ¢, or
more briefly a t-composition of n, is a tuple v = (71, . .., ;) of non-negative
integers such that v+, + -+ - +7; = n. We define |y| = n, the size of 7, and
Y1, -..,7 are called the parts of 7. A partition of n is a composition of n
with no zero parts and where the parts are weakly decreasing. We shall adopt
the standard notation and write v F n to mean that v is a composition of n,
and A F n to mean that A is a partition of n. Thus, for example, (0,2,3,1,0,1)
is a composition of 7 which is not a partition, while (4,3,1,1,1) is a partition
of 10. Note that if n = 0 then n has exactly one partition, namely the empty
tuple (), which has length 0. We shall write Qf for the set of all compositions
of n with length ¢, and A, for the set of all partitions of n. For a given length
t, we let [n,[] denote the composition of n of length ¢ whose I'* entry is n and
which has all other entries 0, so that [n,l] = (0,0,...,0,n,0,...,0). We shall
also adopt the standard convention of allowing ourselves to denote repeated
entries in a composition or partition via a superscript, so that for example
the partition (3,2,2,2,2,1,1,1) could be written (3,2%,13). We shall use this
notation in particular to write the partition of n consisting of n 1’s as (1™).

It is often helpful to think of compositions and partitions in a pictorial way.
To this end, if &« = («, ..., q;) is a composition of n, the Young diagram
of shape « is an array of boxes, with a; boxes in the top row, as boxes in
the next row down, and so on, arranged with the left-most boxes of the rows
vertically aligned with each other. For example, if a = (4,3,5,2,1) E 15, then

the Young diagram of shape « is
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We number the rows of a Young diagram from top to bottom, so that the top
row is row 1, the next row down is row 2, and so on. We also speak of “higher”
and “lower” rows, where “higher” means nearer the top of the diagram and
“lower” means nearer the bottom of the diagram. Thus we note that the ;*®
row is higher than the j*® row if i is lower than j.

If a = (aq,...,0¢) and B = (B4, ..., [0s) are compositions of n, then we
say that o dominates (3, and we write a > £, if we have >\, a; > >0 5
for each r = 1,...,max(t, s) (where if one composition is shorter than the
other, we pad the shorter composition on the right with zeros to give them
the same length). This relation induces a partial ordering on compositions
of n, called the dominance order, and we make A,, a poset by equipping it
with this partial order. For example with n = 8 we have (3,3,2) > (3,2,2,1),
but (3,2,2,1) and (4,1,1,1,1) are not comparable in the dominance order.
The dominance order is a non-strict order, and we shall of course use the
symbol > to denote the associated strict order. Informally, we see that in the
dominance order, compositions whose Young diagrams are “shorter and wider”
rank higher than those whose Young diagrams are “taller and thinner”.

The dominance order is in general a partial order, but sometimes we
shall need a total order on compositions and partitions of n. The total order
we shall use is the lexicographic order, which we shall denote by >. If
a=(ay,...,0q) and B = (f1,..., Bs) are compositions of n, then we define
(aq,...,0q) > (P1,- .., Bs) to mean that there exists an ¢ with 0 < i < min(t, s)
such that o; = 8, for all 7 <4 and a; > 3;. We note that the lexicographic
order is an extension of the dominance order, meaning that if >/ then a > .
Now if we have any partial order on a set, then the reverse of this order is
the order obtained by simply reversing all the relations of the order. We shall

make use of the reverse lexicographic order, which we shall denote by
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>. We shall also use the symbol > to denote the reverse order of any order
denoted by the symbol >.

Keep n,t as non-negative integers. A multicomposition of n of length
t, or more briefly a t-multicomposition of n, is a tuple v = (',...,7") of
compositions (which will in general have different sizes, and where 7% = () is
allowed), such that |y!|+|y?|+-- -+ || = n. The compositions v!,... ~* are
called the components of 7. We shall write the 4*® part of the composition
7 oas fy; A multicomposition v = (v!,... ') is a multipartition if each
component v is a partition. Note that a multipartition can have empty compo-
nents (i.e. v' = () is allowed). For example, ((3,2,2,1),(4,1), (), (3),(3,2),())
is a 6-multipartition of 21. For y = (v',...,~") a multicomposition of n, we
define ||7]| = n, the size of 7, and |v| = (|y'[,[7?],--.,[7"]), a composition of

n, which we shall call the shape of 7. Thus for example we have

[((3,2,2,1),(4,1),(),(3),(3,2), () | = (8,5,0,3,5,0)
|| ((3’ 2,2, 1)7 (4a 1)7 ()a (3)7 (372)7 ()) || =21

Note that even if v is a multipartition, |y| will in general be a composition.
We shall write A, for the set of all multipartitions of n, and A’ for the set
of all t-multipartitions of n. Note that if n = 0 then n has exactly one
multipartition with ¢ components for each ¢ > 0. Indeed, for ¢t = 0 it is () (the
unique multicomposition with zero components), and for ¢ > 1 it is the ¢-tuple
(0),---,()). We shall be particularly interested in t-multicompositions v of n
where all components are () except for one, which must then be a composition
of n. Indeed, for a given length ¢, let us denote the t-multicomposition of n
which has v E n in the i*! place and empty compositions () everywhere else

as [7,1]. Thus we have

[’y?Z] = (()7()’7()77’()77())
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where the 7 on the right-hand side occurs in the i*" place.

In Corollary below, and its applications, we shall have a tuple
(aq,...,a;) of non-negative integers, and we shall wish to work with the set
of all t-multicompositions a = (a?, ..., a') of n where o’ has length a;. We
shall write Q(n;aq, ...,a;) for this set. Further, we let [[n, 1],; a4, ..., a;] be

h

the element of Q(n;ay,...,a;) whose i*® component is (n,0,...,0) and with

lth

an a;-tuple of zeros in the {*" place for each [ # ¢. Thus

(n,1], 45 a1,...,a]) = ((0,...,0),...,(n,0,...,0),...,(0,...,0)).

There is a natural analogue of the dominance order on compositions for
the set of multicompositions of n of length ¢ (which of course then restricts
to a partial ordering on the set of multipartitions of n of length t), see for
example in [8, Definition 3.11]. For multicompositions a = (a?, ..., a') and
B = (B, ..., 8" of n, we define a > B to mean that for any p € {1,...,t}

and ¢ > 0, we have (taking any parts o or 7 which would otherwise be

undefined to be zero as necessary)

p—1 ‘ q p—1 ' q
Dol + Y el = Y I8+ Y B
=1 =1 =1 =1

Note that o > § implies |af &> |3| (taking ¢ = 0 for each p), and if |a| = ||
then o > § if and only if o/ & ' for all i. When we refer to A, and A}, as
posets, it is to this order that we will be referring. For example, in the poset

A%, we have

((2.2,1),(2.1),(2.1,1), (1), 0,(2) & (2.2, (3,1). (2.1), (1), (1), (L.1)).

We shall also need to make use of tuples of multicompositions. We
shall typically denote such a tuple with a double underlined symbol such

as 7. We shall write the ¢ component of v as 7’ (a multicomposition),
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the j* component of 4" as 4/ (a composition), and the I** part of ¥ as
v (a non-negative integer). If v = (" ...,7"), then we write || for the
multicomposition (|7'[,..., |f|),_||1|| for the composition (||v']], _ D,
and |||7]|| for the integer ||| +-- -+ [|7]]-

We now recapitulate some of the above, in order to draw the reader’s
attention to the notational conventions which we have established, and which
we shall maintain throughout this thesis. Indeed, compositions and partitions
are denoted by Greek letters (generally lowercase), and their parts are indexed
with subscript numerals. For example, the i*" part of the composition « is
«;. Multicompositions and multipartitions are denoted by underlined Greek
letters, and when we have lists or tuples of compositions, the index of an
element of this list is written as a superscript. For example, the ™" component
of the multicomposition « is o, where we note that the symbol « is not
underlined because o is a composition, not a multicomposition. Similarly,
tuples of multicompositions are denoted by double-underlined Greek letters,
and when we have lists or tuples of multicompositions, the index of an element
of this list is written as a superscript. For example, the i** component of the
tuple 7 of multicompositions is li (where the symbol ~ is underlined once,
since t_his object is a multicomposition), and the j** component of 7 is 7%
(no underline, since this object is a composition). We therefore emphasise

the following points of notation to the reader.

e Symbols based around a double-underlined Greek letter denote tuples

of multicompositions.

e Symbols based around a single-underlined Greek letter (perhaps with

one or more superscripts) denote multicompositions (or multipartitions).

e Symbols based around a Greek letter with neither underlining nor a sub-
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script (but perhaps with one or more superscripts) denote compositions

(or partitions).

e Symbols based around a non-underlined Greek letter with a subscript
(perhaps with one or more superscripts) denote non-negative integers

occurring as parts of compositions or partitions.

It 1s the author’s experience that the use of these conventions is of great
assistance when performing or reading the kinds of calculations that will feature
prominently throughout this thesis, which involve the use of multicompositions
and multipartitions or tuples thereof. The author hopes that readers will
also find these conventions useful. Note, however, the interaction of these
conventions with the notations we have established above involving the vertical
bar symbol |. For example, if 7 is a tuple of multicompositions, then || is a
composition. The symbol 7 is underlined here because the expression |v| is
the result of applying the operation | - | to the multicomposition 7.

In (6.4.8) below, we shall need notation for a specific kind of tuple of

multicompositions. Indeed, let (ay,...,a;) be a tuple of non-negative integers
such that we have some i € {1,...,t} with a; # 0. Given a composition 7,
we define [[,1],4;a4,...,a;] to be the t-tuple of multicompositions whose *®

entry is the multicomposition (77, 0, ()) of length a;, and where for [ # 1,

the I'" entry is a tuple of empty compositions of length ;. Thus

[[7771]>i;a1,~--,at] = ((O:’())77(777()7’())77(()a7()))

We shall use the symbol o to denote the concatenation of tuples. Thus if

v, ..., vt are compositions, then v! o --- o v denotes their concatenation, so

that for example we have
(3,2,1)0(2,2)0(4,1,1) 0 ()0 (2) = (3,2,1,2,2,4,1,1,2).
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Similarly, if v, ..., ! are tuples of compositions, then v! o --- o v! denotes

their concatenation, so that for example

((3,2,1),(2,2),(3,1)) o ((4,1,1), (), (2)) =
(3.2,1),(2.2),(3,1), (4. 1,1), (). (2)).

Now if X is a partition of n, we associate to A the conjugate partition
A of A\, which is the partition whose Young diagram is obtained by reflecting
the Young diagram of A about its leading diagonal axis. For example, if

A = (5,3,1) then we take the Young diagram

[ |

and reflect it as described to obtain

and hence we see that X' = (3,2,2,1,1). We see that the map A\ — X is a
self-inverse bijection on A,,.

If v = (v1,..., ') is a multipartition, then we define the conjugate of v
to be the multipartition ((Vl)/, . (Vt)/), and we denote this by /.

When we come to discuss the simple modules of the group algebra of the
symmetric group, we shall need the concepts of p-regular and p-singular
partitions, where p is either 0 or a prime (indeed, p will be the characteristic
of our field k). Let n be a non-negative integer. If p = 0, then all partitions
of n are p-regular, and none are p-singular. If p > 0 is a prime number, then

a partition is p-singular if it contains a constant subsequence of length p, and
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is p-regular otherwise. For example, the partition (4,2,2,1,1,1,1) of 12 is

3-singular but 5-regular.

Original research in Chapter 2: There is no original research in Chapter

2.
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Chapter 3

Representation theory of

symmetric groups

In this chapter, we recall the material which we shall require on the rep-
resentation theory of the symmetric group. Our main source is the classic
monograph [20] of James, but we shall also recall some results from other

sources.

3.1 The symmetric group, Young permuta-
tion modules, Specht modules, and sim-
ple modules

For n a non-negative integer, we take S,, to be the symmetric group of all
permutations of the set {1,2,... ,n} under composition. Thus if n = 0 we
have the set of permutations of the empty set, which is the trivial group. We
take S, to act on {1,2,...,n} from the right, meaning that the product o7 of

permutations o, € .5, is the permutation obtained by first applying o and
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then applying 7. Thus we write permutations on the right of their arguments,

for example (7)o, so that we have the expected formula

(i)(om) = ((i)o).

We shall typically write permutations in cycle notation, so that for example
the element of Sg which maps 1,2,3,4,5,6 to 4,6,1,3,5,2 respectively will
be written as (1,4, 3)(2,6).

For a = (ay, . . ., ;) a composition of n > 0, we define as usual the Young
subgroup S, of 5, as follows. For each ¢t =0,...,t,let &; = a3+ -+ «;
(so note that &y = 0). Then S, is the subgroup of S, consisting of all
permutations which for each ¢ = 1,... ¢ map the set {&;_1 +1,...,&} to
itself. We shall be making frequent use of the operations of induction and
restriction between group algebras of symmetric groups and of their Young
subgroups, for example

X1pe and Y.

To de-clutter such expressions, we shall abbreviate the notation by replacing
the full symbols for the group algebras with the subscripts used to identify
the various subgroups of 5, involved, so for example the above would be
abbreviated to

X417 and Y.

Similarly, we abbreviate, for example, Homyg, to Hom,, and Ext,lgsa to Ext.,
and also lyg, and ljg, to 1, and 1,.

Now it is a standard fact that any permutation may be expressed as
the product of transpositions, which are elements of S,, of the form (a,b)
(expressed in cycle notation). Further, we may show for ¢ € S, that if
o =tlty -1, =ity -, where t; and t] are transpositions, then p and p’

are congruent modulo 2, and thus we may define sgn(o) € k to be (—1)P,
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where p is the length of any factorisation of ¢ into transpositions. We say that
oisevenifsgn(c) = 1 and odd if sgn(c) = —1. The map sgn : S,, — k yields
a one-dimensional kS,,-module consisting of a copy of k£ upon which o € S,
acts as multiplication by sgn(o). This module is called the sign module for
kS,,, which we write (in keeping with our abbreviated notation 1,) as Sgn,,
(with the field k& being understood). Further, the sign module can of course
be restricted to any subgroup H of S,,, and we write the resulting £H-module
as Sgn;, with our convention as above that if, for example, H = S,,, we will
write Sgng_ as Sgn,. If @ = (aq,..., ) is a composition of n then we may
easily see that

Sgn, = Sgn, |, = Sgn, X---XSgn,, (3.1.1)

where we have identified S, with S,, X -+ X S,, in the usual way.
Now if o € S,,, then an inversion of ¢ is a pair (7, j) such that 1 <i <
j <nand (i)o > (j)o, and the length of o, len(c), is the total number of

inversions of o.

Remark 3.1.1. Recall that a basic transposition in S, is a transposition
of the form (4,7 4 1) for some 7 such that 1 < i < n. It is a standard fact
that S, is generated by its basic transpositions, and it is also well-known that
for o € S,, len(o) is equal to the minimal length of an expression of o as a
product of basic transpositions (see for example [34, Lemma 2.1]). Hence,
this concept of the length of a permutation agrees with the Coxeter length
of a permutation when S,, is regarded as a Cozeter group generated by the
basic transpositions. See for example [30, Chapter 1, Section 1] for details. It

also follows that sgn(o) = (—1)n().

In the previous chapter, we recalled the notion of the Young diagram of a
composition. We now recall briefly the related definitions of Young tableaux

and Young tabloids in order to sketch the definition of the Young permutation
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modules and Specht modules for the symmetric group. Note that we shall not
need the definitions of these modules in our work, but we include them here
for completeness.

If o is a composition of n, then a Young tableau of shape «, or more
briefly an a-tableau, is a Young diagram of shape «, with the numbers 1 to
n inserted in the boxes, with one number per box and each number appearing

once. For example, if we take v = (4,3,5,2,1) F 15, then one a-tableau is

3[12]4 ]9
15| 5 10
14 7[8 (131}
11] 2

16

Given some composition a F n, we define an equivalence relation on the set
of all a-tableaux by making two tableaux equivalent if each number appears
on the same row in both tableaux. We call the resulting equivalence classes
a-tabloids. We think of a tabloid as “a tableau with unordered rows”.

We also define a more general kind of tableau, where repeated entries
are allowed. Indeed, given two compositions o and 3 of n, an a-tableau of
type (8 is a Young diagram of shape a with a positive integer in each box,
such that 1 appears (3; times, 2 appears 35 times, and so on. Thus a Young
tableau as defined above is more fully an a-tableau of type (1,1,...,1). So
for example keeping o = (4,3, 5,2,1) and taking 8 = (3,3,2,4,1,0,2) then

one a-tableau of type [ is

52)

’1\9%\11\3%
— W |
—_

We now use tabloids to define modules for £S,,, see Chapter 4 of [20] for
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full details. For a F n, 0 € S, acts on the set of a-tableaux by replacing
each entry 7 in a tableau with (i)o, and this action induces an action on
the set of a-tabloids. We let M® be the k-vector space with the set of all
a-tableaux as a basis. Then the S,-action on the set of tabloids induces a
right kS,-module structure on M. We call this module M the Young
permutation module associated to a.. It is clear that M is a cyclic module,
generated by any tabloid. Let us take 7(«) to be the tabloid obtained from
the tableau of shape a where the first row contains the numbers 1,.. ., a;, the
second row contains the numbers a; + 1,..., @1 + a9, and so on, so that for

example if o = (4,3,3,1) then 7(«) is the tabloid obtained from the tableau

1/2[3]4]
5167
81910
11

The tableau 7(«) is sometimes called the basic standard a-tableau. It is
clear that 7(a) generates M* as a kS,-module, and that 7(a)o = 7(«a) for
all o € S,. Further, by counting tabloids it is easily seen that

dimy (M) = H";' (3.1.2)

(note that this is independent of k), and this of course is equal to [S,, : S,],
so that by Corollary we have

M ~1,T0. (3.1.3)

Proposition 3.1.2. If a and B are compositions of n such that one may
be obtained by reordering the parts of the other, then we have M® = M? as
kS,,-modules.

Proof. We know by the isomorphism (3.1.3) that A/® = 1,Ta and that

MP =~ ﬂng, so we need only prove that 1,16 = 15T5. But it is a well-known
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and easily proved result that if H is a subgroup of a finite group G, then
the kG-module 1 HT?] is the permutation module for £G obtained by taking
the k-linearisation of the right H-coset space of G (recall that this is the
right G-set formed by equipping the set of right H-cosets Hg in G with the
action (Hgy)ge = H(g192) for g1,92 € G). Further, it is also a well-known
and easily proved result that if H and K are subgroups of a finite group
(G, then the space of right H-cosets in G and the space of right K-cosets
in G are isomorphic as G-sets if H and K are conjugate in G, meaning
that H = g-'Kg for some g € G. Thus it suffices to prove that the Young
subgroups S, and S are conjugate in \S5,,. This is a well-known fact, which
may easily be proved using the standard result that if d,e € S,,, then the
conjugate e 'de of § by e is the permutation whose cycle notation is obtained

by replacing each number 7 in the cycle notation of § with (7)e. O

Now if \ is a partition of n, then we identify a certain submodule S* of
M?*, called the Specht module associated to A. For the full definition we
refer the reader to Chapter 4 of [20], but in summary the Specht module S*
is defined as the k-span of all polytabloids in M?, where a polytabloid is a
certain element of M?, with one polytabloid associated to each A-tableau. If
char(k) is 0 or greater than n, then the collection of all Specht modules S* for
A n forms a complete system of isomorphism classes of simple k.S,-modules
without redundancy [20, Chapter 11]. If char(k) is greater than 0 but less
than or equal to n, then the Specht modules are not in general simple. We
define % to be the category of finite-dimensional £S,-modules with a Specht
filtration. If k.5, is semisimple, then % is the category of all finite-dimensional
kSp-modules, but Jg is still of interest when £S5, is not semisimple. We shall
review some theory of the category % for a general field k, although some of

our results will require that k& have characteristic different from 2 and 3 or
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that k& be algebraically closed.

Amongst the Specht modules, we mention two which are of particular
interest. Firstly, the Specht module S turns out to be isomorphic to the
trivial k£S,-module 1,,, and secondly the Specht module S™11 is isomorphic
to the sign module Sgn,, (see [20, page 14] for these facts). We shall thus
freely interchange the notations S and 1, and also S™"'+1) and Sgn,,.

The following fact relating dual Specht modules to conjugation of partitions

will be useful in our work.

Proposition 3.1.3. ([20, Theorem 8.15]) Let v be a partition of n. Then

we have an isomorphism of kS,-modules
(S¥)* =~ Sgn, ® ¥

As mentioned above, if kS, is not semisimple, the Specht modules are no
longer simple in general. However, even in this situation the Specht modules
may be used to obtain a complete list of the isomorphism classes of simple
kS,-modules. Recall that, with p the characteristic of our field &, so that p
is either zero or a prime, a partition is p-singular if p > 0 and the partition
contains a constant subsequence of length p, and a partition is p-reqular
otherwise. Recall from [20, Definition 11.2] that to each p-regular partition A
of n, we associate a kS,-module D*. We summarise the relevant properties

of these modules in the following theorem.

Theorem 3.1.4. [20, Theorem 11.5, Corollary 12.2] Let k be a field of
characteristic p (so p is zero or a prime), and let n be a non-negative integer.
If X is a p-reqular partition of n, then D> is a simple kS,-module. Further, as
X\ wvaries over all p-reqular partitions of n, so D* varies over all isomorphism

classes of simple kS, -modules without repetition.
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Now let X be any partition of n. Then the composition factors of S* are
all of the form D* for > X. Thus if X is p-singular, the composition factors
of S* are all of the form D" for u> \. Further, if X is p-reqular, then the
multiplicity of D* in S» is exactly one, and moreover in any composition

series of S*, the top factor is D* and all the other factors are D* for ji> \.

3.2 The Littlewood-Richardson rule and
Young’s rule

In this section, we recall some important results which give filtrations of
certain modules for kS, and which moreover give information about the
multiplicities occurring in those filtrations.

Firstly, let A F n. Then Young’s rule |20, 14.1 and 17.14] tells us that
we have coefficients K (v, ) such that

M* ~ i K (v, A)S". (3.2.1)

vkn

The coefficients K (v, A) are called Kostka numbers, and they have a pleasing
combinatorial interpretation, for which we need another definition. Indeed, a
tableau of shape v and type 3, where v is a partition and [ is a composition, is
semistandard if the entries are non-decreasing from left to right in each row,
and the entries are strictly increasing down each column. For example, with
v=1(5,4,4,1,1) and 8 = (3,3,2,4,1,0,2) as above, then one semistandard

v-tableau of type [ is

11]1]2]7]
2234
3[4]4]7
4

H
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Then the Kostka number K (v, ) is equal to the number of semistandard
v-tableaux of type A [20, 14.1]. From this, it follows easily that the Kostka
numbers satisfy

1 ifv=2>\
K(v,\) = (3.2.2)

0 if v A

We shall often need to consider the restriction of a Specht module to a
Young subgroup, or the module obtained by inducing an outer tensor product
of Specht modules up from a Young subgroup to the full symmetric group. In
particular, we shall be interested in obtaining useful filtrations of such modules.
The tools for this task are the Littlewood-Richardson filtration rules.
In order to present these results, we must first consider the combinatorial
Littlewood-Richardson rule and the associated Littlewood-Richardson
coefficients, and to do this, we must recall some material on symmetric
functions. Our source is [32, Chapter 7], but since we shall not make any
further use of this material, our presentation of it here will be a rough sketch
only, so we refer the reader to [32] for more details if they are desired.

Let us denote by S¢ the ring of symmetric functions over C in the
variables z, xg, ..., and further for n > 0 let S¢ denote the C-vector space
consisting of all homogeneous symmetric functions of degree n together with
the zero element. The definition of a symmetric function need not concern
us here; it suffices to know that Sc¢ is an infinite-dimensional commutative
unital associative C-algebra, with a grading

Sc =P se.
n>0
To each partition A of each n > 0, we associate the Schur function s, € S¢.
Again, we do not need the definition of s, here; we need only know that for

each n, the set of all Schur functions sy for A = n forms a C-basis of S [32]
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Corollary 7.10.6], and that sy = 1 [32 Definition 7.10.1]. Now if a, 5 are
partitions (not necessarily of the same integer), then s,sg is a homogeneous
symmetric function of degree ||+ ||, and hence we have for each A - ||+ |f|

a uniquely-defined coefficient 037 5 € C such that

_ b
5483 = E Ca S

A lal+|B]

The coefficients cé’ s are called Littlewood-Richardson coefficients. We
extend the definition by defining cgwg = 0 for any three partitions «, 5, A
where || # || + 4.

Like the Kostka numbers, the Littlewood-Richardson coefficients have a
nice combinatorial interpretation, and as for the Kostka numbers we need
to recall some more combinatorics to state this. Indeed, if o and [ are
compositions and we have a; < f; for all i (with any parts that would
otherwise be undefined taken to be zero as usual), then we say that « lies
inside 8 and write o C 3; this necessarily implies || < |3|. This terminology
makes sense if one notes that « lies inside [ if and only if the Young diagram
of o is a subdiagram of the Young diagram of J. For example, we have
(3,4,2,1) C (5,4,3,3,1), which we see by drawing the Young diagram of
(5,4,3,3,1) and picking out the Young diagram of (3,4, 2, 1) inside it,

ofe]e |

If a C 3, then the skew Young diagram of shape  \ « is the diagram
obtained by starting with the Young diagram of § and removing the boxes

which form the copy of the Young diagram of « inside it. For example, the
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skew Young diagram of shape (5,4,3,3,1)\ (3,4,2,1) is

(note that this diagram is disconnected, as skew Young diagrams may in gen-
eral be). We extend the definition of a Young tableau to allow its underlying
Young diagram to be a skew Young diagram, and we call such an object a

skew tableau. Thus for example

3

is a skew tableau of shape (5,4,3,3,1) \ (3,4,2,1) and type (2,1,3). We
extend the definition of semistandardness to skew tableaux, noting that there
may be gaps in the columns of a skew tableau.

The Littlewood-Richardson rule [32, Theorem A1.3.3] states that c} ;
is equal to the number of skew semistandard tableaux of shape A \ « and
type 8 where the sequence obtained by concatenating its reversed rows is
a lattice word. A lattice word is a finite sequence of integers, allowing
repetitions, such that if for any r > 0 and any ¢ > 0 we let #. be the number

of times i appears in the first r places of the sequence, then for each r we
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have #. > #2 > #3 > ... For example

2

is such a tableau of shape (5,4,3,3,1) \ (3,4,2,1) and type (3,2,1). In
particular, every Littlewood-Richardson coefficient is in fact a non-negative
integer.

From the Littlewood-Richardson rule we may easily deduce the following

result.

Proposition 3.2.1. (see [29, page 142]) Suppose that we have Cg,b’ £ 0 for
partitions a, 8, \ (so that by definition we have |a| + |B| = |\|). Then we

must have o, B C \, and further we must have

q q q
Z)\z < o + ﬁz fOTq:LQ,S,...
i= 1

i=1 i=1 i—
(i.e. a+ [ > X\, where addition of partitions is defined pointwise) taking

any parts of partitions which would otherwise be undefined to be 0 as usual.

We generalise the above definition of Littlewood-Richardson coefficients
as follows: for any partition A\ and any multipartition o = (a?, ..., a?) (for
t > 0), we define the Littlewood-Richardson coefficient ¢(\;a) to be the
coefficient of sy in the product s,1842 -« - So¢ . Thus in particular ¢(\; ) = 0
unless [\ = |a!| + -+ + |a!| = ||a||. Further, if either A or « is () then
¢(X; @) = 0 unless both A and « are (), in which case we have ¢((); () = 1;
this last fact follows from the fact that s = 1. Another consequence of the

fact that sy = 1 is that we have
c(A @) = (X Q) (3.2.3)
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where @ is the multipartition obtained from « by removing any empty
partitions, so that for example if « = ((2,1),(),(1),(3,1,1),()) then we

have @ = ((2,1), (1), (3,1,1)). Keeping our partition A and multipartition

a=(al,... a) of n, if we assume that ¢ > 2 then we have
Sa2 " St = Z C(ﬁ, (az,...,Oét))Sﬁ
BEn—|at|
and hence

SlSe2 *** St = Z c(ﬂ;(az,...,&t))salsg

B n—lal]
— Z c(B; (e, ..., a")) (chl7ﬁ 5,\>
BEn—|al| AFn

->( =

AFn N BEn—|al|

cglﬁ c(B; (o2, ... ,at))) S).
Thus we see that

c(Xa) = Z c(’)w c(B;(e?,...,a"). (3.2.4)

Bn—|al|

We also note that, for the case t = 1, we have

c(Na) =c(X; (o) = (3.2.5)

0 otherwise.

Further, for the case t = 2, we have
c(Aa) = C()‘J (0417 042>) = C317a2- (3.2.6)

The following lemma is a trivial consequence of the commutativity of Sc.

Lemma 3.2.2. Let \ be a partition and o = (o'

..., ") a multipartition
(with t > 0). Then c(\; a) is invariant under permutation of the components

of a.
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In particular, we see from Lemma that ¢} 5 = 3 o-

Lemma 3.2.3. Suppose we have a partition A and a multipartition o =

(b, ..., a") such that ¢(\;a) # 0. Then
LA = a4 -+ |of].

2. For eachi=1,...,t we have o C \, from which it follows that

Ajo= Zaj- forq=1,2,3,...,

7j=1 7j=1
taking any parts of partitions which would otherwise be undefined to be

0 as usual.

3. For eachi=1,...,t we have a partition 3" of |\| — |o'| such that

q

q q
Z)\j <Za§-+25§ forq=1,2,3,...
=1 j=1 j=1

(i.e. o'+ B° > X, where addition of compositions is defined pointwise)
taking any parts of partitions which would otherwise be undefined to be

0 as usual.

Proof. Part (1) is immediate from the definition of ¢(\; ). Parts (2) and (3)
may be obtained as follows. First, we use Lemma to see that, for each
i =1,...,t, the coefficient c¢()\; ) is equal to c(\;&'), where &' represents
the multipartition obtained from a by moving o' to the first place. Then
we apply to c()\;Qi) = 0 to see that we must have some partition
such that c;\& 5 # 0 (by looking at the first factor in the summand on the
right-hand side of the resulting equation). Applying Proposition to the
coefficient cgiﬂ # 0 and taking 8 = 8 and, we obtain parts (2) and (3) of

the lemma. O
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As mentioned above, our interest in Littlewood-Richardson coefficients
lies in their relation to the representation theory of the symmetric group.
The following results are well-known over the complex numbers (where they
describe direct sum decompositions), but they hold over any field, and in this
generality the proof is due to James and Peel in [24] (Theorems 3.1 and 5.5).
See also the remark on page 70 of [20], or [27, Theorem 2.4]. Let A and pu
be partitions (not necessarily of the same size) and let n = |A| 4+ |u|. Then
we have a kS,-module (S* X SM)T?\AI,M)’ and this module has a filtration by
Specht modules S” for v F n, and the multiplicity with which S” occurs is
the Littlewood-Richardson coefficient ¢§ ,. That is,

(AR SH) T|A|| ) FC/\MSV (3.2.7)

There is a “dual” version of this result, which states that if v = n and a,b
are integers such that a + b = n, then the k(S, x S;)-module S”l?a » has a
filtration by modules S* X S* for A F a, p - b, where S* X S* occurs with

multiplicity ¢§ ,, so that
S ™ F K, SRS (3.2.8)
@) b

The name “Littlewood-Richardson rule” is sometimes applied to and
, but we shall reserve that name for the combinatorial characterisation
of the Littlewood-Richardson coefficients, and call and the
Littlewood-Richardson filtration rules.

We shall require versions of the Littlewood-Richardson filtration rules

(3.2.7) and ({3.2.8]) where the Young subgroup involved corresponds to a general

composition rather that just a two-part composition, and we introduce some

notation for this. Indeed, if o = (o, ..., ') is a multipartition of n, then we
define a kS|y-module S(a) by setting

t

S(a)=8"KS K. K, (3.2.9)
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recalling that |a| is the composition (|a!], ..., |af|) of n. We also define the

kS)q-module M («) by setting

M(a)=M*" M K. - KM (3.2.10)

Now let a = (al,...,a') be a multipartition of n. Then, defining a =

2| + -+ + || we have

S(g)ﬁ;' = (5" K- X ks*@’f)mal|

----- |a*])

ol aty (et ) n
:(5 X..-X S ) M)T

(latf,a)

(by transitivity of induction)

ol o2 ot a "
= [S X (S X...XS )T(|a2\ ..... \a’fl)] T(|a1|,a)
(by Lemma -

By using the Littlewood-Richardson filtration rule (3.2.7) and (3.2.4), we may

now easily prove by induction on ¢ that

S(Q)TL| ~ F c(v;a)s”. (3.2.11)

vkn

By a very similar argument involving transitivity of restriction and the

Littlewood-Richardson filtration rule (3.2.8]), we may prove that if v - n and

v = (7,...,7%) is a composition of n, then
s~ F clvia) St) (3:2.12)
al=y

where « ranges over all multipartitions « of n such that |a| = 7.

3.3 Homomorphisms and extensions between
Specht modules

By corollary 13.17 in [20], we know that if char(k) # 2 and A, v F n, then

the k-vector space Hom,,(S”, M?*) is zero if v ¥ A, and is one-dimensional
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if v = X\. Now if v is a composition of n such that X\ is the partition of n
obtained by rearranging the parts of v into non-increasing order, then we
clearly have A > v. It follows by Proposition that if v Fn and v F n,

then we have

0 ifv
Hom,, (5", M") = o (3.3.1)

ko ifv=n.
Since S* is a submodule of M* for any partition A\ of n, it follows that
Hom,,(S¥, 5*) is a subspace of Hom,,(S”, M?*), from which we see that for
A, v Fn we have

0 ifviA

Hom,, (S, S$*) = (3.3.2)

k ifv=A\

The following proposition is immediate from ((3.3.2]).

Proposition 3.3.1. (20, 15.18]) If char(k) # 2, then S* is indecomposable
for any A n.

We shall next consider extensions between Specht modules. In [10],

Erdmann proved the following theorem.

Theorem 3.3.2. Let k be a field of characteristic not 2 or 3, and let p, A be
partitions of n such that ¥ X. Then

Ext,, (S*,5%) =0.

We shall now give a full and detailed proof of this theorem. In later
chapters, we shall use a method inspired by these arguments to prove a

corresponding result for the wreath product S,,1S,,. We begin with a lemma.

Lemma 3.3.3. Let k be a field of characteristic not 2, and let 6, € be partitions

of n such that § ¥ €. Then we have an injective map of k-vector spaces
Ext), (9°,9) < Ext), (S°, M) .
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Proof. We have a short exact sequence of £S,-modules

Se

and hence we may apply the functor Hom,, (5’5, —) to obtain a long exact

0— 5 — M — — 0

sequence of k-vector spaces

0 — Hom, (5%, 5¢) — Hom,, (5%, M) — Hom,, (5%, 22°)

R

Ext,, (5°9,5°) Ext,, (S, M°)

Now by Young’s rule (3.2.1)) and the properties of the Kostka numbers (3.2.2)),
AS{E is filtered by Specht modules S? for f>¢. Now if f>¢, then & ¥ 0 (otherwise

we have 0 > 0> ¢, and hence d > €, a contradiction). By (3.3.2)), § I 6 implies

Hom,, (S°, S%) = 0.

It now follows by Proposition that

Hom,, (55, ]\5{ ) =0,

and hence by exactness of our long exact sequence we obtain the desired

injection. 0

By Lemma |3.3.3] we see that proving the following proposition will estab-

lish Theorem [3.3.2]

Proposition 3.3.4. If k is a field of characteristic not 2 or 3, then for any

partition p of n and any composition « of n, we have
Ext) (S*, M) = 0.
Note that Proposition does not require any ordering condition on u
and «: they may be any partition and composition of n.

