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Some properties of Specht modules for the

wreath product of symmetric groups

Reuben Green

29th May 2019

Abstract

We investigate a class of modules for the wreath product Sm o Sn
of two symmetric groups which are analogous to the Specht modules

of the symmetric group, and prove a range of properties for these

modules which demonstrate this analogy. In particular, we prove

analogues of the Specht module branching rule, we obtain results on

homomorphisms and extensions between these modules, and, over an

algebraically closed field whose characteristic is neither 2 nor 3, we

prove that, if a module for Sm o Sn has a filtration by these Specht

module analogues, then the multiplicities with which they occur do

not depend on the choice of a filtration.
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Chapter 1

Introduction and summary

The representation theory of the symmetric group Sn on the set {1, . . . , n} is

of fundamental importance in many branches of mathematics. The study of

the symmetric group has an impressive pedigree, with a history stretching

back over a century and contributions from many distinguished mathematical

figures. In particular, the work of Young, Frobenius and Schur in the early

years of the twentieth century helped to lay the foundations of the subject,

but it is perhaps best known today in the form introduced by James in the

1970s, in which combinatorial methods and constructions figure prominently.

The main subject of this thesis is a class of modules for the wreath product

Sm o Sn of two symmetric groups (over some field), which are analogous to

the Specht modules for the symmetric group. Recall that the Specht modules

for the symmetric group Sn are a family of combinatorially-defined modules

which are indexed by the partitions of n. We shall write the Specht module

for Sn which is indexed by the partition λ as Sλ. The Specht modules may be

defined in the very general setting of representation theory over a commutative

unital ring, but in this thesis we shall be working over a field, and in this

setting the Specht modules have many nice properties:
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• if the group algebra of the symmetric group is semisimple, then the

Specht modules provide a complete list of the isomorphism classes of

simple modules without redundancy

• if the group algebra of the symmetric group is not semisimple, then the

simple modules arise as the heads of a subset of the Specht modules

• if the characteristic of the field is not 2, then the Specht modules are

indecomposable even when they are not simple

• the dimensions of the Specht modules do not depend on the field

• the Specht modules behave well under induction from, and restriction to,

important subgroups of the symmetric group, admitting decompositions

described by elegant combinatorial branching rules.

Because of these and other properties, the Specht modules for Sn have been

the subject of intense study for decades, and a large and varied literature

has built up around them. Further, the Specht module construction has been

generalised in a number of ways, and the properties of the Specht modules

have inspired new approaches to various areas of representation theory.

One interesting and recent development in the theory of Specht modules

came in [19], in which Hemmer and Nakano demonstrated that, provided that

the field of coefficients is algebraically closed and its characteristic is not 2 or 3,

then for a module with a filtration by Specht modules, the multiplicities with

which the Specht modules occur will be the same for all such filtrations. This

result was originally rather surprising, but the “Hemmer-Nakano property”

has since been established for other classes of algebra (for example, the Brauer

algebra [17]). A highlight of this thesis is a new case of this phenomenon.

Now the wreath product GoSn of a finite group G with a symmetric

group Sn is a natural group-theoretic construction with many applications.
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In particular, wreath products SmoSn of two symmetric groups are of great

importance in the representation theory of the symmetric group (see for

example [5]), and it is the representation theory of SmoSn which is the

principal topic of this thesis. We shall study a class of modules for the wreath

product of two symmetric groups which are analogous to the Specht modules

of the symmetric group, and we shall justify this analogy by proving that

these modules for the wreath product share a range of properties with their

symmetric group counterparts. For example, these Specht modules are the cell

modules of a cellular algebra structure on the group algebra of Sm o Sn, they

behave well under induction and restriction, they obey nice combinatorial

branching rules, and they exhibit the Hemmer-Nakano property.

In summary, the contents of this thesis are as follows. At the end of each

chapter, I have included a brief summary of the original research in that

chapter, in order to make clear exactly which material I am claiming as my

own work.

Chapter 2 is an introductory chapter in which we recall standard defini-

tions and results on finite-dimensional algebras, group representation theory,

and combinatorics.

Chapter 3 recalls basic material on the symmetric group and its Specht

modules, before dealing in more depth with some important results about

filtrations of symmetric group modules, which will be crucial tools for our

later work. Specifically, we shall consider Young’s rule and the Littlewood-

Richardson filtration rules. We then recall results on homomorphisms between

Specht modules, and further we consider extensions between Specht modules

by giving an expanded version of the arguments in [10]. Finally we recall

the notion of a stratifying system (in the sense given in [11]) and recall

the argument given in [10] to demonstrate that the Specht modules for the

15



symmetric group give rise to such a stratifying system. This fact provides an

alternative proof of the above-mentioned Hemmer-Nakano property. A major

new result of this thesis is that the Specht modules of Sm o Sn enjoy the same

property, and the proof of this is based on the techniques recalled here.

Chapter 4 recalls the definition and some basic properties of the wreath

product Sm o Sn, and defines some subgroups of the wreath product which

will be used later. We then give details of some well-known methods of

constructing modules for Sm o Sn from modules for Sm and Sn, and use these

methods to define our wreath product Specht modules.

Chapter 5 considers the slightly more general situation of the wreath

product A oSn of an algebra A (over a field) with a symmetric group, of which

the group algebra of Sm o Sn is the special case obtained by taking A to be

the group algebra of Sm. We show that if A is a cellular algebra, then so

is A o Sn, thus re-proving (with slightly different assumptions) the result of

[12]. We consider the cell modules of A o Sn in this case, and hence (using the

theory of cellular algebras) obtain useful results on the representation theory

of A o Sn. We then apply this work to demonstrate that the group algebra

of Sm o Sn is a cellular algebra whose cell modules are the Specht modules,

and we hence obtain information on the simple modules of Sm o Sn and their

relationship to the Specht modules. In particular, if the group algebra of

Sm o Sn is semisimple then the Specht modules provide a complete system of

isomorphism classes of simple modules. These properties provide justification

for our use of the name “Specht modules” for these wreath product modules,

since they mirror the properties of the Specht modules for the symmetric

group.

Chapter 6 contains results which explain how the module constructions

in Chapter 4 interact with module filtrations, and concludes by applying
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these methods to prove a wreath-product analogue of Young’s rule.

Chapter 7 develops some combinatorial theory of tableaux, which will be

used in subsequent chapters to understand cosets in Sm o Sn.

In Chapter 8 we begin to use the material which we have developed

and recalled in previous chapters to prove some more substantial new results.

Indeed, an important result in the representation theory of Sn is the Specht

module branching rule, which describes how the restriction of a Specht module

from Sn to Sn−1 (via the natural embedding of Sn−1 into Sn) has a filtration

by Specht modules. The multiplicity of each Specht module in this filtration is

independent of the field of coefficients, and moreover has a simple and elegant

combinatorial interpretation. In Chapter 8, we prove two branching rules for

Specht modules over the wreath product Sm o Sn, one for the restriction of

a Specht module to Sm−1 o Sn, and one for the restriction to Sm o Sn−1. For

both rules, we provide a combinatorial interpretation of the multiplicities in

the filtration.

Chapter 9 is perhaps the heart of this thesis. It contains novel results

on homomorphisms and extensions between our wreath Specht modules and

wreath product analogues of the Young permutation modules of the symmetric

groups. The proofs of these results are rather complex, and make extensive

use of the material from Chapters 6 and 7.

Chapter 10 uses the results from Chapter 9 to prove that the Specht

modules for Sm o Sn give rise to a stratifying system in the same way as the

Specht modules for Sn. Consequently, over an algebraically closed field of

characteristic neither 2 nor 3, Specht filtration multiplicities are well-defined,

meaning that the Specht modules for the wreath product Sm o Sn exhibit the

Hemmer-Nakano property, as promised.

Finally, Appendix A briefly considers some possible future directions of
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research which stem from the material in this thesis.
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Chapter 2

Background material

In this chapter, we shall collect and review various results from elementary

representation theory and from the literature, as well as fixing conventions

and notation.

Throughout this thesis, k will denote a field. We shall often have to take

the tensor product ⊗k of k-vector spaces, and we shall thus abbreviate ⊗k to

⊗. Initially, we place no restrictions on the field, so it may have characteristic

zero or a prime, and further we shall not assume that k is algebraically closed.

However, as we progress through our arguments, we shall find it necessary to

require that the characteristic char(k) of k is not 2 or 3, and in the chapter

on stratifying systems we shall also demand that k is algebraically closed. We

shall clearly state whenever we are making these assumptions on k.

2.1 Finite-dimensional algebras over fields

This thesis is concerned with the representation theory of the wreath product

SmoSn (see Chapter 4), a finite group, over a field k. This is of course none

other than the study of the group algebra k(SmoSn). Hence, we shall need
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some ideas from the representation theory of algebras over a field, and we

shall recall these in this section.

By a k-algebra, we shall mean a finite-dimensional unital associative

algebra over k, such as the group algebras kSn or k(SmoSn). We shall work

with right modules over our algebras, and hence the word “module” will mean

“right module” unless stated otherwise. Since we are interested here in group

algebras, and the categories of left and right modules over a group algebra

are isomorphic, we lose nothing by considering only right modules.

Let A be a k-algebra and B a subalgebra of A. Then we have operations

which convert A-modules into B-modules and vice versa. Indeed, if U is an

A-module, then we write U↓AB to denote the B-module obtained by restricting

the A-action to a B-action; we call this module the restriction of U to B.

In the opposite direction, we note that A is itself a left B-module under the

action defined by multiplication, and so if V is a (right) B-module, we may

form the tensor product V ⊗B A, which is then a (right) A-module; we call

this module the induction of V to A, and write it as V ↑AB.

We shall spend much of our time considering filtrations of modules, and so

we introduce some notation to help with this. Let A be a k-algebra. Firstly,

let us recall that if M is an A-module and X1, . . . , Xt are also A-modules,

then a filtration of M by the modules X1, . . . , Xt is a chain of submodules

M = Mn ⊇Mn−1 ⊇Mn−2 · · · ⊇M1 ⊇M0 = 0

such that each quotient Ml

Ml−1
is isomorphic to some Xi. We call n the length

of the filtration. Note in particular that we do not demand that the modules

Xi be pairwise non-isomorphic in this definition. Now suppose that for each

i = 1, . . . , t, αi is a non-negative integer. We shall write

M ∼
t

F
i=1

αiXi
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to mean that there exists a filtration of M

M = Mn ⊇Mn−1 ⊇Mn−2 · · · ⊇M1 ⊇M0 = 0

and a function f : {1, . . . , n} −→ {1, . . . , t} such that for each l we have

Ml

Ml−1

∼= Xf(l)

and |f−1(i)| = αi for each i.

We shall routinely make a slight abuse of terminology and say, for example,

that “M has a filtration M ∼ F t

i=1 αiXi”, or talk about “the filtration

M ∼F t

i=1 αiXi”. In such cases, we are of course referring to some filtration

for which a function f as above exists. Further, we shall refer to the integers

αi as multiplicities, so we might for example express the situation M ∼

F t

i=1 αiXi by saying that “the module M has a filtration by the modules

X1, . . . , Xt where Xi appears with multiplicity αi”. However, we note that,

since we allow there to be isomorphisms between the modules Xi, these

multiplicities are not in general uniquely determined by a filtration. Further,

even in the case where the modules Xi are pairwise non-isomorphic so that

the multiplicities are uniquely determined by a filtration, we note that it

is in general perfectly possible to have two filtrations M ∼F t

i=1 αiXi and

M ∼F t

i=1 βiXi with αi 6= βi for some or all i. In general, it is only for certain

special classes of modules X1, . . . , Xt (for example, the simple A-modules)

that any two filtrations of an A-module M by X1, . . . , Xt will always have

the same multiplicities (for the simple A-modules, this is the Jordan-Hölder

Theorem).

Further, if r ∈ {1, . . . , t} is such that f(1) = r, so that M1
∼= Xr, then we

will write

M ∼
t

F〈r〉
i=1

αiXi.
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Thus, this notation means that M has a filtration by the modules Xi where

Xi occurs with multiplicity αi, and the submodule of M at the very bottom

of the filtration is isomorphic to Xr. If all of the integers αi are equal to 1,

then we shall allow ourselves to write

M ∼
t

F
i=1

Xi and M ∼
t

F〈r〉
i=1

Xi.

The following elementary result will be used repeatedly in the sequel.

Proposition 2.1.1. Let A be a k-algebra, and let M and N be A-modules.

Suppose M has a filtration by modules X1,. . . ,Xt, and N has a filtration

by modules Y1,. . . ,Ys (where as above we allow the possibility that there are

isomorphisms amongst the modules Xi and Yj).

1. If HomA(Xi, Yj) = 0 for all i and j then HomA(M,N) = 0.

2. If Ext1
A(Xi, Yj) = 0 for all i and j then Ext1

A(M,N) = 0.

Proof. We begin by considering some special cases. Firstly, suppose we have

an A-module Y and a short exact sequence of A-modules

0 −→ X1 −→M −→ X2 −→ 0.

We apply the (contravariant) functor HomA(−, Y ) to obtain a long exact

sequence

0→ HomA (X2, Y ) // HomA (M,Y ) // HomA (X1, Y )

ww
Ext1

A (X2, Y ) // Ext1
A (M,Y ) // Ext1

A (X1, Y ) // · · ·

and hence we see that if HomA(Xi, Y ) = 0 for i = 1, 2 then HomA(M,Y ) = 0,

and that if Ext1
A(Xi, Y ) = 0 for i = 1, 2 then Ext1

A(M,Y ) = 0. Similarly, if

we have an A-module X and a short exact sequence of A-modules

0 −→ Y1 −→ N −→ Y2 −→ 0,
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then we apply the (covariant) functor HomA(X,−) to obtain a long exact

sequence

0→ HomA (X, Y1) // HomA (X,N) // HomA (X, Y2)

ww
Ext1

A (X, Y1) // Ext1
A (X,N) // Ext1

A (X, Y2) // · · ·

and hence we see that if HomA(X, Yi) = 0 for i = 1, 2 then HomA(X,N) = 0,

and that if Ext1
A(X, Yi) = 0 for i = 1, 2 then Ext1

A(X,N) = 0.

We may now easily prove, using induction on the length of the filtration

of M by the modules Xi, that if we have some A-module Y such that

HomA(Xi, Y ) = 0 for i = 1, . . . , t then we have HomA(M,Y ) = 0. The

general result then follows by using induction on the length of the filtration

of N by the modules Yj.

Now recall that if A and B are k-algebras, then we may form the tensor

product algebra A⊗B, which is the k-vector space A⊗B together with

the multiplication defined on pure tensors by (a1⊗b1)(a2⊗b2) = (a1a2⊗b1b2).

Further, if M is an A-module and N is a B-module, then we may form the

A⊗B-module whose underlying vector space is M ⊗N and where the action

is given on pure tensors by (x ⊗ y)(a ⊗ b) = (xa) ⊗ (yb) for a ∈ A, b ∈ B,

x ∈ M and y ∈ N . We denote this tensor product module by M � N and

we call it the outer tensor product of M and N . Note that we use the

symbol � rather than ⊗ here to clearly distinguish this tensor product from

the inner tensor product of modules over a group algebra, which we shall

introduce below.

The following result is a direct corollary of the proof of Lemma 4.1 in [6],

and is in any case easy to prove directly.
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Lemma 2.1.2. Let A and B be k-algebras. Let M be an A-module and N a

B-module, with filtrations

M ∼
t

F〈p〉
i=1

αiXi N ∼
s

F〈q〉
j=1

βjYj.

Then the A⊗B-module M�N has filtration

M �N ∼ F〈(p,q)〉
(i,j)∈{1,...,t}×{1,...,s}

αiβj Xi � Yj.

It follows that if A1, . . . , An are k-algebras and for each i, Mi is an Ai-module

with a filtration

Mi ∼
tiF〈pi〉
j=1

αijX
i
j,

then the A1⊗ · · ·⊗An-module M1� · · ·�Mn has a filtration

M1� · · ·�Mn ∼ F〈(p1,...,pn)〉
(j1,...,jn), 16ji6ti

α1
j1
· · ·αnjn X1

j1
� · · ·�Xn

jn

The following result will be a vital tool for large parts of our work in

subsequent chapters.

Proposition 2.1.3. Let A and B be finite-dimensional algebras over a field

k, let M,N be A-modules, and let S, T be B-modules. Then we have isomor-

phisms of k-vector spaces

HomA⊗B(M�S,N�T ) ∼= HomA(M,N)⊗ HomB(S, T ) (2.1.1)

and

Ext1
A⊗B(M�S,N�T ) ∼=(
Ext1

A(M,N)⊗ HomB(S, T )
)
⊕
(
HomA(M,N)⊗ Ext1

B(S, T )
)
. (2.1.2)

It follows at once that if A1, . . . , An are finite-dimensional k-algebras, and for

each i = 1, . . . , n, Mi and Ni are Ai-modules, then letting A =
⊗n

i=1Ai we
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have an isomorphism of k-vector spaces

HomA(M1�· · ·�Mn, N1�· · ·�Nn) ∼=
n⊗
i=1

HomAi(Mi, Ni)

and an isomorphism of k-vector spaces

Ext1
A(M1�· · ·�Mn, N1�· · ·�Nn) ∼=⊕

i=1,...,n

(
Ext1

Ai
(Mi, Ni) ⊗

⊗
j=1,...,n
j 6=i

HomAj(Mj, Nj)

)
.

Proof. This result is implied by [4, Chapter XI, Theorem 3.1] (see also [35,

Lemma 3.2]), but both the statement and the proof of that result take rather

a lot of effort to understand (at least, in the author’s experience). It is,

however, perfectly possible to prove (2.1.1) and (2.1.2) by fairly elementary

homological algebra, and we shall now explain how this may be done. As is

normal with such arguments, the essential idea of the proof is fairly simple,

but there is a substantial volume of details to check. We shall therefore

confine ourselves here to sketching the outline of such a proof.

So let us first recall that if X• and Y• are chain complexes of k-vector

spaces, then the tensor product X•⊗ Y• of X• and Y• is the chain complex

with nth term ⊕
i+j=n

Xi ⊗ Yj

and boundary map

∂n =
⊕
i+j=n

(∂i ⊗ id) + (−1)i (id⊗ ∂j).