The following reduction will provide our path to proving Proposition
and thus Theorem [3.3.2]
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Reduction 3.3.5. To prove Proposition|3.3.4), it is enough to prove that if k

s a field of characteristic not 2 or 3, then for any partition v = n we have
Ext; (S7,1,) = 0.
Proof. If v is any partition of n and « is any composition of n, then
Ext) (S*, M) = Ext! (S, 1,17)
=~ Extl (547, 1) (by Theorem [2.2.4)).

Thus it suffices to show that Ext) (S#]?,1,) = 0. Let a = (ay,...,q,), 50
that S, is canonically isomorphic to S,, X --- x S,,.. Then by (3.2.12)), S*|.

has a filtration whose factors are modules of the form
SRS K

where each 7 is a partition of ;. Thus by Proposition it suffices to

prove that if 4* F a; for each i = 1,...,r, then
Ext! (svl RS’ K- K5 ]la> —0.
But we have
Exté(SVl KSR KT ]la> o Exté(S”lﬁSWZXl- L®ST 1., - -m%)
and hence by Proposition it suffices to prove that Ext;) (S7,1,) =0. O

Proposition 3.3.6. Let k be a field whose characteristic is not 2. Let v n.
Then
Ext! (57, 1,) = Ext} (Sgn,, S7).

Proof. We have
Ext, (Sgnn7 S'Y/) =~ Ext, (Sgnn, (")) ® Iln>
>~ Ext} (Sgnn ® (ST, Iln> (by Proposition [2.2.3))

=~ Ext! (S7,1,) (by Proposition [3.1.3).
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]

We now prove Theorem by proving that if k is a field of characteristic
not 2 or 3, then for any partition v - n we have Ext,.(Sgn,,, S7) = 0. The
special case where v = (n), so that S = 1,,, provides the necessary stepping-

stone to the general result.

Lemma 3.3.7. Let k be a field with char(k) ¢ {2,3}. Then
Ext} (Sgn,,, 1,) = 0.

Proof. Suppose we have a kS,-module E with x € E such that kx (the
k-span of z in E) is a kS,-submodule of E with kz = 1,, and £ = Sgn . By
Proposition 2.1.4] it is enough to show that E has a direct sum decomposition
E =kx® Z as a kS,,-module.

Choose y € E such that x and y form a basis of E. Thus zo = z for all
o € .S, and

(y + kx)o = sgn(o)(y + kx)

so that

yo + kx = sgn(o)y + kx
and hence for each o € S,, we have u, € k such that
yo = sgn(o)y + uy.

Now for each ¢ € {1,...,n — 1} define 0; to be the basic transposition

(7, i+ 1), so that we have
0i0i+10; = 04107041

(this is one of the braid relations for the symmetric group) and further define
u; = Uy, SO that

7

Yyo; = ux — Y.
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Then for each ¢ € {1,...,n — 1}, we have

Y(0i0i107) = (wix — y)(0i410)
= (wx — (uip1z — y))o;
= (uix — w1 T +y)o;
= Uil — Ui1T + Ui — Y

= (2u; — uj1)T — Y.

Similarly,
Y(0i410i0i41) = (2uip1 — wi)z —y

so that

241 — U = 2U; — Uip
= 3(1/4 — ui+1) =0
= U —Uip1 =0 (because char(k) # 3)

= Ui = Uit1-

Thus all of the scalars u; have a common value. Let us denote this by u. Now

define

u
F=y -5

(recalling that char(k) # 2), so that z and x form a basis of E. To establish
the claim, we need only prove that kz is a kS,-submodule of F, and since 5,

is generated by the basic transpositions, it is enough to prove that zo; € kz
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for each i € {1,...,n — 1}. Indeed,

zo; = (y — Ex)ai

2
u
= Yo; — <X0;
Yo g
u
—(Uf’?—y)—§$
u
= —Tr —
B Yy
= —Z.

]

Proposition 3.3.8. Let k be a field of characteristic not 2 or 3, and let
vt n. We have
Ext! (Sgn,, S7) = 0.

By Reduction [3.3.5 and Proposition |3.3.6|, establishing Proposition |3.3.8
will prove Proposition and hence prove Theorem |3.3.2,

Proof. We have

Extil(Sgnn, M) = Extqll(Sgnn, ]l,YT:)

= Ext}Y(SgnnU; 1) (by Theorem [2.2.4]).

Now if we let v = (71,...,%), then by (3.1.1)) we have Sgn,|” = Sgn, X
-+ Sgn,, . Thus, using Proposition and Lemma |3.3.7, we get

Ext; (Sgn,,, M) = 0.

We know from above that Sgn,, & S(:1-++1 and since (1,1,...,1) ¢ 3 for all
B Fn, we see by Lemma that

Ext! (Sgn,, S7) = 0.
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3.4 Stratifying systems

The original definition of a stratifying system for an algebra was given by Cline,
Parshall, and Scott in [7] as part of their work on standardly stratified algebras.
However, we shall use the definition of a stratifying system given by Erdmann
and Sdenz in [11], which is based on the work of Xi in [36], of Dlab and Ringel
in [9], and of Agoston et al in [I]. Indeed, if A is a finite-dimensional algebra
over an algebraically closed field k, then a stratifying system for A consists

of A-modules O4, ..., 0, and indecomposable A-modules Y7, ..., Y, such that
1. Homa(0;,0;)=0ifi>j

2. for each i, there is a short exact sequence 0 - 0; —» Y, = Z;, — 0

where Z; has a filtration by ©; with j < ¢

3. if X is an A-module with a filtration by the modules ©4,...,0,, then
Ext)(X,Y) =0 where Y = @;_, V..

Further, it was proved in [11] that if we have a collection ©,...,0, of

indecomposable A-modules satisfying the conditions

1. Homx(0;,0;) =01ifi>j

2. Ext}(0,,0;) =0ifi>j
then there exist A-modules Y7,...,Y, which together with the A-modules
O4,...,0, form a stratifying system.

Our interest in stratifying systems comes from the following result, and

more particularly its corollary.

Proposition 3.4.1 ([I1], Lemma 1.4). Let A be a finite-dimensional algebra
over an algebraically closed field k with a stratifying system given by mod-

ules O1,...,0,,Y1,...,Y, as above. Suppose that some A-module M has a
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filtration by ©4,...,0,. Then for any two filtrations of M by ©4,...,0,, the

multiplicity with which each ©; occurs is the same in both filtrations.

If the conclusion of Proposition holds, we say that “©-filtration

multiplicities are well-defined”.

Corollary 3.4.2. Let A be a finite-dimensional algebra over an algebraically

closed field. If ©4,...,0, are indecomposable A-modules such that
1. Homx(0,,0,) =0 ifi > j
2. BExt}(0,,0;) =0 ifi>j

then ©-filtration multiplicities are well-defined.

In order to apply this result to the Specht modules, we only need to put a
suitable total order on them. This is equivalent to putting a total order on
the set of partitions of n. The order we use is the reverse lexicographic order,
which is the order obtained by reversing every relation in the lexicographic

order on partitions. We denote this order by >. Thus for n = 9 we have
(2,2,2,2,1) > (3,2,2,2) > (3,3,1,1,1) > (3,3,2,1) > (4, 3,2).

Note in particular the the partition (1,1,...,1) is always greatest in the
reverse lexicographic order, and (n) is always least. We have the following
easily obtained relations between the dominance and reverse lexicographic

orders: for v, \ Fn,
o> )\ = I/%)\
e U= )\=> v

We thus obtain the following theorem. The argument we have followed

is that of Erdmann in [10], but this result was originally given (in the more
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general Hecke algebra setting, and by different methods) by Hemmer and
Nakano in [19].

Theorem 3.4.3. [[10)], Corollary 3.3; [19], Theorem 3.7.1] Over an alge-
braically closed field of characteristic not 2 or 3, Specht filtration multiplicities

are well-defined.

Proof. Combine Corollary with Theorem [3.3.2] Proposition [3.3.1], and
the results (3.3.2)). O

The assumption that the characteristic of the field is not 2 or 3 is necessary
by some well-known examples. Indeed, if char(k) = 2 then S™ = 1, =
Sgn,, = S(L-1) and this isomorphism between Specht modules means that
Specht filtration multiplicities cannot possibly be well-defined. If char(k) = 3,
we find for example that if n = 3 then the Specht module S has an obvious
filtration by Specht modules by virtue of being a Specht module, but also a
submodule isomorphic to the trivial module S® such that the quotient of
S@D by this submodule is isomorphic to the sign module &Y.

Theorem was originally a rather surprising result. Before it was
known, it seems that it was assumed that the failure of Specht filtration
multiplicities to be well-defined in characteristic 2 and 3 was indicative of the

situation in general prime characteristic. A major new result of this thesis is

a generalisation of Theorem to the wreath product S,,05,.

Original research in Chapter 3: There is no original research in Chapter
3. I have filled in some of the details of the proof of Theorem [3.3.2] myself,

but the overall argument is clearly given in [10].
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Chapter 4

The wreath product 5,05,

In many areas of Mathematics, one finds that wreath products of groups arise
naturally. The main topic of this thesis is the representation theory of one
specific kind of wreath product, the wreath product of two symmetric groups.
We begin by recalling the definition of this wreath product. Most of the
material in this chapter is drawn from [6] and [21].

Let n and m be non-negative integers. We denote by S,,05,, the wreath
product of S,, on S,,. This is the group whose underlying set is the Cartesian

product of S,, with n copies of S,,. We shall write elements of S,,.5, as
(o500, 9, ..., 0p)

for ay,a0,...,a, € 5, and o € S,,. Multiplication is given by the formula

(0-; a1, Q2, . .. 70[71)(71—; /817/827 e 7671) -
(O'ﬂ'; (Oé(l)ﬂ—lﬁl), (Oz(z)ﬂ.—lﬁz), ,(a(n)ﬂ—lﬁn>>.

It is easy to show that inversion in 5,15, is given by the formula
-1 -1 -1 -1 -1
(0-) a1, 09, . .. 7an> - (O- ; (Oé(l)o—) ) (06(2)0) gy (a(n)a) ) .
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Now let G be a subgroup of S,,, and H a subgroup of S,,. Then we shall write
GWH for the subgroup of 5,,1.59,, consisting of all elements

(0’;(141,0[2, s ,Oén)

for ay,a9,...,a, € G and 0 € H. The special case S,,0H where H is a
Young subgroup of S,, will be of particular importance below, but we shall
also make use of the case where G and H are each either the full symmetric
group or a Young subgroup thereof, and we shall make frequent use of the
operations of induction and restriction between such subgroups, for example

k(SmlSn) k(Sm1Sn)
XTpismsy and Yipimg

where v is some composition of n. As with the symmetric group, we shall
de-clutter such expressions by replacing the full symbols for the group algebras
with the subscripts used to identify the various subgroups of .S, and §,,, and
also suppressing the field &, so for example the above would be abbreviated

to

XM and Y™,

mly mly

4.1 Subgroups of the symmetric group asso-
ciated to multicompositions and tuples of
multicompositions

In the representation theory of the symmetric groups, an important role is
played by the Young subgroups associated to compositions. In this section,
we extend the notion of a Young subgroup to encompass multicompositions

and tuples of multicompositions.

69



Let v = (v',...,7") be a t-multicomposition of n (¢ some non-negative
integer) and let 4 be the composition 4! o -+ o~" of n (recall that o denotes
concatenation). We define the Young subgroup of S, associated to v to be
the Young subgroup 5 associated to 4, and we write .S, for this subgroup.

Thus we have a canonical isomorphism

S

¥

=S

WIXS’YZX"'XS’Yt‘

Further, we note that .S, is a subgroup of S},|. For example, if n = 20 and v
is ((1,2,1,0,4),(),(4,2,1),(0,1,1,3)), then 4 is (1,2,1,0,4,4,2,1,0,1,1,3)

and
Sl = 5{1} X 5{2,3} X 5{4} X 5{5,6,7,8} X 5{9710,11,12}><
Sqi3,14y X Sqisy X Sy X Sqry X S(18,19,20)

where for a subset Q of {1,...,n}, we are writing Sg, for the subgroup of S,
consisting of all permutations which fix every element of {1,...,n}\ Q.
Now let v = (7',...,7") be a t-tuple of r-multicompositions 7" (r some
positive inte;;er) such that [[|7[|| = n. The definition we are about to make
works just as well if we allow t_he multicompositions to have different lengths,

but we shall not need this. Thus each 1" is a multicomposition

Y 71:727 ttt 72'771) J
where each " is thus a composition (with 7%/ = () allowed)
/yz"j = (7;7]’ ’Y;’]’ ct ry;;j)’
(where [;; is the length of v%7) where the integers 7%/ are the parts of the

composition v%/, and further the sum of the integers v/ over all 4, and s is

n. For each i, let 4° be the composition 7! o 420 -+ 0 ~"" of ||7'][, so that
N (il il il 2 i2 i3 i
Y _(’71 » V2 a"'a’}/lilafh 7"'7’}/[&”71 AR 7’71”)7
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and let 4 be the composition 4* 042 o --- 0 4* of m, so that

Ao 1,1 11 1,1 1,2 1,2 1,3 1,r
7_(71 » V2 7“'7’711,1771 7"‘7’711,2771 (A 77117T7
2,1 21 2,1 22 2,r
T2 7"'a’7[2,1771 (AR 77[27T7
3,1
Y1 oo
t,r)
...... ’Pylt,r

Then we define S, to be the Young subgroup S5 of S, associated to ¥, and

we call this the Young subgroup associated to 7. Thus we have canonical

isomorphisms
Sl = Sll X e XSlt
= S’Yl’l X o X S,Yl,r

X Sy21 X ooo X Spar

X S,yt,l X oo X S,yt,r.
Further, recalling that |y| = (]7'],...,]7']) (a multicomposition of n) and
V[ = (17, -- -, 117Y]]) (a composition of n), we note that we have subgroup
inclusions

Sl < S'l' < SHlH < Sn. (4.1.1)
For example, if we take n = 37, t = 4, r = 3, and we let
= (((3,1,2,0),(1,0,2), 0), ((0,0), (1,1,2,5),(0,1,0,2,1)),

((0,1,3).0:(3,2,0,1)), (0.(2,0,1).(2)))

1=

then
’3/ = (37 17 27 07 1707 27 O’ 07 17 17 2’ 57 07 170’ 27 1707 1737 37 27 O? 1727 07 17 2)’
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and S, is the Young subgroup Sj. Further, we see that

ol = ((6,3,0),(0,9,4), (4,0,6), (0,3,2))

and ||]| = (9,13,10,5) and thus we see that we have the subgroup inclusions
@E11).

4.2 Subgroups of the wreath product associ-
ated to multicompositions and tuples of
multicompositions

We now define certain subgroups of the wreath product 5,,1S,, which will
be fundamental to our work below. To do so, we must first fix a total order
on the partitions of m. We choose the lexicographic order. We take r to
be the number of distinct partitions of m, and we enumerate them in the

lexicographic order as follows
(m)=p'>p®>> ... >p" =(1").
So for example if m = 4, then r = 5 and we have
4)=p'>(3,1)=p*>>(2,2) =p*>(2,1,1) = p* > (1,1,1,1) = p°.

Now let v = (7',...,7") be an r-multicomposition of n (the fact that
7 has length 7 is crucial for the following construction). We associate to vy
a subgroup of 5,,1S,,, which we shall think of as an analogue of the Young
subgroup of a symmetric group associated to a composition. Indeed, we define

W, to be the subgroup of 5,15, consisting of all elements of the form

. 1 1 1 2 2 3 r
(0'7061,062,...7Oé|,y1|/,\0617...705|72‘/,061, ...... ,O[|,yr|)

~~ ~~
ESMI SS‘"L ES#2§S"L
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where o € S, and, as indicated, each a;'- lies in the Young subgroup S, of S,

associated to the partition ! m. Thus we have a canonical isomorphism
W, 22 (5,005,1) X (S,208,2) X -+ X (S,urSyr), (4.2.1)

and further we note that W, is a subgroup of 5,,15,|.

Now as in the previous section we let 7 = (11, e ,’_yt) be a t-tuple of
r-multicompositions 7’ such that |||7]|| = 1 where we allow 7]l = 0 (in
which case we have Zi = ((), (O PP (_)), an r-tuple of empty compositions).
We take

i1 4,2

7= 0
for i = 1,...,t, so that each v*/ is a composition (with 7%/ = () allowed),
and further we take

7= (W% nl)
for each ¢ and j, so that each 4%/ is a non-negative integer. We associate to
7 a subgroup of 5,15y, which we shall write as W, and which we define to

be the subgroup consisting of all elements of 5,,1S,, of the form

-

1,111 1,1 1,2 1,2 1,3 1,r 1,r
Oél 5 062 g e e ey a|v1,1| 9 Ofl g e e ey a‘71’2| 9 Ofl g e e e e e 9 Oél g e e ey a|7177| 9
N -~ > N -~ N ~

GSHISSm ESH2SSm ESMrSSm

21 21 2,1 2,2 2. 2.
al 70{2 9 s ey a‘,y2y1‘ 9 al g e e e se s 9 al 9 s e ey a|727’r| )
N ~~ - ~ ~~

S S‘ul Ssm € SMTSSm
1t t,1 t,2 t,2 t3 tr tr
ap o, Oy oy one ah“l y Oy ooy a/|’yt72| , Oy y Oy ooy a"yt’”
N ~~ N ~~ ~ ~\~ -~

S Sﬂl SS’"L S S#QSSWL GSP.TSSWL
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where o € S, and, as indicated, for each i, j, s we have a7 € S,i. Thus note

that we have canonical isomorphisms

Hqg
I

W71 X+ X Wlt (4.2.2)

(where W.i is a subgroup of S,,05) || )
= (Sule,yl,l) X (SMQZS’YLQ) X oo X (SMrZS 1,7‘)

v

X (SMIZS,YZI) X +ee X (S#TZS,YQ,,«)

X (8,108,01) X - -+ x (Su1Syer),

where we recall that for each ¢ and j we have that S.:; is a subgroup of S, ;.

4.3 Construction of wreath product modules

We now recall several standard methods for constructing modules for wreath
products, as described in |21} Section 4.3] and [6, Section 3]. Recall that we
are using right modules.

Firstly, let G be a subgroup of S,,, and let X be a kG-module. We define
X®" 6 be the k(G1S,,)-module obtained by equipping the k-vector space X ®"
(that is, the tensor product over k of n copies of X) with the action given by

the formula

(11 @ @wy)(0500,...,0) = (T(1)e-101) @ -+ D (T(n)o-10)

forxq,...,2, € X, aq,...,a, € G, 0 € S,.

More generally, let X7, ..., X; be kG-modules, and v = (71, ... , %) a
composition of n of length ¢. We form a k(GUS,)-module by equipping the
k-vector space (Xf@%) ® (XQ@W) ®-® (Xf@%) with the action given by the
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formula
(11 @ @3y)(0y01,...,0n) = (Ta)e101) @ - @ (T(nyo-100)

where each z; lies in the appropriate X;, a1,...,a,, € G, and 0 € S,. We
denote this module by (Xl, e ,Xt) @7’ and we note that X® is the special
case of this construction where v has an n in one place and all the other parts
are 0.

Now let GG be a subgroup of S,,, H be a subgroup of S,,, and Y a kH-
module. It is easy to check that we may make Y into a k(GUH )-module via
the formula

ylosag, ... ap) =yo (4.3.1)

foryeY, ay,...,a, € G, and o € H. This module may be understood by
noting that GtH is the semidirect product of the normal subgroup consisting
of all elements (e; o, ..., ) for ag,...,a, € G with the subgroup consisting
of all elements (o;e,...,e) for o € H. This latter subgroup is canonically
isomorphic to H, and hence we see that the module obtained from Y via
(4.3.1) is the inflation of Y from H to GIH with respect to the semidirect
product structure. Hence we shall denote this module by InffIZHY. We shall
be particularly interested in the case where H is S,, or a Young subgroup S,
of S, and G is S, or a Young subgroup S, of 5,,, and in accordance with our
notational conventions, we shall write these modules as, for example, Inf""Y
or Infi‘wY.

Now let H be a subgroup of S,,, G' be a subgroup of S5,,,, Y be a k H-module,
and further let Z be a k(GUH)-module. Then we define a k(GUH )-module
Z©Y as follows: the underlying k-vector space is Z®Y, and the action is

given by the formula

(z@y)(o;ar,...,a,) = (2(0;00,...,00)) ® (yo)
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forze Z,yeY, ay,...,a, € G, 0 € H. Thus we see that we have an
equality of k(GtH )-modules

ZoY = Z @ Inf¢y (4.3.2)

where the module on the right-hand side is the internal tensor product of the
k(GUH)-modules Z and Inf&"y .

We can combine the above constructions as follows: if G is a subgroup of
Sm, X1, ..., Xy are kG-modules and Y is a kS,-module for v a composition

of n, then we obtain a k(GUS,)-module
(X1, ..., X)) oy

with underlying vector space (X)) ® (X57?) @ -+ @ (X;"")®Y and action

given by the formula

(l‘1® U ®$n®y)<0—7 aq, ... 7an) =

(T1)o-101) @ -+ @ (T(yo10,)D(yo)  (4.3.3)
forz; € X, 0, € G,y €Y, 0 € S,. Further, the k(GS,)-module
(X1, ... X) "oy
is exactly the inner tensor product
(X1, - X)) @ mfSSy

of k(G1S,)-modules, as explained above. We shall often be interested (for
the case G = S,,) in inducing such modules from 5,05, to the full wreath
product S,,15,,, that is, in modules

min

[(Xl, ,Xt)g”@yﬂ

mly
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We now recall an elementary construction for producing kS,-modules Y’
for use in the above constructions. Indeed, for each i € {1,...,t}, let V]
be a right £S,,-module. Now recall that we have a canonical identification
of the group S, with the direct product S, x S,, x --- x §,, of groups.
Thus any module for k(S,, xS,,x - - - x.S,,) may be regarded as a kS,-module
in a canonical way, and vice versa. In particular, if Y; is a kS,,-module
for each i, then the external tensor product Y; X Y, X --- XY, which is a
k(S,, x S,, x---xS,,)-module, may be regarded as a kS,-module.

Now recall further that we have a canonical isomorphism between GS, and
(G1S,,) x (G1S,,) x - - - x (GLS,,), and hence we have a canonical identification

of algebras
k(GS,) = k(GLS,,) @k (G1S,,) ® - @ k(GLS,,) . (4.3.4)

Suppose that we have for each i = 1,...,t a k(G .S,,)-module Z;. Thus with

modules Y; as above, we see that for each i, Z; © Y] is a k(G S,,)-module.
Hence via the identification (4.3.4)), we see that both Z; X --- X Z; and
(ZyoY1)X--- K (Z; @Y;) may be considered to be k(GUS,)-modules. It is

now easy to see that we have an isomorphism of k(G ¢ S,)-modules
(Z1 K- XZ)o(1X---KY) 2 (Z10V)K---K(Z,2Y;). (4.3.5)

There is an important special case of the isomorphism (4.3.5). Indeed, if we
have kG-modules Xj,...,X;, then we may form for each ¢ the k(G S,,)-

module X ? 7. We have
(X1, ., %) =X R...1 X

by the definition of the left-hand side. We now see via (4.3.5)) that we have
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an isomorphism

(Xh ,Xt)&Y@(Yl@YQ&...th) o~

(X?’Yl % }/1) X (ng’)/z %) )/'2) X...X (X?% (%) )/t) (436)

(this isomorphism was given in [6, Lemma 3.2 (1)]). In subsequent chapters

we shall be particularly interested in modules of the form

[(Xl, x)¥o (mxn&--mﬁ)ﬂmm' (4.3.7)

mly

In the next chapter (Section , we shall generalise the construction (4.3.7))
to the wreath product of a k-algebra with a symmetric group, and moreover
we shall develop a graphical representation of pure tensors in such modules
using modified permutation diagrams, which gives a more intuitive way of
understanding their structure.

We now give some basic properties of the above constructions.

Proposition 4.3.1. Let G be a subgroup of S,, and H a subgroup of S,. Let
W andY be kH-modules. Then we have an isomorphism of k(G H)-modules

Inf (W @ V) = WnfS (W) @ IS ().

Proof. Both modules have underlying vector space W ® Y, and it is easy to
verify that the identity map on this space yields the required isomorphism of

group modules. O]

Proposition 4.3.2. Let G be a subgroup of S,, and H a subgroup of S,. Let
Z be a k(GVH)-module and Y a kH-module, so that Z@Y is a k(GVH )-module.

Then we have an isomorphism of k(G U H)-modules

(ZoY)y=Z"oY".
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Proof. We have
(ZoY) = (Zomiy) '
=70 (WG"y) by @Z1)

And then by using the easily-verified fact that (InffllHY> = Inff}H (Y*) and
a second application of (2.2.1)), the claim is established. O

Proposition 4.3.3. Let G be a subgroup of S,, and let U,V be kG-modules.

Then we have an isomorphism of k(G 1 .S,,)-modules
UBn @ VB~ (U @ V)R
Proof. Recall that, as k-vector spaces, we have U Bn @ VBn = [J&n g /O and
(U ® V)gn = (U®V)®". Tt is a routine calculation to verify that the formula
(U@ @uy) ® (V1 ® @) > (U ®V1) ® -+ @ (Uy @ Vp)

where u; € U and v; € V yields a well-defined k-linear map U®" @ V& —
(U @ V))®" which is a homomorphism of k(G S,,)-modules. This map is then
immediately seen to be onto, and hence must be an isomorphism because the

two spaces in question clearly have the same dimension. O

Proposition 4.3.4. Let G be a subgroup of S,, and let U be a kG-module.

Then we have an isomorphism of k(G 1.S,)-modules

Proof. Firstly, recall that (U g")* is equal as a k-vector space to Homy, (U™, k)
while (U*)" is (Homy(U, k))™".
Now if we take gq,...,¢9, € U* = Homg(U, k), then it is a routine calcula-

tion to check that we have a well-defined k-linear map from U®" to k given
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on pure tensors by the formula u; ® - -+ ® u, — g1(uq) - - - gn(uy,). Another
routine calculation then shows us that we have a well-defined k-linear map
from (Homk(U, k;))®n to Homy (U®™ k) which is defined by mapping the pure
tensor g; ® ... ® g, in (Homk(U, k))®n to the map defined above. We shall
denote this map by ®, and it is a routine calculation to show that ® is then
a k(G 1 S,)-module homomorphism from (U*)gn to (Ugn)*. Now it is clear
that these two modules have the same k-dimension, and so to prove that ® is
an isomorphism, it suffices to prove that it is onto.

So let us fix a k-basis uq,...,uq for U. Then U* has a k-basis fi,..., fq,
where f; : U — k is defined by fi(u;) = 0;; (where ¢;; is the Kronecker
delta). Now for any n-tuple 7 = (¢y,...,t,) over the set {1,...,d}, we define
u, to be the pure tensor uy, ® -+ @ uy, € U%. We now see that U®" has
k-basis

{u, :7e€{1,...,d}"}.
Thus U™ has k-basis

{fr:Te{1,...,d}"}
where f; is the k-linear map defined by f;(ug) = d,9. But it is now clear
that if 7 = (¢1,...,t,), then ®(f;, ® --- ® fi,) = fr so that ® is onto as
required. O

Proposition 4.3.5. Let G1 C G5 be subgroups of S,, and X a kGs-module.

Then we have an isomorphism of k(G 1 .S,)-modules
|:X|~X~|ni| leZSn ~ |:X G2:| Xn
GuiSh 1
Proof. This is immediate from the definition of (—)gn. ]

Proposition 4.3.6. [0, Lemma 3.1] Let G be a subgroup of S,,. Let a =
(aq,...,a4) be a composition of n, and for i =1,...,t let X; be a k(G1S,,)-
module, so that X1X - XX, is naturally a k(G Sy)-module. Let m € S;.
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Then

Gin Gmn
(X RX] Tl = [ X BX 0] T Gy
where "o represents the composition (o(iyr, ..., w)x), and where as usual

the symbols n, a, and "o represent the subgroups S,,, S, and S, of Sy,

respectively.

Proposition 4.3.7. [6, Lemma 3.2] Let G be a subgroup of S,,. Let a =
(o, ..., q) be a composition of n and let V' be a k(GLS,)-module, W be a
k(GS,)-module, X be a kS,-module and Y be a kS,-module. Then we have
module isomorphisms

Gin

1L [VoX]]m=(Vig) o (X2

Gn

2 Vo (g oY)

5. (W) o X = [Wo (X4 Tar

where as usual the symbols n and « represent the subgroups S, and S, of S,

respectively.

4.4 Analogues of Specht and Young permuta-
tion modules for k(S,,05,)

We now define analogues for the wreath product S,,1S,, of the Specht and
Young permutation modules of the symmetric group. Our justification for
calling these modules analogues of the Specht and Young permutation modules
will come in subsequent chapters, where we shall show that they have a range
of properties analogous to the corresponding symmetric group modules. In
particular, in the next chapter we shall use the theory of cellular algebras to

prove results which will justify our use of the name “Specht module” here.
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As above, let us fix the distinct partitions of m, in the lexicographic order,
to be
(m)=p' >p?> ... >p" =(1").
Then our Specht module analogues for 5,15, are indexed by the set A, of
1

r-multipartitions of n. Indeed, for such an r-multipartition v = (v',..., "),

we define a k(5,,05,)-module

s X 1% e mln
s = [(9 .91 Mo (s m-ms )]
mly
and we call S¥ the the Specht module for S,,0S,, associated to v.
A special case of the above which will be of particular interest is the case
of S¥ for v = [v,1i] (recall that [v,i] is the r-multipartition with v - n in the

i® place, and () in all the other places). In this case, we have
(57, 5y = (gryn

and S),| = Sy, from which it follows that

1

SR RS 25
as modules for kS| = kS,,. Thus we have
S[V,i] _ (Sﬂi)&n o Sv.

Now let v = (v',9%,...,7") be an r-multicomposition of n (recalling that
we allow 7 = () F 0, and we allow the compositions 7' to have zero parts).
We define the Young permutation module for S, .5, associated to 7 to

be

1 min

M= (M M)

Sl (v M--&M“)H

mi|7y|

We know from (3.1.3) that in the representation theory of kS, we have
for any composition v of n that ]lvT: = M?”. We shall need the analogous

result for k(S,,05,), and we shall establish it by the same method as (3.1.3).
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Proposition 4.4.1. For v an r-multicomposition of n, we have an isomor-

phism

min

ﬂTwl = MY
of k(SmlSy)-modules.

Proof. We shall apply Corollary [2.2.7, By the definition of M2 and (2.2.3)),

we have

dimy,(M?) = (H dimk(Mu")l'ﬂ) (H dimk(M”’i)> S = Sl

i=1 i=1

so that using (3.1.2)) we have
i=1 '

r [ r .
(1= 1T ]! n!
i=1 HJ’ M;! i=1 Hj 7;! szl &l
! (mm1|+--~+w|>

[T (T, - 1,2
n!(m!)"
| S Sl
A

(by the isomorphism (4.2.1)).

Recall that for any composition «, we have an element 7(«) € M* upon
which S, acts trivially but which generates M* as a kS|,-module. Now from
the definition of M2, we see that as a k-vector space, MY is
(MM1)®"YI\ R ® (Mur)®"¥7‘| Q M,yl ® - ® M,yr ® k<szsn>
mily|

(where, note, all the tensor products are taken over k, except the one over

k(SmlS),)) ). Using the definition of the action of k(S5,25),|) on the module
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(M“l, e ,M"T)I%m@(]w”*1 X... X MVT) given by , it is now easy to

prove that the element
(W) o) ert e eT() @

(where e is the group identity element of S,,1S,,) generates M2 as a k(S,,,05,)-
module but is acted upon trivially by W.,. The proposition now follows by

Corollary 2.2.7] O

Original research in Chapter 4: Most of the material in this chapter is

taken more-or-less directly from the literature, although Propositions [4.3.1]

14.3.2} [4.3.3] |4.3.4] and (all of which are fairly routine properties of the

module constructions given in Section [4.3|) are my own work, as is Proposition

[1.4.1] (again, this is a fairly routine result).
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Chapter 5

Cellular structure of wreath

product algebras

In this chapter, we shall offer some justification for our use of the name
“Specht module” for the modules S¥ in the previous chapter. We shall do this
by proving that the group algebra k(S,, 1 .S,) is a cellular algebra with the
modules S% as its cell modules, and further that if k(S,, 1.S,) is semisimple,
then the modules S% form a complete system of isomorphism classes of simple
kE(Sm1Sy,)-modules without redundancy (as v ranges over all r-multipartitions
of n). This is exactly the situation which holds for the Specht modules of the
group algebra of the symmetric group. We shall also give a description of
these modules in terms of a certain class of diagram, which affords a more
intuitive understanding of their structure. In fact, this description is valid for

any k(Sy, 1 Sy,)-modules of the form

[(X1, ’Xt)ﬁ’y@(ylgﬁg.._&n)}’[mm

mly

(see (4.3.7)).

In contrast to the rest of this thesis, we shall in this chapter work in the
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more general situation of the wreath product A S, of a finite-dimensional
k-algebra A with S,, (see Section [5.2| below for the definition of A?.S,,), noting
that this setting includes k(.S,,1S,) since we have (kS,,) .S, = k(S 1S,). In
particular, we shall be concerned with the case where A is a cellular algebra.
Cellular algebras were introduced by Graham and Lehrer in [I3] and the
concept has since found broad application.

In [12], Geetha and Goodman showed that the algebra A5, is cellular
in the case that A is not only cellular but cyclic cellular, meaning that all
of the cell modules of A are cyclic [I2, Theorem 4.1]. Their proof is quite
combinatorial in nature, and draws on the work of Dipper, James, and Mathas
in [§] and of Murphy in [3I]. However, we shall prove (section that A5,
is cellular for any cellular algebra A, by exhibiting it as an iterated inflation
of tensor products of group algebras of symmetric groups. Iterated inflations
were originally introduced by Koénig and Xi in [23], but we shall use this
concept in the form given in [I6]. The advantage of taking this approach
is a far simpler proof than the one given in [I2], and hence much easier
access to the powerful machinery of cellular algebra theory which allows us
to easily prove the nice results on A S, given in Section [5.4f The price
for this simplicity is that order obtained on the set of cell indices of A .S,
contains more relations than the order obtained in [12], and hence contains less
representation-theoretic information; see the discussion at the end of Section
for more details. Since (as far as the author is aware) all cellular algebras
which occur in practice are in fact cyclic cellular, the result presented here is
in effect a weaker version of the result of Geetha and Goodman. However,
the much simpler proof afforded by the method of iterated inflations is of
interest in its own right.

In Section [5.2], we shall generalise the construction of modules of the form
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to A1 S, and as mentioned above we shall also obtain a convenient
graphical description of such modules. In Section we bring this description
together with the cellularity result to deliver results on the representation
theory of A1 S,, in particular a description of the simple modules and a
semisimplicity condition. These results require no extra assumptions on the
field (e.g. algebraic closedness).

We shall conclude by applying (Section this work to the case where
A = kS,,, in which case A S, is in fact the group algebra k(S,, ¢ S,,) which
is the main topic of this thesis.

Note that we shall not use the contents of this chapter again in this thesis.
Indeed, this material is intended to provide motivation for our study of the
Specht modules for k(S,, ! S,), and to place the study of the representation
theory of k(S,, 1 S,) in the broader context of the study of wreath product
algebras. In particular, our arguments in subsequent chapters do not make
use of the cellular structure on k(S,, ?.Sy).

This chapter is an adapted version of an article preprint [I5] which the
author has submitted for publication to the Journal of Pure and Applied Al-
gebra (Elsevier) under the title Cellular Structure of Wreath Product Algebras,
and which has subsequently been resubmitted to this journal in revised form
following review. This chapter is based on the revised version.

Some of the material in this chapter is based on material from [14], a
thesis for which the author was awarded an M.Sc. at the University of Kent
in 2016. In particular, the whole of Section [5.1.3| appeared in essentially the
same form in [I4]. The rest of the material in question comprises whole of
Section [5.3] and the first part of Section [5.4] from the start of the section
up to and including Proposition All of this material appeared in [14],

but the version presented here is an improvement on the version given in

87



[14] because it makes use of a more sophisticated order on the layers of the
iterated inflation structure (the I'-dominance order; see below). Other than
the relatively minor modifications to the arguments necessary to make use of
this improved order, the material is in essentially the same form as in [I4] (the
version in [14] used a slightly different cellular structure on the group algebra
of the symmetric group, with the duals of the Specht modules appearing as

the cell modules, but this makes no difference to the arguments).

5.1 Recollections and definitions

An anti-involution on a k-algebra A is a self-inverse k-linear isomorphism

a — a* such that (ab)* = b*a* for all a,b € A.

5.1.1 Cellular algebras

We refer the reader to [I3] for basic information and notation on cellular
algebras. However, in order to avoid confusion with our established notations
for various sets of (multi)partitions based on the symbol A, we shall use the
symbol I' to denote the poset indexing the cell modules of a cellular algebra.
We shall refer to elements of the poset I' as cell indices, and we shall write
the anti-involution on a cellular algebra A as a + a*. Recall that to each
cell index \ we associate a finite set M (), and we have a cellular basis of A
whose elements are indexed by the disjoint union of the sets M () x M (X) for
A € I'. We write the cellular basis element indexed by (S,7) € M(\) x M(\)
as Cgp. We call the tuple (I', M, C) the cellular data of A with respect to *.

Since we are using right modules we take the multiplication rule for cellular
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basis elements to be

Cira= > R, (T.X)C5x (5.1.1)

XeM(\)
modulo cellular basis elements of lower cell index, where the coefficients
R.(T, X) € k are independent of S. Then the right cell module A* is the
vector space with basis {Cr : T' € M(A)}. Our form of the multiplication

rule (5.1.1) means that the action of A on A* is

Cra= Y  R.(T,X)Cx. (5.1.2)
XeM(\)

Let us recall some basic results on cell modules, see [13, Sections 2 and 3].
Indeed, each cell module is equipped with a bilinear form, whose radical is
either the whole cell module or else its unique maximal A-submodule. We
shall call these bilinear forms the cell forms and their radicals the cell radicals.
We let Ty be the set of A € I' such that the cell radical of A* does not equal
A* and for A € I'y we let L* be the quotient of A* by its cell radical. Thus L*
is a simple A-module, and the modules L* for A € I'y are in fact a complete

list of all the simple right A-modules up to isomorphism, without redundancy.

5.1.2 Permutation diagrams and cellularity of £S5,

We shall find it convenient to represent permutations in the symmetric group

S,, via permutation diagrams. For example, we represent (1,2,3)(5,7) € Sy

> A

where the i*® node on the top row is connected by a string to the (i)o'" node

by the diagram

Y

on the bottom row. To calculate the product o7 in S, using permutation
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diagrams, we connect the diagram for ¢ above the diagram for 7, and then
simplify the resulting diagram to yield the permutation diagram of or.

Now from [30], £S,, is known to be cellular with respect to our map * and
a tuple of cellular data including the set A,, of all partitions of n with the
reverse dominance order. Further, the cell module associated to a partition
A € A, by this cellular structure is the dual Specht module (SA)*, where S
is as in previous chapters the (right) Specht module of James in [20]. Our
source for these facts is [30], in particular Theorem 3.20, the “Warning” on
page 38, and “Note 2” on page 54. Note however that the original published
text of [30] incorrectly states that the cell module obtained is the dual of the
right James Specht module associated to the conjugate of \; see the correction
to the “Warning” on page 38 in the author’s errata to [30]. Note further
that [30, Theorem 3.20] mentions the dominance order on A,, rather than
the reverse dominance order. However, looking at the definition of a cellular
algebra used there [30, 2.1], we see that [30] uses the opposite convention on
ordering when defining a cellular algebra compared to our definition, so in
the sense of our definition of a cellular algebra the order is indeed the reverse
dominance order.

For our work in this chapter, we would like a cellular structure on kS,
with the Specht modules S* themselves as cell modules. To obtain such a
structure we use the work on dual bases of Frobenius cellular algebras of
Li and Xiao in [26] and of Li in [25] (see also [30, Chapter 2, exercise 11]).
For this, we must recall that if A is a k-algebra and (—,—) is a k-valued
bilinear form on A, then (—, —) is associative if we have (ab, ¢) = (a, bc) for
all a,b,c € A. From Section 3 of [20] we know that if a cellular algebra A is
endowed with a symmetric, non-degenerate, associative bilinear form (and

hence the algebra is a symmetric Frobenius algebra), then we may take the
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dual cellular basis of our cellular basis, and that this basis is indeed a cellular
basis of A. Further, the cellular structure on A associated to this dual cellular
basis has the same set of cell indices as the original cellular structure, but
with the reverse order. Moreover, by [26, Proposition 3.3], if we take A* to be
the cell module associated to a cell index A\ by the original cellular structure
on A, then the cell module associated to A by the new cellular structure is
the A-module obtained by equipping Homy(A*, k) with the A-action given
by the formula (fa)(x) = f(za*) for f € Homy(AMN k), a € A, z € A™.

Turning to the algebra £S,,, we may easily show that the form defined on
kS, by letting (a,b) be the coefficient of the identity element of S, in the
expansion of ab over the basis .9,, is symmetric, non-degenerate, associative
and bilinear. It follows that we may obtain a cellular structure on kS,
involving the anti-involution * and the set A,, with the dominance order,
where the cell module associated to a partition A is ((SA)*)* (the dual of the
dual of S*), which is trivially isomorphic to S*. It is this cellular structure
on kS, which we shall use in this chapter. Note, however, that we shall not
require any details about the definition of the associated cellular basis.

Now our cellular structure on kS, yields an indexing of the simple kS,,-
modules as L for \ € (A”)o’ where (An)
this set (An)

0 is a subset of A,,. It turns out that

, is the set of all p-regular partitions of n, and moreover that the
simple module L* associated to a p-regular partition \ is isomorphic to the

simple module D* as in Theorem We shall now justify these assertions.

Lemma 5.1.1. ([13, Section 3]) Let A be a cellular algebra with poset of cell
indices A\, cell modules A* and simple modules L* for X € Ay. For \ € Ay,
the composition factors of the cell module A* include one copy of L, and all
other composition factors are L* for p € Ag with p > X. For A € A\ Ay, the

composition factors of the cell module A* are all of the form L* for u € Ag
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with @ > .

Proposition 5.1.2. In our cellular structure on kS,, with the Specht modules
as cell modules, the set (A”)o of cell indices indexing the simple modules
is exactly the set of p-reqular partitions. Further, if X\ is p-reqular then the

simple module L* obtained from this cellular structure is isomorphic to D*.

Proof. We shall prove by (strong) induction on A € A,, (where A,, is equipped
with the dominance order) that for each A - n, we have \ € (A")o if and only
if A is p-regular, and that if A is p-regular then D* = L*. Indeed, assume
that for some A - n the desired statement holds for all partitions u - n with
w> A It follows that

{wkn|pis pregular and po A} = {p € (A")o | e AL,

and that we have D* = L* for all y in this set.

Suppose that A is p-singular. By Theorem , S* has a filtration by
simple modules D* for p-regular partitions u F n such that p> A. Hence
all composition factors of S* are of the form L* for u € <A”>o such that
1> A Suppose for a contradiction that \ € (An)o' Then by Lemma m,
the composition factors of S* must include a factor of the simple module L*
satisfying L* 2 L* for all u € (An)o such that p> A, a contradiction.

Now suppose that A is p-regular. Then by Theorem , S* has a
filtration by simple modules D* where D* occurs exactly once and all other
factors are of the form D* for p-regular partitions p F n such that p> .

Suppose for a contradiction that A € A, \ (An) Then by Lemma m,

o
we must have D & L* for some u € (An) o with g > A, which yields a
contradiction since we than have L* = D* 2 D*, Thus \ € (An) . Hence
by Lemma |5.1.1, L* must be amongst the composition factors of S*, which

forces D* = L since L* % L = D* for all p € (Ay,), with g > A, O
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Thus we see that the existing literature on the symmetric group and

cellular algebras yields the following theorem.

Theorem 5.1.3. The group algebra kS, is cellular with respect to the anti-
involution * defined by setting o* = o= for o € S, and a tuple of cellular
data including the partially ordered set A,, consisting of all partitions of n
endowed with the dominance order >. The cell module associated to A € A,
by this structure is the Specht module S* as defined above. Further, the set
<A”)0 of cell indices indexing the simple modules is exactly the set of p-reqular
partitions (recall that for p = 0 all partitions are p-regular), and moreover
for A € <A”)o’ the simple module L* obtained from the cell module S* is

isomorphic to the simple module D*.

The following result may easily be proved by directly verifying the axioms
for a cellular algebra. In fact, it is merely a special case of the general result
that a tensor product of cellular algebras is cellular, see for example Section

3.2 of [12].

Proposition 5.1.4. Let nq,...,n; be non-negative integers. Then the group

algebra k(Sy, X -+ x Sy,) is a cellular algebra with respect to the map given

by (01,...,00) — (o7, ...,0; ") for o; € S,, and a cellular structure where
the poset of cell indices is N, X -+ X A, with the order where (A\',... \Y) >
(v, ... ) means X > v for all i. The cell module associated to (A, ... At

is SN K- RSN (where we identify the algebra k(S,, x --- x Sy,) with the
algebra kS, ® --- ® kS, in the canonical way) with the action

(x1 @ @x4) (01,...,00) = (x101) @ -+ ® (x40%)

for z; € SN, o, € Sn,- The cell form on this cell module is given on pure

tensors by
(1@ @x,y1 @ - @Y) = (1, Y1) =~ (Te, Yo)
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where each bilinear form on the right hand side is the appropriate cell form

of some SN

Recall from page [45| the notion of the length of a permutation, which is
defined to be the total number of inversions of the permutation, where an
inversion of a permutation o € S, is a pair (¢,7) such that 1 <i < j<mn
and (i)o > (j)o. From these definitions, it is easy to see that if p is a
composition of n, then each right coset S, of S, contains a unique element
of minimal length, and further that if u = (1, ..., ), then for any given
right S,-coset, the element of minimal length is the unique element v of the
coset such that in the sequence (1)y~% ..., (n)y™!, the elements 1,..., 1
occur in increasing order, as do the elements p; + 1, ..., 1 + po, the elements
1+ pe+1, ..o, g+ po + ps, and so on. Equivalently, an element o of .S, is of
minimal length in its coset S, if and only if, in its permutation diagram, the
strings attached to the first ;; nodes on the top row do not cross each other,
the strings attached to the next py nodes on the top row do not cross each
other, and so on. For example, the permutation whose diagram appears in
the diagram below is of minimal length in its S,-coset for p = (3,2, 3).
For any p a composition of n, we define R, to be the unique system of

minimal-length right S,-coset representatives in .S,,.

5.1.3 Iterated inflation of cellular algebras

Iterated inflations of cellular algebras were first introduced by Konig and
Xi in [23], but we shall use them as presented in [I6], and this section is a
summary of the contents of that article. However, we give the form of these
results using right cell modules, rather than the left cell modules used in [16].
Note that all of the material in this section formed part of the author’s M.Sc.

thesis [14], and thus is not to be considered as new research in this present
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thesis.
Let A be a k-algebra, with an anti-involution *. Suppose that we have,
up to isomorphism of k-vector spaces, a decomposition

APV, eB,®V,

nel

of A, where I is a finite partially ordered set, each V), is a k-vector space, and
each B, is a cellular algebra over k with respect to an anti-involution * and
cellular data (I, M,,C). We shall henceforth consider A to be identified
with this direct sum of tensor products, and we shall speak of the subspace
V,® B, ®V, as the pu-th layer of A. Suppose that for each i € I, we have
a basis V, for V,, and a basis B, for B,,. Let A be the basis of A consisting
of all elements u ® b ® w for all u,w € V, and all b € B, as u ranges over I.

Suppose that for each p € I, we have for any u,w € V,, and any b € B,, that
(URbR W) =w®b" ®u, (5.1.3)

and suppose further that for any @ € I we have maps ¢, : V, x A =V, and
0,:V,x A— B, such that for any u,w € V, and any b € B,,, we have for

any a € A that
(LRbRw)-a=u®bl,(w,a)® ¢, (w,a) mod J(< p), (5.1.4)

where J(< p) = @,.,Va ® Bo @ Vo. Then by [16, Theorem 1], A is
cellular with respect to % and the cellular data (I', M, C), where I' is the
set {(u,\) : p € I'and A € T',} with the lexicographic order, M(u, \) is
V, x M,(\), and C((ﬁ,’?()),(y,y) =z®Cxy QY.

Further by [16, Proposition 2], for each p € I there is a unique B ,-valued

k-bilinear form v, on V, such that for any u,w,z,y € V,, and b,c € B, we

have Q/Ju(ya u) = %(U, y)" and
(2@cRy)(ub@w)=2®ct,(y,v)b®w mod J(< p). (5.1.5)
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Finally (see [I6, Proposition 3]), let (u,\) € T', and let A* be the right
cell module of B; corresponding to A. The right cell module A#Y) of A may
be obtained by equipping A* @ V,, with the action given, for a € A, z € V,
and z € A, by (2 @ ¥)a = 20,(x,a) ® ¢,(z,a). Moreover, if (-, -) is the cell
form on A*®V, and (-, -), is the cell form on A*, then for any z,y € V,, and

any z,v € A, we have

(z@w, v@y) = (zPu(e,y),0)r = (2, 00y, ))x. (5.1.6)

5.2 Wreath product algebras

We recall the notion of the wreath product of an algebra with a symmetric
group from [6]. Indeed, let A be a finite-dimensional unital associative k-
algebra. Consider the k-vector space kS, ® A®™, and further let us write a
pure tensor r ® a1 ® as @ - - - ® a,, in this vector space as (x ;a1, A9, ... ,an).

Then we have a well-defined multiplication which is given by

(O-;aha?v”'7an)(ﬂ-;bl7b27'”7bn> =

(O’?T; a(l)ﬂ.—lbl, &(Q)ﬂ-—lbg, ceey a(n)ﬂ.—lbn)

for o,m € S,, and a;,b; € A. We define the wreath product A1S, of A and S,
to be the unital associative k-algebra so obtained. We note in particular the
case where A = kS,,, where we see that the algebra (kS,,) ¢ S, is isomorphic
to the algebra k(S,, ¢ S,,) via the obvious isomorphism. We shall return to
this special case in Section below, where we shall relate our work in this
chapter on A S,, to our work on k(S,, 1.S,,) in the rest of the thesis.

We assume that the reader is familiar with the notion of diagram algebras,
for example the Brauer or Temperley-Lieb algebras. We can consider A .S,

to be a kind of diagram algebra. Indeed, we may represent a pure tensor
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(0;a1,as,...,a,) in AS,, where o € S, and a; € A, by a diagram obtained
by drawing the permutation diagram associated to o, with the nodes of
the bottom row replaced by the elements a;. For example, if n = 5 and

o= (1,4,3,5,2), then we represent the element (c;ay, as, as, as, as) by

Such diagrams are useful for computing products, as we now show by an
example. Indeed, keep n =5 and ¢ = (1,4, 3,5,2), and let 7 = (1,3,5)(2,4).
Then to compute the product (o;ay, as, as, ay, as)(mw; by, by, bs, by, bs), we draw
the diagram corresponding to the first factor above the one corresponding to

the second factor, to obtain

We then slide each a; down its string to meet some b;, and then resolve the

two connected permutation diagrams into a single diagram, to obtain

G5%>£<&153 asby G3b5‘

This diagram corresponds to the element
((L 2, 3)(47 5); asby, asby, aybs, azby, a3b5),

which is indeed the product of the two elements we started with.
Note that, unlike the usual diagram basis of the Brauer or Temperley-Lieb

algebras, the set of all such diagrams is not a basis of A¢.S,. A basis of such
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diagrams can be formed by fixing a basis C of A, and then taking the set of all
elements (o;ay,...,a,) for 0 € S, and a; € C. However, the product of two
such basis elements will not in general be a scalar multiple of another basis
element as is the case for the diagram basis of the Brauer or Temperley-Lieb
algebras.

It is easy to show that there is a well-defined anti-involution * on A .S,

given by
(oya1,...,a,)" = (a’l ;A1) - - ,az‘n)a), (5.2.1)
where ¢ € S,, and aq,...,a, € A. In terms of diagrams, this map corresponds

to the operation of taking a diagram, flipping it about the horizontal line
half-way between its two rows of nodes (so that the elements a; lie on the top
row), replacing each element a; with its image a; under the anti-involution
on A, and then sliding each element a to the bottom of its string. For the
case A = kS,, where we have A1 S, = k(S,, 1 S,), we may easily see that if
we take the anti-involution induced on kS, by mapping an element of S, to
its inverse, then we obtain the anti-involution on k(S,, 1.S,,) which is induced
by mapping each element of S,, 1 .S,, to its inverse.

We now give the well-known generalisation of the construction of the
k(Sy 0 Sp)-module to the algebra A1 S, (see for example Section 3 of
[6]). The construction is essentially unchanged from the k(S,,,05,,) case. Indeed,
let 1 be an r-part composition of n (where r is some integer), Xy, ..., X, be
A-modules, and for each ¢ = 1,...,r let ¥; be a £S,, module. We write A1.5,
for the subalgebra of A S, spanned by all elements (o;ay,...,a,) where

a; € Aand 0 € S,,. ThenX1®’“®---®X§“T®Y1®---®Yrisnaturallya
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A S,-module via the action

(I1®'--®xn®y1®--~®y7«)(0;a1,...,an):

L(1)o—101 K- T(n)o—-10n X Y101 Q-+ Q YrOy,

where the elements o; € S, are such that under the natural identification

of S, with S, x---x S

., 0 is identified with (oy,...,0,). Then inducing

from A S, to AvS, (that is, applying the functor — ® 45, AU S,) yields a

module which we may easily see is isomorphic as a k-vector space to
XMe XY ® - ®Y, ®kR,, (5.2.2)

where kR, is the vector space on the basis R, of minimal-length coset

representatives, with the action given by

(1@ R, @@ - QY @Y)(T;a1,...,0,) =

T(1)-10(1)¢ KR T (n)o—-10(n)¢ (2 y191 Q- y,ﬁT (29 C, (523)

where v € R, and ¢ € R, and 6 € S,, are such that yo = 0¢. Letting X be
the tuple (X1,..., X,) and Y be the tuple (Y7,...,Y,), we denote the module
so obtained by ©#(X,Y’). Comparing this construction to our work in Section
, and in particular the k(S,, ! S, )-module , we see that in the case
A = kS, where A1S,, = k(S,,15,) we have an equality of k(S,,?5,,)-modules

o(X.Y) = (X0 x) " o (i my) [ (5.2.4)

mip
where now each X; is a kS,,-module.

We now introduce a diagrammatic representation for certain pure tensors
in the module ©#(X,Y) which provides a very convenient and intuitive
understanding of the action of A!S,. Indeed, let us take a pure tensor

1R QT QY ® - @y ®7v in (5.2.2), where v € R,,. We represent
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this element by taking the permutation diagram of v, labelling the nodes on
its lower row from left to right with the elements z(;)y-1,...,2¢,),-1, then
linking together the first ¢; nodes on the top row and labelling them with y;,
linking together the next ps nodes on the top row and labelling the linked
nodes with ys, and so on. For example, take n = 8, r = 3, u = (3,2,3),
and 7 = (2,3,6)(5,8,7) (7 may be seen to be an element of R, from its
permutation diagram in , since the strings associated to each y; do not

cross each other). We then represent the element
T1R®T2Rr3R T4 Qx5 ®Te @I ®I3g @Y1 QY2 XYz Xy

by the diagram

Y1 Y Ys3
T Tg i) T4 T XT3 xTs Ty ) (525)

Note that each x; is connected to the i node on the top row. Note also that
for each 2 = 1,2, 3, the elements of X; are attached to the strings associated to
y;. We thus identify ©#(X,Y’) with the k-vector space spanned by diagrams
consisting of the permutation diagram of some element of R, where (as in
(5.2.5)) for each i = 1,...,r, the (ug + -+ + i1 + 1)™ to (ug + -+ ps)™
nodes are connected to form a single block which is labelled by an element
of Y;, and where each node on the bottom row is replaced with an element
of some X such that each top-row node in the ith block is connected to an
element of X; on the bottom row. We note that under this identification,
the diagram in ©#(X,Y’) whose top row has labels y; to y,, whose bottom
row has labels u; to u,, and whose underlying permutation diagram is that
of v € R, represents the pure tensor ugy, ® -+ @ Um)y VY1 @ -+ D Yp ® 7.
Further note that the set of all such diagrams is not linearly independent in

O#(X,Y), and so they form a spanning set rather than a basis.
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This diagram representation of ©#(X,Y’) affords an intuitive realisation
of the action of A5, and we illustrate this by an example. Indeed, keeping

n=38,r=3, u=(3,2,3) as above, let us consider the diagram

hn Yo Y3
Uy U2 Uus Uy Us Ug Uy us (526)

in ©#(X,Y); note that this diagram represents the pure tensor
Uz ® ug ® ug @ Uy @ us @ Uz ® Uy ® ur®
Y1 QY ®ys @ (1,3,8,7,4)(2,6). (5.2.7)
Now take the element
((1, 2,3)(4,6,8,7,5); a1, as, as, as, as, ag, az, ag) (5.2.8)

of A1 Sg, which is represented by the diagram

aq a9 as ay Qs Qg ay as

The action of the element ([5.2.9) on ([5.2.6)) is calculated as follows: we connect

the diagram ([5.2.9)) below the diagram ([5.2.6)) to get
A Y2 Y3

= [

Uy U2 us Uyg Us Ug U7 ug
ai ag as a4y Qs Qg a7 ag

(5.2.9)

We slide each u; down its string and simplify the drawing of the resulting

partition diagram, to obtain

hn Y2 Ys
Uz UGz U203 UsQg U7Q5 Ugde Ugh7 Uy (5210)
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The permutation encoded in the strings of this diagram is (2,8,5,4)(3,7,6),
which has the factorisation (2,8,5,4)(3,7,6) = (2,3)(7,8) - (2,7,5,4)(3,8,6)
where (2,3)(7,8) € S, and (2,7,5,4)(3,8,6) € R,; we represent this factori-
sation by redrawing the diagram as

Y1 Y2 Y3

Uz UGz U203 UsGs U7Q5 Usdg UgG7 Updg

and we note that in the lower part of this diagram, which represents the
permutation (2,7,5,4)(3,8,6), the strings associated to each y; do not cross
each other, which demonstrates that (2,7,5,4)(3,8,6) is in R,,. Now in the
upper part of the diagram, the arrangement of strings encodes the permutation
(2,3) € S3 below both y; and ys3, while the strings below y, encode the identity
permutation in S;. We remove the upper part of the diagram and let these

permutations act on their respective elements y;, yielding

y1(273) Y2 y3(2a3)

usa; U1 U3 UsAg4 U7A; UgQg UgA7 Ugds

Under our mapping, this corresponds to the pure tensor

U3A] Q@ USA7 @ Ugag X U102 @ Us04 @ U203 @ Uras X UsQe&
y1(2,3) ® 2 ® y3(2,3) ® (2,7,5,4)(3,8,6).
By lettlng (xla To,T3,T4,Ts5,Tg, T, .’L'g) == (Ug, Ug, Ug, U1, Us, U2, U4, U7), o =
(1,2,3)(4,6,8,7,5) and v = (1,3,8,7,4)(2,6), and noting as above that then

o= (27 8,9, 4)(37 7a 6) = (27 3><77 8) ) (27 77 9, 4) (Sa 8, 6) where (27 3><77 8) € S.u
and (2,7,5,4)(3,8,6) € R,, we may verify that this is indeed the image
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of (5.2.7) under the action of (5.2.8]) as given by (5.2.3). In the general
case, for the A1 .S,-module ©#(X,Y), let d be the diagram formed from the

permutation diagram of v € R, with labels y; to y, on the top row and labels
uy to u, on the bottom row, and let a be the element (0;ay,...,a,) of A1S,.
Then we have yo = 0¢ where 0 € S, and ( € R, and so 8 corresponds to
some element (6,,...,6,) of S, x--- xS, under the canonical isomorphism.
Then the image of d under the action of a is the diagram formed from the
permutation diagram of ¢ with top row labels y,6; to y,.6, and bottom row
labels u(1ys-1a1 to U(n),-1a,. We leave it to the reader to convince themselves
that in this diagram the nodes of the i** block on the top row are connected
to elements of X, and moreover that this diagram does indeed represent the
action of a on the pure tensor of ©#(X,Y) represented by d.

The following result will allow us to prove that the wreath product of
a cyclic cellular algebra with S, is again cyclic cellular, thus obtaining the
result of Geetha and Goodman (albeit in a weaker form due to the different

ordering on the set of cell indices, as mentioned above).

Proposition 5.2.1. If X1,..., X, are cyclic A-modules, and for each i, Y; is
a cyclic kS,,,-module, then ©*(X,Y) is a cyclic A1 S,-module for any r part
composition u of n. Indeed, if x; is a generator for X; and y; is a generator

for'Y;, the diagram

1 2 T

Wy ........... Wy ........... Wy ...........
T X1 jl T2 T jg Ty Ty

(where each x; appears p; times) generates O*(X,Y).

Proof. Let dy be the diagram in the proposition. It is easy to see that we
may obtain any diagram in ©#(X,Y) by first applying an element (6;1,...,1)
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of AUS,, where § € S,, in order to replace each element y; in dy with an
arbitrary element of Y;, then applying (v;1,...,1) for some v € R, to arrange
the strings of the diagram, and finally applying an element (e;ay,...,a,) to
replace each element x; with an arbitrary element of X;. Since O#(X,Y) is

spanned by diagrams, the proof is complete. O

5.3 The iterated inflation structure of the
wreath product algebra

We now turn to the case where our interest lies, which is the case where A is
a cellular algebra. We shall exhibit the wreath product A S,, as an iterated
inflation of cellular algebras, and hence show that it is in turn a cellular
algebra.

Note that a version of the material in this section formed part of the
author’s M.Sc. thesis [14] as mentioned at the start of the chapter. The
version presented here is an improvement on the version given in [14] because
it makes use of a more sophisticated order on the layers of the iterated inflation
structure. Other than the relatively minor modifications to the arguments
necessary to make use of this improved order, the material is in essentially
the same form as in [14] (the version in [14] used a slightly different cellular
structure on the group algebra of the symmetric group, with the duals of the
Specht modules appearing as the cell modules, but this makes no difference
to the arguments).

Let A be a cellular algebra with anti-involution % and cellular data
(I, M,C). We let r = |I'|, and we fix a numbering of the elements of T’
as A1, Az, ..., Ap, and moreover we choose this numbering such that A\; > A;

implies ¢ < j, so that our numbering is in this sense compatible with the
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partial ordering on I'. We write A* for the right cell module associated to
A € I' as noted above. For convenience we may omit the cell index superscript
from elements of the cellular basis, so we write C's  rather than Cg ;. We have
a basis of A1.S, consisting of all elements of the form (o;Cs, 1y,...,Cs, 1,)
where o € 5, and each Cg, 1, is some element of the cellular basis of A; note
that we allow the elements Cg, 7 to be associated to different cell indices. We

shall denote this basis by A. Now elements of A are represented by diagrams

Csimv Csim Csymy Csimy Csemy

but we want a slightly different representation. Indeed, in the diagram (/5.3.1]),

like, for example,

(5.3.1)

we replace each Cg, 1, with the pair 5;, T}, and then move the S; up to the
top of the associated string, to get

We thus obtain a different way of representing elements of A, as diagrams of

the form

(5.3.2)

consisting of a permutation diagram where the nodes on the top and bottom
rows are replaced with elements U;, W; € Uyer M (), such that if U; on the top
row is connected to W; on the bottom row, then we must have U;, W; € M(X)
for some A € I" (i.e. U; and W; lie in the same set M(\)). Note that the

diagram ([5.3.2)) represents the element
((1737574, 2); Cuywys Cuuwss Cuyws, Cusw, CU3,W5) € A Ss.
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Now given any such diagram, for each ¢ € {1,...,r} we let u; be the number
of elements U; such that U; € M();). We thus obtain a composition p =
(1, .., ) of n (note that some of the parts p; may be zero in general).
We call this the layer index of the diagram, and also of the element of A
which it represents. We let kA, be the k-span of all elements of A with layer
index p, and we recall that €27 is the set of all r-part compositions of n with

non-negative integer entries. Then A1 S, = P kA,. For a layer index f,

HES,
we define a half diagram of type p to be a tuple (Uy,...,U,) of n elements of
Lixer M (A), such that there are exactly p; elements of M()\;) for each i. We
define V, to be the set of all half diagrams of type . Now if (Uy,...,U,) is a
half diagram of type u, then we may easily see that there is a unique element
€ of R, such that (U, . .., Up)e) lies in the set M (A" x -+« x M (X, )#. We
shall call this € the shape of the half diagram (U, ..., U,).

Let E be the diagram with top row U; to U,, bottom row W; to W,
(reading from left to right), and where o € S, is the permutation such that

U; is connected to W(;,. Thus E represents the element
(0 ) C[U(l)a—l, Wl], c. ,O[U(n)a—l, Wn])

where to ease the notation we allow ourselves to write C[U, W] for Cy .
Suppose F has layer index p. We may decompose F into three pieces of data,
namely the half diagrams (Uy,...,U,), (Wi,...,W,) of type u, formed from
the top and bottom rows of F respectively, and the element (7q,...,m,) of
the group S, x --- x S, where m; € S, is such that (counting from left to
right) the ;' element of M ();) on the top row is connected to the (j)m;™
element of M();) on the bottom row. Thus m; records how the elements
of M()\;) on the top row are connected to the elements of M()\;) on the
bottom row. For example, suppose that » = 3 and that the diagram (|5.3.2))

has layer index (3,0, 2) with Uy, Us, Uy € M (A1) and Us, Us € M()\3). Then
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(71, M2, T3) = ((1,3, 2), e, (1,2)) (note that e here is the unique element of
the trivial group S,, = Sp). It is easy to see that if €,6 are the shapes of
(Uy,...,U,) and (Wy,...,W,) respectively, and further if 7 is the image of
(m1,...,m ) under the natural identification of S,, x --- xS, with the Young
subgroup S, of S, then o = ¢ '7d. If we now let V, be the k-vector space
with basis V,,, then the above decomposition is easily seen to afford a k-linear
bijection

V,®kS, @V, — kA,

given by mapping

to

(6_17T(5; C[U(l)(e—17r5)—1, Wl], e ,C[U(n)(€—17r5)—1, Wn])

where € is the shape of (Uj,...,U,) and § is the shape of (Wi,...,W,).
We thus have a decomposition A S, = @MEQZ V, ® kS, ® V,, and this
decomposition will allow us to exhibit the desired iterated inflation structure.
For this, we need to equip the set )] with an ordering. The ordering which
we shall use is neither the lexicographic order nor the dominance order, but
rather a variation on the dominance order which takes account of the partial
order on the set I'. Indeed, if p = (u1,...,p) and a = (a,...,q,) are

elements of (27, then we define yt > o to mean that for each ¢ =1,...,7 we

have

Zmz ZO%

i such that i such that
iZ)\q /\i ZAq

(and of course we define br to match). We call this (partial) order the

I'-dominance orderll

! The use of the I'-dominance order on " was suggested by the anonymous reviewer
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Now take V), as above, B, to be kS, and B, to be S,,. We may easily see
that our basis A is indeed the basis of A S,, obtained from the bases V,, and
B,, as in section and we shall now prove that our decomposition exhibits
A S, as an iterated inflation with respect to the anti-involution given by
and the cellular structure on the algebras kS, as in Proposition m
Thus, we must prove that the equations and hold. The fact that
equation holds follows easily from the description of the anti-involution
on Al S, given after equation . To prove that holds, we shall
prove the slightly stronger result Proposition [5.3.2 below. First, we need a

lemma, which will allow us to compare layer indices of elements of A1 S,.

Lemma 5.3.1. Suppose that we have sy1,...,8p,t1,...,t, € {1,...,r} such
that As; > Ay, in the poset I' for each j. For eachi=1,...,r, let yi; be the
number of s; which are equal to i and «; be the number of t; which are equal to
i. Let p=(p1,..., 1) and o = (aq, ..., ap) so that o, € Q8. Then p >t «a,

and if at least one of the inequalities As; > Ay, 1s strict then we have jbr a.

Proof. This lemma is nothing more than simple combinatorics. We need to

show that

Z/%‘Z Zai-

i such that i such that
i2>\q >\i ZAq

But we have for each ¢ = 1,...,r that

Doom= A, 2 A

i such that
i>Aq

and

S oa= A, 2 A

i such that
i2Aq

who reviewed my article Cellular Structure of Wreath Product Algebras for the Journal of

Pure and Applied Algebra.
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and since the set appearing in the right-hand side of the latter equation is a
subset of the corresponding set in the first equation, we have the required
inequality g Br . If there is a strict inequality A, > A;, we clearly have

i # « and hence pbr a. m

Proposition 5.3.2. Let p € Q, let u = (Uy,...,U,), w = (Wy,...,W,)
be elements of V, and m = (my,...,m.) € S, such that the element of A
corresponding to the pure tensor u @ m @ w has layer index p. Further, let
a=(o;a,...,a,) be a pure tensor in AUS,. Then we have (U@ TR w) -a =
u®ml,(w,a)® ¢, (w,a) modulo elements of A of layer index strictly less (in
the I'-dominance order) than p, where 0,(w,a) € S, and ¢,(w,a) € V, are

independent of u and .

Note that in the proposition we allow the a in 6,(w, a) and ¢,(w,a) to
be any pure tensor in A S, rather than just an element of A as required in

(5.1.4).

Proof. Let €,06 € R, be the shapes of u and w respectively, so that © @ ™ @ w

corresponds to the element
(e7'78 5 ClUGy 1m0y, Wil -, ClUmye175)-1, W)
Then
(uRTRw)(o;a,...,a,) =

(e85 ClUaye176)-1: Wils -« o, ClUy(e-1n)-1, Wil ) (05, - . a) =
(67171'(50'; C[U(l)(e—lﬂ.é‘g)—l, W(l)o-fl]al, cuey C[U(n)(e—lﬂ.(gg)—l, W(n)o.fl]a/n).

For each i =1,...,n,let s; € {1,...,7} be such that Ug)—1rs50)-1, Wijo—1 €
M()s,). Then by (5.1.1)) we have

ClUgy(e1r60)-1, Wiiyo—1]ai = Z Ra, Wiyo—1, X3)ClUGy (e 160y -1, Xii]



modulo cellular basis elements of lower cell index. Using this, we see that

(u@m®w)(o;ai,...,a,) is congruent to

Z Z (H yo—1s X; )) (6_171'50; O[U(l)(eflw(go-)fl,Xl], ceey
ClUmy(e1r80)-1, X)) (5.3.3)
modulo elements of A of the form
(e 'mbo; CM S, Th),...,CNn [S,, T)) (5.3.4)

where for each 7 we have \;, > \;, and for at least one ¢ this inequality is
strict. Now let @ = (ay,...,q;) be the layer index of (5.3.4). By Lemma
5.3.1| we have ppr vy, so that (u®@ 7 ®@w)(o;ay, ..., a,) is congruent to
modulo elements of lower layer index.