Similarly if X• and Y • are cochain complexes of k-vector spaces, then their

tensor product X• ⊗ Y • is the cochain complex with nth term⊕
i+j=n

X i ⊗ Y j
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and boundary map

∂n =
⊕
i+j=n

(∂i ⊗ id) + (−1)i (id⊗ ∂j).

If X• is a chain complex of k-vector spaces, let us write Hi(X•) for the

ith homology of X•, and if X• is a cochain complex of k-vector spaces, let

us write H i(X•) for the ith cohomology of X•. Recall that if X•, Y• are

chain complexes of finite dimensional k-vector spaces, then by the well-known

homological Künneth theorem, we have for each n an isomorphism of k-vector

spaces

Hn(X• ⊗ Y•) ∼=
⊕
i+j=n

Hi(X•)⊗Hj(Y•). (2.1.3)

(See for example [33, Theorem 3.6.3]). If we let X•, Y • be cochain complexes

of finite dimensional k-vector spaces, then by elementary homological algebra,

we may obtain from (2.1.3) a “cohomological Künneth theorem”, by which

we have for each n an isomorphism of k-vector spaces

Hn(X• ⊗ Y •) ∼=
⊕
i+j=n

H i(X•)⊗Hj(Y •). (2.1.4)

So with A,B,M,N, S, T as in the proposition, let us take P• to be a

projective resolution of M in the category of A-modules, and Q• to be a

projective resolution of S in the category of B-modules. Viewing P• and Q•

as complexes of vector spaces, we can form their tensor product P•⊗Q•. But

we can regard each tensor product space Pi⊗Qj as the A⊗B-module Pi�Qj ,

so we can regard the complex P• ⊗Q• as a complex of A⊗B-module, and we

shall denote this complex of A⊗B-modules by P• �Q•. It is then easy using

(2.1.3) (and the easily-proved fact that if P is a projective A-module and Q

is a projective B-module then P �Q is a projective A⊗B-module) to prove

that the complex P• �Q• is a projective resolution of M � S in the category

of A⊗B-modules. We apply the (contravariant) functor HomA⊗B(−, N � T )
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to the complex P• �Q• to obtain the cochain complex (of k-vector spaces)

HomA⊗B(P•�Q•, N�T ), whose nth cohomology is ExtnA⊗B(M�S,N�T ). On

the other hand, we have the cochain complex of k-vector spaces HomA(P•, N)⊗
HomB(Q•, T ) (where we have applied (contravariant) Hom-functors to P•

and Q• to obtain cochain complexes HomA(P•, N) and HomB(Q•, T )). By

(2.1.4), this complex has nth cohomology⊕
i+j=n

H i
(
HomA(P•, N)

)
⊗Hj

(
HomB(Q•, T )

)
which is of course the same as⊕

i+j=n

ExtiA(M,N)⊗ ExtjB(S, T ).

Thus to establish (2.1.1) and (2.1.2) it suffices to prove that there is a

cochain isomorphism between the cochains HomA⊗B(P• � Q•, N � T ) and

HomA(P•, N)⊗HomB(Q•, T ) (note that these are cochains of k-vector spaces)

and hence equate their cohomologies in degrees 0 and 1.

Now for any A-modules X, Y and B-modules U, V there is an obvious

map of k-vector spaces

HomA(X, Y )⊗ HomB(U, V ) −→ HomA⊗B(X � U, Y � V ) (2.1.5)

and thus we can construct a cochain map from HomA(P•, N)⊗HomB(Q•, T )

to HomA⊗B(P• �Q•, N � T ) (the verification that this is indeed a cochain

map is a routine diagram-chasing argument). The only thing remaining is to

prove that this is a cochain isomorphism, which we do by proving that the

map (2.1.5) is an isomorphism when both X and U are projective modules.

We do this by reducing it to the case where both X and U are indecomposable

projectives, and then using the fact that we then have X ∼= Ax and U ∼= Bu

for idempotents x ∈ A and u ∈ B.
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The following basic result in the theory of modules over finite-dimensional

algebras is well-known, and will be important in our analysis of Ext1 spaces.

Proposition 2.1.4. Let A be a k-algebra and M , N be A-modules. Then the

k-vector space Ext1
A(M,N) is in bijection with the set of equivalence classes

of extensions of M by N . In particular, Ext1
A(M,N) = 0 if and only if any

extension of M by N is split. Explicitly, this means that Ext1
A(M,N) = 0 if

and only if whenever E is an A-module with a submodule X such that X ∼= N

and E/X ∼= M , then E has a direct sum decomposition E = X ⊕ Y as an

A-module (where we must then have Y ∼= M).

2.2 Representation theory of finite groups

As mentioned above, in this thesis we shall be concerned principally with

modules for group algebras of finite groups. The theory of such modules has a

number of special features, and we recall the necessary results in this section.

We shall denote the group algebra of a group G over a field k by kG, and we

shall generally denote the identity element of a group by e.

Firstly, recall that for any group G and field k, we have the trivial kG-

module, which is just a copy of k where all group elements act as the identity

map. We write this module as 1kG, or just 1G if k is clear from the context.

Recall that if G is a finite group and U is a (right) kG-module, then

the (contragredient) dual of U is the (right) kG-module obtained by

equipping the k-vector space Homk(U, k) with the action defined by the

equation (φg)(u) = φ(ug−1) for φ ∈ Homk(U, k), g ∈ G, u ∈ U . We write

this dual module as U∗. We further recall that (−)∗ (when suitably extended

to homomorphisms) is a contravariant self-inverse additive isomorphism of

categories from the category of right kG-modules to itself. In particular,
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(U∗)∗ ∼= U and (U ⊕ V )∗ ∼= U∗ ⊕ V ∗.
There are two common operations of “tensor product” on group modules,

and we shall use both of them. Firstly, let G be a finite group with a kG-

module X and H be a finite group with a kH-module Y . Then from the

previous section, we know that we can form the external tensor product of

X and Y , which is the (kG)⊗(kH)-module X � Y . But we have a canonical

isomorphism (kG)⊗(kH) ∼= k(G×H) induced by mapping the pure tensor

g ⊗ h to (g, h), where g ∈ G and h ∈ H. Hence, we can regard X � Y as a

k(G×H)-module, and we will do so from now on without comment. Thus

X � Y is the k(G × H)-module obtained by equipping the k-vector space

X ⊗ Y with the action given by (x⊗ y)(g, h) = (xg)⊗ (yh) for g ∈ G, h ∈ H,

x ∈ X, and y ∈ Y .

Now let G be a finite group and U, V be kG-modules. Then the internal

tensor product of U and V is the kG-module obtained by equipping the

k-vector space U ⊗ V with the G-action given by (u⊗ v)g = (ug)⊗ (vg) for

g ∈ G, u ∈ U , and v ∈ V . We shall write this module as U ⊗ V , but there

should not be any chance of confusion with the plain tensor product of vector

spaces. It is immediate that U ⊗ V ∼= V ⊗ U as kG-modules.

It turns out that internal and external tensor products behave well under

the operation of taking dual modules. Indeed, for modules U, V,X, Y as

above, we have module isomorphisms

(U ⊗ V )∗ ∼= U∗ ⊗ V ∗ (2.2.1)

and

(X � Y )∗ ∼= X∗ � Y ∗. (2.2.2)

These isomorphisms are easily proved by taking k-bases of the modules

involved and working through the relevant calculations.
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We now recall some important results on the operations of inducing and

restricting modules between finite groups and their subgroups. To lighten

the notation, if G is a finite group and H is a subgroup of G, then we may

abbreviate induction and restriction of modules between kG and kH to just

↑GH and ↓GH if the field k is clear from the context. It is a standard and

easily-proved fact that if X is a kH-module then

dimk(X↑GH) = [G : H]dimk(X) (2.2.3)

where [G : H] = |G|/|H| is the index of H in G.

It is immediate from the definition of the inner tensor product of group

modules that if G is a finite group with a subgroup H and U, V are kG-modules

then we have an isomorphism of kH-modules

[
U ⊗ V

]yG
H
∼= U

yG
H
⊗ V

yG
H
. (2.2.4)

The outer tensor product behaves well with respect to the operations of

induction and restriction. The results in the following lemma are well-known

and easily proved.

Lemma 2.2.1. Let G be a finite group with a subgroup I, and H be a finite

group with a subgroup J . Let X be a kG-module, Y a kH-module, U a kI-

module, and V a kJ-module. Then we have isomorphisms of group modules

(
X � Y

)yG×H
I×J

∼=
(
X
yG
I

)
�
(
Y
yH
J

)
and (

U � V
)xG×H

I×J
∼=
(
U
xG
I

)
�
(
V
xH
J

)
.

We shall also make use of the fact that induction and restriction of modules

between groups and their subgroups “preserve filtrations” in the sense of the

following lemma.
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Lemma 2.2.2. Let G be a finite group and H a subgroup of G. Suppose that

we have a kG-module Y with a filtration

Y ∼
t

F〈p〉
i=1

aiWi

for kG-modules W1, . . . ,Wt. Then we have a filtration of kH-modules

Y ↓GH ∼
t

F〈p〉
i=1

ai Wi↓GH .

Conversely, if we have a kH-module X with a filtration

X ∼
s

F〈q〉
i=1

biVi

for kH-modules V1, . . . , Vs, then we have a filtration of kG-modules

X↑GH ∼
s

F〈q〉
i=1

bi Vi↑GH .

Proof. Now the operations ↑GH and ↓GH may be extended to homomorphisms in

the obvious way, and hence we see that induction and restriction are functors

between the relevant module categories. The lemma is then proved by noting

the well-known fact that both of these functors are exact. Indeed, we have by

[3, Proposition 3.3.1] and [3, Proposition 2.8.1] (which shows that the relevant

isomorphisms yield natural isomorphisms of functors) that both (↑GH , ↓GH) and

(↓GH , ↑GH) are adjoint pairs, and hence that both functors are both right and

left exact, and thus that they are indeed exact.

Proposition 2.2.3. Let U, V,W be kG-modules for a finite group G. Then

we have an isomorphism of k-vector spaces

Ext1
kG (W,U∗ ⊗ V ) ∼= Ext1

kG (W ⊗ U, V ) .

Proof. Now Homk(U, V ) has a natural kG-module structure given by setting

(fg)(u) = (f(ug−1))g for g ∈ G, f ∈ Homk(U, V ) and u ∈ U [3, p.50]. From
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[3, p.52] we have an isomorphism Homk(U, V ) ∼= U∗ ⊗ V of kG-modules,

and combining this with [3, Proposition 3.1.8, (ii)] and the fact that ⊗ is

commutative, we obtain the desired isomorphism.

From [3], we also have the Eckmann-Shapiro lemma and Mackey’s theorem.

Note that while [3] uses left modules, we give the right-module versions of

these results, which may be obtained by exactly the same arguments as the

left module versions.

Theorem 2.2.4. (Eckmann-Shapiro lemma) Let G be a finite group and H

be a subgroup of G. Let X be a right kG-module and Y be a right kH-module.

Then we have isomorphisms of k-vector spaces

HomkG(Y ↑GH , X) ∼= HomkH(Y,X ↓GH)

Ext1
kG(Y ↑GH , X) ∼= Ext1

kH(Y,X ↓GH)

HomkG(X, Y ↑GH) ∼= HomkH(X ↓GH , Y )

Ext1
kG(X, Y ↑GH) ∼= Ext1

kH(X ↓GH , Y ).

Proof. These can be obtained easily using results from [3]. The first and

second isomorphisms are given by [3, Corollary 3.3.2]. The third and fourth

can be proved in the same way as [3, Corollary 3.3.2], using [3, Corollary

2.8.4] and the fact given in [3, Section 3.3] that the functors of induction and

co-induction (see [3, Definition 2.8.1]) coincide for modules over the group

algebra of a finite group.

For the statement of Mackey’s Theorem, we need some definitions. Indeed,

if G is a finite group and H is a subgroup of G, then for g ∈ G we define

Hg to be the subset {g−1hg | h ∈ H} of G. Then Hg is a subgroup of G,

the conjugate subgroup of H by g, and in fact Hg is isomorphic to H.

Further, if X is a kH-module, then we define Xg to be the kHg-module with

32



underlying vector space X and action given by x(g−1hg) = xh for x ∈ X and

h ∈ H. We call this the conjugate module of X by g.

Theorem 2.2.5. (Mackey’s Theorem) Let G be a finite group with subgroups

H and K, let U be a complete non-redundant system of (H,K)-double coset

representatives in G, and let X be a right kH-module. Then we have a

decomposition of right kK-modules

X ↑GH↓GK ∼=
⊕
u∈U

Xu ↓Hu

Hu∩K↑KHu∩K .

Proof. This is Theorem 3.3.4 of [3].

Proposition 2.2.6. [2, Section 8, Corollary 3] Let G be a finite group with a

subgroup H, and let k be a field (note that [2] formally assumes an algebraically

closed field, but the proof of this result does not use algebraic closedness).

Let U be a kG-module, and suppose that U↓GH has a kH-submodule X such

that X generates U as a kG-module. If dimk(U) = [G : H]dimk(X) (where

[G : H] = |G|/|H| is as usual the index of H in G), then U is isomorphic as

a kG-module to X↑GH (note that [2] refers to “relatively free” modules rather

than “induced” modules, but as explained in [2] the concepts are equivalent).

Corollary 2.2.7. If U is a kG-module with dimk(U) = |G|/|H| and moreover

there is an element u ∈ U which generates U as a kG-module and which

satisfies uh = u for all h ∈ H, then U ∼= 1H↑GH .

Proof. Let X be the k-span of u and apply Proposition 2.2.6.

An elementary but useful result on filtrations of group modules goes as

follows.
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Lemma 2.2.8. Let G be a finite group and Z,W kG-modules. Suppose W

has a kG-module filtration

W ∼
t

F〈p〉
i=1

aiUi.

Then the kG-module Z ⊗W has a filtration

Z ⊗W ∼
t

F〈p〉
i=1

ai Z ⊗ Ui.

Symmetrically, if Z has a kG-module filtration

Z ∼
s

F〈q〉
i=1

biVi

then we have a kG-module filtration

Z ⊗W ∼
s

F〈q〉
i=1

bi Vi ⊗W.

Proof. Now let X, Y be kG-modules such that Y has a submodule U . Let

T be the k-subspace of the kG-module X⊗Y spanned by all pure tensors

of the form x ⊗ u for x ∈ X and u ∈ U . Then it is easy to see that T is a

kG-submodule of X⊗Y , that T ∼= X⊗U as kG-modules via the obvious map,

and moreover that X⊗Y
T
∼= X ⊗

(
Y
U

)
as kG-modules, again via the obvious

map. The first part of the lemma now follows via a trivial induction, and the

second part via a symmetrical argument.

2.3 Combinatorial definitions

We now recall some standard combinatorial definitions and notation, and also

introduce some more specialised concepts which we shall need for our work.

These non-standard definitions and notation will be recalled as they appear

in the text, but they are given here together for completeness.
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Let n, t be non-negative integers. A composition of n of length t, or

more briefly a t-composition of n, is a tuple γ = (γ1, . . . , γt) of non-negative

integers such that γ1 +γ2 + · · ·+γt = n. We define |γ| = n, the size of γ, and

γ1, . . . , γt are called the parts of γ. A partition of n is a composition of n

with no zero parts and where the parts are weakly decreasing. We shall adopt

the standard notation and write γ � n to mean that γ is a composition of n,

and λ ` n to mean that λ is a partition of n. Thus, for example, (0, 2, 3, 1, 0, 1)

is a composition of 7 which is not a partition, while (4, 3, 1, 1, 1) is a partition

of 10. Note that if n = 0 then n has exactly one partition, namely the empty

tuple (), which has length 0. We shall write Ωt
n for the set of all compositions

of n with length t, and Λn for the set of all partitions of n. For a given length

t, we let [n, l] denote the composition of n of length t whose lth entry is n and

which has all other entries 0, so that [n, l] = (0, 0, . . . , 0, n, 0, . . . , 0). We shall

also adopt the standard convention of allowing ourselves to denote repeated

entries in a composition or partition via a superscript, so that for example

the partition (3, 2, 2, 2, 2, 1, 1, 1) could be written (3, 24, 13). We shall use this

notation in particular to write the partition of n consisting of n 1’s as (1n).

It is often helpful to think of compositions and partitions in a pictorial way.

To this end, if α = (α1, . . . , αt) is a composition of n, the Young diagram

of shape α is an array of boxes, with α1 boxes in the top row, α2 boxes in

the next row down, and so on, arranged with the left-most boxes of the rows

vertically aligned with each other. For example, if α = (4, 3, 5, 2, 1) � 15, then

the Young diagram of shape α is

.
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We number the rows of a Young diagram from top to bottom, so that the top

row is row 1, the next row down is row 2, and so on. We also speak of “higher”

and “lower” rows, where “higher” means nearer the top of the diagram and

“lower” means nearer the bottom of the diagram. Thus we note that the ith

row is higher than the jth row if i is lower than j.

If α = (α1, . . . , αt) and β = (β1, . . . , βs) are compositions of n, then we

say that α dominates β, and we write α D β, if we have
∑r

i=1 αi ≥
∑r

i=1 βi

for each r = 1, . . . ,max(t, s) (where if one composition is shorter than the

other, we pad the shorter composition on the right with zeros to give them

the same length). This relation induces a partial ordering on compositions

of n, called the dominance order, and we make Λn a poset by equipping it

with this partial order. For example with n = 8, we have (3, 3, 2) D (3, 2, 2, 1),

but (3, 2, 2, 1) and (4, 1, 1, 1, 1) are not comparable in the dominance order.

The dominance order is a non-strict order, and we shall of course use the

symbol . to denote the associated strict order. Informally, we see that in the

dominance order, compositions whose Young diagrams are “shorter and wider”

rank higher than those whose Young diagrams are “taller and thinner”.

The dominance order is in general a partial order, but sometimes we

shall need a total order on compositions and partitions of n. The total order

we shall use is the lexicographic order, which we shall denote by >. If

α = (α1, . . . , αt) and β = (β1, . . . , βs) are compositions of n, then we define

(α1, . . . , αt) > (β1, . . . , βs) to mean that there exists an i with 0 < i ≤ min(t, s)

such that αj = βj for all j < i and αi > βi. We note that the lexicographic

order is an extension of the dominance order, meaning that if α.β then α > β.