Now X; lies in the same set M(A;,) as W;),-1, and from this we may
easily see that the shape of (X,...,X,,) is the unique element ¢ of R, such
that 00 = 0C for 6 € S,,. Thus in we have

(G_IW(SO- ) C[U(l)(e*%r(?a)*la X1]7 SR C[U(n)(eflmicr)*la Xn])
= (6_17T9C; C[U(1)(rl7reg)717X1], ... ,C[U(n)(e—lﬂgc)—l,XnD

which we now see corresponds to the pure tensor u ® 70 ® (Xi,...,X,), and

hence is equal to
u® Tl ® (Z Z (HRaz 1)0—1,X7;>> (Xl,...,Xn)> )
=1

Thus, setting 6,(w, a) to be the unique element 6 of S, such that do = 6¢ for
¢ € R, and ¢,(w,a) to be

Z Z (HR (o= X)) (X1, X0), (5.3.5)
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we see that (u@mT®w)(o;a1,...,a,) = u®7l,(w,a)®¢,(w,a) modulo lower

layers, and furthermore these values depend only on w and a, as required. [

By the results in Section [5.1.3] we now have that A .S, is a cellular
algebra. Further, we may use Proposition to see that the set indexing
the cell modules of A1 S, is the set of all pairs (p,, (... VT)) where p is an
r-component composition (jy, . .., i) of n (recalling that r = |T'|), and v/ is a
partition of g;. Thus in any such pair we have u = ([/!],..., "), and so we
lose no information if we omit the partition p from these pairs. Hence we may
identify the set of cell indices of A5, with the set of all r-multipartitions

(1, ...,v") of n. We now give a statement of the cellularity of A1S,.

Theorem 5.3.3. Let A be a cellular algebra with anti-involution x and poset
I' of cell indices. Recall that A, denotes the set of all multipartitions of n of
length r. Then Al S, is a cellular algebra with respect to a tuple of cellular

data including the anti-involution given for o € S, and ay,...,a, € A by

*

(0';(11, e ,an) = (0'_1; a?l)o" ce ,a?n)a>

and also the poset consisting of A with the following partial order: if
(o), (gt n7) € AL then (VY ... v") = (nt,...,n") means either
that (|, ..., [v"]) =r (|0, ..., |[n"|) or that |V*| = |n'| and v* > n® for each i.

In the next section, we shall consider the cell modules which arise from
this structure. In particular we shall follow the work of Geetha and Goodman
by proving that if A is cyclic cellular, then so is A1.5,.

Note that the partial order we have obtained on A is not the dominance
order. Indeed, the dominance order is a strictly smaller order than our
order (meaning that any relation between multipartitions which holds in the

dominance order also holds in the order in Theorem [5.3.3)). In their cellularity
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result [I2] Theorem 4.1], Geetha and Goodman obtained (subject to the
assumption that A is cyclic cellular) the I'-dominance order on A] (see [12,
Definition 3.1, (2)]), an order which is in general strictly smaller than the
dominance order on A] and moreover preserves the representation-theoretic
information present in the ordering on I'. The fact that we have ended up
with our larger ordering on the set A, is fundamentally due to our use of the
method of iterated inflations, which will always yield an order with the kind of
“layered” structure which our order exhibits. This is important to note, since a
smaller ordering on the set of cell indices of a cellular algebra (i.e. an ordering
with fewer relations) provides better representation-theoretic information
about the algebra. Thus we note that in order to use the method of iterated
inflations rather than the intricate arguments of Geetha and Goodman (and
hence obtain a much simpler proof of the cellularity of A S,, than the proof
given in [12]), we must be content with a slightly weaker result. However, our

result is still sufficient to obtain the desirable results in the next section.

5.4 The cell and simple modules of the
wreath product algebra

In this section we shall use the theory of cellular algebras to prove nice results
about the simple modules of A S,, and to establish a condition for the
semisimplicity of A1.S,, (where A is a cellular algebra as above).

Note that a version of the material in the first part of this section, up
to and including Proposition formed part of the author’s M.Sc. thesis
[14] as mentioned at the start of the chapter. The version presented here
is an improvement on the version given in [I4] because it makes use of the

more sophisticated I'-dominance order on the layers of the iterated inflation
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structure. Other than the relatively minor modifications to the arguments
necessary to make use of this improved order, the material is in essentially
the same form as in [14] (the version in [14] used a slightly different cellular
structure on the group algebra of the symmetric group, with the duals of the
Specht modules appearing as the cell modules, but this makes no difference
to the arguments).

Recall that the cell modules A of A are indexed by the cell indices
A1, A, ..., A In the sequel we shall also allow ourselves to write A% as A();)
when this makes our formulae more readable. We shall now consider the cell
modules of A1S,,. We know that these are indexed by length r multipartitions
of n. Let v = (v',...,v") be such a multipartition. We shall show that the cell
module A% is isomorphic to the module O ((AM, ... AM), (s, ... ,S")
[12, Theorem 4.27].

Now we know from Proposition and the results in section that,

as a k-vector space, A% may naturally be identified with

1

Y@ @S @V, (5.4.1)

so let us consider the structure of the vector space V,|. Indeed, let ay, ...y,

be elements of I' such that

(Oél,...,Oén):()\1,)\1,...,)\1,)\2,...,)\2,)\3,...,)\r,...,>\r). (542)

Vv
|| places |v2| places [v"| places

Let (Xi,...,X,) be a half diagram in V). Then the shape of (Xi,...,X,)
is the unique element « of R, such that (Xi,...,X,) lies in M (cv1)y-1) X
- X M(am),-1). We now see that

VM = |_| M(Oé(l),y—l) X+ X M(Oé(n)wfl)

YER |
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and hence if we identify the half diagram (X7, ..., X,) with the pure tensor
Cx, ® - ® Cx,, we obtain a natural identification of k-vector spaces
Vi = P Alapy1) @ @ Alapy, ). (5.4.3)
YER |
We shall henceforth consider these two vector spaces to be thus identified.
Further, we shall abuse terminology and use the term pure tensor in V,

to mean any pure tensor in any of the summands in the right hand side of

(5.4.3). For example, we can easily show using (5.1.2) and (5.3.5)) that under

the identification ([5.4.3]) we have
Py (C’W1®- - @Cw,, (o;aq, ... ,an)) = C’W(l)f1 G- - -<§§>Cw<n)f1 an, (5.4.4)

where ¢, is of course the function V)| x A — V|, which forms part of the
iterated inflation structure on A S,. In light of (5.4.1)), we shall further

speak of a pure tensor in A¥ to mean any pure tensor of the form
W R QW QU & -+ & Uy,

where w; € S and u; ® - -+ ® u,, is a pure tensor in Viy- Using (5.4.4)) and
the expression for 0),|(w, a) given near the end of the proof of Proposition

5.3.2, we may now verify that the map taking the pure tensor

2180 T, QYN Q- QY @7y

1

in O ((AM, .. AM) (S”,...,5)) (where v € R}) to the pure tensor
yl ® P ® yr ® x(l)’)/*l ® P ® $(n)771

in A% is an isomorphism of A S,-modules (but note that in order to apply
the formula given in section for the action of an iterated inflation on
its cell modules, the arguments w and a in 0),(w,a) and ¢},(w, a) must be
elements of the bases A and V|, respectively). We have thus proved the

following result.
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Proposition 5.4.1. [12, Theorem 4.27] We have for any r-multipartition

v=(v...,V") of n an isomorphism of Al S,-modules

QI ((AM, ... AM), (8., 8")) = A%

We may now use Proposition and the fact that all Specht modules
are cyclic to obtain the following result. Of course, this is a weaker result
than the corresponding result in [I2], since (as already mentioned) Geetha

and Goodman obtain the I'-dominance order on their cell indices.

Proposition 5.4.2. (compare [12, Theorem 4.1]) If A is cyclic cellular then
so is Al S,,.

Let € Q. Then by , we know that the multiplication within
the layer of A5, indexed by p is determined by a bilinear form, ,. Let
(Ur,...,Uy), (Wh,...,W,) be half diagrams in V,, so that u = Cy, ®- - -®Cy,,
and w = Cy, ® - -+ ® Cy, are pure tensors in V,. Now by equation (5.1.5),

(u@e@u)(w®eRw)=u®Y,(u,w) @w (5.4.5)

modulo lower layers. The element u ® e ® u of A.S, is represented by the
diagram
Uu U, - U, . . e .

‘ n

v, Uy - U, Co,u,Cooy -+ Cu, v,

and of course the element w ® e ® w is represented by a diagram which is the
same except that each U is replaced with a W. Thus we find by concatenating
and simplifying these diagrams that the product (u ® e ® u)(w ® e ® w)

corresponds to

Cu,,v,Cwa s Co, Cwew, -+ Cu, v, Oy, (5.4.6)
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We may expand each of the products Cy, v, Cw, w, in terms of the cellular
basis of A and use these expansions to write ([5.4.6)) as a linear combination

of diagrams of the form

Cxivi Cxo v Cx, s,

Now for j = 1,...,n, let s; be such that U; € M(),;). The we know that

each product Cy, 1, Cw, w, is a linear combination of cellular basis elements

C;\;JY where Ay, < Ay;. Tt follows by Lemma 5.3.1| that all such diagrams have

layer index at most p (in the I'-dominance order). Moreover, Lemma
also tells us that, if for any j the element W; do not lie in M (A,;) (so that
Cu,,u,Cw,w;, 1s a linear combination of cellular basis elements C’j(tg, where
Ai; < As;), then all of the diagrams in the expansion have layer index strictly
less than p, and hence by we see that we must have ¢, (u,w) = 0
in this case. Suppose now that W; € M(A,;) for each j. By (2.4.1) in [13],
we know that Cy, v, Cw, w;, is congruent to (Cy,, Cw,)Cy, w, modulo cellular

basis elements of lower cell index, where (-,-) is the appropriate cell form.

Using Lemma as above, we see that (5.4.6) is congruent modulo lower

layers to
u U, --- U,
<OU1>CW1><OU270W2> e <CUn7OWn> ‘ ‘
Wy, W, --- W,

Y

which represents the element (Cy,, Cw,)(Cu,, Cws) -+ - (Cu,, Cw,) t ® e ® w,

and hence we find that in this case

@Z),u(uﬂ w) = <CU17 OW1><OU2’ OW2> T <0Un7 OWn>

Note in particular that 1, is thus in all cases k-valued. We can now use these

values for v, in the case where u = |v|, together with equation (5.1.6) and
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Proposition to compute the values of the cell form on the cell module
A% Indeed, if y1 @ Ry, QU1 @ Quy and 21 @ ® 2, QW1 Q-+ - O wy

are pure tensors in the cell module A% then we see that

(y1®---®yT®U1®---®um 21®"'®Zr®w1®"'®wn>:

(W1, 21) = (Y 20) (ur, w1) - -+ (U, w) - (5.4.7)
if u; and wj; lie in the same A(X) for each i =1,...,n, and
(R @YU DUy, 210 @AW ® - Quw,) =0 (54.8)

otherwise.
Next we seek to describe the cell radical of A% Using (5.4.1) and (5.4.3)),

we have isomorphisms of k-vector spaces
AL >~ gv! ®...®SVT®V|Z|
~ P 5" @08 @ Aaay-1) @ ® Alag,-1).

YER|y|

(5.4.9)

For v € Ry, let T, = MR8 RA(ayy-1)®- - @A(a(m),-1). Now we
see from that if ~, 8 are distinct elements of R, and u € T, w € T,
then (u,w) = 0. It follows that, if we let R, be the radical of the restriction
to T, of (-,-), then the cell radical of A% is @WGRM R,.

Let us fix a basis in each A* and each S”. From these bases we obtain
a basis of pure tensors in each T.,. Let G,: be the Gram matrix of the cell
form of S** and G., be the Gram matrix of the cell form of A% with respect
to our chosen bases. If we let B, be the Gram matrix of the restriction of the
cell form to Y., with respect to our basis, then we see by that B, is

the matrix Kronecker product G,1 @ -+ @ Gr @ Go ;. © - @ Ga By

()~ S

fixing some total order on the set R, and concatenating our bases of the T,

in this order, we obtain a basis of A% Using (/5.4.8]), we see that the Gram
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matrix of the cell form with respect to this basis is of block diagonal form
with diagonal blocks B, for v € R,. From this we see (using the fact that
the rank of the Kronecker product of two matrices is the product of their
ranks) that the rank of the cell form on A¥ is [Ry,|| times the product of the
ranks of the cell forms of the cell modules S”',..., S, A™ ... Ao,

Now in constructing the basis of pure tensors for A% as above, we may
choose our basis of each cell module of A and £S,, by taking a basis of the
cell radical and extending this to a basis of the whole cell module. If we do
this, then we see that an element y; ® -+ - @ Y, ® U3 ® - - - ® u,, of the basis of
pure tensors for A¥ must lie in the cell radical if any y; or u; is an element of
the cell radical of the cell module in which it lies. By the above calculation
of the rank of the cell form on A%, we see that the number of such elements
must be equal to the dimension of the cell radical, and so we have now found
a basis of the cell radical inside a basis of the whole cell module.

We can now use the theory of cellular algebras from section 3 of [13]
together with our basis of A% to deduce some results about the simple
modules ¥ and semisimplicity of A1.S,,. These results are already known for
wreath products A0S, with A a general (i.e. not cellular) algebra given extra
assumptions on the field (see for example [0, Lemma 3.4]), and in particular
for the case k(G1S,) = (kG) 1S, where G is a finite group (see for example
Chapter 4 of [2I] for the case where the field is algebraically closed). However,
if A is cellular then our work shows that these results hold with no restriction
on the field at all. Given the importance of cellular algebras in certain areas
of representation theory we are confident that they will prove useful.

Recall that Ty indexes the simple modules of A. Let (A )y denote the set
of elements v € A} such that the cell radical of A% is a proper submodule of

Y so that (A;)O indexes the simple modules of A?.S,,. Recall that our field
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k has characteristic p, which may be zero or a prime.

Theorem 5.4.3. The set (AZ)O indexing the simple modules of AlS,, consists
ezactly of those (v, ... ,v") € Al such that v' = () whenever \; € T'\ Ty and

all v are p-reqular (recall that () is p-reqular for any p).

In light of Theorem [5.4.3] we see that if we let s be the number of
simple modules of A and we let 5\1,5\2, e ,5\5 be the subsequence of the
sequence A1, Ag, ..., A\, consisting of the elements of I'g, then the simple A.S,,-
modules may in fact be indexed by the set A; (p) consisting of all length s
multipartitions of n with p-regular entries. The main idea of the following
theorem is well known: see [28, p.204] and also [6, Proposition 3.7] and [12]
Theorem 4.25]. As mentioned above, the version presented here is notable for

its lack of conditions on the field.

Theorem 5.4.4. Let v = (V',...,V") € (Ag)o. Then corresponding to the
isomorphism ((5.4.9), we have an isomorphism of k-vector spaces

Y @ Dul ®-® DV”" ® Lan—1 R ® Lyt
VERy|

(where aq, ..., q, are as in ) Moreover, L¥ has a representation by
diagrams of the form i exactly the same way as A%, by simply using
elements of DV rather than S*' and elements of L® rather than A% . The ac-
tion on such diagrams is exactly the same as described above. We thus see that

v s isomorphic as an Al Sy-module to O ((L ... LM, (D"',...,D"")),

where for notational convenience we let L* =0 for A € '\ T'g.

We thus see that if we index the simple modules by A’ (p) as above, then
the simple indexed by © = (2!,...,0%) (where each ¥ is thus a p-regular

partition) is isomorphic to O ((L;\l, L), (D ,D™)).
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Theorem 5.4.5. Let v = (v',...,v") € (A}),. Then we have L* = A¥ if
and only if DV =~ g for eachi=1,...,r and whenever we have V' # () we

have LY = A,
Our final result is a criterion for semisimplicity; compare [0, Lemma 3.5].

Theorem 5.4.6. If A is a cellular algebra, then AQS, is semisimple if and
only if both kS, and A are semisimple.

5.5 Cellularity results for k:(Sm ) Sn)

Let us conclude this chapter by considering the case A = kS,, so that A S,
is the group algebra k(.S,, 1S, ), and thus applying the work which has been
done in this chapter to the situation which is considered in the rest of the
thesis. Recall that k is a field of characteristic p, where p may be zero or a
prime.

Indeed, we know from Theorem that kS, is cellular with respect
to the anti-involution induced by mapping each element of S, to its inverse,
and a tuple of cellular data including the poset A,, of all partitions of m
endowed with the dominance order. Moreover, the cell module associated
to p € A, by this structure is the Specht module S*, the set (Am)o of cell
indices indexing the simple modules in this structure is the set of all p-regular
partitions of m, and the simple module associated to a p-regular partition pu
by this structure is D*.

Taking A = kS,, and thus considering the wreath product (kS,,) .S, =
k(Sm 1 Sy,), we recall from that we have for any a F n an equality of
E(Sm Sy)-modules

e mn

O%(X,Y) = [(Xl,.._,Xr) 9 (Ylg'“&YT)H

mla
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where each X; is a k£S,,-module and Y; is a k£S,,-module. We thus have for

any r-multipartition A = (A, ..., \") of n an equality of k(S,, ! S, )-modules
S = @RI((SH ... SH), (SN, ..., SN).

We can now apply the results of this chapter to obtain a cellular structure
on k(S 1.S,). Before we do so, we require one further definition. Indeed, let
A= (A, ..., \") be an r-multipartition of n, and further suppose that each \°
is p-regular, and moreover that for each i such that u’ is p-singular we have

X = (). Then we define a k(S,, ! S,,)-module

g”&' min

D= [(p,....0") o (D¥ ®-- & DY) ]

mi|A|
where for notational convenience we take D* = 0 for any p-singular partition
1 of m.

Using the foregoing information together with Theorem [5.3.3, Proposition

and Theorems [5.4.3] and [5.4.4], we have the following result.

Theorem 5.5.1. The algebra k(S,,1.S,,) is cellular with respect to the anti-
involution induced by mapping each element of S, V.S, to its inverse, and
a tuple of cellular data including a poset whose underlying set is the set A},
of all r-multipartitions of n. The cell module associated to A € A, by this
cellular structure is S*. The subset (AZ)O of A, which indexes the simple
modules under this cellular structure is the set of all r-multipartitions A of n
such that each \° is p-reqular and for each i such that ' is p-singular we have
A= (). If X is a multipartition in (AZ)O, then the simple module associated

to A by this cellular structure is D2,

The conclusion of Theorem is trivial in this case (it is easily obtained
directly from the definition of D2). Theorem says simply that k(S,,1.S,)
is semisimple when both £S,, and kS,, are, which by Maschke’s theorem
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occurs if and only if either p = 0 or p is greater than both m and n. But we
also know by using Maschke’s theorem directly that k(S,,S,) is semisimple if
and only if p does not divide |S,, 1S, | = (m!)™n!l, and this occurs exactly when
p = 0 or p is greater than both m and n. Thus we see that the conclusion
of Theorem [5.4.6]is in agreement with the conclusion of Maschke’s theorem
applied to the group S, ! S,.

Finally we recall from [13, Theorem 3.8] that if a cellular algebra is
semisimple, then its cell modules are all simple and form a complete system of

pairwise non-isomorphic simple modules. We thus have the following result.

Theorem 5.5.2. If k(S,,1.S,,) is semisimple, then we have (A;)O =A, and
D2 = 52 for each A € A, Furthermore, the Specht modules S for A\ € A

form a complete system of pairwise non-isomorphic simple k(S,1S,,)-modules.

The results in this section all support our assertion that the modules S2
should indeed be considered as the wreath product analogues of the Specht
modules for the symmetric groups, and hence do indeed deserve the name

Specht module.

Original research in Chapter 5: The diagrammatic representation of the
module ©#(X,Y) in Section [5.2] is original research.

The use of the method of iterated inflation to establish cellularity of A?S,
is my own work, but as already stated a version of some of this work formed
part of my M.Sc. thesis [I4]. As indicated above, the material which was
included in [14] was: the whole of Section [5.1.3} the whole of Section [5.3} the
first part of Section [5.4] from the start of the section up to and including
Proposition [5.4.1] The use of the I'-dominance order on the set € of layer
indexes here does, however, represent an improvement over the work in [14].
Thus the use of the I'-dominance order is the only aspect of this work which

constitutes original research for the purposes of this present thesis.
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The material about the simple modules of A1S,, and in particular k(.S,,2.5,,)
appearing in Section after Proposition and in Section might
perhaps not be regarded as entirely new, since versions of these results,
albeit with additional assumptions, are well-known, as indicated in the text.
However, I am not aware of published versions of these results which place no
restrictions on the field of coefficients like the results given here, and further
the method of obtaining these results using the theory of cellular algebras
is my own work, and hence aspects of this material are certainly original
research.

Finally, Proposition [5.1.2is my own work, although it is fairly trivial.
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Chapter 6

Filtration of modules for

wreath products

Let m,n be non-negative integers. In this chapter, we shall consider how
the constructions of k(.5,,05,)-modules from Chapter [4] interact with module
filtrations, and as a first application of the results we shall obtain a k(5,,05,)
analogue of Young’s rule (3.2.1). Much of this material is derived from [6],
but the use of multipartition matrices is novel, and we believe that this is a

useful and efficient way of presenting the results.

6.1 Filtrations and the operation ©

Our first result is the following elementary lemma, which shows how the

operation @ from Chapter [4] preserves module filtrations.

Lemma 6.1.1. Let G be a subgroup of S,, and H a subgroup of S,. Let
Z be a k(GlH)-module, and Y a kH-module. Suppose Y has a kH-module
filtration

i=1
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Then Z @Y has a k(GUH)-module filtration

ZoY ~ FunaiZ0Q;

=1

On the other hand, if Z has a k(GUH)-module filtration
Z ~ JFubiVi,
i=1
then Z @Y has a filtration

Z@Y~ﬁl>bi%®lf.

i=1

Proof. Recall from above that we have
ZoY = 7@y,

where the right-hand side is an internal tensor product of k(G ¢ H)-modules.
Now trivially the given filtration of Y by the modules @); yields a filtration
of InffIZHY by modules InffIZHQi, and both parts of the claim now follow by

Lemma [2.2.8] O

6.2 Filtrations and the operation (—)gn

Let G be a subgroup of S,,. We now investigate how kG-module filtrations
yield k(GiS,)-module filtrations under the operation (—)gn. From [6], we

have the following result.

Proposition 6.2.1. [6, Lemma 4.2] Let G be a subgroup of Sy,. Let M be a
kG-module with a filtration

t
M~ F, Xi.
=1
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where 1 < w < t and each X; is a kG-module. Then the k(G .S,)-module
ME has a filtration

M~ Fuy [ x0™] ]

e

GiSn
Q1Sa
where QY is the set of all compositions of n with exactly t parts, and [n,w]
represents the composition (0,0,...,0,n,0,...,0) of length t where the n
occurs in the w™ place. Thus the module at the bottom of this filtration is

isomorphic to X2,

Our proof of Proposition is the same as the proof given for Lemma
4.2 in [6]. However, [6] formally has slightly different assumptions to us
(mainly that n! is invertible in k). Further, the statement of [6, Lemma 4.2]
does not explicitly identify the bottom-most factor in the filtration. Due to

these slight differences, we present the proof here in full.

Proof. By renumbering the X if necessary, we have without loss of generality

a chain of kG-modules
M=M2OM;,_12:--2M 2M;y=0

where Mj\f_il = X, fori = 1,...,t. Note in particular that the module X,

occurring at the bottom of the filtration in the statement of the proposition
has been renumbered to X; here. Let us choose a k-basis b1, . . . ,bcll1 for M,
(where d; is thus the k-dimension of X;), which we may then extend by
adding elements b, . .., b?zz to a k-basis for Ms, and so on. We thus obtain a
k-basis

1 1 2 t t
b, L B2

for M, where for each i the elements up to and including bfii are a k-basis of

M; (in particular, d; = dim(X;)). It follows that the set of all pure tensors
by @ @b
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forms a k-basis of M®. Let us call this basis B.
For an element b @ --- @ b2 of B (where thus §; € {1,...,¢} for i =
1,...,n), we define R(b‘g; R ® bﬁ;;) =01 + -+ 0,, and we call this the

rank of the element. We note that the rank satisfies
néR(bf} ®---®bf;‘) < nt.

For each N =n, ..., nt, we define Zy to be the k-span in M™ of all elements
of B of rank equal to or less than N. We see that each Zy is a k(G S,)-
submodule of M®". Thus, defining Z,,_1 to be 0, we have a filtration of the
k(G S, )-module M&n

M‘%n = Znt 2 Znt—l 2 te 2 Zn 2 Zn—l =0. (621)

Let Zy be the quotient module % for each N =n,...,nt, and for z € Zy

let Z represent z + Zy_1. Then Zy has a basis By, where
By={Wl@ @b i RO @ 0if) =N},

For an element 0% ® --- @ b of B, we define W(b2! @ --- ® b%") to be the
t-composition (ai,...,q;) of n where «; is the number of j € {1,...,n}
for which §; = i. We call this composition the weight of b @ --- ® br.
Thus W maps B to QF, the set of compositions of n of length ¢. Now
for an element b)! ® --- ® b2 of B with weight (..., o), we see that
RO ® - @br) = ay + 205 + - - + tay, and thus the rank of an element
of B depends only on its weight. Thus we may regard the rank function as

being defined on Q) by the formula
R((al,...,at)) =1+ 209 + - - - + toy
and we may hence speak of the rank of an element of QF.
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Let a = (ay,...,a;) € Qf and N = R(a). We define B, to be the set of
all elements b @ --- @ b of By such that W(b @ --- @ ") = a. Further,
we define V,, to be the k-span of B, in Zx. Thus B, is a k-basis of V. We
see that V,, is then a k(G 1S, )-submodule of Z n, and moreover that we have

a k(G S,)-module decomposition

Ty = @ V. (6.2.2)

In combination with the filtration (6.2.1)), we now see that, in order to establish
the filtration as claimed in the proposition, it is enough to prove that we have
a k(G 1 S,)-module isomorphism

GSn

v, = [(Xl,...,Xt)g"‘H (6.2.3)

GSa
In particular, note that the only a € Q! with R(a) = n is (n,0,...,0),
which implies by (6.2.2)) that Z, = Vino,. 0. Thus we see that V{, ¢

..... 0) 18
the bottom-most module in our filtration of M=, Recalling that the module
denoted by X; here is the module denoted by X, in the statement of the
proposition due to our renumbering of the modules X; at the start of this
proof, we see that proving will establish that the bottom-most factor
in our filtration of M is as in the claimed filtration in the proposition.
We shall use Proposition to establish . We thus see that we

need to prove that
Qi (V) = dimg (X1, X)) [G1 5, G18,] (6.2.4)

and to find a k(G S,)-submodule Y of Valgzgn which is isomorphic to the
k(G 1 S,)-module (Xl, . ,Xt) ga, and which generates V,, as a k(G 1 S,)-
module. The dimension condition (6.2.4)) is straightforward. Indeed, we can

calculate dimg(V,) by counting the elements of the basis B,, which is the
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same as counting the number of elements 0! @ --- ® b of B which satisfy
W(bf} ®-® bfg) = a. Now W(bfi X ® bfg) = « if and only if, for
each i, exactly o; of the elements b are elements of the list ¢, . .. ,bfh, where

d; = dimg(X;). Now there are
dimk(X1>a1 s dimk(Xt)at

ways of choosing «; elements bl, ay elements b%, up to «; elements bt. Then
for each such choice, there are

n!

Oél! s O[t!
ways of arranging these elements to form an element of B,. It follows that

V, has k-dimension

n! dimyg (X)) - - - dimg (X;)™

Oél‘Oét'

On the other hand, by the construction of (X Ly-n- ,Xt)xa we see that it has
k-dimension dimy(X;)* - - - dimy(X;)*, and we have
_ G S|
|G 1S,
|G|™ - n!

TG !y

[G1S, - G S

n!

O[l! s Oét!
and thus we see that (6.2.4]) holds. To find the required k(G .S,)-submodule

Y, we let B, be the subset of B, consisting of all elements

a1tasg

1 1 2 2
be(1)®"'®b )®be(a1+1)®"'®be(

e(ar

3
) ® be(a1+a2+1) """ ® b,

where for the sake of readability we write €(i) rather than ;. We define Y to
be the k-span of B,, in V,. It is now easy to see that Y is a k(G1S, )-submodule
of V,, which is isomorphic to the k(G S,)-module (Xl, o ,Xt)ga and which

generates V,, as a k(G 1 S,)-module, as required. O]
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Proposition does not allow us to pass information about the multi-
plicities with which isomorphism classes of modules appear in the filtration of
M to the filtration of M=". For this, we need the following more sophisticated

result.

Corollary 6.2.2. Let G be a subgroup of S,,. Let M be a kG-module with a
filtration

t
M ~ F, aiXi
i=1
where 1 < w < t, each X; 1s a kG-module, and each a; is a non-negative

integer (so note that a,, > 1, since X, occurs at the bottom of the filtration).

Then the kGQS,,-module ME" has q filtration

~ = GIS\QI GWSh,
M~ . X1, X MH T
ﬁ%ﬂwﬁ)“t” . 2 GSa | 1S
where Q(n;ay, ..., a;) is the set of all t-multicompositions o = (al, ... at)

of n such that the length of ' is a; fori=1,...,t, and [[n,1],w;ay, ..., a

represents the element

of Q(n;ay,...,a;), where the (n,0,...,0) occurs in the w place. Thus the

module at the bottom of this filtration is isomorphic to X%”.

Proof. Let

(3/1,...,}/;):(;le,...,XE,XQ,...,X%,...,;Xt,...,Xt)

4

VvV v v
a1 places ag places at places

sothat s=a;+---+a;,andlet l=a;+ - -+ ap_1+1. So

M~ Fy Y.
=1
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So by Proposition [6.2.1],

M~ ﬁ[mb [(Yh e aY;*)mH

aes

GiSn

8o

Now let a € Qf, and take @ = («(1),...,a(s)), where we use function
notation rather than subscript notation for the indices of the parts of a in

order to make the formulae below more readable. Now define

o = (alar+- +a1+1)...,a(s))

1

so that o' is a composition of length a; and o = a' o --- o0 al. We define a =

(al, ..., at), a t-multicomposition of n, and we note that o € Q(n;ay,...,a).

Moreover, we note by the definition of S, that S, = S,. Hence GiS, = G1S,,,
so that in particular (Y3, ... ’}/;)I%a is thus a k(GlS,)-module. Then we have
equalities of k(GS,)-modules

Yy,...,Y, Mo _ y8a(l) g .. g yBel)
1 S
= (X)FM R ) (X)Rele) ) (Xy) Rt g
... X (Xt)ga(s)
~ QS 1 = i QS|
:(X?aul | |>|X.”&(Xt®|al | )
QS 1 @S,
=01 | G2l
— (X1, ... ,Xt)%‘l «

GiSa

And if @ = [n,l] = (0,...,0,n,0,...,0), then we see that

a=((0,...,0),...,(0,...,0), (n,0,...,0),(0,...,0),...,(0,...,0))

= Hna 1]7 w;ag, ... 7at]-
The result now follows. O
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6.3 Multipartition matrices

In order to give further results on filtrations in modules for the wreath product,
we need to introduce some new concepts. Recall that a multipartition is
simply a tuple of partitions, where we allow the empty partition () to occur as
an entry. We also allow the length of the tuple to be zero, yielding the empty
multipartition, which we also denote by (). We define a multipartition
matrix to be a matrix whose entries are multipartitions. We shall typically
')th

denote the multipartition matrix whose (4, 7)™ entry is the multipartition €% as

[e]. Let us fix an sx¢ multipartition matrix [¢]. Then we define multipartitions
Rilef =€to---o0¢" foreachi=1,....s
Cile) =€ o 0e¥ for each j =1,...,¢
where, recall, o denotes the concatenation of compositions. Note that thus
R;[e] is the concatenation of all of the multipartitions from the i row of [e],

while C;e] is the concatenation of all the multipartitions from the 5™ column

of [¢]. We also define multipartitions

Rle] = RifeJo---oR,e] = e oe?o---oefoet o o st
C[E] = Cl[E]O"~OCt[§] = EHO§21O~~'0651O§12O ...... OESt
so that Rle] is the concatenation of all the entries of [¢] taken “row-wise”,
while C'le] is the concatenation of all the entries of [¢] taken “column-wise”.

Recall that if v = (7',...,7") is a multicomposition, then we have defined

||7l| to be the integer |vY 4 - -+ + [7*]. We have

t S
IR =D NP1, NGl =D e
J=1 i=1

Fusther, if we let a = (|[Bild, ., [|R.[e]l[) and 8 = (IC:{dll] - .. |Gl ),
so that  and 3 are both compositions of 7, - |€”]], then we say that [¢] has
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shape a x 3.

For example, if [¢] is the 2 x 2 multipartition matrix

(LD, 0:(21) (0,6,2,1))

(0,0, (1)) 0
then
Rl[e] = ((17 1)7 ()7 (27 1)? ()7 (37 27 1))
RZ[G] = (()7 ()7 (1))
Cl[e] = ((1’ 1)’ ()’ (2’ 1)7 ()’ ()’ (1))
CQ[E] = (()7 (37 27 1))
and

Rle] = ((1,1),0,(2,1),0,(3,2,1),0, 0, (1))
C[E] = ((17 1)7 ()7 (27 1)? ()7 ()7 (1)7 ()7 (37 27 1))

and further we have (|[R[d]||, ||R2[e]l]) = (11,1), (||Ci[e]l], |C2[d[]) = (6,6),
so that [e] has shape (11,1) X (6,6).

We also define L[e] to be the sxt matrix with (i, 7)™ entry the length of
€. We call L[e] the length matrix of [¢]. In the example given above, we

have

Finally, if o, 5 are compositions of the same integer n and with lengths s and
t respectively, and L is an sxt matrix with non-negative integer entries, then
we define Maty (L; axf3) to be the set of all sx¢ multipartition matrices [¢]

of shape ax such that Lle] = L.
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6.4 Filtrations and the operation

[(_, ceey —)®|ﬂ| % (5'771 X..-X Sns)] Tmn

{
ml|n|

In this section we shall develop a result for obtaining filtrations for k(.S,,05,)-

modules of the form

(Vi,.., YR o (7 R & 57)] T (6.4.1)

m2|g\

(where 7 is an s-multipartition of n) if we have filtrations of the modules Y;.
The material in this section is contained in Section 4 of [6], but our presentation
of it is somewhat different. In particular the use of multipartition matrices is
an innovation which we believe helps the application of these results in the
cases we are interested in.

We shall begin by showing how a filtration of a kS,,-module Y yields a
filtration of the k(S,,05,)-module Yy o S, where 7 is a partition of n. We
will then use the filtration obtained, below, to tackle the general case
(6.4.1]).

So indeed let the kS,,-module Y have the filtration

t
Y ~ wa) CZ]XJ

j=1

Let 1 be a partition of n. By Corollary [6.2.2] we have a filtration

- = ml|a| 4+min
Xn X|a
VI~ Fipnttasassenady (X1 X0) M% T

a€Q(n;a1,...,at) mia Tmia

so by Lemma [6.1.1] we have

~ Rl ml|al 4min
yHn @ 5"~ ﬁ[[n,l},w;m,...,ad) ((Xla R 7Xt)|zul T ) © S (6'4'2)

a€Q(mias, . ar) e e

Now if a = (al,...,a') € Q(n;ay,...,a;), then letting o be the composition
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alo---oal of n, we have S, = S,. Hence by Proposition we have

((Xl, N 7Xt)®a|lm2|aTmm) e

mla mlo

min

[(Xl,...,Xt)m'l:f@SQQH . (6.4.3)

mla

We shall now obtain a filtration of S”|7, and hence by Lemma and
Lemma a filtration of the module . Combining the filtration
(6.4.2]) with these filtrations of the modules (for all ), we shall obtain
our desired filtration of Y& & S,

1

Let us keep a = (a?,...,at) € Q(n;ay,...,a;) and a =alo---o0al En

as above. We have S, = S,, and by ([3.2.12) we have that
She ~ F c(n;e)S(e). (6.4.4)

€ is a multipartition
lel =a

We wish to reformulate slightly to obtain a statement where our tuple
a=(al,..., a') appears in place of the composition . The indexing set for
this filtration will be the set of all ¢-tuples of multipartitions € = (e!,... €
such that |¢/| = o/, and we note that this set is in bijection with the indexing
set in (6.4.4]) (namely the set of multipartitions e such that |¢| = o) by mapping
the tuple € = (¢',...,€") to the multipartition €' o --- o ¢’. Recall that the
Young subgroup S| associated to the multicomposition [¢| = (|€'],.. ., [€'])
is canonically isomorphic to Sje1 X - -+ X Sj¢|. Recall from that for a
multipartition € = (¢!, ..., €*), we have defined S(€) to be the kS| -module
S K- - XS, We can thus define for a tuple of multipartitions €= (¢!, . €)
a kS| -module

S(e) =S(e)W---R®S(e).