Now if we have any partial order on a set, then the reverse of this order is

the order obtained by simply reversing all the relations of the order. We shall

make use of the reverse lexicographic order, which we shall denote by

36



m. We shall also use the symbol m to denote the reverse order of any order

denoted by the symbol >.

Keep n, t as non-negative integers. A multicomposition of n of length

t, or more briefly a t-multicomposition of n, is a tuple γ = (γ1, . . . , γt) of

compositions (which will in general have different sizes, and where γi = () is

allowed), such that |γ1|+ |γ2|+ · · ·+ |γt| = n. The compositions γ1, . . . , γt are

called the components of γ. We shall write the jth part of the composition

γi as γij. A multicomposition ν = (ν1, . . . , νt) is a multipartition if each

component νi is a partition. Note that a multipartition can have empty compo-

nents (i.e. νi = () is allowed). For example,
(
(3, 2, 2, 1), (4, 1), (), (3), (3, 2), ()

)
is a 6-multipartition of 21. For γ = (γ1, . . . , γt) a multicomposition of n, we

define ||γ|| = n, the size of γ, and |γ| = (|γ1|, |γ2|, . . . , |γt|), a composition of

n, which we shall call the shape of γ. Thus for example we have

|
(
(3, 2, 2, 1), (4, 1), (), (3), (3, 2), ()

)
| = (8, 5, 0, 3, 5, 0)

||
(
(3, 2, 2, 1), (4, 1), (), (3), (3, 2), ()

)
|| = 21.

Note that even if γ is a multipartition, |γ| will in general be a composition.

We shall write Λn for the set of all multipartitions of n, and Λt
n for the set

of all t-multipartitions of n. Note that if n = 0 then n has exactly one

multipartition with t components for each t ≥ 0. Indeed, for t = 0 it is () (the

unique multicomposition with zero components), and for t ≥ 1 it is the t-tuple(
(), . . . , ()

)
. We shall be particularly interested in t-multicompositions γ of n

where all components are () except for one, which must then be a composition

of n. Indeed, for a given length t, let us denote the t-multicomposition of n

which has γ � n in the ith place and empty compositions () everywhere else

as [γ, i]. Thus we have

[γ, i] =
(
(), (), . . . , (), γ, (), . . . , ()

)
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where the γ on the right-hand side occurs in the ith place.

In Corollary 6.2.2 below, and its applications, we shall have a tuple

(a1, . . . , at) of non-negative integers, and we shall wish to work with the set

of all t-multicompositions α = (α1, . . . , αt) of n where αi has length ai. We

shall write Ω(n; a1, . . . , at) for this set. Further, we let [[n, 1], i; a1, . . . , at] be

the element of Ω(n; a1, . . . , at) whose ith component is (n, 0, . . . , 0) and with

an al-tuple of zeros in the lth place for each l 6= i. Thus

[[n, 1], i; a1, . . . , at] =
(
(0, . . . , 0), . . . , (n, 0, . . . , 0), . . . , (0, . . . , 0)

)
.

There is a natural analogue of the dominance order on compositions for

the set of multicompositions of n of length t (which of course then restricts

to a partial ordering on the set of multipartitions of n of length t), see for

example in [8, Definition 3.11]. For multicompositions α = (α1, . . . , αt) and

β = (β1, . . . , βt) of n, we define α D β to mean that for any p ∈ {1, . . . , t}
and q ≥ 0, we have (taking any parts αpi or βpi which would otherwise be

undefined to be zero as necessary)

p−1∑
i=1

|αi| +

q∑
i=1

αpi ≥
p−1∑
i=1

|βi| +

q∑
i=1

βpi .

Note that α D β implies |α| D |β| (taking q = 0 for each p), and if |α| = |β|
then α D β if and only if αi D βi for all i. When we refer to Λn and Λt

n as

posets, it is to this order that we will be referring. For example, in the poset

Λ6
15, we have

(
(2, 2, 1), (2, 1), (2, 1, 1), (1), (), (2)

)
D
(
(2, 2), (3, 1), (2, 1), (1), (1), (1, 1)

)
.

We shall also need to make use of tuples of multicompositions. We

shall typically denote such a tuple with a double underlined symbol such

as γ. We shall write the ith component of γ as γi (a multicomposition),
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the jth component of γi as γij (a composition), and the lth part of γij as

γijl (a non-negative integer). If γ = (γ1, . . . , γt), then we write |γ| for the

multicomposition (|γ1|, . . . , |γt|), ||γ|| for the composition (||γ1||, . . . , ||γt||),
and |||γ||| for the integer ||γ1||+ · · ·+ ||γt||.

We now recapitulate some of the above, in order to draw the reader’s

attention to the notational conventions which we have established, and which

we shall maintain throughout this thesis. Indeed, compositions and partitions

are denoted by Greek letters (generally lowercase), and their parts are indexed

with subscript numerals. For example, the ith part of the composition α is

αi. Multicompositions and multipartitions are denoted by underlined Greek

letters, and when we have lists or tuples of compositions, the index of an

element of this list is written as a superscript. For example, the ith component

of the multicomposition α is αi, where we note that the symbol α is not

underlined because αi is a composition, not a multicomposition. Similarly,

tuples of multicompositions are denoted by double-underlined Greek letters,

and when we have lists or tuples of multicompositions, the index of an element

of this list is written as a superscript. For example, the ith component of the

tuple γ of multicompositions is γi (where the symbol γ is underlined once,

since this object is a multicomposition), and the jth component of γi is γij

(no underline, since this object is a composition). We therefore emphasise

the following points of notation to the reader.

• Symbols based around a double-underlined Greek letter denote tuples

of multicompositions.

• Symbols based around a single-underlined Greek letter (perhaps with

one or more superscripts) denote multicompositions (or multipartitions).

• Symbols based around a Greek letter with neither underlining nor a sub-
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script (but perhaps with one or more superscripts) denote compositions

(or partitions).

• Symbols based around a non-underlined Greek letter with a subscript

(perhaps with one or more superscripts) denote non-negative integers

occurring as parts of compositions or partitions.

It is the author’s experience that the use of these conventions is of great

assistance when performing or reading the kinds of calculations that will feature

prominently throughout this thesis, which involve the use of multicompositions

and multipartitions or tuples thereof. The author hopes that readers will

also find these conventions useful. Note, however, the interaction of these

conventions with the notations we have established above involving the vertical

bar symbol | . For example, if γ is a tuple of multicompositions, then |γ| is a

composition. The symbol γ is underlined here because the expression |γ| is

the result of applying the operation | · | to the multicomposition γ.

In (6.4.8) below, we shall need notation for a specific kind of tuple of

multicompositions. Indeed, let (a1, . . . , at) be a tuple of non-negative integers

such that we have some i ∈ {1, . . . , t} with ai 6= 0. Given a composition η,

we define [[η, 1], i; a1, . . . , at] to be the t-tuple of multicompositions whose ith

entry is the multicomposition
(
η, (), . . . , ()

)
of length ai, and where for l 6= i,

the lth entry is a tuple of empty compositions of length al. Thus

[[η, 1], i; a1, . . . , at] =
(
((), . . . , ()), . . . , (η, (), . . . , ()), . . . , ((), . . . , ())

)
.

We shall use the symbol ◦ to denote the concatenation of tuples. Thus if

ν1, . . . , νt are compositions, then ν1 ◦ · · · ◦ νt denotes their concatenation, so

that for example we have

(3, 2, 1) ◦ (2, 2) ◦ (4, 1, 1) ◦ () ◦ (2) = (3, 2, 1, 2, 2, 4, 1, 1, 2).
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Similarly, if ν1, . . . , νt are tuples of compositions, then ν1 ◦ · · · ◦ νt denotes

their concatenation, so that for example

(
(3, 2, 1), (2, 2), (3, 1)

)
◦
(
(4, 1, 1), (), (2)

)
=(

(3, 2, 1), (2, 2), (3, 1), (4, 1, 1), (), (2)
)
.

Now if λ is a partition of n, we associate to λ the conjugate partition

λ′ of λ, which is the partition whose Young diagram is obtained by reflecting

the Young diagram of λ about its leading diagonal axis. For example, if

λ = (5, 3, 1) then we take the Young diagram

and reflect it as described to obtain

and hence we see that λ′ = (3, 2, 2, 1, 1). We see that the map λ 7→ λ′ is a

self-inverse bijection on Λn.

If ν = (ν1, . . . , νt) is a multipartition, then we define the conjugate of ν

to be the multipartition
(
(ν1)′, . . . , (νt)′

)
, and we denote this by ν ′.

When we come to discuss the simple modules of the group algebra of the

symmetric group, we shall need the concepts of p-regular and p-singular

partitions, where p is either 0 or a prime (indeed, p will be the characteristic

of our field k). Let n be a non-negative integer. If p = 0, then all partitions

of n are p-regular, and none are p-singular. If p > 0 is a prime number, then

a partition is p-singular if it contains a constant subsequence of length p, and
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is p-regular otherwise. For example, the partition (4, 2, 2, 1, 1, 1, 1) of 12 is

3-singular but 5-regular.

Original research in Chapter 2: There is no original research in Chapter

2.
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Chapter 3

Representation theory of

symmetric groups

In this chapter, we recall the material which we shall require on the rep-

resentation theory of the symmetric group. Our main source is the classic

monograph [20] of James, but we shall also recall some results from other

sources.

3.1 The symmetric group, Young permuta-

tion modules, Specht modules, and sim-

ple modules

For n a non-negative integer, we take Sn to be the symmetric group of all

permutations of the set {1, 2, . . . , n} under composition. Thus if n = 0 we

have the set of permutations of the empty set, which is the trivial group. We

take Sn to act on {1, 2, . . . , n} from the right, meaning that the product σπ of

permutations σ, π ∈ Sn is the permutation obtained by first applying σ and
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then applying π. Thus we write permutations on the right of their arguments,

for example (i)σ, so that we have the expected formula

(i)(σπ) = ((i)σ)π.

We shall typically write permutations in cycle notation, so that for example

the element of S6 which maps 1, 2, 3, 4, 5, 6 to 4, 6, 1, 3, 5, 2 respectively will

be written as (1, 4, 3)(2, 6).

For α = (α1, . . . , αt) a composition of n ≥ 0, we define as usual the Young

subgroup Sα of Sn as follows. For each i = 0, . . . , t, let α̂i = α1 + · · ·+ αi

(so note that α̂0 = 0). Then Sα is the subgroup of Sn consisting of all

permutations which for each i = 1, . . . , t map the set {α̂i−1 + 1, . . . , α̂i} to

itself. We shall be making frequent use of the operations of induction and

restriction between group algebras of symmetric groups and of their Young

subgroups, for example

X↑kSnkSα
and Y ↓kSnkSα

.

To de-clutter such expressions, we shall abbreviate the notation by replacing

the full symbols for the group algebras with the subscripts used to identify

the various subgroups of Sn involved, so for example the above would be

abbreviated to

X↑nα and Y ↓nα .

Similarly, we abbreviate, for example, HomkSn to Homn and Ext1
kSα to Ext1

α,

and also 1kSn and 1kSα to 1n and 1α.

Now it is a standard fact that any permutation may be expressed as

the product of transpositions, which are elements of Sn of the form (a, b)

(expressed in cycle notation). Further, we may show for σ ∈ Sn that if

σ = t1t2 · · · tp = t′1t
′
2 · · · t′p′ where ti and t′i are transpositions, then p and p′

are congruent modulo 2, and thus we may define sgn(σ) ∈ k to be (−1)p,
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where p is the length of any factorisation of σ into transpositions. We say that

σ is even if sgn(σ) = 1 and odd if sgn(σ) = −1. The map sgn : Sn → k yields

a one-dimensional kSn-module consisting of a copy of k upon which σ ∈ Sn
acts as multiplication by sgn(σ). This module is called the sign module for

kSn, which we write (in keeping with our abbreviated notation 1n) as Sgnn

(with the field k being understood). Further, the sign module can of course

be restricted to any subgroup H of Sn, and we write the resulting kH-module

as SgnH , with our convention as above that if, for example, H = Sα, we will

write SgnSα as Sgnα. If α = (α1, . . . , αt) is a composition of n then we may

easily see that

Sgnα = Sgnn↓nα ∼= Sgnα1
� · · ·� Sgnαt (3.1.1)

where we have identified Sα with Sα1 × · · · × Sαt in the usual way.

Now if σ ∈ Sn, then an inversion of σ is a pair (i, j) such that 1 ≤ i <

j ≤ n and (i)σ > (j)σ, and the length of σ, len(σ), is the total number of

inversions of σ.

Remark 3.1.1. Recall that a basic transposition in Sn is a transposition

of the form (i, i + 1) for some i such that 1 6 i < n. It is a standard fact

that Sn is generated by its basic transpositions, and it is also well-known that

for σ ∈ Sn, len(σ) is equal to the minimal length of an expression of σ as a

product of basic transpositions (see for example [34, Lemma 2.1]). Hence,

this concept of the length of a permutation agrees with the Coxeter length

of a permutation when Sn is regarded as a Coxeter group generated by the

basic transpositions. See for example [30, Chapter 1, Section 1] for details. It

also follows that sgn(σ) = (−1)len(σ).

In the previous chapter, we recalled the notion of the Young diagram of a

composition. We now recall briefly the related definitions of Young tableaux

and Young tabloids in order to sketch the definition of the Young permutation
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modules and Specht modules for the symmetric group. Note that we shall not

need the definitions of these modules in our work, but we include them here

for completeness.

If α is a composition of n, then a Young tableau of shape α, or more

briefly an α-tableau, is a Young diagram of shape α, with the numbers 1 to

n inserted in the boxes, with one number per box and each number appearing

once. For example, if we take α = (4, 3, 5, 2, 1) � 15, then one α-tableau is

3 12 4 9

15 5 10

14 7 8 13 1

11 2

6

.

Given some composition α � n, we define an equivalence relation on the set

of all α-tableaux by making two tableaux equivalent if each number appears

on the same row in both tableaux. We call the resulting equivalence classes

α-tabloids. We think of a tabloid as “a tableau with unordered rows”.

We also define a more general kind of tableau, where repeated entries

are allowed. Indeed, given two compositions α and β of n, an α-tableau of

type β is a Young diagram of shape α with a positive integer in each box,

such that 1 appears β1 times, 2 appears β2 times, and so on. Thus a Young

tableau as defined above is more fully an α-tableau of type (1, 1, . . . , 1). So

for example keeping α = (4, 3, 5, 2, 1) and taking β = (3, 3, 2, 4, 1, 0, 2) then

one α-tableau of type β is

4 1 3 4

2 4 7

7 3 1 5 2

4 1

2

.

We now use tabloids to define modules for kSn, see Chapter 4 of [20] for
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full details. For α � n, σ ∈ Sn acts on the set of α-tableaux by replacing

each entry i in a tableau with (i)σ, and this action induces an action on

the set of α-tabloids. We let Mα be the k-vector space with the set of all

α-tableaux as a basis. Then the Sn-action on the set of tabloids induces a

right kSn-module structure on Mα. We call this module Mα the Young

permutation module associated to α. It is clear that Mα is a cyclic module,

generated by any tabloid. Let us take τ(α) to be the tabloid obtained from

the tableau of shape α where the first row contains the numbers 1, . . . , α1, the

second row contains the numbers α1 + 1, . . . , α1 + α2, and so on, so that for

example if α = (4, 3, 3, 1) then τ(α) is the tabloid obtained from the tableau

1 2 3 4

5 6 7

8 9 10

11

.

The tableau τ(α) is sometimes called the basic standard α-tableau. It is

clear that τ(α) generates Mα as a kSn-module, and that τ(α)σ = τ(α) for

all σ ∈ Sα. Further, by counting tabloids it is easily seen that

dimk(M
α) =

n!∏
i αi!

(3.1.2)

(note that this is independent of k), and this of course is equal to [Sn : Sα],

so that by Corollary 2.2.7 we have

Mα ∼= 1α↑nα. (3.1.3)

Proposition 3.1.2. If α and β are compositions of n such that one may

be obtained by reordering the parts of the other, then we have Mα ∼= Mβ as

kSn-modules.

Proof. We know by the isomorphism (3.1.3) that Mα ∼= 1α↑nα and that

Mβ ∼= 1β↑nβ, so we need only prove that 1α↑nα ∼= 1β↑nβ. But it is a well-known
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and easily proved result that if H is a subgroup of a finite group G, then

the kG-module 1H↑GH is the permutation module for kG obtained by taking

the k-linearisation of the right H-coset space of G (recall that this is the

right G-set formed by equipping the set of right H-cosets Hg in G with the

action (Hg1)g2 = H(g1g2) for g1, g2 ∈ G). Further, it is also a well-known

and easily proved result that if H and K are subgroups of a finite group

G, then the space of right H-cosets in G and the space of right K-cosets

in G are isomorphic as G-sets if H and K are conjugate in G, meaning

that H = g−1Kg for some g ∈ G. Thus it suffices to prove that the Young

subgroups Sα and Sβ are conjugate in Sn. This is a well-known fact, which

may easily be proved using the standard result that if δ, ε ∈ Sn, then the

conjugate ε−1δε of δ by ε is the permutation whose cycle notation is obtained

by replacing each number i in the cycle notation of δ with (i)ε.

Now if λ is a partition of n, then we identify a certain submodule Sλ of

Mλ, called the Specht module associated to λ. For the full definition we

refer the reader to Chapter 4 of [20], but in summary the Specht module Sλ

is defined as the k-span of all polytabloids in Mλ, where a polytabloid is a

certain element of Mλ, with one polytabloid associated to each λ-tableau. If

char(k) is 0 or greater than n, then the collection of all Specht modules Sλ for

λ ` n forms a complete system of isomorphism classes of simple kSn-modules

without redundancy [20, Chapter 11]. If char(k) is greater than 0 but less

than or equal to n, then the Specht modules are not in general simple. We

define FS to be the category of finite-dimensional kSn-modules with a Specht

filtration. If kSn is semisimple, then FS is the category of all finite-dimensional

kSn-modules, but FS is still of interest when kSn is not semisimple. We shall

review some theory of the category FS for a general field k, although some of

our results will require that k have characteristic different from 2 and 3 or
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that k be algebraically closed.