Further, given a partition 7, we define a Littlewood-Richardson coefficient
c(ne) = c(n;e o---o0€). (6.4.5)
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We note that if ¢ is a t-tuple of multipartitions and we let € = elo---o¢, then

c(n;€) = c(n;¢€), and further by the definition of S(¢) we have S(¢) = S(e).
Noting that S, = S,, we now see easily that (6.4.4) is equivalent to
Sl ~ F c(1:€)S(e). (6.4.6)

€ is a t-tuple of multipartitions
lel = a

By applying Lemmas [6.1.1{ and [2.2.2 and the filtration (6.4.6]) to the module

(6.4.3), and furthermore noting that if € is a ¢-tuple of multipartitions such

that |¢] = a then we have ||¢|| = |a|, we obtain a filtration

[ e RN r -

mlo ma

c(n; €) [(Xl,---,Xt)g”e'dee @S(g)l rm .

€ is a t-tuple of multipartitions m2|§| mie

lel = a

(6.4.7)

It remains only to consider the bottom-most factor in the filtration (6.4.2]).

Indeed, if a = [[n, 1], w;ay,...,a;] and € = (e!,...,€") is a t-tuple of multipar-

titions such that |¢| = a, then we have

(n,0,...,0) if j =w

0,...,0) ifj#w

€| =

so that we must have ¢ = ((),...,()) for j # w and € = (v,(),...,()) for

some v F n. Thus we have

c(n;e) = c(np;e o---0€)
c(m; (0,055 0,%.05--,0))
=c(m;(v))  (by 3:2.3))
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We thus have by (3.2.5)) that

1 ifv=mn
c(n;€) =
0 otherwise.
So the only tuple of multipartitions € appearing with non-zero multiplicity in
the filtration (6.4.7) for a = [[n, 1], w; ay, ..., a;] is the t-tuple of multiparti-

h

tions whose w™ component is the multicomposition (7, (), ..., ()) of length

b component for i # w is the multicomposition of length a;

@y, and whose 7t
with all components equal to (). We denote this tuple by [[n, 1], w;aq, ..., a4,

and so we have

(1], w; a1, a = ((0s 0D (1,055 0)s -5 (05 -50))
(6.4.8)

where the (7, (), ..., ()) occurs in the w-th place and all the other entries are
tuples of empty partitions.

Thus, if we write len(e) for the length of a multipartition €, we obtain
the following filtration by combining the filtration given for each a by
with the filtration and the equation (|6.4.3).

Y®n®5n ~

i1l | el min
ﬁ[[n,l],w;al ..... at]) C(’l77 g) |:(X1a s 7Xt)IZH:Hl @ S(g):| T )

mile| mie
€ is a t-tuple of multipartitions =

lllell|=n, len(e)=a,

where, recall, [||¢||| is the sum of all of the parts of all of the partitions occurring
as components in all of the multipartitions € which are the components of [

We want to reformulate this result slightly. Firstly, it is easy to see that we
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have an isomorphism of k(Sy, 1 S)|)-modules

mil¢]|

o]

<y il I
N ((Xiglel N )g...x (X?'E'l : )>@
m|el ml|et

(S(e)X---KS(e)

e
SN—

and from (4.3.5) this is isomorphic to

g (Xj;énejnlml“ej“ - 5@) '

ml|ed

Hence we obtain our desired filtration
Ylgn %) Sn ~

‘F[[mll,w;al,...,atb c(n; €) [IXI <X;gef|lmlejl - S(gj))] ] (6.49)

t
7=1 ml|el |

€ is a t-tuple of multipartitions m2|§|

|llell|=n, len(&/)=a;

This filtration, though rather complicated and unpleasant-looking at first
sight, is none-the-less the key to obtaining our filtration of .

So let us now derive the desired filtration for the module (6.4.1)). In order
to do this, we introduce some further notation. If Wy, ... W, are kS,,-modules
and A = (A},...,Al) is an [-component multipartition of n, then we define

the k(S,,0S,)-module SA(Wy, ..., W;) by setting

min

AWy, W) = [(Wl,...,Wl)gm@(S*lXI---XIS*Z)H . (6.4.10)

m|Al

Note that taking [ = r and W; = S* in this construction yields the
Specht module S2. Now suppose we have kS,,-modules Y;,...,Y, and an
s-component multipartition 7 of n. We consider the module (6.4.1]), which

in our new notation is denoted by SZ(Yi,...,Y;). Moreover suppose we
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have kS,,-modules X7, ..., X, such that for each i = 1, ..., s there exists a

filtration
t
j=1
We shall next obtain a filtration of the module SZ(Yi,...,Ys) by modules
SY(Xy, ..., X;) for t-component multipartitions v of n. Indeed, we have from

(4.3.6) an isomorphism of k(S,,S,)-modules

SUYL, ... Ys) & [(ylg'”l'@snl) K. K (ysﬁms@S"s)Hmm . (6.4.11)

ml\m

Now by ([6.4.9)), we have for each i a filtration of k(5,05 )-modules

()" o5 ~

(s | il
‘F[[”Il 1], wisaj,....ai]) 7] 6 & ( lmlk”l ) '

=1 )
/ miet|
E is a t-tuple of multipartitions =

II1€X]l|=|n"], len(e ) =a

(6.4.12)

Hence by Lemma [2.1.2, we may obtain a filtration of the k(5,15 )-module
<y1®|771| o 5771) X...X (yﬁ\nsl o 5’775>

and hence by and Lemma we may obtain a filtration of
S2(Y1,...,Ys). The indexing set of the filtration so obtained is rather compli-
cated, so we shall simplify it before we state the filtration. Indeed, the indexing
set is the set of all s-tuples (gl, ..., €°) where ¢ is a tuple of multipartitions as
n (6.4.12). Thus each €' is a t-tuple of multipartitions such that ||[€'[|| = |r'|
and len(e¥) = aj- for each j. By identifying the tuple (gl, ..., €%) with the s xt

multipartition matrix [¢] whose i*!

row is the tuple gi of multipartitions, we
may instead index the filtration with the set of sxt multipartition matrices

e] satisfying ||R;[e]|| = || for i =1,...,s and L]e] = A where A is the sxt
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integer matrix whose (4, j)-th entry is a}. Note that under this identification,
the j' entry € of the tuple € = (€"',...,€") becomes the (7, j)™ entry of [¢],
and hence we have an equality R;[e] = ¢''o---0€" of multipartitions. It follows
that under this identification we have S| = Sg,(g|, so that the operations

mzln " and T‘RZ‘Z]" coincide, and further that c(ni;g) = c(n’; R;le]) (by (6.4.5))).
Turnlng to the bottom-most factor in our filtration, we see that index of this
factor before applying our identification with multipartition matrices is the
tuple (¢',...,¢€%) where € = [[, 1], w;;ai, ..., a]. Under our identification
of indices (€', ..., €*) with multipartitions, we may now easily see that the
module at the bottom of the filtration is indexed by the multipartition matrix
with length matrix A and whose (4, j)-th entry is [, 1] if j = w; and a tuple
of empty partitions otherwise. We shall denote this multipartition matrix

by M(n;wi, ..., w,). Thus as explained above we have by (6.4.12)), Lemma
2.1.2) (6.4.11)), and Lemma a filtration of k(S,, 1 .S,)-modules

i=1

SUY1, Y ~ st (Hc(n’ﬁ&-[d))-

[e] sxt multipartition matrix
[[Ri[e]l|=[n"], Ll]=A

min

ml|n’|
[ . (6.4.13)

mi| R;[e]|

ma| ||

g [g X?ng‘ll 7 @S(gij)

i=1 mlle|

m|n|

We now wish to reformulate the filtration (6.4.13). For any [¢] an sxt
multipartition matrix as in the filtration and any i, j, we define
a k(SplS|as))-module (recalling that, since €7 is a multipartition, |¢”| is a
composition of the integer ||e”||) by setting

il

x| N0 s(e).

mi| et | -

iy
Zy=
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Thus we write the modules occurring in the filtration (6.4.13)) as
Tn“?’
m| R[]

Recalling that R[e] is the multicomposition R;[e] o --- o Rg[e], we see that

min

& |X|Z[e]

ma|n|
S\R1[§]| X+ X S|RS[§]| = S(|R1[§” 7777 |Rs[e]]) = S\R[é]b and so we have an equality

of k(S;1Sy,)-modules
»[mln ]mm
m| R[¢]| I mn|

min

X 7
= 7=1

m|n’|
]
m| R;e]|

and by transitivity of induction, this is

i=1 j=1

s t B
[ X 7

ml\m

min
|X|-Z [ .
[e]
L L ma|Riel|
Now | R[¢]| is the composition ([e™ |, |e¥?,.. ., [e¥], [e®], ..., |e*|) of n. On the

other hand, we recall that C[e] is the multicomposition Cie] o - - o Cy¢], and
so |Cl[e]| is the composition (|e™|, [e*], ..., es], [e*?],..

., |€¥*]) of n, and hence
by Proposition 4.3.6[ we have

min min
)l\ Zj ] |
mal Ble]| A eyl

Now we have Sicig) = S(ci(d],...\cildl) = Sicale] % =+ X Sjcule), and hence we

note that & Z” is a k(SmS|c,(g))-module for each j =1,...,¢. We shall

1%

XX,

=17
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now obtain a filtration of this module. Indeed, we have

i _ iyl | el
@Z[é B @Xj "’ Hlm?leij ®S(§j>
_ [ B | gjess)| | ™I g
-\ 11| @8] ) B R X ) @ S(eV)
mlje’ mllest

e} ma||Cj[e]l| . .
_ Xg'ICJ[E]HJ/ % (S(Elj)x,__x5<§sj))

’ milC e
(by ([£.3.F) and the fact that ||C;[e]|| = |[eV]| + --- + [[€¥]])

B, | ™Gl
o S(Cyle)

I ma|C;le]|

where the final equality follows from the definition of the module S(«) for
a a multipartition and the fact that Cj[e] = € o--- 0 ¢e¥. We thus have a

k(S;1Sy,)-module isomorphism

t S " L& w5 "
ij ~ [|C; el e 4
[@ i=1 Z[d T B [‘—1 Xj J lmﬂcj[d ? S(C] <) T .
== micldl U7 - mi|Cle]
(6.4.14)
Now for each j =1,...,t, we have that |C;[e]| is a composition of the integer

HCJ [§]|| It follows that the Young Subgroup S(|cl[§]| ..... IC[el]) = S|Cl[§]| X e X
Sicyld| of Sy is a subgroup of Sjicy(g|...Icldl) = Slcafdll X -+ X Syl By
transitivity of induction, we now see that the right-hand side of (6.4.14) is

[g {X;icj[enlmucj[em 28, [g])} rl”cﬂfl”l ]mm

=1 Gl mIG5 el 1 | m(|icn ], NICH )

and by Proposition this is

LDEQ X?HC;‘HH % (S(Cj[g]) gj[SH)]w

m([|C1le[]s- [ Cel€]]])
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Hence, recalling (6.4.13)), we have now shown that

min

. mifn’|
s [t o med) N
X [g Xl ”l ) ®S(§”)”
]:

i=1 mlle |
MRl | | )

~ ['g X?“Cj[g]‘l % (S(Cj[g])ﬂga&)][ . (6.4.15)

m([|C1 |- [[Ce[€]l])
Now by ([3.2.11)), we have (recalling that C;[e] is a multipartition)

DT~ F et Cl)s”

Gl ol

and so (using Lemmas [2.2.2] [2.1.2/ and [6.1.1]), the right-hand side of (6.4.15))

has a filtration

[ljg X;@HC’J‘[E]H %) (S(CJ[E])T:IC(?[S]”)] ‘[ ~

m(||C1[el],-- 1Ce[e]l])
t
v is a t-multipartition jr:[l

min
& X&”C o 8" T .
of n m(||C1[e][,-- | Ce[e]l])

l[=([C1l];--[[Ce[€l])

Using the fact that for any multipartition v as in the filtration we have

[lx XlEHC @ S,,J

this filtration becomes

[g XJSHCJ‘[S]H o <S(CJ[§])T:|§;J[§]||>] ]\ ~

m(|[Crle]l]---[|Ce 1)

min
/[ - SZ(Xl,...,Xt),
m([|Cle]l],-- 1 Cele][])

t

[Tc:Cile) ) $4Xa, ... X)), (6.4.16)
v is a t-multipartition of n j=1
l|=(IC1lells--[|Ce €]l])

In light of the isomorphism (|6.4.15]), we see that we may use the filtration
(6.4.16)) to refine the filtration (6.4.13)) of S%(Y1,...,Ys), to obtain a filtration

S(Yy, ..., Y, (ch R;le ><HCV Cile ) S 0. CH. ¢
(lev
(6.4.17)
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where ([¢], v) ranges over all pairs where [€] is an sx¢ multipartition matrix
such that ||R;[¢]|| = |n| for each i = 1,...,s and L[e] = A, and v is a t-
multipartition of n such that |v| = (||Cy[¢]|], ..., ||Ct¢]|]). This is our desired
filtration of SZ(Y7,...,Ys), but before stating this result in its final form as a
proposition, we shall pause to consider a special case which will be important
in our work below.

Suppose that we have s =t and moreover that we have w; = i for each
i =1,...,t. Then the multipartition matrix M (n;wy, ... ,wy) = M(n;1,...,t)
which indexes the bottom-most factor in the filtration has (4,7)"
entry (1°,(),...,()), and all entries off the main diagonal are tuples of empty
partitions. Thus M(n;1,...,t) has the form

for each j. Now if we have a partition v - n and a multipartition o =
((), o 0m, 0ty ()), where 7 is some partition, such that the Littlewood-
Richardson coefficient ¢(v; a) is non-zero, then we see by and
that we must have n = v, and that ¢(v;«) = 1 in this case. It now follows
that for any t-multipartition v of n, we have that H;Zl c(v?; Cle]) is equal
to 1if v =7, and is zero if v # n. Thus we see that for [¢] = M(n;1,...,1),
the only module occurring with non-zero multiplicity in the filtration
is S2(Xy,...,X;). Since the filtration was obtained by refining the
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filtration (6.4.13)) using the filtration (6.4.16]), it follows that in this special
case, the module occurring at the very bottom of the filtration (6.4.17)) is

S Xq,..., Xy).
From (6.4.17)), we thus see that we have obtained the following result,

which is essentially a reformulated version of [0, Lemma 4.4, (1)].
Proposition 6.4.1. [6, Lemma 4.4, (1)] Let Y1,...,Ys and X,...,X; be
kS,,-modules such that for each i =1,...,s we have a filtration
t
j=1
and let n be an s-component multipartition of n. Then we have a filtration

SI(Yy,...,Yy) ~
s t
F > (H (' Ri[gn)(H (v C; [g]>>
£ |ldeMata (Aifn|x|v]) \i=1 Jj=1
SZ(Xla s 7Xt)
where v runs over all t-multipartitions of n and where A is the s X t integer
matriz whose (i,7)™ entry is aé». Further, suppose that we have s =t and

moreover that we have w; =i for eachi=1,...,t. Then the module occurring

at the bottom of this filtration is ST Xy, ..., Xy).

6.5 Unitriangular systems and Young’s rule
for the wreath product

If we assume certain extra conditions on the system of filtrations for the mod-
ules Y; in Proposition [6.4.1], we can obtain more precise results on the filtration
obtained, as the following proposition (which is essentially a reformulation of

[6, Proposition 4.7]) shows.
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Proposition 6.5.1. [0, Lemma 4.7] With the hypotheses of Proposition[6.4.1]

let us further assume that s =t and moreover that
1. for all i and j we have that j > i implies aj- =0
2. we have at =1 for eachi=1,...t

so that the matriz A is in fact square and lower unitriangular. Then the
multiplicity of S%(X1, ..., Xy) in the filtration of S(Y1,...,Ys) in Proposition
2'51 ifv=n andOifz%Q.

Proof. Firstly, note that the multiplicity of S%(X3,...,X}) in the filtration
of S%(Y4,...,Y;) in proposition [6.4.1] (with s = ¢) is

> (H C(ﬁi%Rz'[éD> (H C(Vj;Cj[E])> . (6.5.1)
[e] € Matp (A;|n|x[y]) \i=1 j=1

Assume that for some v and some 7, (6.5.1]) is non-zero. So we must have

some [¢] € Maty(A;[n| x |¢|) such that

(H C(ni;Ri[é])> (H C(Vj;cj[é])) # 0.

i=1
This implies that
c(n’; Rile]) #0 fori=1,... t (6.5.2)

and

c(v!;Cile]) A0 for j=1,...,t. (6.5.3)
Further, we have of course that
IRl = Il fori=1,....¢ (6.5.4)

and

1Cylelll = 7| forj=1,....t (6.5.5)
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We claim that we must have v > n, and so by the definition of the dominance
order on multipartitions, we need to show that for any p = 1,...,¢ and

qg=1,2,3,..., we have

p—1 ' q p—1 ' q
POIEED D MUED 32
i=1 j=1 i=1 j=1

Indeed, let us fix such p and ¢q. Then by (6.5.2)) and (/6.5.3]) we have
07 c(1f”; Ryle]) = ¢ (17; € 0 - -~ 0 ) (6.5.6)

and

0% c(V?;Cple]) = c (VP5€P o 0 P). (6.5.7)

By our assumptions about the coefficients az'-, we know that the matrix A
is lower unitriangular. Since we know that L[e] = A (where, recall, L[] is
the matrix whose (4, 7)™ entry is the length of the multipartition € which is
the (i,7)™ entry of the multipartition matrix [¢]), it follows that € = (€) for

partitions €', ..., ¢, and that €/ = () if j > 4. Thus [¢] has the form

] = S : (6.5.8)
()
* % x (€
We thus see that
R, €] zgp’lo---ogp’t:(*,...,*,ep) (6.5.9)
and
Cole =P o 0P = (& ... %). (6.5.10)
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Since ¢(v”; Cyle]) # 0 by (6.5.7]), we thus have by (6.5.10) and Lemma
(2) that

q

Z’/ > ) e (6.5.11)

7=1

Further, since ¢(n?; Ry[¢]) # 0 by - we see by (6.5.9) and Lemma m
(3) that we have a partition ¢ of |n?| — |€?| such that

q q q
Do <Y Y G (6.5.12)
J=1 j=1 j=1

Further we have by that 327~ [/ is equal to the sum of all of the
sizes of the partitions occurring as components of the multipartitions in the
first p — 1 columns of [¢]. By (6.5.4) we have that ) 7, || is the sum of all
of the sizes of the partitions occurring as components of the multipartitions
in the first p rows of [¢]. Further, from (6.5.8)) we see that all of the partitions
which occur as components of the multipartitions in the first p rows of [¢],
except for the €? occurring in the (p, p)™ entry, lie in the first p — 1 columns

of [¢]. Hence
S > (Zw) el
- (Zm) )~ 1

1

pl'

:< I’\>+\C|
i=1
1

p—

> In'l + ZCJ- (6.5.13)
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Thus we have

p—1 q p—1 q
DY vz D+ Y g (by (65I0)
i=1 j=1 i=1 j=1

p—1 q q
>3 W+ >+ Y@ (by 6513))
i=1 j=1 j=1

WV

p—1 q
S+ > (by 6512))
i=1 j=1

as required, so indeed v &> 1.
Finally, we consider the case v = 7. We seek to show that in this case

is equal to 1. Indeed, if v = n then becomes
t t
> (M) (Teorcin). o
[c] € Mat (Asln|x[n)) \i=1 i=1

Now we know that any multipartition matrix [¢] in Maty (4;[n| x |n]) is of
the form , and moreover that the sum of the sizes of all partitions
occurring as components of the multipartitions in the i*® column is |n|, and
that the sum of the sizes of all partitions occurring as components of the
multipartitions in the i" row is also ||. Considering the first row of (6.5.8)),
we see that we must have ||e!|| = |e}| = |n'|. But then considering the first
column of , we see that all of the multipartitions €' in the first column
of [¢] where i # 1 must satisfy [|€"!|| = 0. Moving on to the second row and

second column of (6.5.8]), we see by the same logic that all multipartitions

€ appearing on the second row or second column of [¢] satisfy ||€¥]| = 0,

except for €2, which satisfies ||¢?|| = |€?| = |n?|. Continuing in this manner
down the rows and columns, we see that the multipartitions € which are the

entries of [¢] must satisfy
] iti=

0 ifij

€| =
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and hence [€] is a ¢xt multipartition matrix whose (7,4)-th entry is (€') for
some €' = |n’|, and where all the other entries are either empty multipartitions
or tuples of empty partitions. We thus see that for each i = 1,...,¢, both
R;l¢] and Cy[¢] are multipartitions where one component is € and all other

components are (). It follows by (3.2.3) and (3.2.5) that for all i and j we

have
(

, 1 ifnp=¢
c(n'; Rile]) =
\0 otherwise
and )
‘ 1 ifn =6
c(n’; Cjle]) =
0 otherwise

\

by which we see that the only € for which the summand in (6.5.14}) is non-zero
is the € where we have ¢ = n for i = 1,...,t and where all the other entries
are either empty multipartitions or tuples of empty partitions. Further, we

see that for this € the summand is 1. Thus (|6.5.14)) equals 1 as claimed. [

We conclude by applying Proposition to obtain a filtration of the
module M2 by modules S%, thus proving an analogue of Young’s rule for
k(SmiSh).

Recall that we have fixed the distinct partitions of m, in the lexicographic
order, to be

(m)=p'>p®>> ... >p" =(1").
Let us define K ; to be the Kostka number K (u/, '), which recall is the
multiplicity of S in M* in the filtration given by Young’s rule.

M¥ ~ o KS*. (6.5.15)
j=1
Thus we have by (3.2.2) that K =1 and K} =0 if i < j. Let us define K to

be the 7 x r matrix whose (4, )™ entry is K}, so that K is lower unitriangular.
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Proposition 6.5.2. Let A\ be an r-multipartition of n. Then we have a

filtration of k(S 1 S,)-modules

M ~

Fou | D (HM%W) (HC(???&[@])) (HC(Vj;Cj[gD) s

where for each multipartition v € A (recalling that A] is the set of all multi-
partitions of n with length r), the pair ([e],n) ranges over all pairs consisting
of a multipartition matriz [¢] € Maty (K |A| X |v|) and a multipartition n € Aj,
such that |n| = |Al.

The multiplicity of S% in this filtration is 0 if v ¥ X and 1 if v = X. Thus
M? has a filtration by modules S% for v > \, in which S* occurs exactly once

at the very bottom of the filtration.

We may regard this result as a wreath product analogue of Young’s rule,
and the coefficients with which the modules S% appear as wreath product

analogues of the Kostka numbers.

Proof. We have A = (\},...,\"), and

1 min

[0 00 (0 00|

ml| A .
We may use Young’s rule (3.2.1) and Lemma to see that the k(S5,,05)y))-
module M* X --- X M has a filtration
1 T 1 T
MY R RMY ~ (HKW,AU) ST K-S
1=1

neAy
=2l

Thus by Lemmas [6.1.1] and 2.2.2], we have a filtration

M~ (H K(#,W) S2(MM . M. (6.5.16)

neA;,
[nl=IAl

151



Now suppose that 7 is a multipartition of n with |n| = [A| such that

ﬁK (7', \') # 0.
=1

Then by (3.2.2)), we must have n' > M for [ = 1,...,r, which in turn implies
n > A (since || = |A|). Hence the multiplicity of S?(M*',...,M"") in
(6.5.16) is zero unless n > A. Further, if = A, then we have by (3.2.2) that

[5G X)) =[x (W) =1
=1 =1

so the multiplicity of SA(M”I, ..., M*") in the filtration is 1.

Now the filtrations of the modules M* by the modules S* satisty
the additional condition in Proposition [6.4.1] (i.e. that “s = ¢ and moreover
that we have w; = i for each i = 1,...,t”), and also all of the conditions
in Proposition [6.5.1] Hence by applying Propositions [6.4.1] and [6.5.1] to the
module S2(M*#' ... M), and using the fact that S%(S*',..., S*") = S,

we have for any r-multipartition 7 of n a filtration

1

ST(MM ... M") ~

ﬁm Z (Hdﬁ%&[ﬂ)) (HC(Vj§Cj[£])> S% (6.5.17)

ven;, | [d € Mata (s ln|x|zl) \i=1 j=1
where the multiplicity of SZ equals 1 and the multiplicity of S% equals
zero if v IF n. The filtration of M? in the statement of the proposition
now follows by combining the filtration (|6.5.16)) with the filtration (6.5.17)),
noting in particular that SA(M“l, ceey M“T) occurs at the bottom of the
filtration and that S occurs at the bottom of the filtration of
SA(M‘“, ey M“T) given by , so that S2 is the bottom-most factor
in the filtration of M2 obtained by using the filtration to refine the

filtration (6.5.16]).
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The claims made in the proposition about multiplicities follow easily from
the facts about multiplicities in the filtrations and , namely
that in the filtration the multiplicity of SQ(M“I, ceey M“T) is zero
unless 7 > A and the multiplicity of SA(M“I, ...,M"") is 1, and that in the
filtration the multiplicity of SZ equals 1 and the multiplicity of S%
equals zero if v 7. O

Original research in Chapter 6: The work in this chapter is almost all
a reformulation of results from [6] and thus is not really original research.
However, the use of multipartition matrices to state and prove these results is
a novel idea which I believe improves the clarity and usability of the results,
and furthermore allows for more transparent proofs. Proposition [6.5.2}, while
technically new, is really just an application of the results of [6] and thus is
not really original. Corollary is my own work, although this is a fairly

straightforward result.
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Chapter 7

Tableau combinatorics

In the coming chapters, we shall make crucial use of Mackey’s theorem (The-
orem . In our applications of Mackey’s theorem, we shall be confronted
with the problem of finding a system of (H, K')-double coset representatives
for certain subgroups H, K of S,,, and moreover of understanding the sub-
groups H* N K where z is one of our chosen coset representatives (recalling
that H® denotes the conjugate subgroup = !Hz of H by x). In particular,
we shall be interested in the case where K is the Young subgroup S, for some
« F n, and where H is either S, for v a composition of n, or else H is S, for
some multicomposition 7 of n. In this chapter, we shall develop the theory of
certain kinds of Young tableau which provide a natural and convenient way
of dealing with these questions. We draw on the account given by Wildon in
his unpublished note [34]: the material for the case where H = 9, is taken
more-or-less directly from this note, while the corresponding material for the
case H = S, is of course closely based on the H = S, case. However, the
material in section is original.

Throughout this chapter we fix o = (ay,a9,...,) to be an [ part

composition of n, v = (y1,72,...,7) to be a t part composition of n, and

154



7= (71,742, ...,7") to be a t component multicomposition of n, where thus

v= (9, .. ,7;;) F || for each 4, with [y'| 4+ -+ + |¥!| = n.

7.1 Tableaux and the action of S,

A tableau of shape a and type v is a Young diagram of shape o where
each box contains a positive integer ¢ such that for each i € {1,... t}, i
occurs exactly 7; times, while a tableau of shape a and type 7 is a Young
diagram of shape a where each box contains a pair (7, j) of positive integers,

such that for each ¢ and j the pair (4, j) occurs exactly 7} times.

Ezxample 7.1.1. Take n = 31, « = (7,5,6,4,7,2) and v = (5, 9, 3, 8, 6). Then

one possible tableau of shape a and type ~ is

214121453 ]5
4111241
2151215512
511132
11412131441
214

Further, if
7=((2:3), (3,4,2), (3), (4,4), (2,3,1)),
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then one possible tableau of shape a and type 7 is

(2,1)

(4,2)

(2,3)

(4,2)

(5,2)

(3,1)

(5,1)

(4,1)

(1,1)

(2,2)

(4,2)

(1,2)

(2,2)

(5,3)

(2,1)

(5,2)

(5,2)

(5,1)

(1,1)

(3,1)

(2,2)

(1,2)

(4,1)

(2,1)

(3,1)

(1,2)

(2,2)

(4,1)

Since we allow a to have zero parts, our Young diagrams can have rows

with no boxes in them. For example if « = (0,3,5,0,7,0,0,1), then the

Young diagram of shape o might be drawn as

[ LTI T[]

]

Ezample 7.1.2. Take n = 16, a« = (0,3,5,0,7,0,0,1) and v = (0, 3, 8, 0, 5).
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Then one possible tableau of shape « and type 7 is

Further, if

315 |3
512131315
3131512353
2

7= (0, (1,0,2), (3,5,0), (), (0,0,2,3)),

then one possible tableau of shape o and type 7 is

(3,2)

(5,4)

(3,2)

(3,2)

(2,3)
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Tableaux are of little interest as static objects: in order to make use of

them, we must introduce an action of .S,, which transforms one tableau into

another. For our fixed composition a of n, we let S, act (from the right) on

both the set of tableaux of shape « and type 7, and the set of tableaux of

shape a and type 7, by permuting the entries of a tableau in the manner

which we shall now describe.

Firstly, we introduce a numbering of the boxes in a Young diagram of

shape «a. Indeed, we number the boxes of the tableau from 1 to n going from

left to right across each row in turn, starting with the top row and working

down. Thus if n =9 and a = (3,0,2,3,0,1), the numbering of the boxes is

1

2

3

Now let 7 be a tableau of shape o and type v or v, and let o € S,,. Then

7o is defined to be the tableau obtained from 7 by moving the number or

pair of numbers in box number i to box number (i)o, for each i = 1,... n.

Example 7.1.3. For example, let us take n

158

(5:3,4.1), 1 =



((2, 1,0,1), (3,2), (1,3)), o=(1,12,3,6)(5,7,13)(8,10) € S;3, and

(L1) [ (2,1) [ (1,2) | (3,1) ] (2,1)

(2,2) | (3,2) | (2,2)

(2,1)](3,2) | (1,1) | (3,2)

(1,4)

We write the box numbers into 7 to obtain

| @ | 12| G| @)

22) (3.2)| 22)

9 10 11 12

(2,1) 1 (3,2) | (1,1) | (3,2)

(14)

and then performing the above operation yields

1 2 3 4 5

(2,2) | (2,1) [ (3,2) [ (3,1) | (1,4)

12 @) | 32)

@1 @2)| 0] @)

13

(3,2)
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Thus we have

(2,2) 1 (2,1) | (3,2) | (3,1) | (1,4)

(1,2) | (2,1) | (3,2)

(2,1) [ (2,2) | (1,1) | (1,1)

(3,2)

It is easy to see that this definition does indeed yield S,, actions as claimed,
and it is obvious that these S,, actions are transitive. It is natural to ask
what the stabilizer of a given tableau is under this action, and in order to
answer this we now consider certain special tableaux of shape a and type
7 or 7. Indeed, for our compositions a and vy, we construct the standard
tableau of shape a and type 7 as follows: we begin with a Young diagram
of shape o with the boxes numbered as described above, and then working
from box 1 to box n we enter first 1 1’s, then 5 2’s, and so on. We denote
this tableau by 7. For example, if we take n = 13, a = (2,0,3, 1, 3,4) and
v =(3,5,0,4,1), then we have

1)1
o 1]2]2
T’Y_

2

2|24

40445

Similarly, for our multicomposition 7, we begin with a Young diagram of shape
a with the boxes numbered as described above, and then working from box 1

to box n we enter symbols (7, j) one per box, starting with { pairs (1,1), then
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74 pairs (1, 2), and so on until we run out of parts in v'. We then enter v pairs
(2,1), then ~2 pairs (2,2), and so on, and so on. We thus obtain a tableau of
shape o and type 7, and we define 77 to be this tableau. For example, take
n=13 a=(20,3,1,3,4) and v = ((1,3),(2,2),(), (1,0,3),(1)). Then from
7 we see that, to form a tableau of shape a and type v, we need 1 pair (1, 1),
3 pairs (1,2), 2 pairs (2,1), 2 pairs (2,2), 1 pair (4,1), 3 pairs (4,3), and 1
pair (5,1). Entering these into a Young diagram of shape a in the manner

described above gives

(1,1)

(1,2) | (1,2) | (2,1)

(2,1)

(2,2) | (2,2) | (4,1)

(4,3) | (4,3) | (4,3) | (5,1)

Now it is clear from the definition of 75" and 7" that their stabilizers under
the action of S, are the Young subgroups S, and S, respectively. Now let

o € S,. Then for any 6 € S,, we have (writing Stab(—) to denote a stabilizer)

0 € Stab (Tf;‘a)
T o =100
=T (cb07)

oo~ € Stab (T,‘Yl) =9,

[

0 c 071570.

161



We may apply the same argument to prove that

0 c Stab(ﬁf‘a) ~— (e 0_1510

and hence we have the following.

Proposition 7.1.4. (See for example [3]], proof of Proposition 5.2) For any
0 € Sy, we have Stab(7%0) = (S,)°7 and Stab(750) = (Sl)a.

7.2 Weakly increasing rows and double cosets

Our purpose in studying tableaux is to gain an understanding of certain kinds
of double cosets in S,,, and in this section we shall show how we may use a
particular subset of tableaux to index these double cosets in a natural way.
We say that a tableau of shape o and type 7 has weakly increasing
rows if the entries in its rows are weakly increasing from left to right. We
say that a tableau of shape o and type 7 has weakly increasing rows if
the entries in its rows are weakly increasing from left to right when we equip

the pairs (4, 7) with the lexicographic order

(1,7) < (p,q) <= (i<p)or(i=pandj<q).

Example 7.2.1. None of the tableaux in Examples or have weakly
increasing rows, but if we keep o and ~ as in Example [7.1.1], then

1111113445
212131415
112021255
3141415
112122445
2 14
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is a tableau of shape a and type v with weakly increasing rows. Further, if

we keep v as in Example , then

(1,1) [ (1,2) | (1,2) | (3,1) | (4,1) | (4,2) | (5,2)

(2,2) [ (2,3) | (3,1) | (4,1) | (5,1)

(L,1) | (2,1) | (2,2) | (2,2) | (5,1) | (5,3)

(3,1) | (4,1) | (4,2) | (5,2)

(1,2) | (2,1) | (2,2) | (2,3) | (4,2) | (4,2) | (5,2)

(2,1) | (4,1)

is a tableau of shape o and type v with weakly increasing rows.

We now seek a condition on o € S,, which ensures that the tableaux o
and T;O’ have weakly increasing rows. To do this, we recall from page [45| the
notion of the length of a permutation, which is defined to be the total number
of inversions of the permutation, where an inversion of a permutation o € .S,
is a pair (7,7) such that 1 <i < j <n and (i)o > (j)o.

We shall prove that if ¢ € S, is of minimal length in its S,-coset 0.9,,
then the tableaux 73'c and 77'c have weakly increasing rows. For this, we

shall need a well-known combinatorial fact. We define a descent of o to be

an inversion (7,7 + 1) of o for some 1 < j < n.

Lemma 7.2.2. Let 0 € S,,, and suppose that (j,j + 1) is a descent of o~ ".
Then len(o(j,j + 1)) = len(o) — 1.

Proof. ([34], Lemma 2.1) We establish the claim by proving the following two

properties for any 6 € S,
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1. len(f) = len(671)
2. if (j,j + 1) is a descent of 6, then len((j, j + 1)8) = len(d) — 1.
For the first property, we have that

(x,y) is an inversion of § <= x <y and (z)0 > (y)0
— (20)07" < (y9)0~" and ()0 > (y)0

< (()0, (x)0) is an inversion of 6~

and clearly the map (x,y) — ((y)0, (z)0) is a bijection from {1,...,n} x
{1,...,n} to itself. Hence the inversions of # and #~! are in bijection, so that
len(f) = len(671).

For the second property, we have trivially for any z,y € {1,...,n} that

(20 > ()6 <= (@) ((.7 + DG+ 10) > W) ((God + 1) + 1)9)
< ((@) (G5 + D)(0,d + 1) > ()05 + 1) (G, + 1)6).
From this we may easily see that if x < y and the pair (x,y) does not equal
the pair (4,7 + 1), then (2)(j,7 + 1) < (y)(j,j + 1). Moreover, (x,y) is then
an inversion of 6 if and only if ((:L‘)(j,j +1), ()4, 7+ 1)) is an inversion of
(7,7 + 1)0. Further, the pair (4,7 + 1) is by assumption a descent of  but is

not a descent of (4,7 + 1), and the second property is now established.

The proof of the claim is now trivial: we have

len( (]j—|—1) len(jj+1 1)
=len((j,j + 1)o7 ")
len(a )

= len(o) —
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Proposition 7.2.3. (Compare [3]|], Proposition 5.2 and Theorem 4.1) If
o € 5y, 1s of minimal length in its left So-coset 0.S,, then both 770 and T30

have weakly increasing rows.

Proof. The proofs for 75'c and Tlaa are identical (indeed, v and v play no
role in the argument), and hence we give both in parallel by writing 7% to
represent either Ty or T3

Suppose that 7*0 does not have weakly increasing rows. Indeed, suppose

that the i*" row of 7% is not weakly increasing, and let us define

i—1
a=1+ Z o
j=1
and .
b= Z a;
j=1

so that (with our numbering of the boxes of a Young diagram as above) the
boxes on the i*" row of 7%¢ are numbered from a to b. Thus the numbering

of the boxes on the i row of 7%¢ looks like

a a+1 b—1 b

The fact that the i'" row of 7% is not weakly increasing means that we have
some (p,q) with a < p < ¢ < b such that the entry in the box of 7®¢ with
number p is greater (in the appropriate ordering) than the entry in the box
of 7%¢ with number q. Now by the definition of the action of .S,, on tableaux,
we have for any j that the entry which is in box number j in 7% is the entry
from box number (7)o" in 7%. By the definition of 7%, if i < j then the entry
in the box of 7* with number i is less (in the appropriate ordering) than the

entry in the box of 7 with number j. Hence we must have (p)o~! > (¢)o™ 1,
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and so (p,q) is an inversion of o~!. This implies that there must be a descent

(7,7 + 1) of 07! such that a < j < b, for if not then we must have
(a)ot<(a+Dot<---<(b-1o < (b)o !,

a contradiction. But then o(j,7 + 1) € oS, since (5,7 + 1) € S,, and
by Lemma [7.2.2) o(j,7 + 1) has length one less than o, contradicting the
minimality of the length of ¢ in ¢.5,. [

We now demonstrate how tableaux with weakly increasing rows can be
used to index double cosets. Let us define W' to be the set of all tableaux of
shape a and type v with weakly increasing rows, and W to be the set of all
tableaux of shape o and type 7 with weakly increasing rows. Further, let us
take (2 to be a complete system of (S, Sa)-double coset representatives in
Sp and 2 to be a complete system of (Sl’ Sq)-double coset representatives
in S,,, where each element o of (2 or 27 is of minimal length in its left coset

0S,.

Proposition 7.2.4. ([3])], Corollary 5.1) The maps

O a
[y Q5 — W
Ur—>7'$‘a
and
. O o
Iy .QZ—H/VZ
O’l—>T,(;l0'

are bijections.

Proof. To prove that f, is onto, let 7 be an element of W2. Then certainly
T = 7;79 for some 6 € S, since our action of S,, on tableaux is transitive.

But 0 = uov for some o € Q, u € 5, v € 5, so that 7 = 7Jucv. Now by
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Proposition , the stabilizer of 73 under the action of 5, is S, and so
T = 7y'ov. Hence = 7o. But o is certainly of minimal length in its left
S,-coset, and hence by Proposition 70 has weakly increasing rows, so
7v~! has weakly increasing rows. But v~! € S,,, and so the action of v~ on
7 just permutes the elements within each row of 7. The fact that 7v~! and 7
both have weakly increasing rows now implies that 7 = 70~! and thus that
T = 7s0. Hence f, is onto.

To see that f, is one-to-one, suppose that 7oy = 7703 for 01,09 € 2.
Thus 70105 = 7' and hence by Proposition o105, € S,. It now
follows at once that S,015, = 5,025, and hence that o, = 0,. Thus f, is
one-to-one.

The proof for f, works in exactly the same way, using the fact that by
Proposition S, is the stabilizer of 7% under the action of S,. O

Corollary 7.2.5. Suppose that we have o1,...,0n € S, such that if i # j
then 790; # 70; and further {T?‘ai |1<i< N} = Wg. Then oy,...,0n
is a complete system of (S, Sy)-double coset representatives in S, without
redundancy. Further, this corollary remains true if one replaces v with v

throughout.

Proof. With our system of (S, S,)-double coset representatives QS as above,
we may by Proposition list the distinct elements of (2 as wy, ..., wyx
such that T,?Ui = Ti“wi. This implies that T = T wio; ! and hence that
wio; ' € Stab(7), so that by Proposition we have w;o; ' € S,. Hence
S.0:Sq = S, (w;io; 1)0iSe = S w;iSa, and so 01, ..., 0y is a complete system
of (S,,S,)-double coset representatives in 5,, without redundancy.

The above argument remains valid if we simply replace y with 4 throughout.

]
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7.3 Tableaux and subgroups of 5,

As mentioned at the start of the chapter, now that we have identified our
sets 27 and QF of double coset representatives, we want to understand the
subgroups S, N (SW)U and S, N (Sl)a, where o lies in Q7 or QF, respectively.

Now by Proposition , Stab(TﬁU) = (5’7)0. Further, it is clear that
Stab (’7’,?0’) consists exactly of those elements of S,, which permute the equal
entries in the tableau 7¥o. Further, for any tableau of shape «; it is immediate
that the Young subgroup S, of S, is exactly the set of elements of 5,
which permute the entries within the rows of the tableau (i.e. that do not
move any entries between rows). We may apply the same arguments to

Stab (7';’“0) = (SW)U. We thus obtain the following result.

Lemma 7.3.1. ([3]], proof of Proposition 5.2) For any o € S, Sa N (Sy)o
15 the set of all elements of S,, which permute the equal entries within each
row of the tableau 750, while S, N (SZ)U is the set of all elements of S,, which

permute the equal entries within each row of the tableau T30

Ezample 7.3.2. Let us take n = 13, v = ((2,1),(3),(2,2),(2),(1)), a =
(4,3,4,2) and o = (1,11,13,12,5,2,8,3)(9, 10). Note that

So = 5{1,2,3,4} X 5{5,6,7} X 5{8,9,10,11} X 5{12,13}
and

Sl = 5{1,2} X 5{3} X 5{4,5,6} X S{?,S} X 5{9,10} X 5{11,12} X 5{13}.
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We have

=2

and

(1,2) [ (2,1) | (3,1) | (2,1)

so that

(51)0 = 5{1} X 5{2,4,6} X 5{3,7} X 5{5,13} X 5{8,11} X 5{9,10} X 5{12}

and

Sa N (Sl)g = 5{2’4} X 5{8,11} X 5{9710}.

Proposition 7.3.3. ([34)], Proposition 5.2) Suppose that o € S,, is of minimal
length in its left S,-coset 0S,. Then S, N (Sy)g and S, N (Sl)o are Young
subgroups of S,,.

Proof. By Proposition 7.'0 has weakly increasing rows, and so within
each row the equal entries occur in contiguous blocks. Since by Lemma [7.3.1
Sy N (SW)U is the set of all elements of S,, which permute the equal entries
in each row of 7o, S, N (Sﬂy)(7 is indeed a Young subgroup. An identical

argument works for S, N (SZ)U. O
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So note that the ¢ in Example [7.3.2] is not of minimal length in its left
S,-coset, since the subgroup S, N (Sl)a is not a Young subgroup of S,,.

In fact if 0 € S,, is of minimal length in ¢.S,, we may use the tableaux
7 and 79 to read off compositions €, of n such that S, N (Sv)g = Ss and

SN (SZ)U = S, as the following example demonstrates.

Example 7.3.4. Take n = 16 and

a=(54,5,2)

7 =1((3,4),(4,1),(1),(3))
o =(1,6,2,15,5,10,16,14,13,9,8,11,12,4)(3,7).

Then o is of minimal length in ¢S, (see below for a justification of this) and

we have by direct calculation that

(1,2) | (1,2) | (1,2) (4,1)

(L,1) | (1,1) | (2,1) | (3,1)

(1,2) | (2,1) | (2,1) | (4,1) | (4,1)

(1,1) | (2,1)

so that S, N (SW)U is the Young subgroup

5{1,2,3} X 5{6,7} X 5{11,12} X 5{13,14}

associated to the composition I' = (3,1,1,2,1,1,1,2,2,1,1) E 16 and so
Sa N (Sl)g = Sr.
Now it is not immediately clear that the ¢ in this example is indeed of

minimal length in its coset 0.S,. However, there is an easy way of seeing this.
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Indeed, we find by direct calculation that T(116)0 is

416 |7 12|15

1131913

51 8 11|14 |16

2 110

and we see that this tableau has weakly (indeed, strictly) increasing rows.
Now choose 6 € S, such that g6 is of minimal length in ¢.S,. By Proposition
, T(O{w)o@ has weakly increasing rows. But 6 € S, so the action of § on
any tableau of shape « is to permute the entries within each row, and since
7'(0{16)0'(9 and Tﬁls)a both have weakly increasing rows, it follows that they are
equal. But tableaux of type (1'®) have distinct entries, and so we immediately

see that Tﬁm)e = 7'(0{16)5 implies € = ¢ for any €,0 € S,,. Thus ¢ = ¢ and so

o is of minimal length as claimed.

7.4 The tuple of multicompositions
associated to a tableau

In Example , we have seen how S, N (Sl)a may be characterised as
the Young subgroup associated to a composition of n, provided that o is of
minimal length in ¢.5,. We now show how we can characterise S, N (Sl)g
in a slightly different way, namely as the Young subgroup associated to an
[-tuple of length ¢ multicompositions with total size n. This characterisation
will prove critical to our work on the structure of the spaces Hom,,,, (5%, M7)
and Ext, . (5% M?2) in Chapter 9.

Recall that we have fixed a composition o = (a1, aa,...,q;) of n and a ¢

component multicomposition of n, v = (v',7%,...,7").
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First, we explain how obtain an [-tuple of multicompositions of length
t from a tableau 7 of shape o and type 7. We shall illustrate this process
with an example once we have given the definition. Indeed, for each i, j, s
let T'%(7) be the number of times the pair (j, s) occurs on the i* row of 7
(so T'%(7) is an integer). We then define for each i € {1,...,l} and each

j€{1,...,t} a composition
D7) = (T, T (), .., T (1)

where p is the highest integer such that a pair (j,p) occurs on the i*" row
of 7. If there are no pairs (j, s) for any s on the i*" row, then T'%(7) = ().
Thus I'*(7) records how many of each pair (j,s) occur on the i*" row of
7 for different integers s. We then define for each i € {1,...,l} a length ¢

multicomposition
(1) = (T (7), T%%(7), ..., " (1)) .

Thus ['(7) records how many of each pair (j,s) occur on the i*" row of 7 for

different integers j and s. Finally, we define an [-tuple of t-multicompositions

£(T) = (El(T),£2(T), . ,EZ(T)) .
We call ['(7) the tuple of multicompositions associated to 7.

Fxample 7.4.1. Let us take

n = 20
a=(5,4,5,2,4)
a= ((37 4, 1)7 (47 3)7 (1’ 1)a (3))
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and thus in this case [ = 5 and t = 4. Then we let 7 be the tableau of shape

« and type 7y given by

(2,2) | (4,1) | (1,2) | (1,2) | (2,2)

(L,1) ] (3,2) | (2,1)

T=1(1,2) | (4,1)] (2,1) ] (4,1) | (2,1)

(3,1) | (2,1)

(1,3) 1 (2,2) | (1,1) | (1,2)

We can now read off [(7). Indeed, from the first row we have

El(T) = ((07 2)7 (07 2)? ()7 (1>)

and similarly from the second, third, fourth, and fifth rows, we have

and so



Proposition 7.4.2. If 0 € S, is of minimal length in its left S,-coset oSy,

then we have

Sa N (S4)" = Stirgo)

Proof. By Lemma , Sa N (Sl)a is the subgroup of S,, consisting of all
permutations which permute the equal elements in each row of the tableau
790, We see by the definition of L'(70) that if 700 has weakly increasing
rows, then SE(H“U) is also the set of all permutations which permute the
equal elements in each row of the tableau Tl"‘a. But Proposition tells
us that 770 does indeed have weakly increasing rows, and so the proposition

follows. O]

Ezample 7.4.3. Let us return to the a, v, o of Example , so that

n =16
a=(5,4,5,2)

7 =((3,4),(4,1),(1),(3))
o=(1,6,2,15,5,10,16,14,13,9,8,11,12,4)(3,7)

and thus in this case [ =t = 4. Recall from Example that this o is of

minimal length in its left S,-coset 0.5,. Recall also that

(1,2) | (1,2) | (1,2) | (2,2) | (4,1)

(L,1) | (1,1) | (2,1) | (3,1)

(1,2) [ (2,1) | (2,1) | (4,1) | (4,1)

(1,1) | (2,1)

We can now read off [(7c’) from this tableau. Indeed, from the first row we

=Q
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have
£1 = ((07 3)7 (07 1)7 ()7 (1))

and similarly from the second, third, and fourth rows, we have

Thus

We conclude this chapter with a combinatorial result which will be vital
to our work in Chapter 9 on the structure of the spaces Hom,,,, (5%, M2) and

Ext}. (5% M7Y).

min

Proposition 7.4.4. Let v and v be multicompositions of n of length t, and
let T be a tableau of shape |v| and type .

1. Leti,j € {1,...,t}. Then T% (1) # () if and only if some pair (j,*)

appears on the i row of 7.

2. Suppose that v ¥ 7. Suppose further that for each j € {1,...,t}, no
pair (j,*) occurs lower than the j™ row of T, where by “lower” we mean

further down the tableau, i.e. in the ™ row for some | > j. Then we
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have some i and some j such that the first i — 1 entries of I are (), so

that we have

and such that we also have
J J
Z Ff;i(T) > Z 1/;.
g=1 q=1
Proof. The first claim of the proposition is simply a restatement of part of
the definition of the composition I'*/(7), so all we need to do is prove the

second claim.

Since v ¥ 7, we have ¢ and j such that

i—1 J

1—1 J
WP+ e > D W+ Y v (7.4.1)
q=1 p=1 q=1

The fact that the first i — 1 entries of [ are () follows from the first part of

p=1

the proposition and our assumptions, and so all that remains is to prove the
final inequality.

Now there are Z;_:ll |vP| boxes on the first i — 1 rows of 7 (since 7 has
shape |v|). Also, 7 is of type 7, and hence the number of pairs (p, *) for p <
occurring in 7 is Z;_:ll |7?|. By our assumption that no pair (j, *) occurs

lower than the j*® row of 7, these pairs must all occur on the first i — 1 rows.

Thus we see that there can be at most
i1 i-1
S = Y
p=1 p=1

pairs (i, *) on the first ¢ — 1 rows of 7, and hence in particular at most this
many pairs (i,q) for ¢ < j on the first i — 1 rows of 7. But 7 is of type 7%

and this means in particular that the total number of pairs (i, q) for ¢ < j
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J

occurring in the tableau 7 is » )

1 ’y;. By our assumption that no pair (j, *)
occurs lower than the j® row of 7, all of these pairs must occur within the

first ¢ rows of 7. Thus at least
j i—1 i—1
(3] - (Sw - S
g=1 p=1 p=1

pairs (i,q) with ¢ < j occur on the i*" row of 7. By definition of L(7), we
see that the number of pairs (i,q) for ¢ < j occurring on the i*" row of 7 is

;:1 I''(7), and thus we have

> Tin) = (Z%@) - ( y WPl - ilﬂ)

q=1 p=1 p=1
i—1 7 i—1
~Se Y- S
p=1 q=1 p=1

J
> v (by ([TAD)
q=1

as required. O

Original research in Chapter 7: Most of the material in this chapter
is taken from [34] with adaptations for use in subsequent chapters of this
thesis, although the use of tableaux containing pairs of numbers and the
associated wreath product action are original. The contents of Section [7.4]

and in particular Proposition [7.4.4] are original research.
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Chapter 8

Specht branching rules for the

wreath product

A famous and fundamental result in the representation theory of the symmetric
group is the result which Kleschchev in [22] calls the “Classical Branching
Theorem” [22 Theorem 3.1], but which we shall call the “Specht branching
rule”. This gives a Specht filtration for the restriction of a Specht module
from kS, to kS,,_; with an elegant combinatorial description of the set of
Specht modules occurring in this filtration. Indeed, recall that we have for
each n > 0 a natural embedding of the symmetric group S,_; into S,, by
letting 0 € S,,_1 act on 1,...,n by fixing n and permuting the other elements
as it does in S,,_1. Thus we can regard S,,_; as a subgroup of .S,, and hence
we may induce a module X from kS,_; to kS,,, or restrict a module Y from
kS, to kS,_1. In keeping with notations we have already introduced, we shall

write these operations as
Xth_yand Y| .
Theorem 8.0.1. (Specht branching rule) ([20], Theorem 9.3) Let A - n where
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n >0, and let k be a field. Then the kSy_1)-module SAqu has a Specht
filtration where for v (n —1), S” occurs exactly once if the Young diagram
of v can be obtained from the Young diagram of A by removing a single box,

and SY does not occur otherwise.

Recall that if kS, is semisimple (which occurs if and only if char(k) = 0
or char(k) > n), the Specht modules (indexed by all partitions of n) form
a complete system of simple £S,-modules without redundancy. Hence in
this semisimple case, Theorem describes the composition series of the
restriction of a simple module from .S,, to S,,_; in the chain of nested groups
S5HCS5HCSC---CS,CS,1 C---, and thus is a “branching rule” in the
more usual sense of this term.

In this chapter, we shall produce analogues of the Specht branching rule
for the wreath product S,, ! S, of two symmetric groups. Now since our
wreath product has two parameters m and n, we have two branching rules to
investigate. Firstly, we can embed S,,_11 5, into S,, ¢ .S,, using the canonical
embedding of S,,_; into .S,,, thus identifying S,,_1 ! S,, with the subgroup
of S, 1S, consisting of all elements (o; 1, ...,a,) where ¢ € S,, and each
«; is an element of the subgroup S,,_1 of S,,. Hence we can consider the

restriction
A min
S l (m—1)nn

of a Specht module S2 from k(S,,S,) to k(Sp,_11S,). Secondly, we can
embed S,, ! S,_1 into 5, 1S, via the mapping

(o500, ...,ap1) —> (0,1, ..., 0p_1,€)
where o € S,,_1, a; € S,,, and e represents the identity element of S, (note

that we are making use of the canonical embedding of S,,_; into S,). We
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thus have the restriction

S| ey
of a Specht module S from k(S,, ¢ S,) to this copy of k(S,, ! S,_1) inside
k(Sm US,). We shall see below that it is the Specht branching rule for the
latter restriction which is most closely analogous to the Specht branching rule
for the symmetric group.

As in previous chapters, we let the distinct partitions of m, in the lexico-

graphic order, be

(m)=p'>p*>> ... >u" =(1").

mZn
8.1 Specht branching rule for S2 l
Let us fix some r-multipartition A = (A!,... A\") of n and consider the
kE(Sm-11S,)-module
2| N
S* l (m—1)mn "

Let us define a k(Sy, ¢ S}5)-module

1

T = (s, 5 o (M @ 1Y)

so that

We then have

SAimZn ~ TATmm min

(m—1) mYA| ¥ (m—1)n

>~ A (ma AN (m—1)n
@ T (mAAD* N (m— I)ZnT(mHA‘)um(mil)ln (811)

ueU

where the last isomorphism follows by Mackey’s Theorem (Theorem [2.2.5)),
with U representing a complete non-redundant system of (SmZS| A S(m—1) LS,)-

double coset representatives in S, 1 S, and where we allow ourselves a slight
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abuse of notation by writing (m ¢ |A])" to represent the subgroup (S, ¢ Sy )"
conjugate to Sp, ¢ Sy by u, and (m ¢ |A[)* N (m — 1) 1n for the intersection
of this subgroup with S,—1)?S,. But it turns out that in fact the group
Sm 1Sy is a single (Sy, US|y, Stm—-1) ! Sp)-double coset. Indeed, choosing

(o501, ...,0,) € S, 1S, we have equalities of double cosets

SmZSw (0‘; g, ..., Oén) S(m_l)zSn
= SmZSm (6; Q(1)gs - - - ,a(n)o)(e; €, ... ,6)(0; e, ... ,6) S(m_l)ZSn
= SmZSm (6; €.y 6) S(mfl)ZSn

and so we may take U = {(e;e,...,e)}. We then have by (8.1.1)) that

A | TUn ~ A | A (m—1)m
Sil(mfl)m - Tﬁlng\ﬂ(mfl)m mA| N (m—1)n

and clearly (Sm 0 S\AI) N (S(m_l) ! Sn) = S(m-1) 1S} (note that formally these
are subgroups of Sy, 1 S,, so that Si,_1) ¢ S}y is the subgroup of S,, 1 5,
consisting of all elements (o;ay,...,a,) for o € Sy and a; € Sir—1) < Spy).

Thus we have

A | n ~ A m| (m—1nn
5L min = T L n iz Tom iz
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We then have

A M| r B|n| \i m|A| (m—1)mn
~ l leT z|/\\ = [ (S“) ©S H I

(m—=1RAl T (m—=1)2A

r ) m\?|
gr I o) gx H
|:i 1 |:( ) :| J«(m—l)lp\i (m—1)A|

r (m—1)nn
) Ryl | 7N A
|:4 |:(S J/ (m—1)|\¢| @5

(m—1)1A

(m—1)n

I

12

s
Il
i

(easy to see directly)

r ,|m R\ 56
R(s [ ) o]
=1 mel (m=1)21A
(by Proposition |4.3.5))

~ aA(qut|m rym

= (s s )

(using the isomorphism (4.3.6)); see

(6.4.10)) for the definition of this notation).

(m—1)n

2

We thus see that

S =S (S s ).

Now let us fix the partitions of m — 1 just as we have done for m. Indeed, let

t be the number of distinct partitions of m — 1, and let
(m—-1)=0">6">...>0=1""

be the partitions of m — 1 in lexicographic order. Then by Theorem [8.0.1} we

have for any i € {1,...,r} that

' ~ i Qb7
s|" ~ Fais
m—1 j=1
where

1 if §7 can be obtained by removing a box from p’

0 otherwise.
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It now follows by Proposition that we have a filtration

Silmln

(m—1)1n ~

2 (H c(N; Ri[é])) (H (v C; [g])> g

visa t—n(l)tfll‘:jpartition [d € Mata (A;]A|x|w]) \i=1

(8.1.2)

where A is the r x t integer matrix whose (7, 7)*® entry is aé. This filtration is
the basis of our desired Specht branching rule, but we would like some kind
of combinatorial interpretation of the coefficient with which S* occurs. Our
task is now to find such an interpretation.

So with A\ as above and v as in , consider, for a given multipartition
matrix [e] € Maty (A;|A] X |v]) the coefficient

(H c(\ Rdé])) (H c(v; C; [d)) (8.1.3)

occurring in (8.1.2). Recall that the length matrix A of [¢] is defined to be
the integer matrix whose (7, 7)™ entry is the length of the (i, 7)™ entry of [e].
Thus A is the integer matrix whose (i, j)'™ entry is 1 if 7 can be obtained by
removing a box from p’, and 0 otherwise. Thus the (i, j)*® entry of [¢] is a
multipartition of length 1, say (e¥), if 7 can be obtained by removing a box
from p’, and () otherwise. This gives us an alternative way to think of such
multipartition matrices and calculate the associated coefficient , as we
shall now explain.

Recall that we can arrange the set of all partitions of all non-negative
integers in a graphical structure called the Young graph, by arranging the
partitions in layers, with the partitions of size s forming the s'" layer, and
then for each partition A F s in the s' layer, drawing an edge from \ to each

partition of s — 1 in the (s — 1)™ layer which can be obtained from \ by
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removing a single box. For example, the second and third rows of the Young

graph, together with the edges connecting them, look like this

= -
NN

For our purposes, we are interested in the subgraph of the Young graph

consisting of the m'™ and (m — 1) layers together with the edges connecting
them. Let us call this subgraph ),. So for example if m = 3, )5 is the graph
. We see that there is a natural one-to-one correspondence between
the 1’s in the matrix A and the edges in ),,. Indeed, a 1 in the (i, )*™® place
of A corresponds to an edge linking 6/ = m — 1 and g = m in ),,. We now
see that a multipartition matrix [¢] € Mata(A; |A| x |v|) may be identified
with a labelling of the edges in ), by partitions. Indeed, to obtain such a
labelling from such a matrix [¢], we label the edge linking 67 and u' in Y,
if it exists, with the partition €¥ which is the unique entry of the length 1
multipartiton which is the (i, 7)*® entry of [¢]. We may easily see that we have
now established a one-to-one correspondence between on the one hand the
set Maty (A; |A| X |v]) and on the other hand labellings of the edges of Y, by
integer partitions, such that for each ¢ = 1,...,r the sizes of the partitions
labelling the edges touching the node u' = m of Y, add up to |\], and
similarly for each 7 = 1,...,t the sizes of the partitions labelling the edges
touching the node 67 = m — 1 of ), add up to |v*|. We shall henceforth call
such a labelling of ), a labelling of shape |A| x |v|. The diagram ({8.1.6))
below is an example of such a labelling.

We now explain how to calculate the coefficient (8.1.3) associated to a
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labelling of Y, of shape |A| x |v|. In order to do this, we need to introduce
a graph which is a modified version of ),,. Indeed, recall that we have
multipartitions A = (AL,...,\") and v = (v}, ..., v) of n. We define Y,,,(\, v)
to be the graph obtained by replacing each partition u’ = m with A, and each
partition 67 = m — 1 with v7. Thus for example if m = 3 (so that r = 3 and
t =2) and n = 6, and we take A = ((2),(1,1),(1,1)) and v = ((3), (2, 1)),
then YV3(A,v) is the graph

NN

We now see that a labelling of ), of shape |A| X || corresponds to a labelling

(8.1.5)

of the edges YV, (A, v) by partitions in such a way that, for each partition
v lying at a node of Y,,(A,v), the sizes of the partitions labelling all the
edges touching v add up to |y|. We call such a labelling of V,,(A,v) a good
labelling of V,,(A,v). To continue our example, one good labelling of the

graph V3(A, v) depicted in (8.1.5)) is
(1] -
% \ / N
T = = |

Looking back through our arguments, we see that this labelling corresponds

(8.1.6)
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to the multipartition matrix

(where we have labelled the rows and columns with the entries of A and v
respectively) and further we see that the coefficient (8.1.3)) associated to this

multipartition matrix is

(@ (@) (1 1: (W, () - e( (1,1 (1. 1) )
e(3): (2, () - e((2 1: (1), (1))

By using (3.2.5) and (3.2.6]), and by counting the appropriate kinds of skew

tableaux as per the Littlewood-Richardson rule, we may see that each of these
Littlewood-Richardson coefficients is 1, and hence the coefficient associated
to the graph is 1.

In the general case, we see that the coefficient associated to a good labelling
of V(A v) is formed by taking the product, over all partitions  which are
nodes of V,,(A,v) (that is, over all partitions of m and of m — 1), of the
Littlewood-Richardson coefficients ¢(7; (6%, ...,6%)), where ¢',...,6° are the
partitions labelling all of the edges which touch v in Y,,(A, v). If £ is a good
labelling of V(A v), we denote this coefficient by M (L).

We have now proved the following Specht branching rule.

Theorem 8.1.1. Let m > 0, and as above let r be the number of distinct

partitions of m and t the number of distinct partitions of m — 1. Let \
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be an r-multipartition of n. Then we have a filtration of the k(S;,_11S,)-

A | TN
module Sil(m—m
the multiplicity of S% is the sum over all good labellings L of Vi (A, v) of the
coefficients M (E) )

., by Specht modules S* for t-multipartitions v of n, where

We note that the multiplicities in this theorem are independent of the
field k.

Let us now extend our example to calculate the multiplicity with which
S((3:(2D) occurs in our filtration of S(2(1:1),(1.1) ;2.
lated that the coefficient M ([,) is equal to 1 when L is the labelling .
We shall show that if A = ((2), (1,1),(1,1)) and v = ((3),(2,1)), then for any

good labelling £ of Y5(), v) other than (8.1.6]), we have M (E) = 0. Thus the

We have already calcu-

multiplicity which we seek is in fact 1. Indeed, suppose that we have some

good labelling £ of V3(A,v). Then L is equal to
(11 ‘
/ x / N
1 -~ =

for some integer partitions &', 92,63, 0. Now by the definition of a good

labelling of V3(A,v), we see that we must have [§'] = 2,[§?] = 1,|63] =
1,|6* = 2, so that §% = §* = (1). We now see that
M(£) = e((2):(8")) - e((1, 15 (1), (1) ) - e((1,1): (5%) )
e(3): (8%, 1)) - e((2: ((1).8).

By (3.2.5)), the only case where this is nonzero is the case where ' = (2) and
6t =(1,1), as in (8.1.6).
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8.2 Specht branching rule for S l:;?ﬂ_

Now let us take n > 0, and fix some r-multipartition A = (A!,...,\") of n

and consider the k(S,, ¢ S,—1)-module

S)\lmm

mi(n—1)

where we recall that we are regarding .S,,_; as the subgroup of .S,, consisting of
all permutations of {1,...,n} which fix n, and hence regarding S,, ! S, as
the subgroup of all elements of the form (o;aq,...,q, 1,€e) where o € S,,_1,
a; € Sp,, and e represents the identity element of .S,,. So as in the previous

section we have

2| min A AT TN
5% lmz(n 1) — = Tml\)\| mZ(nfl)

@ T (ml\AI ummz(n 1)T(ml|&‘)ummz(n_1) (8.2.1)

ueU

where again we have used Mackey’s Theorem (Theorem with minor
notational abuses as above, and where U now represents a complete non-
redundant system of (S, ! S|, Sm ¢ Sn—1)-double coset representatives in
Sm US,. We thus want to find such a set of double coset representatives.
Indeed, recall that for o € S,,, we write ¢ for the element (e, ..., e) of S;,0S,.
Let o1,...,0n5 be a complete non-redundant system of (S|, S,—1)-double
coset representatives in S,,. We claim that 641,...,0y is then a complete
non-redundant system of (Sy, 1 S|y, Sm 1 Sy,—1)-double coset representatives in
S USy. Indeed, if (0; a4, ..., a,) € Spn .Sy, then we have 6 = e0;0 for some
ie{l,...,N},e€ Sy and § € S,_1, and it follows that

(9;041,...,04n) = (6; a(l)gi,...,&(n)oi)jgal, ,elgé,e, Z

N

g

~~
ESmZS|A\ =06 esmlsnfl

188



which establishes completeness. For non-redundancy, suppose that we have

some 17, j such that
(Sm 2 S)a1) Gi (S 0Sn-1) = (Sm 2S)) 65 (Sm U Sna).

Hence o, € (Sm 0 SIA\) of (Sm ! Sn_l), so that we have € € S}y, 6 € S,,—1 and

elements «;, 5; of S,, such that

(oise,....e) =(&ar,...,an)(055e,...,€)(0; B1,...,Bn1,€)

from which it follows that o; = €060 and hence that ¢ = j. Thus we now seek
such o1,...,0n, and to do this we shall make use of our work on tableaux.
Now recall that if o, are compositions of n, then we have defined the
tableau 7¥ to be the tableau of shape o whose entries, read from left to
right across each row in turn starting with the top row, consist of v; 1’s,
then 75 2’s, then 3 3’s, and so on. So for example if n =9, a = (8,1) and

v=(3,1,0,2,3), then

11111241455

bt

Further, we know by Corollary that if we have o¢,...,05 € S, such
that 7501, .., 75on is a complete list, with no repetition, of the tableaux of
shape « and type v with weakly increasing rows, then oy, ..., 0y is in fact a
complete system of (.S, S,)-double coset representatives without redundancy.
We now apply this in the case where a = (n — 1,1) and v = || to obtain
our desired system of (S|, S,-1)-double coset representatives in S,, noting
that the subgroup S,_; of S, is exactly the Young subgroup S¢,—1,1). The
following example should serve to illustrate the general argument which we

shall give below.
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Keep n = 9, and suppose that |A| = (3,1,0,2,3) as above. Then the
possible tableaux of shape (n — 1, 1) and type |A| with weakly increasing rows

are

i l2a]4]s]5]

111121445 5|5

1

Thus, a complete non-redundant system of (S)y, S(—1,1))-double coset rep-
resentatives is e, (6,9,8,7),(4,9,8,7,6,5), (3,9,8,7,6,5,4), recalling that in
our action of S,, on tableaux, o € S, acts by moving the contents of the ¢!
box to the (i)o*® box, where the boxes of a tableau are numbered with the
numbers 1, ..., n from left to right across each row, working from the top row
to the bottom row.

The general case works in exactly the same way as the example. Indeed,
recall that A = (A\},...)\"). Fori = 1,...,r we let b; = |\| + --- + |\,
so that we have a sequence 0 < b; < by < --- < b, = n. Then for each
it =1,...,r such that b; # 0 we define an element p; of S,, by letting

(bi,m,m—1,....b;+1) ifb;<n

Pi =

(where e is the identity element). By letting ¢ run through all 1,... 7 such

that |[\!| > 0, we obtain a complete list of all the distinct p; without repetition.
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(n—

A 1’1)pz~ for

As in the above example, we see that the set of all tableaux g
i such that |\| > 0 forms a complete list of all of the tableaux of shape
(n — 1,1) and type |A| with weakly increasing rows. Hence by Corollary
we see that the collection of all p; for ¢ such that |[\| > 0 forms a
complete non-redundant system of (S|, Sn,—1)-double coset representatives in
Sy, and hence the collection of all p; for i such that |\f| > 0 forms a complete
non-redundant system of (Sy, 1 S|y, Sm S,—1)-double coset representatives in

S LS.
Looking back to (8.2.1), we see that we want to understand the module

(1) | (i e

(mYADPi nma(n—1) | (mA])?i nma(n—1)

for 4 such that |A\*| > 0. Our first step in doing so will be to understand the
subgroup (Sm ! Sw)m N (Sm ! Sn,l) of S,, 1S, and its action on the module
(T2)".

So choose i such that [\'| > 0. It is easy to show directly that (.S, Sw)ﬁi
is equal to S, (Sw)pi. Thus we have

(S 2Sx)™ 11 (S 2 Sut) = S 2 (Sja))™ N (S 2 S1)

and it is easy to show directly that S, ? (Sw)pi N (Sm ! Sn—l) is equal to the

subgroup of S, 1 S, consisting of all elements of the form
(o500, ..., ap_1,€) (8.2.2)

where o is an element of the subgroup (Sw)pi NS,_1 of S,, and a; € .5,,. We
thus wish to understand the subgroup (S’w)pi N S,_1 of S,,. By Proposition

7.1.4, (S)y)”" is the stabilizer (under the action of S,,) of the tableau T&fl’l)pi.

It is easy to see that the tableau ﬁ&’l‘_l’l)pi is the unique tableau of shape

(n — 1,1) and type |A| with weakly increasing rows which has an i in the

box on the second row; such tableaux are illustrated in the above example.
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For any subset Q of {1,...,n}, let us write S(Q2) to denote the subgroup of
S, consisting of all permutations which fix any number not lying in 2. We
easily see that the stabilizer of the tableau T&L_l’l) p; is the subgroup X @ of
S,, where we define (recalling that |[\’| > 0 and hence b; > b;_;, where b is

taken to be 0)

Xy =S{L...,b1}) x S({br+1,...,ba}) x -+
X S({bim1+1,...,0;—1,n}) x S({bi, ..., bix1—1}) x S({biy1, ..., bir2—1}) X
s x S({bro1,. . by — 1 = n—1})

(note that here we are using the x symbol to denote an internal direct product
of subgroups, and that if b; = b; 1 then {b;, ..., b;;1 — 1} represents the empty
set, and that if b; = b;_1 + 1 then {b; 1 +1,...,b; — 1,n} = {n}), and hence
(S A|)pi = X@. We now introduce a small piece of notation. Indeed, if
v = (7,...,7%) is a composition of n, and i € {1,...,r} such that v; > 0,
then we write [y]; for the composition (y1,...,%i-1,% — 1, Vit1,7) of n — 1.