Amongst the Specht modules, we mention two which are of particular

interest. Firstly, the Specht module S(n) turns out to be isomorphic to the

trivial kSn-module 1n, and secondly the Specht module S(1,1,...,1) is isomorphic

to the sign module Sgnn (see [20, page 14] for these facts). We shall thus

freely interchange the notations S(n) and 1n and also S(1,1,...,1) and Sgnn.

The following fact relating dual Specht modules to conjugation of partitions

will be useful in our work.

Proposition 3.1.3. ([20, Theorem 8.15]) Let ν be a partition of n. Then

we have an isomorphism of kSn-modules

(Sν)∗ ∼= Sgnn ⊗ Sν
′
.

As mentioned above, if kSn is not semisimple, the Specht modules are no

longer simple in general. However, even in this situation the Specht modules

may be used to obtain a complete list of the isomorphism classes of simple

kSn-modules. Recall that, with p the characteristic of our field k, so that p

is either zero or a prime, a partition is p-singular if p > 0 and the partition

contains a constant subsequence of length p, and a partition is p-regular

otherwise. Recall from [20, Definition 11.2] that to each p-regular partition λ

of n, we associate a kSn-module Dλ. We summarise the relevant properties

of these modules in the following theorem.

Theorem 3.1.4. [20, Theorem 11.5, Corollary 12.2] Let k be a field of

characteristic p (so p is zero or a prime), and let n be a non-negative integer.

If λ is a p-regular partition of n, then Dλ is a simple kSn-module. Further, as

λ varies over all p-regular partitions of n, so Dλ varies over all isomorphism

classes of simple kSn-modules without repetition.
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Now let λ be any partition of n. Then the composition factors of Sλ are

all of the form Dµ for µ D λ. Thus if λ is p-singular, the composition factors

of Sλ are all of the form Dµ for µ . λ. Further, if λ is p-regular, then the

multiplicity of Dλ in Sλ is exactly one, and moreover in any composition

series of Sλ, the top factor is Dλ and all the other factors are Dµ for µ . λ.

3.2 The Littlewood-Richardson rule and

Young’s rule

In this section, we recall some important results which give filtrations of

certain modules for kSn, and which moreover give information about the

multiplicities occurring in those filtrations.

Firstly, let λ ` n. Then Young’s rule [20, 14.1 and 17.14] tells us that

we have coefficients K(ν, λ) such that

Mλ ∼F〈λ〉
ν`n

K(ν, λ)Sν . (3.2.1)

The coefficientsK(ν, λ) are called Kostka numbers, and they have a pleasing

combinatorial interpretation, for which we need another definition. Indeed, a

tableau of shape ν and type β, where ν is a partition and β is a composition, is

semistandard if the entries are non-decreasing from left to right in each row,

and the entries are strictly increasing down each column. For example, with

ν = (5, 4, 4, 1, 1) and β = (3, 3, 2, 4, 1, 0, 2) as above, then one semistandard

ν-tableau of type β is

1 1 1 2 7

2 2 3 4

3 4 4 7

4

5

.
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Then the Kostka number K(ν, λ) is equal to the number of semistandard

ν-tableaux of type λ [20, 14.1]. From this, it follows easily that the Kostka

numbers satisfy

K(ν, λ) =

1 if ν = λ

0 if ν 4 λ.

(3.2.2)

We shall often need to consider the restriction of a Specht module to a

Young subgroup, or the module obtained by inducing an outer tensor product

of Specht modules up from a Young subgroup to the full symmetric group. In

particular, we shall be interested in obtaining useful filtrations of such modules.

The tools for this task are the Littlewood-Richardson filtration rules.

In order to present these results, we must first consider the combinatorial

Littlewood-Richardson rule and the associated Littlewood-Richardson

coefficients, and to do this, we must recall some material on symmetric

functions. Our source is [32, Chapter 7], but since we shall not make any

further use of this material, our presentation of it here will be a rough sketch

only, so we refer the reader to [32] for more details if they are desired.

Let us denote by SC the ring of symmetric functions over C in the

variables x1, x2, . . ., and further for n ≥ 0 let SnC denote the C-vector space

consisting of all homogeneous symmetric functions of degree n together with

the zero element. The definition of a symmetric function need not concern

us here; it suffices to know that SC is an infinite-dimensional commutative

unital associative C-algebra, with a grading

SC =
⊕
n≥0

SnC.

To each partition λ of each n ≥ 0, we associate the Schur function sλ ∈ SnC.

Again, we do not need the definition of sλ here; we need only know that for

each n, the set of all Schur functions sλ for λ ` n forms a C-basis of SnC [32,
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Corollary 7.10.6], and that s() = 1 [32, Definition 7.10.1]. Now if α, β are

partitions (not necessarily of the same integer), then sαsβ is a homogeneous

symmetric function of degree |α|+ |β|, and hence we have for each λ ` |α|+ |β|
a uniquely-defined coefficient cλα,β ∈ C such that

sαsβ =
∑

λ` |α|+|β|
cλα,βsλ.

The coefficients cλα,β are called Littlewood-Richardson coefficients. We

extend the definition by defining cλα,β = 0 for any three partitions α, β, λ

where |λ| 6= |α|+ |β|.
Like the Kostka numbers, the Littlewood-Richardson coefficients have a

nice combinatorial interpretation, and as for the Kostka numbers we need

to recall some more combinatorics to state this. Indeed, if α and β are

compositions and we have αi ≤ βi for all i (with any parts that would

otherwise be undefined taken to be zero as usual), then we say that α lies

inside β and write α ⊆ β; this necessarily implies |α| ≤ |β|. This terminology

makes sense if one notes that α lies inside β if and only if the Young diagram

of α is a subdiagram of the Young diagram of β. For example, we have

(3, 4, 2, 1) ⊆ (5, 4, 3, 3, 1), which we see by drawing the Young diagram of

(5, 4, 3, 3, 1) and picking out the Young diagram of (3, 4, 2, 1) inside it,

• • •
• • • •
• •
•

.

If α ⊆ β, then the skew Young diagram of shape β \ α is the diagram

obtained by starting with the Young diagram of β and removing the boxes

which form the copy of the Young diagram of α inside it. For example, the
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skew Young diagram of shape (5, 4, 3, 3, 1) \ (3, 4, 2, 1) is

(note that this diagram is disconnected, as skew Young diagrams may in gen-

eral be). We extend the definition of a Young tableau to allow its underlying

Young diagram to be a skew Young diagram, and we call such an object a

skew tableau. Thus for example

1 3

1

3 2

3

is a skew tableau of shape (5, 4, 3, 3, 1) \ (3, 4, 2, 1) and type (2, 1, 3). We

extend the definition of semistandardness to skew tableaux, noting that there

may be gaps in the columns of a skew tableau.

The Littlewood-Richardson rule [32, Theorem A1.3.3] states that cλα,β

is equal to the number of skew semistandard tableaux of shape λ \ α and

type β where the sequence obtained by concatenating its reversed rows is

a lattice word. A lattice word is a finite sequence of integers, allowing

repetitions, such that if for any r ≥ 0 and any i ≥ 0 we let #i
r be the number

of times i appears in the first r places of the sequence, then for each r we
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have #1
r > #2

r > #3
r > · · · . For example

1 1

2

1 3

2

is such a tableau of shape (5, 4, 3, 3, 1) \ (3, 4, 2, 1) and type (3, 2, 1). In

particular, every Littlewood-Richardson coefficient is in fact a non-negative

integer.

From the Littlewood-Richardson rule we may easily deduce the following

result.

Proposition 3.2.1. (see [29, page 142]) Suppose that we have cλα,β 6= 0 for

partitions α, β, λ (so that by definition we have |α| + |β| = |λ|). Then we

must have α, β ⊆ λ, and further we must have

q∑
i=1

λi 6
q∑
i=1

αi +

q∑
i=1

βi for q = 1, 2, 3, . . .

(i.e. α + β D λ , where addition of partitions is defined pointwise) taking

any parts of partitions which would otherwise be undefined to be 0 as usual.

We generalise the above definition of Littlewood-Richardson coefficients

as follows: for any partition λ and any multipartition α = (α1, . . . , αt) (for

t ≥ 0), we define the Littlewood-Richardson coefficient c(λ;α) to be the

coefficient of sλ in the product sα1sα2 · · · sαt . Thus in particular c(λ;α) = 0

unless |λ| = |α1| + · · · + |αt| = ||α||. Further, if either λ or α is () then

c(λ;α) = 0 unless both λ and α are (), in which case we have c
(
(); ()

)
= 1;

this last fact follows from the fact that s() = 1. Another consequence of the

fact that s() = 1 is that we have

c(λ;α) = c(λ; α̂) (3.2.3)
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where α̂ is the multipartition obtained from α by removing any empty

partitions, so that for example if α =
(
(2, 1), (), (1), (3, 1, 1), ()

)
then we

have α̂ =
(
(2, 1), (1), (3, 1, 1)

)
. Keeping our partition λ and multipartition

α = (α1, . . . , αt) of n, if we assume that t ≥ 2 then we have

sα2 · · · sαt =
∑

β `n−|α1|
c
(
β; (α2, . . . , αt)

)
sβ

and hence

sα1sα2 · · · sαt =
∑

β `n−|α1|
c
(
β; (α2, . . . , αt)

)
sα1sβ

=
∑

β `n−|α1|
c
(
β; (α2, . . . , αt)

)(∑
λ`n

cλα1,β sλ

)
=
∑
λ`n

( ∑
β `n−|α1|

cλα1,β c
(
β; (α2, . . . , αt)

))
sλ.

Thus we see that

c
(
λ;α

)
=

∑
β `n−|α1|

cλα1,β c
(
β; (α2, . . . , αt)

)
. (3.2.4)

We also note that, for the case t = 1, we have

c(λ;α) = c
(
λ; (α1)

)
=

1 if α = (λ)

0 otherwise.

(3.2.5)

Further, for the case t = 2, we have

c(λ;α) = c
(
λ; (α1, α2)

)
= cλα1,α2 . (3.2.6)

The following lemma is a trivial consequence of the commutativity of SC.

Lemma 3.2.2. Let λ be a partition and α = (α1, . . . , αt) a multipartition

(with t ≥ 0). Then c(λ;α) is invariant under permutation of the components

of α.
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In particular, we see from Lemma 3.2.2 that cλα,β = cλβ,α.

Lemma 3.2.3. Suppose we have a partition λ and a multipartition α =

(α1, . . . , αt) such that c(λ;α) 6= 0. Then

1. |λ| = |α1|+ · · ·+ |αt|.

2. For each i = 1, . . . , t we have αi ⊆ λ, from which it follows that

q∑
j=1

λj >
q∑
j=1

αij for q = 1, 2, 3, . . .,

taking any parts of partitions which would otherwise be undefined to be

0 as usual.

3. For each i = 1, . . . , t we have a partition βi of |λ| − |αi| such that

q∑
j=1

λj 6
q∑
j=1

αij +

q∑
j=1

βij for q = 1, 2, 3, . . .

(i.e. αi + βi D λ , where addition of compositions is defined pointwise)

taking any parts of partitions which would otherwise be undefined to be

0 as usual.

Proof. Part (1) is immediate from the definition of c(λ;α). Parts (2) and (3)

may be obtained as follows. First, we use Lemma 3.2.2 to see that, for each

i = 1, . . . , t, the coefficient c(λ;α) is equal to c(λ; α̂i), where α̂i represents

the multipartition obtained from α by moving αi to the first place. Then

we apply (3.2.4) to c(λ; α̂i) 6= 0 to see that we must have some partition β

such that cλαi,β 6= 0 (by looking at the first factor in the summand on the

right-hand side of the resulting equation). Applying Proposition 3.2.1 to the

coefficient cλαi,β 6= 0 and taking βi = β and, we obtain parts (2) and (3) of

the lemma.
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As mentioned above, our interest in Littlewood-Richardson coefficients

lies in their relation to the representation theory of the symmetric group.

The following results are well-known over the complex numbers (where they

describe direct sum decompositions), but they hold over any field, and in this

generality the proof is due to James and Peel in [24] (Theorems 3.1 and 5.5).

See also the remark on page 70 of [20], or [27, Theorem 2.4]. Let λ and µ

be partitions (not necessarily of the same size) and let n = |λ|+ |µ|. Then

we have a kSn-module (Sλ � Sµ)
xn

(|λ|,|µ|), and this module has a filtration by

Specht modules Sν for ν ` n, and the multiplicity with which Sν occurs is

the Littlewood-Richardson coefficient cνλ,µ. That is,

(Sλ � Sµ)
xn

(|λ|,|µ|)∼F
ν`n

cνλ,µ S
ν . (3.2.7)

There is a “dual” version of this result, which states that if ν ` n and a, b

are integers such that a+ b = n, then the k(Sa × Sb)-module Sν
yn

(a,b)
has a

filtration by modules Sλ � Sµ for λ ` a, µ ` b, where Sλ � Sµ occurs with

multiplicity cνλ,µ, so that

Sν
yn

(a,b)
∼ F

λ`a, µ`b
cνλ,µ S

λ � Sµ. (3.2.8)

The name “Littlewood-Richardson rule” is sometimes applied to (3.2.7) and

(3.2.8), but we shall reserve that name for the combinatorial characterisation

of the Littlewood-Richardson coefficients, and call (3.2.7) and (3.2.8) the

Littlewood-Richardson filtration rules.

We shall require versions of the Littlewood-Richardson filtration rules

(3.2.7) and (3.2.8) where the Young subgroup involved corresponds to a general

composition rather that just a two-part composition, and we introduce some

notation for this. Indeed, if α = (α1, . . . , αt) is a multipartition of n, then we

define a kS|α|-module S(α) by setting

S(α) = Sα
1

� Sα
2

� · · ·� Sαt , (3.2.9)
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recalling that |α| is the composition (|α1|, . . . , |αt|) of n. We also define the

kS|α|-module M(α) by setting

M(α) = Mα1

�Mα2

� · · ·�Mαt . (3.2.10)

Now let α = (α1, . . . , αt) be a multipartition of n. Then, defining a =

|α2|+ · · ·+ |αt| we have

S(α)
xn
|α| =

(
Sα

1

� · · ·� Sαt
)xn

(|α1|,...,|αt|)

=
(
Sα

1

� · · ·� Sαt
)x(|α1|,a)

(|α1|,...,|αt|)
xn

(|α1|,a)

(by transitivity of induction)

=
[
Sα

1

�
(
Sα

2

� · · ·� Sαt
)xa

(|α2|,...,|αt|)

]xn
(|α1|,a)

(by Lemma 2.2.1).

By using the Littlewood-Richardson filtration rule (3.2.7) and (3.2.4), we may

now easily prove by induction on t that

S(α)
xn
|α| ∼ F

ν`n
c(ν;α)Sν . (3.2.11)

By a very similar argument involving transitivity of restriction and the

Littlewood-Richardson filtration rule (3.2.8), we may prove that if ν ` n and

γ = (γ1, . . . , γt) is a composition of n, then

Sν↓nγ ∼ F
|α|=γ

c(ν;α)S(α) (3.2.12)

where α ranges over all multipartitions α of n such that |α| = γ.

3.3 Homomorphisms and extensions between

Specht modules

By corollary 13.17 in [20], we know that if char(k) 6= 2 and λ, ν ` n, then

the k-vector space Homn(Sν ,Mλ) is zero if ν 4 λ, and is one-dimensional
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if ν = λ. Now if γ is a composition of n such that λ is the partition of n

obtained by rearranging the parts of γ into non-increasing order, then we

clearly have λ D γ. It follows by Proposition 3.1.2 that if ν ` n and γ � n,

then we have

Homn(Sν ,Mγ) ∼=

0 if ν 4 γ

k if ν = γ.

(3.3.1)

Since Sλ is a submodule of Mλ for any partition λ of n, it follows that

Homn(Sν , Sλ) is a subspace of Homn(Sν ,Mλ), from which we see that for

λ, ν ` n we have

Homn(Sν , Sλ) ∼=

0 if ν 4 λ

k if ν = λ.

(3.3.2)

The following proposition is immediate from (3.3.2).

Proposition 3.3.1. ([20, 13.18]) If char(k) 6= 2, then Sλ is indecomposable

for any λ ` n.

We shall next consider extensions between Specht modules. In [10],

Erdmann proved the following theorem.

Theorem 3.3.2. Let k be a field of characteristic not 2 or 3, and let µ, λ be

partitions of n such that µ 7 λ. Then

Ext1
n

(
Sµ, Sλ

)
= 0.

We shall now give a full and detailed proof of this theorem. In later

chapters, we shall use a method inspired by these arguments to prove a

corresponding result for the wreath product SmoSn. We begin with a lemma.

Lemma 3.3.3. Let k be a field of characteristic not 2, and let δ, ε be partitions

of n such that δ 7 ε. Then we have an injective map of k-vector spaces

Ext1
n

(
Sδ, Sε

)
↪→ Ext1

n

(
Sδ,M ε

)
.
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Proof. We have a short exact sequence of kSn-modules

0 −→ Sε −→M ε −→ M ε

Sε
−→ 0

and hence we may apply the functor Homn

(
Sδ,−

)
to obtain a long exact

sequence of k-vector spaces

0→ Homn

(
Sδ, Sε

)
// Homn

(
Sδ,M ε

)
// Homn

(
Sδ, M

ε

Sε

)
ww

Ext1
n

(
Sδ, Sε

)
// Ext1

n

(
Sδ,M ε

)
// · · · .

Now by Young’s rule (3.2.1) and the properties of the Kostka numbers (3.2.2),

Mε

Sε
is filtered by Specht modules Sθ for θ.ε. Now if θ.ε, then δ 4 θ (otherwise

we have δ D θ . ε, and hence δ . ε, a contradiction). By (3.3.2), δ 4 θ implies

Homn(Sδ, Sθ) = 0.

It now follows by Proposition 2.1.1 that

Homn

(
Sδ,

M ε

Sε

)
= 0,

and hence by exactness of our long exact sequence we obtain the desired

injection.

By Lemma 3.3.3, we see that proving the following proposition will estab-

lish Theorem 3.3.2.