We see that X@ N S,_1 is the subgroup

S b)) X S({by 4 1. b)) x -
XS({bZ_1+1,7bZ—1}) XS({bl,,bH_l—l}) XS({Z)H_l,,bH_Q—l})X
"'XS({br_l,...,b,«—]. = n—l})

of S,, and under our embedding of S,,_; into .S,, this is exactly the subgroup
Spag; of Sp—1. Hence, recalling that we are viewing Sy, 1 S,,—1 as a subgroup
of S,, 1S, via the embedding (c;aq,...,a,-1) — (0;Q1,...,Q4_1,€), We
see that the subgroup (Sm ! Sw)m N (Sm ! Sn,l) of S,, 1S, is equal to the
subgroup Sy, ¢ S[ja; of the subgroup Sy, 1 S,—1 of Sy, 1.5,.

We now turn our attention to the action of (Sm ! Sw)'[)i N (S’m ! Sn—l) on
the k:(Sm 2 Sw)ﬁi—module (Ti)ﬁi. We know by the definition of conjugate
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modules (see page that (Tﬁ)ﬁi is the module formed by equipping 72
with the k(S S|A|)ﬁi—action x given for x € T? and y € (Spm Sw)m by
xxy =x(p;yp; ") (where the action on the right-hand side is the action of
Sm 1S}y on T2, noting that p;yp; ' does indeed lie in Sy, ¢ Sjy). Thus to

calculate the action of an element
(0501, @ 1,€) € (S 2Sn)" N (S 2S01)
on the module (TA) ﬁi, we need to calculate p;(o; oy, ..., an_1,e)p; +. We have

pilosan, ... an_1,€)p;t = (pise,....e)(o;a1,...,an_1,e)(p; ;e,...,¢€)
= (piopi 1 0pis - Amyp)  (taking o, = e)
= (pzo-pz_la a1, A2, ...y Ay, 1, €, Op,y Ap, 41,

<oy Qp_2, O‘n—1>‘

But by our description of the elements of (Sm ! Sw)ﬁi N (Sm ! Sn_l),
we see that o € (S)y)” N S,_1, which implies that p;op; " € Sy N (Sn_l)p;l.
By direct calculation, any element of (Sn,l)pi_1 fixes b;, and hence we see that
piop; ! is an element of Six which fixes b;. Now we know that the subgroup

S|y of S, has an internal direct product factorisation

SH{L,...,b1}) x S({br+1,...,bo}) x -+
v x S({bisi + 1,0 x S({bi+ 1, by ) X -
o x S({bro1 +1,..., b, = n}).

Thus any element 7 of Sy has a unique factorisation = = 6, -- -6, where
0, € S({bj1+1,...,b;}) (with by taken to be 0). We thus see that p;op; "’
has such a factorisation p;,op; V' = 0,-..0,, where 6, fixes b;. Thus we see

that our element (o;aq,...,a,_1,€) of (Sm ! Sw)ﬁi N (Sm ! Sn—l) acts on the
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module (TA) i as the element
(91 s lp 0, Qo 1, €, Oy, Q1 ey Oy, an—1)

of Sy, 1S}y acts on T2 (recalling that (72) P and T2 are equal as k-vector
spaces). But we know that (Sm ! Sm)ﬁi N (Sm ! Sn,l) is equal to the subgroup
S US| of the subgroup Sy, 1 .S,—1 of Sy, 1Sy, and we now see that if we
identify Sy, ¢ S, with

(Sm2S|)\1|> X (Sm l S|/\2‘) VR
- X (Sm l S|)\i71|> X (Sm l S|)\i‘_1) X (szs‘)\z+1‘) X oo X (szsfp\rl)

in the canonical way, then by the definition of the k(Sy, 1 S|y)-module T2, the
]{T(Sm ! S[w]i)—module

pi | (ma|A[)Pi i | (mIA])Pi
(7%)" i(m2|A|)ﬁiﬁml(n—1): (72)” imz“AHi
is isomorphic to
()™M os¥) - m ((5) ™ o sv) fmw 9.
m(|A1]-1)

X ((Sw)g'”‘ % s”) . (8.2.3)

Thus, we want to investigate the k(Sy, 1 S|xi|—1)-module
iR i m |
((S“ )@IM®S,\>l o
m(|Ai|-1)

mi| Y
Now the restriction operation l (N1 may be expressed as
mi(|At|—1

mAY| mi(|AT—1,1)

lmz<»‘|—1,1>Lm<w|—1> ’
where, we recall, m ¢ (|A\'| — 1,1) represents the subgroup Sy, ¢ S(xi|—1,1) of
Sm US| consisting of all elements of the form (o;a,...,ay) for oz € Sy,
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and 0 € S(|xi_1,1), while m (|]\'| — 1) represents the subgroup S, ¢ Sqxij—1) of

S US)xi| consisting of all elements of the form (o; ay, ..., an_1,€) for a; € Sy,
and o € S(ij—1,1)- Now we have by Proposition that
i\ X\ i ml‘)\i| i\ X\ m2|)\i| i ‘)‘zl
() 05) ™ (o™ M
mi(|\i|—1,1) mA(|Ai|—1,1) (IAf]—1,1)

Upon further restriction to Sy, 1.S(xi|—1), We see that this is isomorphic to the

direct sum of dimy(S*") copies of

i\ KN — i [A%]
(Su)g\kl ' S,\l o
x| —1
It now follows by Theorem [8.0.1) and Lemma [6.1.1] that we have a filtration
NP\ i mi| X i N
()™M os) |7~ F dimy(s) (9) o0
ml(l)fbl—l) (5ER(/\7')
where if € is any partition, we define R(€) to be the set of all partitions of

le| — 1 which may be obtained from e by removing a box. Using (8.2.3)), it

now follows that we have a filtration of k(S,, ¢ Sy, )-modules

pi | (MAUA[)Pi i | (m|A|)Pi
(TA)p l(mi@\)ﬁiﬂmz(nfl): (TA)p lmgaéul
~ F dimy,(S*") T2,

J is an r-multipartition of n — 1
8I=X\ for j #1i
SPeR(AY)
By Lemma [2.2.2] it now follows that we have a filtration of k(S,, 1 S,_1)-

modules

(TA) pi l(mzl&\)ﬁi Tmz(n—l)

(mAADPi nma(n—1) | (mIA)Pi Nmi(n—1)

pi | (mlAs pm(n—1)
= (T Lo Tl

~ F dimy,(S*') S°.
d is an r-multipartition of n — 1
§I=X\ for j #1i
SeR(NY)
Refering back to the decomposition (8.2.1]), we now see that we have proved

the following result, which is our desired Specht branching rule.
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Theorem 8.2.1. Let n > 0, and let A\ be an r-multipartition of n. Then we
have a filtration of the k(Sy, 1 Sp—1)-module SAlZ?R_l) by Specht modules
SS for r-multipartitions § of n — 1. For a multipartition § of n — 1, if §
may be obtained from \ by removing a single box from the partition \' for
some i (while leaving all other partitions N unchanged), then S occurs with
multiplicity dimk(S“i) in the filtration, and otherwise S does not occur in

the filtration.

We note that the multiplicities dimy(S*") occuring in this filtration have
a simple and elegant combinatorial interpretation via the hook length formula
(see for example [20, Chapter 20]), from which we see that they are in fact
independent of the field k. We also note the similarity of this result to

Theorem [B.0.1]

Original research in Chapter 8: All of the material in Sections [8.1] and

8.2|is original research.
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Chapter 9

Structure of Hom,,,,, (S%, M)
and Eth;lnzn (SZ, M)

This chapter contains the most substantial new results of this thesis. Let
m and n be non-negative integers and k£ a field as in previous chapters,
and let v be an r component multipartition of n and v an r component
multicomposition of n, where r is the number of distinct partitions of m as

before. We shall prove that if the characteristic of k is not 2, then

ko if

I

Y

=2

Hom,y,,, (5%, M?) = (9.0.1)

0 if

I
%
|2

)

and further if the characteristic of k is neither 2 nor 3, then

Ext!

min

(8%, M?) = 0.

These results are wreath product analogues of the symmetric group results
and Proposition [3.3.4] In the next chapter we shall use these results
to prove wreath product versions of and Theorem and hence by
Corollary show (as was done in Section for the symmetric group)
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that Specht filtration multiplicities are well-defined in the wreath product
case over an algebraically closed field whose characteristic is neither 2 nor 3.
Recall that, for our fixed non-negative integer m, we have fixed the distinct

partitions of m, in the lexicographic order, to be
(m)=p'>p®>> ... >p" =(1").

Recall also that if « is some composition of n and i € {1,...,r}, then we
write [a, ] to denote the r-multicomposition of n which has « in the i*® place
and () in all other places.

We shall begin by considering the structure of the spaces Hom,,,, (5%, MY)
and Ext!

min

(8%, M7) for v = [v,i] and v = [, j]. From this we move to the
case where v = [v, 1] but 7 is any multicomposition. Finally, we shall use this

special case to derive our desired results in the general case.

9.1 Structure of Hom,,, (SW], M[W])

We begin by proving (9.0.1)) in the case where v = [v,i] and v = [, j].

Proposition 9.1.1. Let k be a field such that char(k) # 2. Let v+ n, and
vEmn, and let i,j € {1,...,r}. Then

)
0 ifi>j,

Homp, (S[V’i]u Mh’j]) =90 ifi=jand v ¥,

kifi=j andv =1.
\
Proof. Recall that

Homy, (5%, MO9) = Homy,, ((57) 087, (M) oM7)
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For the first case where 7 > j, note that ¢ > j implies that ¢/ > u in the
lexicographic order. Hence p/ £ pf, and so p* I# pi7. Thus by (3.3.1]) we have

Hom,, (S, M"") = 0. (9.1.1)

Now the subgroup of 5,05, consisting of all elements of the form (e; o, e, ... ¢€)
for o € S,, may be identified with S,, in the obvious way, and hence any
kE(SmSy)-module X becomes a kS,,-module under the action of this subgroup.
Let us denote the resulting kS,,-module by X. We now see that if U is a kS,,-
module and V' is a kS,,-module, then the kS,,-module U Mn )V is the k-vector
space U®"®V with action given on pure tensors by (41 Qua® - - - Qu, Qv)o =
U0 ® Uy X - -+ @ u, ® v, and hence this module is isomorphic to a direct sum

of copies of U. Hence the kS,,-modules

(5)*" @87 and (M#) oM

are isomorphic to direct sums of copies of S* and M* | respectively. It
follows by that any £S,,-module homomorphism from the former
module to the latter must be zero. But if X and Y are k(S5,,05,)-modules,
then any k(S,,0S,)-module homomorphism f : X — Y must be a k£S,,,-module
homomorphism f: X — Y, and it follows that

Hom,, ((5) 08", (M) oM7) = 0.

The second and third cases will follow from (3.3.1) by proving that for

any (= m, we have
Homy, ( (%) 057, (M#)™'0M") = Hom, (5", M") (9.12)

as k-vector spaces. Indeed, let B be the subgroup of 5,05, consisting of all

elements of the form (e;04,09,...,0,) for o, € S, (where e is as usual the
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identity element of S,), so that B is canonically isomorphic to (S,)" (the
direct product of n copies of S,,). Now let z1,...,x, be a k-basis of S¥. Then
k(SmiSn)

(o5 [ =

where W; is the k-subspace spanned by pure tensors u; ® us ® - -+ ® u,, @ ;
for u, € S*. Thus W; is a kB-submodule which is isomorphic to (S“) o (the
external tensor product of n copies of S*) when B is identified with (Sm)n
in the canonical way; the isomorphism is given by u; ® us ® -+ ® u, ® x; —

U @ U @ -+ - @ Uyp. Similarly, if vy, ..., y, is a k-basis of M7, then

) q
-Dz
j=1
where Z; is the k-subspace spanned by pure tensors v @ v ® - - - @ v, ® y; for

vy € M*#. Thus Z; is a kB-submodule which is isomorphic to (M “)&n when

Sin k(SmiSn
[(M“) @M”] l
kB

B is identified with (Sm)n in the canonical way; the isomorphism is given by
VI QU ® - @V @Y; = V) @ Uy @ -+ - @ vy,. By using Proposition 2.1.3] and
the fact that (by (3.3.1)) Hom,, (S*, M*) = k, we may now easily see that
for each ¢ and j, the k-vector space Homypz (W, Z;) has dimension 1, and
hence we have

Homyp (Wi, Z;) = {a®;; | a € k}
where @, ; is the map given on pure tensors by
U QUL - QU Ty > U QUL X - B Uy QY
(recalling that S* C M*"). Now
Homy,, ((5%)™" 25", (M) oM7) 9.13)
is a k-subspace of

p q
Homy, (EB Wi, B Zj>
i=1 j=1
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which we may identify in the obvious way with
P g
P E Homys (Wi, Z;) .
i=1 j=1
Under this identification, for any element f of (9.1.3) we have
p q
= Z Z a; Dy (9.1.4)
i=1 j=1
for unique scalars «; ; € k. For each such f, let us define a k-linear map

f: S8 — M7 by letting
q
=D by
j=1
By a simple direct calculation, it is easy to show that for any z € S¥ and any

Uy, ..., u, € S* we have
fluy@ua ®@ -+ Q@ u, @ 1) :u1®u2®--~®un®f($).
Then if z € S and ¢ € S,,, we may fix some non-zero u € S* and note that

u®~-®u®(f(x)a):<u® Que flx )
=fu®- - -Quaz)oe,...,e)
— (e 2ua)(oe,. .. e)

= f(u®- - u® o)

)

which implies that f(z)o = f(zo) and hence that f is a kS,-module homo-
morphism. We claim that the map f f is the required isomorphism
(9.1.2). To see that this map is onto, let g € Homn (Sl’ MV) and define f to
be the k-linear map from (S“) "©5" to (M“) "@M?" given on pure tensors
by

fui Q@ua®@ -+ Qu, @) =u Qua @ -+ @ uy,  g(x).
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We may easily show by direct calculation that f is a k(5,,05,)-module
homomorphism and moreover it is clear that f = ¢, and so the map
fr— f is onto. To see that the map f —— f is injective, let fi, fo €
Hom,,,, ((S“)®n®51’, (M“)gTL@M”) and suppose that fl = fg. Now if we
decompose fi as in with coefficients a},j and similarly decompose f5

with coefficients oz?’ ;» then by the definition of fl and fg, we see that we must
have o} ; = o ; for all 7 and j, which implies that f; = fo. Thus f — fis

indeed an isomorphism as required. O

9.2 Structure of Ext,,. (S[V’ﬂ, M[W])

In this section, we shall prove the following result.

Proposition 9.2.1. Suppose that k has characteristic not 2 or 3, and let
vEnandyEnandi,je{l,...,r}. Then

Ext},, (¥, M0y = 0.

The arguments in this section are based on the arguments given in Section
to prove Proposition about extensions between modules S* and M®
over the symmetric group (and those arguments are themselves based on the
work of Erdmann in [I0]). This section is rather long and the arguments it
contains are somewhat complicated, but once we have completed them the
greater part of the work in this chapter will be behind us.

For the rest of this section, we take k to be a field whose characteristic is
neither 2 nor 3.

Recall that if § = (6,...,0") is a multipartition of m, then [d] is the

composition (|61, ...,]d"]) of m, so that we have a Young subgroup S| of Sy,.
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Recall further from page 57| that we define a kSj5-module S(§) by setting
S0)=5" KSR K5

Reduction 9.2.2. To prove Proposition |9.2.1], it is enough to prove that for

any = m, any § a multipartition of m with |§| = u, and any € - n, we have

Fxtly, (S(g)@” o S°, Ilm) —0.

Proof. With the hypotheses of Proposition [0.2.1, we have by Proposition
. min

that Ml = ILTW[%].]. But of course [v, 5] = ((),...,(),7,(),..., () with v

appearing in the ;' place, and hence we see easily that Wi, (see page

for the definition of W, for a multipartition 1) is the subgroup S,; ¢ S, of
S US,,. Thus we have

. . . min
Ext} (S["”], M[W]) >~ Extyon (S[”’Z}, ]]‘le’YTﬂjz’Y)

min
~ vi] | T
(by Theorem [2.2.4)).

Now we have

Gl l;rzz:; [( ) ®n®sy] lm‘m

Iy

-[ies [

pin - pdty

(by transitivity of induction).

Now recall from (4.3.2) that (S“) QS" = (S’“) ® Inf""S” (recalling
from page [75] that if G is a subgroup of S,,,, H is a subgroup of S, and Y is
a kH-module, then InfngY is the k(G H)-module obtained by equipping Y
with the action defined by y(o;a4,...,a,) =yo fory €Y, aq,...,a, € G,

and o € H). Thus by (2.2.4]), we have

[(Sﬂ")gn@SV] lm_m ~ (sm)g"lw ® Infyingy | ™"

pimn wim I
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But it is clear that InfmmS”im.m is the (S, ¢ S,)-module Infﬁij”, while

piin

] ~n min
(S“l)g l s (S“ U”) by Proposition 4.3.5. Thus we have
puiin

Vi min ~ = v wn
S[ }lww [(Su ) @5 ] Lmy
~ tm I v
= (S# uj) lﬁ]m © 5 l

(by Proposition |4.3.7)).

Now let  be the length of 7, so that v = (v1,...,7). Then by (3.2.12)) S*]”
is filtered by modules of the form S* X --- K S where A F ~,. Hence by
Lemma [6.1.1} the £(S,; ¢ S,)-module S ’”]l has a filtration by modules of

the form

(S“ilf;)gn o (S”M--@SV) ~

Iy

((5“l )R- R (s )m) 2 (S”x---xs”)

and under the natural isomorphism of S,; ¢ S, with S, 1.5, x -+ x §,,1.5,,,
this means by the isomorphism (#.3.5) that S ’]l

min

has a filtration by
modules

(L) res™)mm ((5])) " 08)
Hence by and Proposition we see that to prove that the space
Exty,, (S™1, M) is zero, it suffices to prove that if X' b, for [ =1,... ¢,
then the module

Bty (5] NG oM ) m--m (8] AR 25*), Luy) (922)

is zero. By writing the k(S 1.S,)-module 1 and

wiy as 1 X..-X1

applying Proposition [2.1.3 we see that the module ((9.2.2)) is isomorphic as a
ymg

k-vector space to a direct sum of the terms

EXt,lLszn <(S” l )wa S)\li MJZ’YZ> ® HOIH Tp ((S# luj)&%’ SAP’ ,Wh’p)

Wi Wiy



for I =1,...,t. Hence we see that it suffices to prove that

Extjoy, ( (5" 1)@, L) = 0 (9.2.3)
for any partition A of a non-negative integer n and any i,j € {1,...,7}. So

let us fix some such A and ¢, 5. Now by (3.2.12)), the kS,;-module S“ZMZ- is
filtered by modules S(J) = S K. XS where ¢ is a multipartition of

m with |§| = p/, and L; represents the length of p/. Explicitly, we have a

filtration
, P
5y ~ F5(8)
=1
for some (not necessarily pairwise unequal) multipartitions ¢, ..., 8" of m

(p some integer), where |§'| = p7 for each I. Thus by Lemma and
Proposition we find that the k(S 1 S, )-module

. Xn
i1 m A
(S" iuj> S
has a filtration by modules of the form

(5@, s@)™)]"" o5 -
[5@1)&” ZOEN S(Q”)gap] T”jm S (9.2.4)

pie
where o = (v, ..., ) is some composition of n. Then by Proposition

(9.2.4)) is isomorphic to

[(S(él)go‘l K. K S(QP)%) 2 Swg} Tzz (9.2.5)

and by (3.2.12) S*|" has a filtration by modules S¢ K- XS where € F ay,
so (using the isomorphism (4.3.5))) the module (9.2.5)) is filtered by modules

(567 05 ) &m0 (s@)7 0 57) ] Tmm

pia
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Hence, by Proposition [2.1.1] to prove ({9.2.3) it is enough to prove that
P - . wm
Ext’ i, ( {& S(8") e oS¢ } T , Il,u-m> = 0.

But by Theorem m (the Eckmann-Shapiro lemma),
P win
EXt}ﬂm ( [& S 5l Xay, %) 9€ :|T , ]]~ujln>
=1 i
L 1\ Mo el :I]_ wan
uﬂla(lgs(é) ‘oS ) ;ﬂlnl . )

= Ext!
o

p
= Ext};,, (& (8B o 5¢ & ]l;moq) .

By Proposition this is isomorphic to the direct sum of the terms

Ext!

“]

(8685 0.5%, Ly, ) @
® Hom,i, (S(és)gas 0S¢, ﬂujzas>
D

for [ =1,...,p, and hence proving that Extmn

(S(é)gn @ S¢, ﬂum> = 0 for
any pu F m, any § a multipartition of m with |0] = p, and any € - n will

indeed prove Proposition (9.2.1] O

We shall now reformulate the condition in Reduction [0.2.2] to obtain the
condition which we shall prove below. For this reformulation, we shall need a
lemma and some new notation. For = (f4,..., ;) E m, recall from page
that we have defined a sign module Sgnz = Sgn,, |5 = Sgng X --- K Sgng,.
We define a sign module Sgng,, for k(SsS,) by letting

Sgng,, = (Sgnﬁ)gn © Sgn,,.
We note that
Sgnﬁm = (Sgnﬂl X SgnﬂQ XX Sgnﬁt>®n % Sgnn'
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We may easily verify that we have an isomorphism of k(S3S,,)-modules
Sgng,, ® Sgng,, = 1gp. (9.2.6)

Further, recall that we are writing v/ for the conjugate partition of a

partition v and that if v = (v!,..., ') is a multipartition, then we have

defined v/ to be the multipartition ((v')’,..., (v')).
Lemma 9.2.3. With u, 9, and € as in Reduction
(s@)® o se’) = Sgn,,,, @ (S0 © 5°)
as k(S, 1 S,)-modules (recall that U* denotes the dual of a module U ).

Proof. Since we have ¢’ = € and " = §, the claim in the lemma is equivalent

to
<S<é)liln %) SG) & Sgnum X <S(é/)®n % Se') ’
and it is this result which we shall prove. By Proposition have
(s@F 0 5) = (s@™) o (s

Now by Proposition we have (S€)" = Sgn,, ® S¢, and by Proposition
4.3.4] we have (S(é)gn)* = (S(é)*)gn. Further, if we let t be the length of §

(and hence also the length of y, since |§| = p), then
* ~ S(Sl X Sét)
S K N(S‘“)* (by 22:2))
Sgn,, ® S XK (Sgnm ® S(‘st)/) (by Proposition [3.1.3))
Sen,,, X Sgnut) ® (5(51), X.. KX S((St)/),

I

I

o~/

(
= (
=
= (

where the last isomorphism is due to the easily proved fact that if Gy,..., G,

are finite groups and for each ¢ = 1,...,t, X; and Y; are kG;-modules,
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then the two k(G; x -+ X Gy)-modules (X1 ® Yl) X.. KX (Xt ® Y;) and
(X1 X...- K Xt) ® (Yl X... K Y;) are isomorphic in the obvious way. Thus

we have

= Xn

(S(8)")°r = <(Sgnm ... ®Sgn,)® (S K- K SW)’))
=~ (Sgn,, ®--- K Sgnut)gn ® (SO ® ... @ SO
(by Proposition [£.3.3)).
Thus (S(é)gn)* © (S9)" is isomorphic as a k(S, ¢ S,)-module to
((Sen,, ®- - ®Sen,, )™ @ (SO ” - ©S™) ) o (sen, 0 5°)

which by is isomorphic to

(Sem,, - W Sgn,, )™ © (597 - 8 500) @ e (Sgn,  5°)
which by Proposition is isomorphic to

(Sgn,, ®---KSgn, )™ ® (SO ®... K SOV

Inf™"(Sgn,,) ® Inf™"(S).

By commutativity of the inner tensor product of group modules, this is

isomorphic to
(Sgnu1 X..-X Sgnut)gn ® Inf7"(Sgn,,)®
(56 ® -5 565 @ Ifmn(s¢)
which by is isomorphic to
((Sen,, 2+ ®Sgn, )" 0 Sem, ) @ (€7 =& 50) ™ 0 5)

which is
Sgnum ® (S(é/>§|n @ SE,>
as required. O
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Proposition 9.2.4. With u, § and € as in Reduction[9.2.9, we have a k-vector

space isomorphism
Ext)y, (S©)7 @ 8%, Lyun ) = Extl, (Sgnyun S@)™ @ 57).
Proof. We have

Ext (Sgnum, S(é')gn %) SE/>
=~ Ext}.,, (Sgnum, (S(é')gn % Se’>** 2 IL;un)

(since both (—)™ and — ® 1,,, are operations which do not

change the isomorphism class of a module)
o EXtim (Sgnmn ® (S(é/>®n %) Sa)* , ]me> (by Proposition
and by Lemma (9.2.3],
Sen,, @ (S(é’)gn %) Sf’) ’
is isomorphic to
Sen,p, ® Sgn,, ® (S @)gn 2 5)
which by is isomorphic to S(8)%" & . O

In light of Proposition and Reduction [9.2.2] we see that in order
to establish Proposition [9.2.1] it suffices to prove that for u, § and € as in

Reduction [9.2.2] we have

Extly, (Sgn., SO 0 5) =0 (9.2.7)

(by taking ¢' in place of § and € in place of €, noting that of course we have
0" =40 and €’ = € and |§'| = || = p). In order to do this, we shall require
a number of lemmas. Recall from that for ¢ a multipartition of m
with |d| = p where p is of length ¢, we have defined a kS,,-module

M@)=M"R®...KM.
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Lemma 9.2.5. With y1, 6 and € as in Reduction[9.2.9, the k(S, 1.S,)-module
M(8)%" @ M¢ has a filtration where S(8)2" @ S¢ occurs at the bottom and all
other factors Q) satisfy

Hom,,,, (Sgn#m, Q) = 0.

Proof. By Young’s rule (3.2.1)) and properties of Kostka numbers (3.2.2)),
together with Lemma m, the module M (é)gn @ M€ has a filtration by

modules M (8)%" S for v - n, where the bottom-most factor is M ()% @ S
and all the other factors satisfy v>e. Let v = n with v>e€, and let us consider

the k-vector space

Hom,, (Sgn, ., M(é)gn ©S") =
Hom,, ((Sgn,)™" @ Sgn,,, M(8)™" @ S¥). (9.2.8)
Now the subgroup of S, 1 S,, consisting of all elements (e, ..., e) for o € 5,

(where e is the identity element of S,) is isomorphic to S,, and hence a
k(S,15,)-module may be considered to be a kS,,-module by virtue of restriction
to this subgroup. If we thus view (Sgnu)gn © Sgn,, and M(é)@" © S as kS,-
modules, then we see easily that the former is isomorphic to the £S,-module
Sgn,, while the latter is a direct sum of copies of S¥. It now follows that
the k-vector space ((9.2.8) may be exhibited as a subspace of a direct sum of
copies of the space Hom,,(Sgn,,, S¥) = Hom,,(S!"), S¥). But v > > (1) and
so by we have Hom,,(S""), S¥) = 0, so that in turn the space
is zero.

To prove the lemma, it now suffices to show that M (é)gn © S€ has a
filtration where the bottom-most factor is .S (é)gn © S¢ and all other factors
Q) satisfy

Hom,,,, (Sgnum, Q) =0.
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Now if we let ¢ be the length of p, then ¢ also has length ¢ since p = |J|. We
have that M(8) = M? K --- XK M with &' F p; for each i. By Young’s rule
and the properties of the Kostka numbers , M?" has a filtration
by modules S” for v  u;, where in the bottom-most factor we have v = §°
and in all other factors we have v 6. It now follows by Lemma that
M (J) has a filtration by modules S(v) = ST K- XS with 17| = p where
in the bottom-most factor we have v = ¢ and in all the other factors we have

7§ for at least one [ € {1,...,t}. Explicitly, we have
p

M(8) ~ Fry S(r)
i=1
for some (not necessarily pairwise unequal) multipartitions 11, ., yPof m (p
some integer), where |y| = p and 4! = § but for each i > 1 we have some
I such that 7' > 4" (where o' = (y*',...,4"")). Hence by Lemma and
Lemma m M(é)gn © S€ has a filtration
Xn € Ro pn €
M@ 05 ~ Fiuny (50,500 *] ] @ 5
acNb

The bottom-most factor in this filtration (indexed by o = [n, 1]) is S(8)¥" ) S<,

and so to prove our claim it now suffices to show that if a # [n, 1] then

Hom,,, (Sgnmn, [(5(11)7 ce S(Zp))ﬁa]

But for a = (ay,...,a,) € QP we have by Proposition that

un

%) SG) = 0. (9.2.9)

o

(5 5] [ 057
(st - w5y @ 54 |

and so by Theorem we see that the left-hand side of (9.2.9) is isomorphic

to

Hom, ( [(Sgnu)gn %) Sgnn} l

un

joate’

(S0 B RS 0 541
(9.2.10)
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Now let o = (avq, ..., o) € QP with a # [n, 1]. So we have some i € {2,...,p}
such that a; > 0, and from above we then have some [ such that 7! > §'.
Now let us consider the subgroup of S, 1S, consisting of all elements of
the form (ese,...,e,0,e,...,e) where the element o € S, occurs in place
a1 +---+a;_1+ 1. This subgroup is isomorphic to S, and hence a k(S,15,)-
module may be considered to be a kS,-module by virtue of restriction to this
subgroup. If we thus consider the module

mn wn

(Sgnu)gn @ Sgnn] l = [(Sgnu1 X.. X Sgnut)gn @ Sgnn} l

jratet o

to be a kS,-module, then we easily see that it is isomorphic to the module

Sgn,,, X --- X Sgn, . Further, if we view the module
(S("Fr ®-- m S5 ) @ 54

as a kS,-module in this way, then we see that it is isomorphic to a direct
sum of copies of S(zi). It now follows that, as a k-vector space, (9.2.10) is

contained in a direct sum of copies of
Hom,,(Sgn, &--- K Sgn, ,S(v")), (9.2.11)

and hence to prove our claim, it now suffices to prove that the module ((9.2.11])
is zero. We have S(v') = SR .- K ST as a kS,-module, and hence by

Proposition [2.1.3, (9.2.11]) is isomorphic as a k-vector space to
t .
X Hom,, (Sgn, ,S"").
s=1

Recall that we have some [ such that ~%! > §'. But then Sgn,, is the Specht
module indexed by the partition (1#), and we have v > §; > (1#), so by
(3.3.2) we see that Hom,, (Sgn,,,, Swi’l) = 0. It follows that is zero,
and the proof is complete. O
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Lemma 9.2.6. For m,n non-negative integers and any composition p of m,

we have

Ext!

wn

(Sgn,, Lan) = 0.

an
Proof. Now suppose we have some k(S,S,)-module E with x € E such that
kx is a k(S,1S5,)-submodule of E with kz = ﬂum (where kx denotes the
k-span of z in E'), and % = Sgn,,,- By Proposition it is enough to

show that E has a direct sum decomposition
E=kxapZ (9.2.12)

as a k(S5,0S,)-module. Before we do this, we must do a little preliminary
work.
Firstly, we let
B=A{(eay,...,a) | a; €S,}

and

T={(ie,....e) |7 € S},

so that B and T' are subgroups of 5,15, with B isomorphic to the direct
product of n copies of S, and T" isomorphic to .S,,.

Let ¢ be the length of u. Recall that we have defined a sign module Sgn,, =
Sgnnw for S,, and under the canonical isomorphism S, = 5, x --- x5,

we have from (3.1.1]) that Sgn, corresponds to the module
Sgn, X---KSgn, .
We therefore have that

Extllt (Sgnu, 1“) &~ Extllt (Sgnu1 X ... X Sgn ﬂm X - X ]lut)

Mt
and then by applying Proposition and Lemma we see that
Ext)(Sgn,, 1) = 0. (9.2.13)
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Now under our identification of T with S,,, we see that kx is a kS,-
submodule of E|4™, and moreover that kz = 1,,, while the quotient of E /4™
by kx is isomorphic to Sgn,,. It follows by Proposition and Lemma [3.3.

that we have some y € E such that, as a kT-module,
B = kr @ ky

and moreover that an element (o;e,...,e) of T acts on y as multiplication
by sgn(c). We can perform a similar analysis on the module E}/". For this,
we recall that B is isomorphic to (S5,)", and under this identification we may
easily see that kz is a k(S,)"-submodule of the k(S,)"-module E|%", and
moreover that kxr = 1(g,)», while the quotient of Eij,_f-;m by kx is isomorphic

to the k(S,)"-module (Sgn,)™" (the external tensor product of n copies of

Sgn,,). But we have

Ethlc(S“)” ((Sgnu)gna IL(S,JH) = Ethlc(Su)n ((Sgnu)xna (lu)®n>

and by applying Proposition [2.1.3[ and (9.2.13]) we see that this space is zero.
It follows by Proposition that we have some z € E such that, as a
kB-module

B~ kr @ k2

and moreover an element (e;ay, ..., q,) of B acts on z as multiplication by
sgn(aq) - - -sgn(ay,).

So we have y = ax + bz for some a,b € k. Since B and T generate the
group S, ¢Sy, in order to establish the desired decomposition (9.2.12)), it
suffices to prove that a = 0. Now if n or m is 1 then the proposition reduces

to Lemma |3.3.7], so let us assume that both n and m are at least 2. Let us
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fix some elements of T" and B. Indeed, let us define

o= ((1,2);6,...,6) eT
T = (e;(1,2),e...,e) €B

Ty = (6;6,(1,2),6...,6) € B.
We have

TO =TT = XTy =T

Yo = -y

ZT1 — ZT9 — —Z.
Therefore we have

ymo = (ax + bz)m0
= (ax — bz)o
= (2ax — (ax + b2))o
= (2ax —y)o

(
2ax + 9.

We also have

Yo = —YT2
= —(ax + b2)m
= —(azx — bz)

= —azx + bz.
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But we also have 10 = o7y, and so we have

2ax +y = —ax + bz
= 2ax + ax + bz = —axr + bz
— dazr =0
—a=0

where the last implication uses the facts that = # 0 and that char(k) is not
2. O

Lemma 9.2.7. With u, 9, and € as in Reduction
Ext .uln <Sgnuln7 M(é)gn %) Me) =0.

Proof. Firstly let us prove that

mn

M) o M= 1T5, (9.2.14)

for which we shall use Corollary Recall from (3.1.2) that if « is some

|S|a\|
|Sal *

also the length of § since |§| = p. Recalling that M(8) = M® X --- KM%,

composition then dimg(M®) =

Let t be the length of u, so that ¢ is

we see that

dimy, (M(é)gn @ M) = dlmk (M)

ﬁ 5|52|| |S|e||>
| Ssi |Se|

(t
:< 562) ||§||)
(s

(because [§| = p and € Fn)
15l <|5 !)
51/ \ [5¢]

0 1S,

ysty
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as required. Now recall from page [47] that for any composition a, we have an
element 7(a)) € M“ upon which S, acts trivially, but which generates M* as

a kS|o-module. It is easy to check that the pure tensor
(rdY @) " o) € MO oM

(where (2)®" denotes the tensor product of n copies of an element x) generates
M(8)B" & M© as a k(S, 1S,)-module, but is acted upon trivially by Ss ! S..
Hence all of the conditions of Corollary are satisfied. Thus
holds. We now have, using Theorem [2.2.4] (the Eckmann-Shapiro lemma),
that

1
Ext an

~ mn
(Sgnum, M(é)gn %) ME) ~ Extllim (Sgnum, ]1@6 Sie )

o~ Exték(Sgn ptm :[]-éze)-

N §e

wmn | e

Now we have by transitivity of induction that Sgnumlg: = Sgnun e L

But using Proposition [£.3.7, we have

n ~n 'uln ~7L n n
Sgnumlzse = [(Sgn”)g @Sgnn}luk = (Sgn“)g Z:G @ Sgnnle.