Proposition 3.3.4. If k is a field of characteristic not 2 or 3, then for any

partition µ of n and any composition α of n, we have

Ext1
n (Sµ,Mα) = 0.

Note that Proposition 3.3.4 does not require any ordering condition on µ

and α: they may be any partition and composition of n.

The following reduction will provide our path to proving Proposition 3.3.4

and thus Theorem 3.3.2.
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Reduction 3.3.5. To prove Proposition 3.3.4, it is enough to prove that if k

is a field of characteristic not 2 or 3, then for any partition γ ` n we have

Ext1
n (Sγ,1n) = 0.

Proof. If µ is any partition of n and α is any composition of n, then

Ext1
n (Sµ,Mα) ∼= Ext1

n (Sµ, 1α↑nα)

∼= Ext1
α (Sµ↓nα ,1α) (by Theorem 2.2.4).

Thus it suffices to show that Ext1
α (Sµ↓nα ,1α) = 0. Let α = (α1, . . . , αr), so

that Sα is canonically isomorphic to Sα1 × · · · × Sαr . Then by (3.2.12), Sµ↓nα
has a filtration whose factors are modules of the form

Sγ
1

� Sγ
2

� · · ·� Sγr

where each γi is a partition of αi. Thus by Proposition 2.1.1 it suffices to

prove that if γi ` αi for each i = 1, . . . , r, then

Ext1
α

(
Sγ

1

� Sγ
2

� · · ·� Sγr ,1α
)

= 0.

But we have

Ext1
α

(
Sγ

1

�Sγ
2

� · · ·�Sγr ,1α
)
∼= Ext1

α

(
Sγ

1

�Sγ
2

� · · ·�Sγr ,1α1� · · ·�1αr
)

and hence by Proposition 2.1.3 it suffices to prove that Ext1
n (Sγ,1n) = 0.

Proposition 3.3.6. Let k be a field whose characteristic is not 2. Let γ ` n.

Then

Ext1
n(Sγ,1n) ∼= Ext1

n(Sgnn, S
γ′).

Proof. We have

Ext1
n

(
Sgnn, S

γ′
)
∼= Ext1

n

(
Sgnn,

(
(Sγ

′
)∗
)∗ ⊗ 1n

)
∼= Ext1

n

(
Sgnn ⊗ (Sγ

′
)∗,1n

)
(by Proposition 2.2.3)

∼= Ext1
n (Sγ,1n) (by Proposition 3.1.3).
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We now prove Theorem 3.3.2 by proving that if k is a field of characteristic

not 2 or 3, then for any partition γ ` n we have Ext1
n(Sgnn, S

γ) = 0. The

special case where γ = (n), so that Sγ ∼= 1n, provides the necessary stepping-

stone to the general result.

Lemma 3.3.7. Let k be a field with char(k) 6∈ {2, 3}. Then

Ext1
n (Sgnn,1n) = 0.

Proof. Suppose we have a kSn-module E with x ∈ E such that kx (the

k-span of x in E) is a kSn-submodule of E with kx ∼= 1n and E
kx
∼= Sgnn. By

Proposition 2.1.4, it is enough to show that E has a direct sum decomposition

E = kx⊕ Z as a kSn-module.

Choose y ∈ E such that x and y form a basis of E. Thus xσ = x for all

σ ∈ Sn and

(y + kx)σ = sgn(σ)(y + kx)

so that

yσ + kx = sgn(σ)y + kx

and hence for each σ ∈ Sn we have uσ ∈ k such that

yσ = sgn(σ)y + uσx.

Now for each i ∈ {1, . . . , n − 1} define σi to be the basic transposition

(i, i+ 1), so that we have

σiσi+1σi = σi+1σiσi+1

(this is one of the braid relations for the symmetric group) and further define

ui = uσi so that

yσi = uix− y.
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Then for each i ∈ {1, . . . , n− 1}, we have

y(σiσi+1σi) = (uix− y)(σi+1σi)

= (uix− (ui+1x− y))σi

= (uix− ui+1x+ y)σi

= uix− ui+1x+ uix− y

= (2ui − ui+1)x− y.

Similarly,

y(σi+1σiσi+1) = (2ui+1 − ui)x− y

so that

2ui+1 − ui = 2ui − ui+1

⇒ 3(ui − ui+1) = 0

⇒ ui − ui+1 = 0 (because char(k) 6= 3)

⇒ ui = ui+1.

Thus all of the scalars ui have a common value. Let us denote this by u. Now

define

z = y − u

2
x

(recalling that char(k) 6= 2), so that z and x form a basis of E. To establish

the claim, we need only prove that kz is a kSn-submodule of E, and since Sn

is generated by the basic transpositions, it is enough to prove that zσi ∈ kz
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for each i ∈ {1, . . . , n− 1}. Indeed,

zσi = (y − u

2
x)σi

= yσi −
u

2
xσi

= (ux− y)− u

2
x

=
u

2
x− y

= −z.

Proposition 3.3.8. Let k be a field of characteristic not 2 or 3, and let

γ ` n. We have

Ext1
n (Sgnn, S

γ) = 0.

By Reduction 3.3.5 and Proposition 3.3.6, establishing Proposition 3.3.8

will prove Proposition 3.3.4 and hence prove Theorem 3.3.2.

Proof. We have

Ext1
n(Sgnn,M

γ) ∼= Ext1
n(Sgnn, 1γ

xn
γ
)

∼= Ext1
γ(Sgnn↓nγ ,1γ) (by Theorem 2.2.4).

Now if we let γ = (γ1, . . . , γt), then by (3.1.1) we have Sgnn↓nγ ∼= Sgnγ1
�

· · ·� Sgnγt . Thus, using Proposition 2.1.3 and Lemma 3.3.7, we get

Ext1
n(Sgnn,M

γ) = 0.

We know from above that Sgnn
∼= S(1,1,...,1), and since (1, 1, . . . , 1) 7 β for all

β ` n, we see by Lemma 3.3.3 that

Ext1
n (Sgnn, S

γ) = 0.
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3.4 Stratifying systems

The original definition of a stratifying system for an algebra was given by Cline,

Parshall, and Scott in [7] as part of their work on standardly stratified algebras.

However, we shall use the definition of a stratifying system given by Erdmann

and Sáenz in [11], which is based on the work of Xi in [36], of Dlab and Ringel

in [9], and of Ágoston et al in [1]. Indeed, if A is a finite-dimensional algebra

over an algebraically closed field k, then a stratifying system for A consists

of A-modules Θ1, . . . ,Θr and indecomposable A-modules Y1, . . . , Yr such that

1. HomA(Θi,Θj) = 0 if i > j

2. for each i, there is a short exact sequence 0 → Θi → Yi → Zi → 0

where Zi has a filtration by Θj with j < i

3. if X is an A-module with a filtration by the modules Θ1, . . . ,Θr, then

Ext1
A(X, Y ) = 0 where Y =

⊕r
i=1 Yi.

Further, it was proved in [11] that if we have a collection Θ1, . . . ,Θr of

indecomposable A-modules satisfying the conditions

1. HomA(Θi,Θj) = 0 if i > j

2. Ext1
A(Θi,Θj) = 0 if i ≥ j

then there exist A-modules Y1, . . . , Yr which together with the A-modules

Θ1, . . . ,Θr form a stratifying system.

Our interest in stratifying systems comes from the following result, and

more particularly its corollary.

Proposition 3.4.1 ([11], Lemma 1.4). Let A be a finite-dimensional algebra

over an algebraically closed field k with a stratifying system given by mod-

ules Θ1, . . . ,Θr, Y1, . . . , Yr as above. Suppose that some A-module M has a
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filtration by Θ1, . . . ,Θr. Then for any two filtrations of M by Θ1, . . . ,Θr, the

multiplicity with which each Θi occurs is the same in both filtrations.

If the conclusion of Proposition 3.4.1 holds, we say that “Θ-filtration

multiplicities are well-defined”.

Corollary 3.4.2. Let A be a finite-dimensional algebra over an algebraically

closed field. If Θ1, . . . ,Θr are indecomposable A-modules such that

1. HomA(Θi,Θj) = 0 if i > j

2. Ext1
A(Θi,Θj) = 0 if i ≥ j

then Θ-filtration multiplicities are well-defined.

In order to apply this result to the Specht modules, we only need to put a

suitable total order on them. This is equivalent to putting a total order on

the set of partitions of n. The order we use is the reverse lexicographic order,

which is the order obtained by reversing every relation in the lexicographic

order on partitions. We denote this order by m. Thus for n = 9 we have

(2, 2, 2, 2, 1)m (3, 2, 2, 2)m (3, 3, 1, 1, 1)m (3, 3, 2, 1)m (4, 3, 2).

Note in particular the the partition (1, 1, . . . , 1) is always greatest in the

reverse lexicographic order, and (n) is always least. We have the following

easily obtained relations between the dominance and reverse lexicographic

orders: for ν, λ ` n,

• ν m λ ⇒ ν 4 λ

• ν ·> λ ⇒ ν 7 λ.

We thus obtain the following theorem. The argument we have followed

is that of Erdmann in [10], but this result was originally given (in the more
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general Hecke algebra setting, and by different methods) by Hemmer and

Nakano in [19].

Theorem 3.4.3. [[10], Corollary 3.3; [19], Theorem 3.7.1] Over an alge-

braically closed field of characteristic not 2 or 3, Specht filtration multiplicities

are well-defined.

Proof. Combine Corollary 3.4.2 with Theorem 3.3.2, Proposition 3.3.1, and

the results (3.3.2).

The assumption that the characteristic of the field is not 2 or 3 is necessary

by some well-known examples. Indeed, if char(k) = 2 then S(n) ∼= 1n
∼=

Sgnn
∼= S(1,1,...,1) and this isomorphism between Specht modules means that

Specht filtration multiplicities cannot possibly be well-defined. If char(k) = 3,

we find for example that if n = 3 then the Specht module S(2,1) has an obvious

filtration by Specht modules by virtue of being a Specht module, but also a

submodule isomorphic to the trivial module S(3) such that the quotient of

S(2,1) by this submodule is isomorphic to the sign module S(1,1,1).

Theorem 3.4.3 was originally a rather surprising result. Before it was

known, it seems that it was assumed that the failure of Specht filtration

multiplicities to be well-defined in characteristic 2 and 3 was indicative of the

situation in general prime characteristic. A major new result of this thesis is

a generalisation of Theorem 3.4.3 to the wreath product SmoSn.

Original research in Chapter 3: There is no original research in Chapter

3. I have filled in some of the details of the proof of Theorem 3.3.2 myself,

but the overall argument is clearly given in [10].
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Chapter 4

The wreath product SmoSn

In many areas of Mathematics, one finds that wreath products of groups arise

naturally. The main topic of this thesis is the representation theory of one

specific kind of wreath product, the wreath product of two symmetric groups.

We begin by recalling the definition of this wreath product. Most of the

material in this chapter is drawn from [6] and [21].

Let n and m be non-negative integers. We denote by SmoSn the wreath

product of Sn on Sm. This is the group whose underlying set is the Cartesian

product of Sn with n copies of Sm. We shall write elements of SmoSn as

(σ;α1, α2, . . . , αn)

for α1, α2, . . . , αn ∈ Sm and σ ∈ Sn. Multiplication is given by the formula

(σ;α1, α2, . . . , αn)(π; β1, β2, . . . , βn) =(
σπ; (α(1)π−1β1), (α(2)π−1β2), . . . , (α(n)π−1βn)

)
.

It is easy to show that inversion in SmoSn is given by the formula

(σ;α1, α2, . . . , αn)−1 =
(
σ−1;

(
α(1)σ

)−1
,
(
α(2)σ

)−1
, . . . ,

(
α(n)σ

)−1
)
.
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Now let G be a subgroup of Sm and H a subgroup of Sn. Then we shall write

GoH for the subgroup of SmoSn consisting of all elements

(σ;α1, α2, . . . , αn)

for α1, α2, . . . , αn ∈ G and σ ∈ H. The special case SmoH where H is a

Young subgroup of Sn will be of particular importance below, but we shall

also make use of the case where G and H are each either the full symmetric

group or a Young subgroup thereof, and we shall make frequent use of the

operations of induction and restriction between such subgroups, for example

X↑k(SmoSn)
k(SmoSγ) and Y ↓k(SmoSn)

k(SmoSγ)

where γ is some composition of n. As with the symmetric group, we shall

de-clutter such expressions by replacing the full symbols for the group algebras

with the subscripts used to identify the various subgroups of Sn and Sm and

also suppressing the field k, so for example the above would be abbreviated

to

X↑monmoγ and Y ↓monmoγ .

4.1 Subgroups of the symmetric group asso-

ciated to multicompositions and tuples of

multicompositions

In the representation theory of the symmetric groups, an important role is

played by the Young subgroups associated to compositions. In this section,

we extend the notion of a Young subgroup to encompass multicompositions

and tuples of multicompositions.
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Let γ = (γ1, . . . , γt) be a t-multicomposition of n (t some non-negative

integer) and let γ̂ be the composition γ1 ◦ · · · ◦ γt of n (recall that ◦ denotes

concatenation). We define the Young subgroup of Sn associated to γ to be

the Young subgroup Sγ̂ associated to γ̂, and we write Sγ for this subgroup.

Thus we have a canonical isomorphism

Sγ ∼= Sγ1 × Sγ2 × · · · × Sγt .

Further, we note that Sγ is a subgroup of S|γ|. For example, if n = 20 and γ

is
(
(1, 2, 1, 0, 4), (), (4, 2, 1), (0, 1, 1, 3)

)
, then γ̂ is (1, 2, 1, 0, 4, 4, 2, 1, 0, 1, 1, 3)

and

Sγ = S{1} × S{2,3} × S{4} × S{5,6,7,8} × S{9,10,11,12}×

S{13,14} × S{15} × S{16} × S{17} × S{18,19,20},

where for a subset Ω of {1, . . . , n}, we are writing SΩ for the subgroup of Sn

consisting of all permutations which fix every element of {1, . . . , n} \ Ω.

Now let γ = (γ1, . . . , γt) be a t-tuple of r-multicompositions γi (r some

positive integer) such that |||γ||| = n. The definition we are about to make

works just as well if we allow the multicompositions to have different lengths,

but we shall not need this. Thus each γi is a multicomposition

γi =
(
γi,1, γi,2, . . . , γi,r

)
,

where each γi,j is thus a composition (with γi,j = () allowed)

γi,j =
(
γi,j1 , γi,j2 , . . . , γi,jlij

)
,

(where lij is the length of γi,j) where the integers γi,js are the parts of the

composition γi,j, and further the sum of the integers γi,js over all i, j and s is

n. For each i, let γ̂i be the composition γi,1 ◦ γi,2 ◦ · · · ◦ γi,r of ||γi||, so that

γ̂i =
(
γi,11 , γi,12 , . . . , γi,1li1 , γ

i,2
1 , . . . , γi,2li2 , γ

i,3
1 , . . . . . . , γi,rlir

)
,
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and let γ̂ be the composition γ̂1 ◦ γ̂2 ◦ · · · ◦ γ̂t of n, so that

γ̂ =
(
γ1,1

1 , γ1,1
2 , . . . , γ1,1

l1,1
, γ1,2

1 , . . . , γ1,2
l1,2
, γ1,3

1 , . . . . . . , γ1,r
l1,r
,

γ2,1
1 , γ2,1

2 , . . . , γ2,1
l2,1
, γ2,2

1 , . . . . . . , γ2,r
l2,r
,

γ3,1
1 , . . . . . .

...
...

...

. . . . . . , γt,rlt,r
)
.

Then we define Sγ to be the Young subgroup Sγ̂ of Sn associated to γ̂, and

we call this the Young subgroup associated to γ. Thus we have canonical

isomorphisms

Sγ ∼= Sγ1 × · · · × Sγt

∼= Sγ1,1 × · · · × Sγ1,r

× Sγ2,1 × · · · × Sγ2,r

...

× Sγt,1 × · · · × Sγt,r .

Further, recalling that |γ| =
(
|γ1|, . . . , |γt|

)
(a multicomposition of n) and

||γ|| =
(
||γ1||, . . . , ||γt||

)
(a composition of n), we note that we have subgroup

inclusions

Sγ ≤ S|γ| ≤ S||γ|| ≤ Sn. (4.1.1)

For example, if we take n = 37, t = 4, r = 3, and we let

γ =
((

(3, 1, 2, 0), (1, 0, 2), ()
)
,
(
(0, 0), (1, 1, 2, 5), (0, 1, 0, 2, 1)

)
,(

(0, 1, 3), (), (3, 2, 0, 1)
)
,
(
(), (2, 0, 1), (2)

))
then

γ̂ = (3, 1, 2, 0, 1, 0, 2, 0, 0, 1, 1, 2, 5, 0, 1, 0, 2, 1, 0, 1, 3, 3, 2, 0, 1, 2, 0, 1, 2),
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and Sγ is the Young subgroup Sγ̂. Further, we see that

|γ| =
(
(6, 3, 0), (0, 9, 4), (4, 0, 6), (0, 3, 2)

)
and ||γ|| =

(
9, 13, 10, 5

)
and thus we see that we have the subgroup inclusions

(4.1.1).

4.2 Subgroups of the wreath product associ-

ated to multicompositions and tuples of

multicompositions

We now define certain subgroups of the wreath product SmoSn which will

be fundamental to our work below. To do so, we must first fix a total order

on the partitions of m. We choose the lexicographic order. We take r to

be the number of distinct partitions of m, and we enumerate them in the

lexicographic order as follows

(m) = µ1 > µ2 > . . . > µr = (1m).

So for example if m = 4, then r = 5 and we have

(4) = µ1 > (3, 1) = µ2 > (2, 2) = µ3 > (2, 1, 1) = µ4 > (1, 1, 1, 1) = µ5.

Now let γ = (γ1, . . . , γr) be an r-multicomposition of n (the fact that

γ has length r is crucial for the following construction). We associate to γ

a subgroup of SmoSn, which we shall think of as an analogue of the Young

subgroup of a symmetric group associated to a composition. Indeed, we define

Wγ to be the subgroup of SmoSn consisting of all elements of the form(
σ ; α1

1 , α
1
2 , . . . , α

1
|γ1|︸ ︷︷ ︸

∈Sµ1≤Sm

, α2
1 , . . . , α

2
|γ2|︸ ︷︷ ︸

∈Sµ2≤Sm

, α3
1 , . . . . . . , α

r
|γr|
)
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where σ ∈ Sγ and, as indicated, each αij lies in the Young subgroup Sµi of Sm

associated to the partition µi ` m. Thus we have a canonical isomorphism

Wγ
∼=
(
Sµ1 oSγ1

)
×
(
Sµ2oSγ2

)
× · · · ×

(
Sµr oSγr

)
, (4.2.1)

and further we note that Wγ is a subgroup of SmoS|γ|.
Now as in the previous section we let γ = (γ1, . . . , γt) be a t-tuple of

r-multicompositions γi such that |||γ||| = n where we allow ||γi|| = 0 (in

which case we have γi =
(
(), (), . . . , ()

)
, an r-tuple of empty compositions).

We take

γi =
(
γi,1, γi,2, . . . , γi,r

)
for i = 1, . . . , t, so that each γi,j is a composition (with γi,j = () allowed),

and further we take

γi,j =
(
γi,j1 , γi,j2 , . . . , γi,jlij

)
for each i and j, so that each γi,js is a non-negative integer. We associate to

γ a subgroup of SmoSn, which we shall write as Wγ and which we define to

be the subgroup consisting of all elements of SmoSn of the form(
σ;

α1,1
1 , α1,1

2 , . . . , α1,1
|γ1,1|︸ ︷︷ ︸

∈Sµ1≤Sm

, α1,2
1 , . . . , α1,2

|γ1,2|︸ ︷︷ ︸
∈Sµ2≤Sm

, α1,3
1 , . . . . . . , α1,r

1 , . . . , α1,r
|γ1,r|︸ ︷︷ ︸

∈Sµr≤Sm

,

α2,1
1 , α2,1

2 , . . . , α2,1
|γ2,1|︸ ︷︷ ︸

∈Sµ1≤Sm

, α2,2
1 , . . . . . . . . . . . . , α2,r

1 , . . . , α2,r
|γ2,r|︸ ︷︷ ︸

∈Sµr≤Sm

,

...
...

...

αt,11 , αt,12 , . . . , αt,1|γt,1|︸ ︷︷ ︸
∈Sµ1≤Sm

, αt,21 , . . . , αt,2|γt,2|︸ ︷︷ ︸
∈Sµ2≤Sm

, αt,31 , . . . . . . , αt,r1 , . . . , αt,r|γt,r|︸ ︷︷ ︸
∈Sµr≤Sm

)
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where σ ∈ Sγ and, as indicated, for each i, j, s we have αi,js ∈ Sµj . Thus note

that we have canonical isomorphisms

Wγ
∼= Wγ1 × · · · ×Wγt (4.2.2)

(where Wγi is a subgroup of SmoS||γi|| )
∼=
(
Sµ1oSγ1,1

)
×
(
Sµ2 oSγ1,2

)
× · · · ×

(
Sµr oSγ1,r

)
×
(
Sµ1oSγ2,1

)
× · · · ×

(
Sµr oSγ2,r

)
...

×
(
Sµ1oSγt,1

)
× · · · ×

(
Sµr oSγt,r

)
,

where we recall that for each i and j we have that Sγi,j is a subgroup of S|γi,j |.

4.3 Construction of wreath product modules

We now recall several standard methods for constructing modules for wreath

products, as described in [21, Section 4.3] and [6, Section 3]. Recall that we

are using right modules.

Firstly, let G be a subgroup of Sm, and let X be a kG-module. We define

X �̃n to be the k(GoSn)-module obtained by equipping the k-vector space X⊗n

(that is, the tensor product over k of n copies of X) with the action given by

the formula

(x1 ⊗ · · · ⊗ xn)(σ;α1, . . . , αn) = (x(1)σ−1α1)⊗ · · · ⊗ (x(n)σ−1αn)

for x1, . . . , xn ∈ X, α1, . . . , αn ∈ G, σ ∈ Sn.

More generally, let X1, . . . , Xt be kG-modules, and γ = (γ1, . . . , γt) a

composition of n of length t. We form a k(GoSγ)-module by equipping the

k-vector space
(
X⊗γ1

1

)
⊗
(
X⊗γ2

2

)
⊗ · · · ⊗

(
X⊗γtt

)
with the action given by the

74



formula

(x1 ⊗ · · · ⊗ xn)(σ;α1, . . . , αn) = (x(1)σ−1α1)⊗ · · · ⊗ (x(n)σ−1αn)

where each xi lies in the appropriate Xj, α1, . . . , αn ∈ G, and σ ∈ Sγ. We

denote this module by
(
X1, . . . , Xt

)�̃γ
, and we note that X �̃n is the special

case of this construction where γ has an n in one place and all the other parts

are 0.

Now let G be a subgroup of Sm, H be a subgroup of Sn, and Y a kH-

module. It is easy to check that we may make Y into a k(GoH)-module via

the formula

y(σ;α1, . . . , αn) = yσ (4.3.1)

for y ∈ Y , α1, . . . , αn ∈ G, and σ ∈ H. This module may be understood by

noting that GoH is the semidirect product of the normal subgroup consisting

of all elements (e;α1, . . . , αn) for α1, . . . , αn ∈ G with the subgroup consisting

of all elements (σ; e, . . . , e) for σ ∈ H. This latter subgroup is canonically

isomorphic to H, and hence we see that the module obtained from Y via

(4.3.1) is the inflation of Y from H to GoH with respect to the semidirect

product structure. Hence we shall denote this module by InfGoHH Y . We shall

be particularly interested in the case where H is Sn or a Young subgroup Sγ

of Sn and G is Sm or a Young subgroup Sλ of Sm, and in accordance with our

notational conventions, we shall write these modules as, for example, Infmonn Y

or Infλoγγ Y .

Now let H be a subgroup of Sn, G be a subgroup of Sm, Y be a kH-module,

and further let Z be a k(GoH)-module. Then we define a k(GoH)-module

Z�Y as follows: the underlying k-vector space is Z⊗Y , and the action is

given by the formula

(z ⊗ y)(σ;α1, . . . , αn) = (z(σ;α1, . . . , αn))⊗ (yσ)
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for z ∈ Z, y ∈ Y , α1, . . . , αn ∈ G, σ ∈ H. Thus we see that we have an

equality of k(GoH)-modules

Z�Y = Z ⊗ InfGoHH Y (4.3.2)

where the module on the right-hand side is the internal tensor product of the

k(GoH)-modules Z and InfGoHH Y .

We can combine the above constructions as follows: if G is a subgroup of

Sm, X1, . . . , Xt are kG-modules and Y is a kSγ-module for γ a composition

of n, then we obtain a k(GoSγ)-module

(
X1, . . . , Xt

)�̃γ�Y
with underlying vector space

(
X⊗γ1

1

)
⊗
(
X⊗γ2

2

)
⊗ · · · ⊗

(
X⊗γtt

)
⊗Y and action

given by the formula

(x1⊗ · · ·⊗xn⊗y)(σ;α1, . . . , αn) =

(x(1)σ−1α1)⊗ · · · ⊗ (x(n)σ−1αn)⊗(yσ) (4.3.3)

for xi ∈ X, αi ∈ G, y ∈ Y , σ ∈ Sγ. Further, the k(GoSγ)-module

(
X1, . . . , Xt

)�̃γ�Y
is exactly the inner tensor product

(
X1, . . . , Xt

)�̃γ ⊗ Inf
GoSγ
Sγ

Y

of k(GoSγ)-modules, as explained above. We shall often be interested (for

the case G = Sm) in inducing such modules from SmoSγ to the full wreath

product SmoSn, that is, in modules[(
X1, . . . , Xt

)�̃γ�Y ]xmon
moγ

.
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We now recall an elementary construction for producing kSγ-modules Y

for use in the above constructions. Indeed, for each i ∈ {1, . . . , t}, let Yi

be a right kSγi-module. Now recall that we have a canonical identification

of the group Sγ with the direct product Sγ1 × Sγ2 × · · · × Sγt of groups.

Thus any module for k(Sγ1×Sγ2× · · ·×Sγt) may be regarded as a kSγ-module

in a canonical way, and vice versa. In particular, if Yi is a kSγi-module

for each i, then the external tensor product Y1 � Y2 � · · · � Yt, which is a

k (Sγ1 × Sγ2 × · · · × Sγt)-module, may be regarded as a kSγ-module.

Now recall further that we have a canonical isomorphism between GoSγ and

(GoSγ1)× (GoSγ2)×· · ·× (GoSγt), and hence we have a canonical identification

of algebras

k(GoSγ) = k (GoSγ1)⊗ k (GoSγ2)⊗ · · · ⊗ k (GoSγt) . (4.3.4)

Suppose that we have for each i = 1, . . . , t a k(G o Sγi)-module Zi. Thus with

modules Yi as above, we see that for each i, Zi � Yi is a k(G o Sγi)-module.

Hence via the identification (4.3.4), we see that both Z1 � · · · � Zt and

(Z1 � Y1)� · · ·� (Zt � Yt) may be considered to be k(GoSγ)-modules. It is

now easy to see that we have an isomorphism of k(G o Sγ)-modules

(Z1 � · · ·� Zt)� (Y1 � · · ·� Yt) ∼= (Z1 � Y1)� · · ·� (Zt � Yt). (4.3.5)

There is an important special case of the isomorphism (4.3.5). Indeed, if we

have kG-modules X1, . . . , Xt, then we may form for each i the k(G o Sγi)-
module X �̃γii . We have

(
X1, . . . , Xt

)�̃γ
= X �̃γ1

1 � · · ·�X �̃γtt

by the definition of the left-hand side. We now see via (4.3.5) that we have
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an isomorphism

(
X1, . . . , Xt

)�̃γ�(Y1 � Y2 � · · ·� Yt
) ∼=(

X �̃γ1

1 � Y1

)
�
(
X �̃γ2

2 � Y2

)
� · · ·�

(
X �̃γtt � Yt

)
(4.3.6)

(this isomorphism was given in [6, Lemma 3.2 (1)]). In subsequent chapters

we shall be particularly interested in modules of the form[(
X1, . . . , Xt

)�̃γ � (Y1 � Y2 � · · ·� Yt
)]xmon

moγ
. (4.3.7)

In the next chapter (Section 5.2), we shall generalise the construction (4.3.7)

to the wreath product of a k-algebra with a symmetric group, and moreover

we shall develop a graphical representation of pure tensors in such modules

using modified permutation diagrams, which gives a more intuitive way of

understanding their structure.

We now give some basic properties of the above constructions.

Proposition 4.3.1. Let G be a subgroup of Sm and H a subgroup of Sn. Let

W and Y be kH-modules. Then we have an isomorphism of k(G oH)-modules

InfGoHH (W ⊗ Y ) ∼= InfGoHH (W )⊗ InfGoHH (Y ).

Proof. Both modules have underlying vector space W ⊗ Y , and it is easy to

verify that the identity map on this space yields the required isomorphism of

group modules.

Proposition 4.3.2. Let G be a subgroup of Sm and H a subgroup of Sn. Let

Z be a k(GoH)-module and Y a kH-module, so that Z�Y is a k(GoH)-module.

Then we have an isomorphism of k(G oH)-modules

(Z � Y )∗ ∼= Z∗ � Y ∗.
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Proof. We have

(Z � Y )∗ =
(
Z ⊗ InfGoHH Y

)∗
∼= Z∗⊗

(
InfGoHH Y

)∗
(by (2.2.1))

And then by using the easily-verified fact that
(

InfGoHH Y
)∗ ∼= InfGoHH (Y ∗) and

a second application of (2.2.1), the claim is established.

Proposition 4.3.3. Let G be a subgroup of Sm and let U, V be kG-modules.

Then we have an isomorphism of k(G o Sn)-modules

U �̃n ⊗ V �̃n ∼= (U ⊗ V )�̃n .

Proof. Recall that, as k-vector spaces, we have U �̃n⊗ V �̃n = U⊗n⊗ V ⊗n and

(U ⊗ V )�̃n = (U ⊗ V )⊗n. It is a routine calculation to verify that the formula

(u1 ⊗ · · · ⊗ un)⊗ (v1 ⊗ · · · ⊗ vn) 7−→ (u1 ⊗ v1)⊗ · · · ⊗ (un ⊗ vn)

where ui ∈ U and vi ∈ V yields a well-defined k-linear map U⊗n ⊗ V ⊗n 7−→
(U ⊗ V )⊗n which is a homomorphism of k(G o Sn)-modules. This map is then

immediately seen to be onto, and hence must be an isomorphism because the

two spaces in question clearly have the same dimension.

Proposition 4.3.4. Let G be a subgroup of Sm and let U be a kG-module.

Then we have an isomorphism of k(G o Sn)-modules

(
U �̃n

)∗ ∼= (U∗)�̃n .

Proof. Firstly, recall that
(
U �̃n

)∗
is equal as a k-vector space to Homk(U

⊗n, k)

while (U∗)�̃n is
(
Homk(U, k)

)⊗n
.

Now if we take g1, . . . , gn ∈ U∗ = Homk(U, k), then it is a routine calcula-

tion to check that we have a well-defined k-linear map from U⊗n to k given
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on pure tensors by the formula u1 ⊗ · · · ⊗ un 7−→ g1(u1) · · · gn(un). Another

routine calculation then shows us that we have a well-defined k-linear map

from
(
Homk(U, k)

)⊗n
to Homk(U

⊗n, k) which is defined by mapping the pure

tensor g1 ⊗ . . .⊗ gn in
(
Homk(U, k)

)⊗n
to the map defined above. We shall

denote this map by Φ, and it is a routine calculation to show that Φ is then

a k(G o Sn)-module homomorphism from (U∗)�̃n to
(
U �̃n

)∗
. Now it is clear

that these two modules have the same k-dimension, and so to prove that Φ is

an isomorphism, it suffices to prove that it is onto.

So let us fix a k-basis u1, . . . , ud for U . Then U∗ has a k-basis f1, . . . , fd,

where fi : U −→ k is defined by fi(uj) = δij (where δij is the Kronecker

delta). Now for any n-tuple τ = (t1, . . . , tn) over the set {1, . . . , d}, we define

uτ to be the pure tensor ut1 ⊗ · · · ⊗ utn ∈ U �̃n. We now see that U �̃n has

k-basis

{uτ : τ ∈ {1, . . . , d}n}.

Thus U �̃n has k-basis

{fτ : τ ∈ {1, . . . , d}n}

where fτ is the k-linear map defined by fτ (uθ) = δτθ. But it is now clear

that if τ = (t1, . . . , tn), then Φ(ft1 ⊗ · · · ⊗ ftn) = fτ so that Φ is onto as

required.

Proposition 4.3.5. Let G1 ⊆ G2 be subgroups of Sm and X a kG2-module.

Then we have an isomorphism of k(G1 o Sn)-modules[
X �̃n

]yG2oSn

G1oSn
∼=
[
X
yG2

G1

]�̃n
Proof. This is immediate from the definition of (−)�̃n.

Proposition 4.3.6. [6, Lemma 3.1] Let G be a subgroup of Sm. Let α =

(α1, . . . , αt) be a composition of n, and for i = 1, . . . , t let Xi be a k(G o Sαi)-

module, so that X1� · · ·�Xt is naturally a k(G o Sα)-module. Let π ∈ St.
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Then [
X1� · · ·�Xt

]xGon
Goα
∼=
[
X(1)π� · · ·�X(t)π

]xGon
Go(πα)

where πα represents the composition (α(1)π, . . . , α(t)π), and where as usual

the symbols n, α, and πα represent the subgroups Sn, Sα, and Sπα of Sn,

respectively.

Proposition 4.3.7. [6, Lemma 3.2] Let G be a subgroup of Sm. Let α =

(α1, . . . , αt) be a composition of n and let V be a k(GoSn)-module, W be a

k(GoSα)-module, X be a kSn-module and Y be a kSα-module. Then we have

module isomorphisms

1.
[
V �X

]yGon
Goα
∼=
(
V ↓GonGoα

)
� (X↓nα)

2. V � (Y ↑nα) ∼=
[(
V ↓GonGoα

)
� Y

]xGon
Goα

3.
(
W↑GonGoα

)
�X ∼=

[
W � (X↓nα)

]xGon
Goα

where as usual the symbols n and α represent the subgroups Sn and Sα of Sn,

respectively.

4.4 Analogues of Specht and Young permuta-

tion modules for k(SmoSn)

We now define analogues for the wreath product SmoSn of the Specht and

Young permutation modules of the symmetric group. Our justification for

calling these modules analogues of the Specht and Young permutation modules

will come in subsequent chapters, where we shall show that they have a range

of properties analogous to the corresponding symmetric group modules. In

particular, in the next chapter we shall use the theory of cellular algebras to

prove results which will justify our use of the name “Specht module” here.
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As above, let us fix the distinct partitions of m, in the lexicographic order,

to be

(m) = µ1 > µ2 > . . . > µr = (1m).

Then our Specht module analogues for SmoSn are indexed by the set Λr
n of

r-multipartitions of n. Indeed, for such an r-multipartition ν = (ν1, . . . , νr),

we define a k(SmoSn)-module

Sν =
[(
Sµ

1

, . . . , Sµ
r)�̃|ν|�(Sν1

� · · ·� Sνr
)]xmon

mo|ν|
,

and we call Sν the the Specht module for SmoSn associated to ν.

A special case of the above which will be of particular interest is the case

of Sν for ν = [ν, i] (recall that [ν, i] is the r-multipartition with ν ` n in the

ith place, and () in all the other places). In this case, we have(
Sµ

1

, . . . , Sµ
r)�̃|ν|

=
(
Sµ

i)�̃n
and S|ν| = Sn, from which it follows that

Sν
1

� · · ·� Sνr ∼= Sν

as modules for kS|ν| = kSn. Thus we have

S[ν,i] =
(
Sµ

i)�̃n � Sν .
Now let γ = (γ1, γ2, . . . , γr) be an r-multicomposition of n (recalling that

we allow γi = () � 0, and we allow the compositions γi to have zero parts).