By the isomorphism (4.3.2)), this is in fact the internal tensor product
(Sgnu)&n ) Inf’:“(Sgnnls) of k(S, 1 Sc)-modules. Hence, we see that

e

e

Sem Ly = [ (Sem,)™" Lt © i (Sem, [ )] |

as k(S5 1 S¢)-modules. By (2.2.4)), the right-hand side is isomorphic to

(Sen,) ™" Ly Lie @ It (Sem |7) e

which is clearly equal to

(Sen,)™ | @ Inf2(Sen, |)
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and by (4.3.2), this is the k(S5 Sc)-module (Sgn,,) n g:: @ Sgnnl:. Using

(3.1.1)), we see that if € = (€1, ..., €s), then this module is isomorphic to

(5™ 127 B8 (5,)%|2) & (Sim,, 8- BSan,)

and so by (4.3.5) we have

mn ~, Re e @es HlEs
Sgnuln Qe = <(Sgnu) ' ézell @ Sgnel) & T & <(Sgnlt) Aes @ Sgn&s)’
(9.2.15)
But we have by Proposition that

(Sgnu)&i g:: - (Sgnulg)&i
and using we have
Sgnulg - [Sgnm .- K Sgnm} lg

:(Sgnu1 gf)&---&(SgnM gf)

= Sgn(gl X...X Sgn(st

and this is just Sgng, where 4 is the composition of m defined by § = §'o- - -0d".

Hence, we have for each 1 = 1,...,s that
gei L€; ~ ‘gei
(Sgnu) gzq © Sgn,, = (Sgn(;) © Sgn,, = Sgny,..

It now follows from ({9.2.15)) that Sgnumlg:: = Sgng,, X - - - X Sgng, . Thus,

we have

l
EXtéle <Sgnuln ,:2:7 ]]-526)

g EXt};ZE (Sgn&q IX A IX Sgn&es, 1526>

= EXt};ZE (Sgn&q X-. - X SgH(;kS, 16261 X..-KX ﬂél%) .
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By Proposition [2.1.3] we see that this k-vector space is the direct sum of the

terms

EXtézei (Sgn&q? :[]%5251-) X ® H0m5l€p (Sgn625p7 :[]~5Zep>

p=1,...,s

for:=1,...,s, and by Lemma these terms are all zero, thus establishing
the claim. O]

We now complete our proof of Proposition by proving that (9.2.7))
holds.

Proposition 9.2.8. For u+ m, § a multipartition of m with |6| = p, and

€ - n, we have

Ext,, (Sgnum, S(é)gn %) S6> = 0.

Proof. Using the filtration from Lemma [9.2.5] we have a short exact sequence

- ®n e Rn e M(©)EroMe
0 S(65)En & S M@ o M Lo 0
(9.2.16)
where the module B
M(é)&n @ ME
S@)F o S°

has a filtration by modules ) such that Hom,,,, (Sgnum, Q) = 0, whence we
have by Proposition that

(9.2.17)

M 5 gn ME
Hom,,, (Sgn#m, (_)—®> =0.

S8 @ ¢

Now let us apply the functor Hom,,, (Sgnum, —) to (9.2.16)) to obtain a long
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exact sequence

0 — Hom,,, (Sgnum, S(6)= @ SE) — Hom,, <Sgnum,

o

gn € =
Hom,,, (Sgnum, Aé%gngg{ > Extllm (Sgnum, S(6)¥" o S€>

i

Ethltzn (Sgnum, M (é)gn oM E)

M@%@Mﬂ

and the result now follows by (9.2.17) and Lemma m [

9.3 Structure of Hom,,, (S vl M?) and
Exty, (S, M)

We now consider the spaces Hom,y,,, (S, M?) and Ext,.,, (S, M2), where
7 may be any multicomposition. We begin by proving the following lemma,

which is essentially a consequence of [0, Lemma 3.3 (2)].

Lemma 9.3.1. Letvkn and a = (aq,...,a4) En. Leti € {1,...,r}. Then
the k(Sy1Sy,)-module
S[V’i]lmm

mla
has (identifying Spm U Se with (Spm ¥ Sa,) X -+ X (S 1 Sa,) via the canonical

isomorphism) a filtration by modules of the form
S[Elvi]®S[527i]® e &S[Et’ih

where for each j € {1,...,t}, we have € - a; and € C v,
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Proof. We have using Proposition that

st e (54 0 5] |

mlo

min

mlo
min

o~ (S*‘i)g”l @ (S”1") (9.3.1)

mlo

as k(Sm ! Sa)-modules. Now by Lemma and (3.2.12), we may see that
S¥|" has a filtration by modules S¢' K --- 5 S where ¢/ + aj and € C v for
j=1,...,t. Thus using Lemma [6.1.1, we see that the module (9.3.1)) has a

filtration by modules of the form

min

(5)" ] o (st @ ms) 9.3.2)
mla
where €/ - o and € C v for j =1,...,t. Using the canonical identification of

S lSa With (5,05, ) X« - - X (S Sa, ) and the fact that under this isomorphism
S min L L
the module (S“l)gnl corresponds to (S‘”)m1 X X (S“Z)mt, we see by

the isomorphism a that the module is isomorphic to
((5) 05" )-8 ((5*)* o5
which is precisely
Slebil g ... ) Gl
and the claim now follows. O

Proposition 9.3.2. Let k be a field whose characteristic is not 2. Let vt n
and i € {1,...,7}, and further let v = (v',...,9") be an r component

multicomposition of n. We have
0 if [vi] ¥y

koif [v,i] = 1.

Further, if the characteristic of k is neither 2 nor 3, then for any such [v, ]

Hom,,, (S[V’i], M) =

and 7 we have

Ext}

min

(st M7) = 0.
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Proof. Firstly, if we have [v,i] = 7, then we have M2 = M i and thus
Hom,y,,, (S"%, M?) is isomorphic to k by Proposition m
Now it is clear by the definition of M2 and the isomorphism (4.3.6)) that

we have

MY = [M[’Ylﬂl]&MhQ,?]&. . .@M[’}’Tﬂ"]] Tm?"

mlly|’

and hence by the Eckmann-Shapiro lemma (Theorem [2.2.4) we have an

isomorphism of k-vector spaces

Homyu, (S™%, M7) 22 Hom,yyy, (S[”M”“” MUIRMDAR. . .&MW"“]) .

mily|’

min

m2|1|
modules of the form SRS AR ... RS where ¢ + |37] and ¢ C v for

each j. Thus in order to prove that Hom,,,, (S ], Ml) = 0, it suffices by
Proposition to prove that for any such €', ..., €, we have

Now by Lemma [9.3.1] we know that the module S W]l is filtered by

Hom,yy, (5[6171@3[62,@ RS Rt AR. &Mw,r]) o
But by Proposition [2.1.3
Homm2|1| (S[el,z’]gg[eQ,i]g, .. ﬁs[“’i], M UMK . 'thrm])
is isomorphic as a k-vector space to
Hom, 1 <S[€1’i], M[“’l’”> ® -+ @ Homyyyyr| (S[em]? MW,T])

and thus it suffices to prove that whenever we have [v, i| ¢ 7 and e, ..., € such
that €/ - |y7| and €/ C v for each j, then we must have some [ € {1,...,7}
such that the space Hom,, <S[617i], M Wvl]) is zero. Now it is easy to see
that the condition [v,4] ¥ v is equivalent to having either 77 # () for some

J < 1 or else having some s such that ijl v; < Z;Zl 'y; Now suppose
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[v,i] B 7. If we have some j < i such that 47 # (), then for any partition
¢ = |7?| we have by Proposition that

Homm2|7j\ (S[E,ih th,ﬂ) = 07

and hence Hom,,,, (S ], Ml) = 0. On the other hand, if we have some s
such that Y%, v; < Y70, 7}, then for any partition € - |y*| such that € C v,

we certainly have € ¥ 7, and so we have by Proposition that
Hommzw‘ (S[E’i], Mhi’i]> = 0,

and hence Hom,p, (S¥7, M) = 0.
Finally, we assume that the characteristic of k is neither 2 nor 3, and we
consider the space Ext! (S il M 1). By the same argument that was used

min

above for the space Hom,,,, (S i M 1) (using the Eckmann-Shapiro lemma,
Lemma [9.3.1} and Proposition [2.1.1)), we find that it is enough to show that

for any €',..., " where ¢ F |47|, we have
mi|7|

Ext! <5[617i]®5[627iJ|Z] RS Pt IR AR. .th"m]) =0,

and this follows at once from Proposition [2.1.3| and Proposition [9.2.1 m

9.4 Structure of Hom,,, (S% M2) and
Exty, (5%, M2)

We now consider the spaces Homy,y,,, (S%, M2) and Ext,,,,

(S%, M7Y), where
v is a multipartition of n of length r and v is a multicomposition of n of
length r (n, m, and r as above). Recall from page that we have defined a
]{?(Sm ! SM)—module

T = (5*,..., 9"V (9" ’R... ) 5)
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so that we have S¥ = T»4"™" . Thus we have (see page [72|for the definition

mily|”

of the subgroup W, of S;,, 1.5,,)
mljy|
(by Proposition 4.4.1)

(by Theorem [2.2.4])

and by exactly the same reasoning we have

Sv, M) = Extl (T Ilemlm). (9.4.2)

min
Hom,,y, (8%, M?) = Homy,, (T” A ﬂT )

mln (

Our main work in this section will be to use our work on tableaux to obtain

a direct sum decomposition of the module
min | mn

where the summands are indexed by tableaux of shape |v| and type v with
weakly increasing rows, and hence obtain corresponding direct sum decompo-
sitions of the above Hom and Ext' spaces. These decompositions will be the
key to proving our desired results.

So let us consider the module . The natural tool to apply to this
module is Mackey’s theorem (Theorem , and so we want to obtain a com-
plete non-redundant system U of (Wl’ SmZSM)—double coset, representatives
in S,,lS,, since then by Mackey’s theorem we shall have

LT o = @ 1 Lt enssy T s
ueld

where superscript u denotes conjugation of subgroups and modules (see page

. But clearly
u | (Wy)*
1 l(VV;)“W(SmZSM) =1
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as modules for (W,)" N (Spm2S)y)), so

ﬂTmml:;rg\ = EB i) Wﬁm‘ (SmiS|,))- (9.4.4)

ueU

SmiS),
Thus we wish to understand the modules ]lT(WW Lr‘j (Smis),))- For this, a good

choice of the system of coset representatives U is key. The following lemma
allows us to obtain such a set U from a system of (S, S),|)-double coset
representatives in S,,. For o € S,,, let us write & for the element (o ; e, e, ..., €)
of S;,US,. Thus the map ¢ —— ¢ is an isomorphic embedding of 5, into

SnlSh,.

Lemma 9.4.1. Let 01,09,...,0n be a complete non-redundant system of
(Sy, Spj)-double coset representatives in S,. Then 61,69, ...,0N is a complete

non-redundant system of (Wl’ SmZSM) -double coset representatives in S5, .

Proof. The proof is essentially by direct calculation.
To prove that the system is complete, let (o; a1, ..., a,) € S;,1S,. Then

we have some ¢ € {1,..., N} such that
SZJSM = Slo-islﬂ'

Thus 0 = €00 for some € € S, and some ¢ € S),|. Then

W, (osan,...,00)SmS = Wy(ose, ... e)(e;aq,. .., 0n) SplSpy
2 2 . ,
ESmZSm‘
=W,(o5e,...,€)SmS)y
= W,(eaid;e,...,e)SmlSy
=W, (ee,....e)(o5e,...,e)(d5e,...,€) SulS)y
N—_—— ~—_——
EWl GSmZS‘Z‘

=W, (oise, ..., e)SmiS)y
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Thus the elements 61, 09, ..., 0y are indeed a complete set of (Wl , SmZSM)—
double coset representatives in S,,0S,,.

For non-redundancy, suppose that
Wl 5‘1 szs|z| = Wl (3']' SmZSB‘

for some 7, j € {1,..., N}. So we have an element (z; a1,...,a,) of W, and

an element (y; f1,...,5,) of 9,05 such that

a'i:(x; Oéh-w;o‘n)a-j(y; Bh-”aﬁn)
=(z;0q,...,00)(055€,...,e)(y; Br,...,0n)

and so 0; = zo;y, where x € S, and y € )|, so indeed i = j. n
We now fix a complete non-redundant system oy, 09,...,0n of <Sl’ Si))-

double coset representatives in S,,, where moreover each o; is of minimal
length in its left S),-coset 0;S),. This extra assumption will allow us to apply
our work on tableaux from Chapter 7 to the situation at hand. We have
by Lemma that 61,09, ...,0N is a complete non-redundant system of
(Wl , SmZSM)—double coset representatives in 5,,0S,,. Thus we have by
that

min | min SmiS|y
ILT lm2|g| = @ IH (Wy) szlm (SmlS||) (9.4.5)

We therefore need to understand the subgroups (W,,)% N (S,,15)), and it

is here that we shall use our work on tableaux, by means of the following
lemma. Recall that if o is a composition of n and 7 is a multicomposition
of n, then we have defined (see page a tableau Tl“ of shape o and
type 7. Further, if we let [ be the length of a and ¢ be the length of

7, then to any tableau 7 of shape a and type 7, we have associated (see
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page an l-tuple I'(7) = (I''(7),I*(7),...,I'(7)) of t-multicompositions
such that |[L*(7)|| + ||L2(7)|| + - - - + [[L'(7)]| = n. So in particular for our
multicomposition 7 and multipartition v which both have length 7, we have
for any o € 5, an r-tuple I (7'%'0) of r-multicompositions. Recall further

that if 7 is a tuple of r-multicompositions such that |||v||| = n, then we have

associated (see page to v a subgroup W, of 5, 1.5,,.

Lemma 9.4.2. Let 0 € S, be of minimal length in its left Sy, -coset a.S),.
Then we have

(W2)7 0 (SmtSi) = Wy,

Proof. Now by definition, W, consists exactly of the elements of 5,15, of the

form
. 1 1 1 2 2 3 r
( 7T 3 Oél 9 062, cee Oé|,y1| 9 Oél, cee sy Oé|,yz‘ 3 a17 ...... 3 a|,yr|)
N > N >
vV VvV
€5,1<5m €5,2<5m

where 7 € S, and, as indicated, each o’ lies in S,:. Further, (W,)? consists

exactly of all elements 67! (7; ay,...,a,)0 for (7; ay,...,q,) € W,. Now
g | ~ —1
o (msag,...,an)d= (0" e....e)(m;aq,...,an)(0;€,....€)
(9.4.6)
= (0770 ; A1)o—15 X215 - - - Un)o—1).-

Now define X, to be the n-tuple

X, =(11,...,1,2,...,2,...,7r,...,1)
- ——— N—— ——
|[v!| places  |y?| places [v"| places

and define z; to be the i*" entry of X, fori=1,...,n. Now define X7 to be
the n-tuple
XWU = (33(1)071, l‘(g)a—l, ey Qf(n)gfl)

and define z¢ to be the i*® entry of X¢ for i = 1,...,n. Then by (9.4.6)
we see that (W,)7 is exactly the set of elements of S5, of the form
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(05 Br,Bay..., By) for 8 € (S,)7 and fB; € Spi where i = p*’. Further,
since S;,19), is exactly the set of elements (0; €1, €2,...,€,) for § € S and
€ € Sy, we see that (W,)7 N (S,,09),) consists exactly of those elements of
the form (6; 51, Ba, ..., B,) for 6 € (S,)7 NS, and f§; € Sy where o = p*7 .

v

Now to ease the notation let us define I' = I'(7y"0), and as usual denote
the i*® component of L as I'* (a multicomposition), the j* component of I'* as
[ (a composition), and the s part of '/ as I'’J (an integer). We consider
Wr. By definition, Wr is the subgroup of 5,15, consisting of all elements of

the form

-

1,1 1,1 1,1 1,2 1,2 1,3 1,r 1,r
QO , Oy oeny, Oé\Fl’1|’ Oy oy ey, OJ‘FLQ‘, Gy y Oy ooy OJ‘FI’T‘,
NS > NS g >

Vv Vv Vv
GSH1 SSm GSHQSSm GS#TSSM
2,1 2,1 2,1 2,2 2,r 2,r
O, Oy oy, O{‘FQ’:ll, Qoo L y Oy ooy O{‘FQ’T‘7
vV ~ vV
GS ISSm GSNTSSm
I

r,1 r,1 r,1 2 7,2 3 T r,r
ay , 0y oo, O{|Fr’1|, ay oy ey, O[|1—\r’2|, ay, e y Oy oy, Oé‘FT’T‘

A v v ~ ~~ -
ESHlSSm ESH2SSm ES,U,TSSm
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where o € Sp. Let us define Yr to be the n-tuple

Yy = (1,1,...,1,2,2,...,2,3, ...... T
- N ~~ ~~ - S———
ITL1| places IT12| places |TL7| places
L1, 1,2 ... R r
———

IT2:1| places

1,1,...,1,2,2,....2.3, ...... T r),

J/

Vv TV
|T™1| places IT™2| places |T™7| places

and let us define y; to be the i*" entry of Yr. Thus Wt consists exactly of
the elements of 5,05, of the form (6; 81, 82, ...,8,) for 0 € Sp an §; € Sp
where ji* = p%. But by Proposition and the minimality of the length of
o, we have Sp = (5,)7 N S|y Hence, to prove that (W,)? N (S,,25),) = Wr
it is now sufficient to prove that X7 = Yr.

Let us define Z, to be the n-tuple

= <g1,1),(1,1),...,(1,12,(1,2),...,(1,2),(1,3), ...... )

Vv Vv
'yll places 'y% places

where, recall, v = (v*,...,7") and v = (4{,...,7%). Further, let z; be the i
entry of Z,, and let us define Z7 to be the n-tuple

Z’(YT = (2(1)0—1, 2(2)0—1, ceey Z(n)071>.

Recall the numbering of the boxes of a Young diagram from Section [7.1] and
recall also that the tableau T£Z| is defined by entering the I entry of Z. into
box number [ of a Young diagram of shape |v|, for each [ = 1,...,n. Then
T»lf‘(f is obtained by moving the pair in box number { of 7/ into box number

(l)o, for each I = 1,...,n. Thus 7'%0 is the tableau of shape |v| where for

each [ = 1,...,n, the box numbered [ contains the ((l)a‘l)th entry of Z,.
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Thus in fact 7‘%‘0 is the tableau obtained by entering the [*" entry of Z7 into

box number [ of a Young diagram of shape |v|, for each [ = 1,...,n. Thus,
if we form an n-tuple U(TA‘f'a) of numbers from the set {1,...,r} by taking
the I'" entry of U(7y = o) to be the first element of the pair in box number [ of
TJI‘O (i.e. if the pair in the box with number [ is (i, ) then the I'" entry of
U (Tga) is ), then it is immediate that U (T&Hl(f) is equal to the n-tuple Z\;’
whose "' entry is defined to be the first element of the pair which appears
in the {* place of the tuple Z7. But it is clear that this tuple 2;’ is also

™" entry is the first

the n-tuple obtained by first forming the n-tuple whose
element of the pair which appears in the [** place of Z-, and then for each
I =1,...,n moving the entry from the I'" place of this tuple to the (I)o*®
place. But this tuple is X7 (by the definition of X7). Thus U(ry Yoy = X7

On the other hand, recall from the definition of I' = L(7; = o) (see page

172)) that |['%7] is the number of pairs (j,*) on the i*" row of 7'50. Further,

o is of minimal length in ¢.S),|, and so by Proposition |7.2.3 T£Z|O‘ has weakly

increasing rows. Hence, on the i*" row of T%'a, all of the |T'"!| pairs of the
form (1, %) come first (reading left-to-right), followed by all of the |T'“?| pairs
of the form (2, %), and so on. It now follows at once that U (T"f'

Yr (by the definition of Yr). Hence X7 = Yt as required. O

o) is equal to

So looking back to (9.4.5)), we see that, with [ = L(r l‘a) as in the

foregoing proof, we have
ﬂT(WW FiN(SmiSpy) — ]lT
and to understand this module, we can use the following result.

Lemma 9.4.3. Let n, m, and r be as above. Let v be an r-tuple of r-

multicompositions such that
I+ + ] =
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Let oo = (|[¥'],.. ., [[7"]l) E n. Then the subgroup W, of Sp1S, lies in the

subgroup S;,1Sa, and further we have a module isomorphism

mia r
]H M'®... &M

I

where the k(SmZSHllH X oeee X szSllfll) module on the right-hand side is

viewed as a k(SmSa) via the canonical isomorphism
SlS, = szSHfH X -0 X SmZSleH.

Proof. The fact that Wl lies in 5,09, is immediate from the definition of Wl
(see . Recall that forieach i=1,...,7, we have a k(S,,15),i||)-module Mf.
Indeed, recalling that |7*| is a composition of |[7|| (of length r), we have by
Proposition that

s mmzn»y I

Now let us identify S,,05, with (SmZS| |11||) X e X (Sm2S| |17'||) via the canonical

isomorphism. Under this identification W, corresponds to the subgroup

Wi - x Wy

i

(see (4.2.2))). Thus we have
mia SmlS X oo X SmS||4r
LT = LTwow,
~ ]]_Tml\lv I X ﬂTmzllv I

~ VYR X MY

where the last isomorphism is again by Proposition [4.4.1} O

We can now combine Lemmas |9.4.3 and [9.4.2| with (9.4.5)), to obtain

N
mZn min
7 (Y o'Z
mm%@ R MY o),
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Further, by Proposition [7.2.4] we know that our complete non-redundant
system of (S, S )-double coset representatives oy, ...,ox (each of minimal
length in its left S),-coset 0;S),|) is in bijective correspondence with the set
W'f' of tableaux of shape |v| and type v with weakly increasing rows, via the
map

O — T, lO'i.

1%
Y

Hence, we can use W'%' to index the summation. We thus obtain

1T by = @ MUOR-..@ MO (9.4.7)
rew)!
and this form makes it clear that this decomposition is independent of a choice
of double coset representatives. Note that we have not made any assumptions
about the characteristic of £ in obtaining .
We now apply (9.4.7) to (9.4.1), and we thus have

Homymn (8% M2) 2= @ Homyyy (7% MEO R K MED). (9.4.8)

rewy!
Now recall that
= (57,8 ) Mo (s ® RS,
so that, using the isomorphism , T is the module
((Sul)ﬁlvll %) S"l> X... X <(SMT)®IVT\ %) S”) — SR, .. g

Hence, by (9.4.8)), we have a direct sum decomposition of k-vector spaces

Hom,, (5%, M?) =
P Homyyy (S¥ - &SV MEO R ®MED) (9.4.9)

TEWIZZ‘
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and we shall return to this decomposition after dealing with the Ext' case.

Indeed, by applying (9.4.7)) to (9.4.2]) as we have done for the Hom-space, we

also obtain a decomposition

Ext!

min

P Exthy, (STUR-RSE MEO R ME ) (9.4.10)

TEW'XE‘

(5% 1) =

If we take k to be a field whose characteristic is neither 2 nor 3, then all of
the summands on the right-hand side of the decomposition ((9.4.10)) are easily
seen to be zero via Proposition [2.1.3] and Proposition [9.3.2, We have thus

proved the following result, which is our desired result on Ext'-spaces.

Theorem 9.4.4. Let k be a field whose characteristic is neither 2 nor 3. Let
v be a multipartition of n with length r, and v a multicomposition of n with
length r. Then

Ext]

min

(5%, M2) =0,

Now let us take k to be a field whose characteristic is not 2. Returning to
the Hom-space decomposition (9.4.9)), we find that by Proposition we

have an isomorphism of k-vector spaces

Hom, ), (S¥ VRSP R - &S PO R ))

Hom,y 1 (S[ul,ﬂ, MD(T)) ® - -+ @ Homyypr| (S[w,r]’ Mgr(r))'
Thus we have obtained a decomposition of Hom-spaces

Hom,,,,, (SZ, Ml) =

P Homyup (S¥H, MED) @ -+ @ Homygr (S¥77, ME D). (9.4.11)

TGW%'
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We can in fact refine the indexing set in somewhat. Indeed, let
T E W'fl and suppose that for some j € {1,...,r}, a pair (j, *) appears in
some row of 7 which lies lower than the j*® row, say on the i*® row (so we
have i > j). Then by the first part of Proposition we have I (1) # (),
which implies that [/, 4] I I'(7), and so by Proposition we have

Homm”,,i‘(S[”i’ﬂ, MEZ(T)) = 0.

Thus the 7" summand of (9.4.11)) is zero unless for each j € {1,...,7}, no
pair (j,*) appears lower than the j' row of 7. We have thus proved the

following result.

Theorem 9.4.5. Let k be a field whose characteristic is not 2. Let v be a
multipartition of n with length r, and v a multicomposition of n with length
r. Let W‘f' be the set of all tableauz T of shape |v| and type v with weakly
increasing rows such that for each j € {1,...,r}, no pair (j,*) appears lower

than the j™ row of T. Then we have an isomorphism of k-vector spaces

Hom,y,,, (S%, M?2) =
@ Hom, 1 (S[ul,ﬂ, MD(T)) ® - @ Homyppr (S[”T’T], MD(T))'
rew?
We can now prove our desired result on the structure of the Hom-space

Homyy, (5%, M2).

Theorem 9.4.6. Let k be a field whose characteristic is not 2. Let v be a

multipartition of n with length r, and v a multicomposition of n with length
r. Then
k if
Homy,yy, (5%, M2) =
0 if

N
12

N
L
1=
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Proof. If v = v, then it is easy to see that W'f‘ = {7‘}‘}. It is also easy to
see that
E(T‘Zl) = ([Vl, 1, [+ 2],..., [V, r]) ,

v

so that by Theorem [9.4.5] we find that Hom,,,, (5%, M¥) is isomorphic to
Hommuyl‘ (S[V1,1]7 M[Vl’l]) ® tte ® Hommz‘yr| (S[VT7T], M[I/T,T‘}) .

By Proposition [9.3.2] this is indeed just k.

If v ¥ 7, then by Proposition |7.4.4) we have for each 7 € W'lﬂ an i €

{1,...,r} and some j such that

(7) = (0,0, 0, T (1), T (1), ... . (7))

and such that ' '
j j

ZFfZ’i(T) > Zl/é,

q:l =1

=)

and the existence of such a j implies that [v,i] ¥ [*(7). Hence by Proposi-
tion [0.3.2] we have
HOmml‘ljﬂ (S[Ui’i], MEl(T)) =0

and hence the 7® summand of the summation in Theorem [9.4.5 is zero. Thus
indeed
Hom,,,;, (SZ, Ml) =0

as required. O

Original research in Chapter 9: Everything in Chapter 9 is original

research.
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Chapter 10

Homomorphisms and
extensions between wreath
Specht modules, and a

stratifying system for & (5,,,057)

In this short final chapter, we shall prove wreath product analogues of
and Theorem [3.3.2] and using these we shall deliver the promised proof that,
if k£ is algebraically closed and has characteristic neither 2 nor 3, then the
Specht modules for k(S5,,05,) vield a stratifying system as defined in Section
3.4 and hence that Specht filtration multiplicities are well-defined for the
wreath product algebra k(S,,15,) as for the symmetric group algebra kS,,.
We shall use an argument closely based on the corresponding work for &S,
in Section [3.4 Since the symmetric group S, is a special case of the wreath
product S,,1.5,, the same counter examples which prove that Specht filtration
multiplicities for £S,, are not well-defined in characteristic 2 or 3 (see page

also prove that Specht filtration multiplicities for k(S,, 1 S,) are not
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well-defined in characteristic 2 or 3. Thus the result which we shall obtain is
the best we could hope for.
As in previous chapters, we let m and n be non-negative integers and we

let r be the number of distinct partitions of m.

10.1 Homomorphisms and extensions
between wreath Specht modules

Now if k is a field whose characteristic is not 2, and v, A are multipartitions

of n with length 7, then we have by Theorem that

koifr=A,
Hom,n,, (5%, M?) =

0 ifvlf ),

and by Proposition we know that S2 is a submodule of M2. We have
thus established the following theorem.

Theorem 10.1.1. Let k be a field whose characteristic is not 2. Let v and \

be multipartitions of n with length r. Then we have

koifv=A,

0 ifrA

Hom, (Sﬂ, SA) =

Corollary 10.1.2. Let k be a field whose characteristic is not 2 and let v
be a multipartition of n with length r. Then the k(S,, ! Sp)-module S% is

indecomposable.

Proof. 1If S¥ were not indecomposable, we could project to any non-zero
proper summand and thus obtain an endomorphism of S* which is not a

scalar multiple of the identity, contradicting Theorem [10.1.1] O]
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Theorem 10.1.3. Let k be a field whose characteristic is neither 2 nor 3.
Let v and A be multipartitions of n with length r such that v ¥ A. Then we
have

Ext,,, (5%, $*) = 0.

Proof. By Proposition , we know that M2 has a filtration by modules
S where S2 occurs exactly once at the bottom of the filtration, and all the
other modules S¢ which appear satisfy a > A. Thus we have a short exact
sequence

M2

O—)SA—>MA—>§—>O

where 1\54_5 has a filtration by modules S¢ for multipartitions o> A. But a.> A\
implies v ¥ « (for if v &> a then we have v > a > A, contradicting v ¥ A),

and so if a > A then we have by Theorem [10.1.1] that
Hom,,,, (5%, 5%) = 0.

It follows by Proposition that

M2

We apply the functor Hom,,,, (5%, —) to our short exact sequence to obtain a

long exact sequence

0— Hommm (Sz’ SA) - Hommln (527 MA) > HOHlmm (SZ MA)

) SN

Bty (57, 82) = Fxth, (8% M) —— Exth,, (8%, %)

min

[

Ext2,,, (5%, 52)
and so by and Theorem we have
Ext,,,, (5%, 5%) = 0.
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10.2 A stratifying system for % (5,,05),)

From now on, we take k to be an algebraically closed field whose characteristic
s neither 2 nor 3.

We now require a total ordering of the set A’ of r-multipartitions of n,
where r is as above the number of distinct partitions of m. Let > be any
(strict) total order on A} such that > extends the dominance order > (that
is, such that for any multipartitions a, 8 € A}, we have that a > implies
a > é) Beyond this requirement, the exact choice of the order > does not

matter. Let us write > for the (strict) total order on A obtained by reversing

> (that is, by defining a > 8 to mean o < 3). It is now easy to prove that
a>f=alfp and a2f=alpp (10.2.1)

Recall from Corollary that in order to show that Specht filtration
multiplicities are well-defined for k(S,, 1S, ), it suffices to prove that

e for any v € A}, S¥ is indecomposable
e Hom,,,, (SZ, SA) =0ifr> A\

e Ext!

min

(52,82 =0ifv = A

The first result is just Corollary [10.1.2] and the other two conditions are
immediate from Theorems|10.1.1}and [10.1.3 by (10.2.1)). Thus we have proved

the following theorem, which we might say establishes the “Hemmer-Nakano

property” for the group algebra k(S,,.S,).

Theorem 10.2.1. QOver an algebraically closed field k whose characteristic
is neither 2 nor 3, if a k(S,, 1 Sy,)-module has a filtration by Specht modules
then the multiplicities with which the Specht modules appear are independent
of the choice of a filtration.
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Original research in Chapter 10: Everything in Chapter 10 is original
research, based on the argument used in [10] to establish the corresponding

result for the symmetric group.
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Appendix A

Future directions

The new results presented in this thesis offer a number of interesting possibil-
ities for future work, and in this short appendix we shall briefly consider a
selection of these.

Firstly, we note that our definition of the modules S and M? is by
means of a general method of constructing modules for the wreath product.
However, these modules are clearly analogous to the modules S* and M?* for
the symmetric group, and so we might expect them to have a combinatorial
construction parallel to the construction of S* and M?* given in [20]. Indeed,
by Proposition we know that M2 is the permutation module for S, .S,
on the cosets by the subgroup W), and it is easy to imagine that such cosets
would have some tableau representation, perhaps involving tableaux whose
entries are pairs of numbers like those in Chapter 7. Such a combinatorial
construction could allow us to apply methods analogous to those in [20].

Continuing this theme, we note that Proposition may be regard as
a wreath-product analogue of Young’s rule , since it gives a filtration
of M2 by modules S%. However, Proposition lacks a combinatorial

interpretation of the multiplicities which occur in the filtration, and one might
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hope to find an interpretation analogous to the combinatorial characterisation
of the Kostka numbers. Going further in this direction, we note that the
Specht branching rule and Young’s rule, as presented in [20], give not only
the multiplicities with which factors occur, but also some information about
the order in which those factors occur in the filtrations, and it seems likely
that by taking more care in the arguments one might be able to get similar
information in the wreath product results.

Now the Specht branching rule and Young’s rule for the symmetric group
may be regarded as special cases of the general results and
for induction and restriction of Specht modules and tensor products thereof,
which feature Littlewood-Richardson coefficients as multiplicities. A rather
more ambitious aspiration than those mentioned above would be to formu-
late and prove an appropriate generalisation of these results to the wreath
product case, including a combinatorial interpretation of the multiplicities
occurring therein, analogous to the Littlewood-Richardson rule. A much more
ambitious goal would be to use these coefficients as a starting point to forge a
connection between the representation theory of wreath products, the theory
of symmetric functions, and the representation theory of general linear groups
(or some extension or generalisation of these), paralleling the deep and fruitful
connections enjoyed by the symmetric group.

Returning to rather more humble and concrete possibilities, we note that
the treatment of the spaces Hom, (S*, M7) in [20] makes use of the notion
of semistandard homomorphisms, and indeed constructs a basis of this space
using them. It seems very probable that Theorem [9.4.5, which provides a
decomposition of the Hom-space Hom,,,, (SZ, M 1), could be a starting-point
for an analogous result in the wreath product case.

Another possible direction would be to explore the consequences of the
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existence of the stratifying system from Chapter 10. Indeed, our sole use
for this fact in Chapter 10 was to allow us to establish the Hemmer-Nakano
property for k(S,, ¢.S,), but there are other interesting corollaries to this
fact, as mentioned in [I0]. For example (see [10, Lemma 2.2]), the stratifying
system allows us to associate a certain algebra A to k(S,, 1 S,) (A4 is in
fact the endomorphism algebra of a certain k(S,, ¢ S,)-module) which can
be viewed as analogous to the classical Schur algebra. The classical Schur
algebra and its relatives appear prominently in, and are intimately connected
to, the representation theory of the symmetric group and its generalisations.
Moreover, the classical Schur algebra features in the famous and profound
Schur-Weyl duality which connects the representation theory of the symmetric
group with the polynomial representation theory of the general linear group.
The algebra A defined above would enjoy the same close relationship to
kE(Sm 1Sy), and moreover by Theorem we know (again, see [10, Lemma
2.2]) that A is a quasi-hereditary algebra, which would provide a good starting
point for studying its representation theory.

Let us consider now the setting of Chapter 5, in which we study the wreath
product A S, where A is a cellular algebra. One possible extension of this
work would be to attempt to augment the cellular structure on A S, with
cohomological information via the identification of suitable idempotents within
the layers of the iterated inflation structure, thus exhibiting a cohomological
stratification, a concept introduced in [18] (such a structure would certainly
require some extra assumptions on the algebra A). Doing so would be one
possible route by which we could seek to generalise the results of Chapters
9 and 10 to algebras of the form A (.S, given suitable assumptions on the
algebra A. Of course, it might be possible to directly generalise the arguments

of Chapters 9 and 10 to algebras Al S, since those arguments make use
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of only a relatively limited set of properties of the Specht modules of kS,,,
and any algebra A with a suitable set of modules might be amenable to
those methods. The main impediment to some initial attempts to carry
out this latter generalisation seems to be the fact that, for general algebras
A, the operations of induction and coinduction (see [3, Definition 2.8.1])

do not coincide, and so we do not have the same very nice form of the

Eckmann-Shapiro lemma (Theorem [2.2.4)).
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