We define the Young permutation module for Sm o Sn associated to γ to

be

Mγ =
[(
Mµ1

, . . . ,Mµr
)�̃|γ|�(Mγ1

� · · ·�Mγr
)]xmon

mo|γ|
.

We know from (3.1.3) that in the representation theory of kSn, we have

for any composition γ of n that 1γ
xn
γ
∼= Mγ. We shall need the analogous

result for k(SmoSn), and we shall establish it by the same method as (3.1.3).
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Proposition 4.4.1. For γ an r-multicomposition of n, we have an isomor-

phism

1
xmon
Wγ
∼= Mγ

of k(SmoSn)-modules.

Proof. We shall apply Corollary 2.2.7. By the definition of Mγ and (2.2.3),

we have

dimk(M
γ) =

(
r∏
i=1

dimk(M
µi)|γ

i|
)(

r∏
i=1

dimk(M
γi)

)
[Sn : S|γ|]

so that using (3.1.2) we have

dimk(M
γ) =

(
r∏
i=1

dimk(M
µi)|γ

i|
)(

r∏
i=1

dimk(M
γi)

)
[Sn : S|γ|]

=

 r∏
i=1

(
m!∏
j µ

i
j!

)|γi|( r∏
i=1

|γi|!∏
j γ

i
j!

)
n!∏r

i=1 |γi|!

=
n!
(
m!|γ

1|+···+|γr|
)

∏r
i=1

(
(
∏

j µ
i
j!)
|γi| ·∏j γ

i
j!
)

=
n!(m!)n∏r
i=1 |Sµi oSγi |

=
|SmoSn|
|Wγ|

(by the isomorphism (4.2.1)).

Recall that for any composition α, we have an element τ(α) ∈ Mα upon

which Sα acts trivially but which generates Mα as a kS|α|-module. Now from

the definition of Mγ, we see that as a k-vector space, Mγ is(
Mµ1)⊗|γ1| ⊗ · · · ⊗

(
Mµr

)⊗|γr| ⊗Mγ1 ⊗ · · · ⊗Mγr ⊗
mo|γ|

k(SmoSn)

(where, note, all the tensor products are taken over k, except the one over

k(SmoS|γ|) ). Using the definition of the action of k(SmoS|γ|) on the module
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(
Mµ1

, . . . ,Mµr
)�̃|γ|�(Mγ1

� · · · �Mγr
)

given by (4.3.3), it is now easy to

prove that the element

τ(µ1)⊗|γ
1| ⊗ · · · ⊗ τ(µr)⊗|γ

r| ⊗ τ(γ1)⊗ · · · ⊗ τ(γr)⊗ e

(where e is the group identity element of SmoSn) generates Mγ as a k(SmoSn)-

module but is acted upon trivially by Wγ. The proposition now follows by

Corollary 2.2.7.

Original research in Chapter 4: Most of the material in this chapter is

taken more-or-less directly from the literature, although Propositions 4.3.1,

4.3.2, 4.3.3, 4.3.4 and 4.3.5 (all of which are fairly routine properties of the

module constructions given in Section 4.3) are my own work, as is Proposition

4.4.1 (again, this is a fairly routine result).
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Chapter 5

Cellular structure of wreath

product algebras

In this chapter, we shall offer some justification for our use of the name

“Specht module” for the modules Sν in the previous chapter. We shall do this

by proving that the group algebra k(Sm o Sn) is a cellular algebra with the

modules Sν as its cell modules, and further that if k(Sm o Sn) is semisimple,

then the modules Sν form a complete system of isomorphism classes of simple

k(Sm oSn)-modules without redundancy (as ν ranges over all r-multipartitions

of n). This is exactly the situation which holds for the Specht modules of the

group algebra of the symmetric group. We shall also give a description of

these modules in terms of a certain class of diagram, which affords a more

intuitive understanding of their structure. In fact, this description is valid for

any k(Sm o Sn)-modules of the form[(
X1, . . . , Xt

)�̃γ � (Y1 � Y2 � · · ·� Yt
)]xmon

moγ

(see (4.3.7)).

In contrast to the rest of this thesis, we shall in this chapter work in the
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more general situation of the wreath product A o Sn of a finite-dimensional

k-algebra A with Sn (see Section 5.2 below for the definition of A oSn), noting

that this setting includes k(Sm oSn) since we have (kSm) oSn ∼= k(Sm oSn). In

particular, we shall be concerned with the case where A is a cellular algebra.

Cellular algebras were introduced by Graham and Lehrer in [13] and the

concept has since found broad application.

In [12], Geetha and Goodman showed that the algebra A o Sn is cellular

in the case that A is not only cellular but cyclic cellular, meaning that all

of the cell modules of A are cyclic [12, Theorem 4.1]. Their proof is quite

combinatorial in nature, and draws on the work of Dipper, James, and Mathas

in [8] and of Murphy in [31]. However, we shall prove (section 5.3) that A oSn
is cellular for any cellular algebra A, by exhibiting it as an iterated inflation

of tensor products of group algebras of symmetric groups. Iterated inflations

were originally introduced by König and Xi in [23], but we shall use this

concept in the form given in [16]. The advantage of taking this approach

is a far simpler proof than the one given in [12], and hence much easier

access to the powerful machinery of cellular algebra theory which allows us

to easily prove the nice results on A o Sn given in Section 5.4. The price

for this simplicity is that order obtained on the set of cell indices of A o Sn
contains more relations than the order obtained in [12], and hence contains less

representation-theoretic information; see the discussion at the end of Section

5.3 for more details. Since (as far as the author is aware) all cellular algebras

which occur in practice are in fact cyclic cellular, the result presented here is

in effect a weaker version of the result of Geetha and Goodman. However,

the much simpler proof afforded by the method of iterated inflations is of

interest in its own right.

In Section 5.2, we shall generalise the construction of modules of the form
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(4.3.7) to A o Sn, and as mentioned above we shall also obtain a convenient

graphical description of such modules. In Section 5.4 we bring this description

together with the cellularity result to deliver results on the representation

theory of A o Sn, in particular a description of the simple modules and a

semisimplicity condition. These results require no extra assumptions on the

field (e.g. algebraic closedness).

We shall conclude by applying (Section 5.5) this work to the case where

A = kSm, in which case A o Sn is in fact the group algebra k(Sm o Sn) which

is the main topic of this thesis.

Note that we shall not use the contents of this chapter again in this thesis.

Indeed, this material is intended to provide motivation for our study of the

Specht modules for k(Sm o Sn), and to place the study of the representation

theory of k(Sm o Sn) in the broader context of the study of wreath product

algebras. In particular, our arguments in subsequent chapters do not make

use of the cellular structure on k(Sm o Sn).

This chapter is an adapted version of an article preprint [15] which the

author has submitted for publication to the Journal of Pure and Applied Al-

gebra (Elsevier) under the title Cellular Structure of Wreath Product Algebras,

and which has subsequently been resubmitted to this journal in revised form

following review. This chapter is based on the revised version.

Some of the material in this chapter is based on material from [14], a

thesis for which the author was awarded an M.Sc. at the University of Kent

in 2016. In particular, the whole of Section 5.1.3 appeared in essentially the

same form in [14]. The rest of the material in question comprises whole of

Section 5.3 and the first part of Section 5.4, from the start of the section

up to and including Proposition 5.4.1. All of this material appeared in [14],

but the version presented here is an improvement on the version given in
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[14] because it makes use of a more sophisticated order on the layers of the

iterated inflation structure (the Γ-dominance order ; see below). Other than

the relatively minor modifications to the arguments necessary to make use of

this improved order, the material is in essentially the same form as in [14] (the

version in [14] used a slightly different cellular structure on the group algebra

of the symmetric group, with the duals of the Specht modules appearing as

the cell modules, but this makes no difference to the arguments).

5.1 Recollections and definitions

An anti-involution on a k-algebra A is a self-inverse k-linear isomorphism

a 7→ a∗ such that (ab)∗ = b∗a∗ for all a, b ∈ A.

5.1.1 Cellular algebras

We refer the reader to [13] for basic information and notation on cellular

algebras. However, in order to avoid confusion with our established notations

for various sets of (multi)partitions based on the symbol Λ, we shall use the

symbol Γ to denote the poset indexing the cell modules of a cellular algebra.

We shall refer to elements of the poset Γ as cell indices, and we shall write

the anti-involution on a cellular algebra A as a 7→ a∗. Recall that to each

cell index λ we associate a finite set M(λ), and we have a cellular basis of A

whose elements are indexed by the disjoint union of the sets M(λ)×M(λ) for

λ ∈ Γ. We write the cellular basis element indexed by (S, T ) ∈M(λ)×M(λ)

as Cλ
S,T . We call the tuple (Γ,M,C) the cellular data of A with respect to ∗.

Since we are using right modules we take the multiplication rule for cellular
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basis elements to be

Cλ
S,Ta ≡

∑
X∈M(λ)

Ra(T,X)Cλ
S,X (5.1.1)

modulo cellular basis elements of lower cell index, where the coefficients

Ra(T,X) ∈ k are independent of S. Then the right cell module ∆λ is the

vector space with basis {CT : T ∈ M(λ)}. Our form of the multiplication

rule (5.1.1) means that the action of A on ∆λ is

CTa =
∑

X∈M(λ)

Ra(T,X)CX . (5.1.2)

Let us recall some basic results on cell modules, see [13, Sections 2 and 3].

Indeed, each cell module is equipped with a bilinear form, whose radical is

either the whole cell module or else its unique maximal A-submodule. We

shall call these bilinear forms the cell forms and their radicals the cell radicals.

We let Γ0 be the set of λ ∈ Γ such that the cell radical of ∆λ does not equal

∆λ, and for λ ∈ Γ0 we let Lλ be the quotient of ∆λ by its cell radical. Thus Lλ

is a simple A-module, and the modules Lλ for λ ∈ Γ0 are in fact a complete

list of all the simple right A-modules up to isomorphism, without redundancy.

5.1.2 Permutation diagrams and cellularity of kSn

We shall find it convenient to represent permutations in the symmetric group

Sn via permutation diagrams. For example, we represent (1, 2, 3)(5, 7) ∈ S7

by the diagram

,

where the ith node on the top row is connected by a string to the (i)σth node

on the bottom row. To calculate the product σπ in Sn using permutation
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diagrams, we connect the diagram for σ above the diagram for π, and then

simplify the resulting diagram to yield the permutation diagram of σπ.

Now from [30], kSn is known to be cellular with respect to our map ∗ and

a tuple of cellular data including the set Λn of all partitions of n with the

reverse dominance order. Further, the cell module associated to a partition

λ ∈ Λn by this cellular structure is the dual Specht module
(
Sλ
)∗

, where Sλ

is as in previous chapters the (right) Specht module of James in [20]. Our

source for these facts is [30], in particular Theorem 3.20, the “Warning” on

page 38, and “Note 2” on page 54. Note however that the original published

text of [30] incorrectly states that the cell module obtained is the dual of the

right James Specht module associated to the conjugate of λ; see the correction

to the “Warning” on page 38 in the author’s errata to [30]. Note further

that [30, Theorem 3.20] mentions the dominance order on Λn rather than

the reverse dominance order. However, looking at the definition of a cellular

algebra used there [30, 2.1], we see that [30] uses the opposite convention on

ordering when defining a cellular algebra compared to our definition, so in

the sense of our definition of a cellular algebra the order is indeed the reverse

dominance order.

For our work in this chapter, we would like a cellular structure on kSn

with the Specht modules Sλ themselves as cell modules. To obtain such a

structure we use the work on dual bases of Frobenius cellular algebras of

Li and Xiao in [26] and of Li in [25] (see also [30, Chapter 2, exercise 11]).

For this, we must recall that if A is a k-algebra and 〈−,−〉 is a k-valued

bilinear form on A, then 〈−,−〉 is associative if we have 〈ab, c〉 = 〈a, bc〉 for

all a, b, c ∈ A. From Section 3 of [26] we know that if a cellular algebra A is

endowed with a symmetric, non-degenerate, associative bilinear form (and

hence the algebra is a symmetric Frobenius algebra), then we may take the
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dual cellular basis of our cellular basis, and that this basis is indeed a cellular

basis of A. Further, the cellular structure on A associated to this dual cellular

basis has the same set of cell indices as the original cellular structure, but

with the reverse order. Moreover, by [26, Proposition 3.3], if we take ∆λ to be

the cell module associated to a cell index λ by the original cellular structure

on A, then the cell module associated to λ by the new cellular structure is

the A-module obtained by equipping Homk(∆
λ, k) with the A-action given

by the formula (fa)(x) = f(xa∗) for f ∈ Homk(∆
λ, k), a ∈ A, x ∈ ∆λ.

Turning to the algebra kSn, we may easily show that the form defined on

kSn by letting 〈a, b〉 be the coefficient of the identity element of Sn in the

expansion of ab over the basis Sn is symmetric, non-degenerate, associative

and bilinear. It follows that we may obtain a cellular structure on kSn

involving the anti-involution ∗ and the set Λn with the dominance order,

where the cell module associated to a partition λ is
((
Sλ
)∗)∗

(the dual of the

dual of Sλ), which is trivially isomorphic to Sλ. It is this cellular structure

on kSn which we shall use in this chapter. Note, however, that we shall not

require any details about the definition of the associated cellular basis.

Now our cellular structure on kSn yields an indexing of the simple kSn-

modules as Lλ for λ ∈
(
Λn

)
0
, where

(
Λn

)
0

is a subset of Λn. It turns out that

this set
(
Λn

)
0

is the set of all p-regular partitions of n, and moreover that the

simple module Lλ associated to a p-regular partition λ is isomorphic to the

simple module Dλ as in Theorem 3.1.4. We shall now justify these assertions.

Lemma 5.1.1. ([13, Section 3]) Let A be a cellular algebra with poset of cell

indices Λ, cell modules ∆λ and simple modules Lλ for λ ∈ Λ0. For λ ∈ Λ0,

the composition factors of the cell module ∆λ include one copy of Lλ, and all

other composition factors are Lµ for µ ∈ Λ0 with µ > λ. For λ ∈ Λ \ Λ0, the

composition factors of the cell module ∆λ are all of the form Lµ for µ ∈ Λ0
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with µ > λ.

Proposition 5.1.2. In our cellular structure on kSn with the Specht modules

as cell modules, the set
(
Λn

)
0

of cell indices indexing the simple modules

is exactly the set of p-regular partitions. Further, if λ is p-regular then the

simple module Lλ obtained from this cellular structure is isomorphic to Dλ.

Proof. We shall prove by (strong) induction on λ ∈ Λn (where Λn is equipped

with the dominance order) that for each λ ` n, we have λ ∈
(
Λn

)
0

if and only

if λ is p-regular, and that if λ is p-regular then Dλ ∼= Lλ. Indeed, assume

that for some λ ` n the desired statement holds for all partitions µ ` n with

µ . λ. It follows that{
µ ` n | µ is p-regular and µ . λ

}
=
{
µ ∈

(
Λn

)
0
| µ . λ

}
,

and that we have Dµ ∼= Lµ for all µ in this set.

Suppose that λ is p-singular. By Theorem 3.1.4, Sλ has a filtration by

simple modules Dµ for p-regular partitions µ ` n such that µ . λ. Hence

all composition factors of Sλ are of the form Lµ for µ ∈
(
Λn

)
0

such that

µ . λ. Suppose for a contradiction that λ ∈
(
Λn

)
0
. Then by Lemma 5.1.1,

the composition factors of Sλ must include a factor of the simple module Lλ

satisfying Lλ � Lµ for all µ ∈
(
Λn

)
0

such that µ . λ, a contradiction.

Now suppose that λ is p-regular. Then by Theorem 3.1.4, Sλ has a

filtration by simple modules Dµ where Dλ occurs exactly once and all other

factors are of the form Dµ for p-regular partitions µ ` n such that µ . λ.

Suppose for a contradiction that λ ∈ Λn \
(
Λn

)
0
. Then by Lemma 5.1.1,

we must have Dλ ∼= Lµ for some µ ∈
(
Λn

)
0

with µ . λ, which yields a

contradiction since we than have Lµ ∼= Dµ � Dλ. Thus λ ∈
(
Λn

)
0
. Hence

by Lemma 5.1.1, Lλ must be amongst the composition factors of Sλ, which

forces Dλ ∼= Lλ since Lλ � Lµ ∼= Dµ for all µ ∈
(
Λn

)
0

with µ . λ.
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Thus we see that the existing literature on the symmetric group and

cellular algebras yields the following theorem.

Theorem 5.1.3. The group algebra kSn is cellular with respect to the anti-

involution ∗ defined by setting σ∗ = σ−1 for σ ∈ Sn, and a tuple of cellular

data including the partially ordered set Λn consisting of all partitions of n

endowed with the dominance order D. The cell module associated to λ ∈ Λn

by this structure is the Specht module Sλ as defined above. Further, the set(
Λn

)
0

of cell indices indexing the simple modules is exactly the set of p-regular

partitions (recall that for p = 0 all partitions are p-regular), and moreover

for λ ∈
(
Λn

)
0
, the simple module Lλ obtained from the cell module Sλ is

isomorphic to the simple module Dλ.

The following result may easily be proved by directly verifying the axioms

for a cellular algebra. In fact, it is merely a special case of the general result

that a tensor product of cellular algebras is cellular, see for example Section

3.2 of [12].

Proposition 5.1.4. Let n1, . . . , nt be non-negative integers. Then the group

algebra k(Sn1 × · · · × Snt) is a cellular algebra with respect to the map given

by (σ1, . . . , σt) 7−→ (σ−1
1 , . . . , σ−1

t ) for σi ∈ Sni and a cellular structure where

the poset of cell indices is Λn1 × · · · × Λnt with the order where (λ1, . . . , λt) >

(ν1, . . . , νt) means λi D νi for all i. The cell module associated to (λ1, . . . , λt)

is Sλ
1
� · · ·� Sλt (where we identify the algebra k(Sn1 × · · · × Snt) with the

algebra kSn1 ⊗ · · · ⊗ kSnt in the canonical way) with the action

(x1 ⊗ · · · ⊗ xt) · (σ1, . . . , σt) = (x1σ1)⊗ · · · ⊗ (xtσt)

for xi ∈ Sλi, σi ∈ Sni. The cell form on this cell module is given on pure

tensors by

〈x1 ⊗ · · · ⊗ xt, y1 ⊗ · · · ⊗ yt〉 = 〈x1, y1〉 · · · 〈xt, yt〉
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where each bilinear form on the right hand side is the appropriate cell form

of some Sλ
i
.

Recall from page 45 the notion of the length of a permutation, which is

defined to be the total number of inversions of the permutation, where an

inversion of a permutation σ ∈ Sn is a pair (i, j) such that 1 ≤ i < j ≤ n

and (i)σ > (j)σ. From these definitions, it is easy to see that if µ is a

composition of n, then each right coset Sµσ of Sµ contains a unique element

of minimal length, and further that if µ = (µ1, . . . , µr), then for any given

right Sµ-coset, the element of minimal length is the unique element γ of the

coset such that in the sequence (1)γ−1, . . . , (n)γ−1, the elements 1, . . . , µ1

occur in increasing order, as do the elements µ1 + 1, . . . , µ1 +µ2, the elements

µ1 +µ2 + 1, . . . , µ1 +µ2 +µ3, and so on. Equivalently, an element σ of Sn is of

minimal length in its coset Sµσ if and only if, in its permutation diagram, the

strings attached to the first µ1 nodes on the top row do not cross each other,

the strings attached to the next µ2 nodes on the top row do not cross each

other, and so on. For example, the permutation whose diagram appears in

the diagram (5.2.5) below is of minimal length in its Sµ-coset for µ = (3, 2, 3).

For any µ a composition of n, we define Rµ to be the unique system of

minimal-length right Sµ-coset representatives in Sn.

5.1.3 Iterated inflation of cellular algebras

Iterated inflations of cellular algebras were first introduced by König and

Xi in [23], but we shall use them as presented in [16], and this section is a

summary of the contents of that article. However, we give the form of these

results using right cell modules, rather than the left cell modules used in [16].

Note that all of the material in this section formed part of the author’s M.Sc.

thesis [14], and thus is not to be considered as new research in this present

94



thesis.

Let A be a k-algebra, with an anti-involution ∗. Suppose that we have,

up to isomorphism of k-vector spaces, a decomposition

A ∼=
⊕
µ∈I

Vµ ⊗Bµ ⊗ Vµ

of A, where I is a finite partially ordered set, each Vµ is a k-vector space, and

each Bµ is a cellular algebra over k with respect to an anti-involution ∗ and

cellular data (Γµ,Mµ, C). We shall henceforth consider A to be identified

with this direct sum of tensor products, and we shall speak of the subspace

Vµ ⊗Bµ ⊗ Vµ as the µ-th layer of A. Suppose that for each µ ∈ I, we have

a basis Vµ for Vµ and a basis Bµ for Bµ. Let A be the basis of A consisting

of all elements u⊗ b⊗ w for all u,w ∈ Vµ and all b ∈ Bµ, as µ ranges over I.

Suppose that for each µ ∈ I, we have for any u,w ∈ Vµ and any b ∈ Bµ that

(u⊗ b⊗ w)∗ = w ⊗ b∗ ⊗ u, (5.1.3)

and suppose further that for any µ ∈ I we have maps φµ : Vµ ×A → Vµ and

θµ : Vµ ×A → Bµ such that for any u,w ∈ Vµ and any b ∈ Bµ, we have for

any a ∈ A that

(u⊗ b⊗ w) · a ≡ u⊗ b θµ(w, a)⊗ φµ(w, a) mod J(< µ), (5.1.4)

where J(< µ) =
⊕

α<µ Vα ⊗ Bα ⊗ Vα. Then by [16, Theorem 1], A is

cellular with respect to ∗ and the cellular data (Γ,M,C), where Γ is the

set {(µ, λ) : µ ∈ I and λ ∈ Γµ} with the lexicographic order, M(µ, λ) is

Vµ ×Mµ(λ), and C
(µ,λ)
(x,X),(y,Y ) = x⊗ Cλ

X,Y ⊗ y.

Further by [16, Proposition 2], for each µ ∈ I there is a unique Bµ-valued

k-bilinear form ψµ on Vµ such that for any u,w, x, y ∈ Vµ and b, c ∈ Bµ we

have ψµ(y, u) = ψµ(u, y)∗ and

(x⊗ c⊗ y)(u⊗ b⊗ w) ≡ x⊗ c ψµ(y, u)b⊗ w mod J(< µ). (5.1.5)
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Finally (see [16, Proposition 3]), let (µ, λ) ∈ Γ, and let ∆λ be the right

cell module of Bi corresponding to λ. The right cell module ∆(µ,λ) of A may

be obtained by equipping ∆λ ⊗ Vµ with the action given, for a ∈ A, x ∈ Vµ
and z ∈ ∆λ, by (z ⊗ x)a = z θµ(x, a)⊗ φµ(x, a). Moreover, if 〈· , ·〉 is the cell

form on ∆λ⊗Vµ and 〈· , ·〉λ is the cell form on ∆λ, then for any x, y ∈ Vµ and

any z, v ∈ ∆λ, we have

〈z ⊗ x, v ⊗ y〉 = 〈z ψµ(x, y), v〉λ = 〈z, v ψµ(y, x)〉λ. (5.1.6)

5.2 Wreath product algebras

We recall the notion of the wreath product of an algebra with a symmetric

group from [6]. Indeed, let A be a finite-dimensional unital associative k-

algebra. Consider the k-vector space kSn ⊗ A⊗n, and further let us write a

pure tensor x⊗ a1 ⊗ a2 ⊗ · · · ⊗ an in this vector space as (x ; a1, a2, . . . , an).

Then we have a well-defined multiplication which is given by

(σ; a1, a2, . . . , an)(π; b1, b2, . . . , bn) =

(σπ; a(1)π−1b1, a(2)π−1b2, . . . , a(n)π−1bn)

for σ, π ∈ Sn and ai, bi ∈ A. We define the wreath product A o Sn of A and Sn

to be the unital associative k-algebra so obtained. We note in particular the

case where A = kSm, where we see that the algebra (kSm) o Sn is isomorphic

to the algebra k(Sm o Sn) via the obvious isomorphism. We shall return to

this special case in Section 5.5 below, where we shall relate our work in this

chapter on A o Sn to our work on k(Sm o Sn) in the rest of the thesis.

We assume that the reader is familiar with the notion of diagram algebras,

for example the Brauer or Temperley-Lieb algebras. We can consider A o Sn
to be a kind of diagram algebra. Indeed, we may represent a pure tensor
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(σ; a1, a2, . . . , an) in A o Sn, where σ ∈ Sn and ai ∈ A, by a diagram obtained

by drawing the permutation diagram associated to σ, with the nodes of

the bottom row replaced by the elements ai. For example, if n = 5 and

σ = (1, 4, 3, 5, 2), then we represent the element (σ; a1, a2, a3, a4, a5) by

a1 a2 a3 a4 a5 .

Such diagrams are useful for computing products, as we now show by an

example. Indeed, keep n = 5 and σ = (1, 4, 3, 5, 2), and let π = (1, 3, 5)(2, 4).

Then to compute the product (σ; a1, a2, a3, a4, a5)(π; b1, b2, b3, b4, b5), we draw

the diagram corresponding to the first factor above the one corresponding to

the second factor, to obtain

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5 .

We then slide each ai down its string to meet some bj, and then resolve the

two connected permutation diagrams into a single diagram, to obtain

a5b1 a4b2 a1b3 a2b4 a3b5 .

This diagram corresponds to the element

(
(1, 2, 3)(4, 5); a5b1, a4b2, a1b3, a2b4, a3b5

)
,

which is indeed the product of the two elements we started with.

Note that, unlike the usual diagram basis of the Brauer or Temperley-Lieb

algebras, the set of all such diagrams is not a basis of A o Sn. A basis of such
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diagrams can be formed by fixing a basis C of A, and then taking the set of all

elements (σ; a1, . . . , an) for σ ∈ Sn and ai ∈ C. However, the product of two

such basis elements will not in general be a scalar multiple of another basis

element as is the case for the diagram basis of the Brauer or Temperley-Lieb

algebras.

It is easy to show that there is a well-defined anti-involution ∗ on A o Sn
given by

(σ; a1, . . . , an)∗ =
(
σ−1 ; a∗(1)σ, . . . , a

∗
(n)σ

)
, (5.2.1)

where σ ∈ Sn and a1, . . . , an ∈ A. In terms of diagrams, this map corresponds

to the operation of taking a diagram, flipping it about the horizontal line

half-way between its two rows of nodes (so that the elements ai lie on the top

row), replacing each element ai with its image a∗i under the anti-involution

on A, and then sliding each element a∗i to the bottom of its string. For the

case A = kSm where we have A o Sn ∼= k(Sm o Sn), we may easily see that if

we take the anti-involution induced on kSm by mapping an element of Sm to

its inverse, then we obtain the anti-involution on k(Sm o Sn) which is induced

by mapping each element of Sm o Sn to its inverse.

We now give the well-known generalisation of the construction of the

k(Sm o Sn)-module (4.3.7) to the algebra A o Sn (see for example Section 3 of

[6]). The construction is essentially unchanged from the k(SmoSn) case. Indeed,

let µ be an r-part composition of n (where r is some integer), X1, . . . , Xr be

A-modules, and for each i = 1, . . . , r let Yi be a kSµi module. We write A oSµ
for the subalgebra of A o Sn spanned by all elements (σ; a1, . . . , an) where

ai ∈ A and σ ∈ Sµ. Then X⊗µ1

1 ⊗ · · · ⊗X⊗µrr ⊗ Y1 ⊗ · · · ⊗ Yr is naturally a
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A o Sµ-module via the action

(x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yr)(σ; a1, . . . , an) =

x(1)σ−1a1 ⊗ · · · ⊗ x(n)σ−1an ⊗ y1σ1 ⊗ · · · ⊗ yrσr,

where the elements σi ∈ Sµi are such that under the natural identification

of Sµ with Sµ1 × · · · × Sµr , σ is identified with (σ1, . . . , σr). Then inducing

from A o Sµ to A o Sn (that is, applying the functor −⊗AoSµ A o Sn) yields a

module which we may easily see is isomorphic as a k-vector space to

X⊗µ1

1 ⊗ · · · ⊗X⊗µrr ⊗ Y1 ⊗ · · · ⊗ Yr ⊗ kRµ, (5.2.2)

where kRµ is the vector space on the basis Rµ of minimal-length coset

representatives, with the action given by

(x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yr ⊗ γ)(σ; a1, . . . , an) =

x(1)θ−1a(1)ζ ⊗ · · · ⊗ x(n)θ−1a(n)ζ ⊗ y1θ1 ⊗ · · · ⊗ yrθr ⊗ ζ, (5.2.3)

where γ ∈ Rµ, and ζ ∈ Rµ and θ ∈ Sµ are such that γσ = θζ. Letting X be

the tuple (X1, . . . , Xr) and Y be the tuple (Y1, . . . , Yr), we denote the module

so obtained by Θµ(X, Y ). Comparing this construction to our work in Section

4.3, and in particular the k(Sm o Sn)-module (4.3.7), we see that in the case

A = kSm where A oSn ∼= k(Sm oSn) we have an equality of k(Sm oSn)-modules

Θµ(X, Y ) =
[(
X1, . . . , Xr

)�̃µ � (Y1 � · · ·� Yr
)]xmon

moµ
(5.2.4)

where now each Xi is a kSm-module.

We now introduce a diagrammatic representation for certain pure tensors

in the module Θµ(X, Y ) which provides a very convenient and intuitive

understanding of the action of A o Sn. Indeed, let us take a pure tensor

x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yr ⊗ γ in (5.2.2), where γ ∈ Rµ. We represent

99



this element by taking the permutation diagram of γ, labelling the nodes on

its lower row from left to right with the elements x(1)γ−1 , . . . , x(n)γ−1 , then

linking together the first µ1 nodes on the top row and labelling them with y1,

linking together the next µ2 nodes on the top row and labelling the linked

nodes with y2, and so on. For example, take n = 8, r = 3, µ = (3, 2, 3),

and γ = (2, 3, 6)(5, 8, 7) (γ may be seen to be an element of Rµ from its

permutation diagram in (5.2.5), since the strings associated to each yi do not

cross each other). We then represent the element

x1 ⊗ x2 ⊗ x3 ⊗ x4 ⊗ x5 ⊗ x6 ⊗ x7 ⊗ x8 ⊗ y1 ⊗ y2 ⊗ y3 ⊗ γ

by the diagram

y1 y2 y3

x1 x6 x2 x4 x7 x3 x8 x5 . (5.2.5)

Note that each xi is connected to the ith node on the top row. Note also that

for each i = 1, 2, 3, the elements of Xi are attached to the strings associated to

yi. We thus identify Θµ(X, Y ) with the k-vector space spanned by diagrams

consisting of the permutation diagram of some element of Rµ where (as in

(5.2.5)) for each i = 1, . . . , r, the (µ1 + · · ·+ µi−1 + 1)th to (µ1 + · · ·+ µi)
th

nodes are connected to form a single block which is labelled by an element

of Yi, and where each node on the bottom row is replaced with an element

of some Xj such that each top-row node in the ith block is connected to an

element of Xi on the bottom row. We note that under this identification,

the diagram in Θµ(X, Y ) whose top row has labels y1 to yr, whose bottom

row has labels u1 to un, and whose underlying permutation diagram is that

of γ ∈ Rµ represents the pure tensor u(1)γ ⊗ · · · ⊗ u(n)γ ⊗ y1 ⊗ · · · ⊗ yr ⊗ γ.

Further note that the set of all such diagrams is not linearly independent in

Θµ(X, Y ), and so they form a spanning set rather than a basis.
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This diagram representation of Θµ(X, Y ) affords an intuitive realisation

of the action of A o Sn, and we illustrate this by an example. Indeed, keeping

n = 8, r = 3, µ = (3, 2, 3) as above, let us consider the diagram

y1 y2 y3

u1 u2 u3 u4 u5 u6 u7 u8 (5.2.6)

in Θµ(X, Y ); note that this diagram represents the pure tensor

u3 ⊗ u6 ⊗ u8 ⊗ u1 ⊗ u5 ⊗ u2 ⊗ u4 ⊗ u7⊗

y1 ⊗ y2 ⊗ y3 ⊗ (1, 3, 8, 7, 4)(2, 6). (5.2.7)

Now take the element(
(1, 2, 3)(4, 6, 8, 7, 5); a1, a2, a3, a4, a5, a6, a7, a8

)
(5.2.8)

of A o S8, which is represented by the diagram

a1 a2 a3 a4 a5 a6 a7 a8 . (5.2.9)

The action of the element (5.2.9) on (5.2.6) is calculated as follows: we connect

the diagram (5.2.9) below the diagram (5.2.6) to get

y1 y2 y3

u1 u2 u3 u4 u5 u6 u7 u8

a1 a2 a3 a4 a5 a6 a7 a8 .

We slide each ui down its string and simplify the drawing of the resulting

partition diagram, to obtain

y1 y2 y3

u3a1 u1a2 u2a3 u5a4 u7a5 u4a6 u8a7 u6a8 . (5.2.10)
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The permutation encoded in the strings of this diagram is (2, 8, 5, 4)(3, 7, 6),

which has the factorisation (2, 8, 5, 4)(3, 7, 6) = (2, 3)(7, 8) · (2, 7, 5, 4)(3, 8, 6)

where (2, 3)(7, 8) ∈ Sµ and (2, 7, 5, 4)(3, 8, 6) ∈ Rµ; we represent this factori-

sation by redrawing the diagram (5.2.10) as

y1 y2 y3

u3a1 u1a2 u2a3 u5a4 u7a5 u4a6 u8a7 u6a8

and we note that in the lower part of this diagram, which represents the

permutation (2, 7, 5, 4)(3, 8, 6), the strings associated to each yi do not cross

each other, which demonstrates that (2, 7, 5, 4)(3, 8, 6) is in Rµ. Now in the

upper part of the diagram, the arrangement of strings encodes the permutation

(2, 3) ∈ S3 below both y1 and y3, while the strings below y2 encode the identity

permutation in S2. We remove the upper part of the diagram and let these

permutations act on their respective elements yi, yielding

y1(2, 3) y2 y3(2, 3)

u3a1 u1a2 u2a3 u5a4 u7a5 u4a6 u8a7 u6a8 .

Under our mapping, this corresponds to the pure tensor

u3a1 ⊗ u8a7 ⊗ u6a8 ⊗ u1a2 ⊗ u5a4 ⊗ u2a3 ⊗ u7a5 ⊗ u4a6⊗

y1(2, 3)⊗ y2 ⊗ y3(2, 3)⊗ (2, 7, 5, 4)(3, 8, 6).

By letting (x1, x2, x3, x4, x5, x6, x7, x8) = (u3, u6, u8, u1, u5, u2, u4, u7), σ =

(1, 2, 3)(4, 6, 8, 7, 5) and γ = (1, 3, 8, 7, 4)(2, 6), and noting as above that then

γσ = (2, 8, 5, 4)(3, 7, 6) = (2, 3)(7, 8) · (2, 7, 5, 4)(3, 8, 6) where (2, 3)(7, 8) ∈ Sµ
and (2, 7, 5, 4)(3, 8, 6) ∈ Rµ, we may verify that this is indeed the image
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of (5.2.7) under the action of (5.2.8) as given by (5.2.3). In the general

case, for the A o Sn-module Θµ(X, Y ), let d be the diagram formed from the

permutation diagram of γ ∈ Rµ with labels y1 to yr on the top row and labels

u1 to un on the bottom row, and let a be the element (σ; a1, . . . , an) of A o Sn.

Then we have γσ = θζ where θ ∈ Sµ and ζ ∈ Rµ, and so θ corresponds to

some element (θ1, . . . , θr) of Sµ1 × · · · × Sµr under the canonical isomorphism.

Then the image of d under the action of a is the diagram formed from the

permutation diagram of ζ with top row labels y1θ1 to yrθr and bottom row

labels u(1)σ−1a1 to u(n)σ−1an. We leave it to the reader to convince themselves

that in this diagram the nodes of the ith block on the top row are connected

to elements of Xi, and moreover that this diagram does indeed represent the

action of a on the pure tensor of Θµ(X, Y ) represented by d.

The following result will allow us to prove that the wreath product of

a cyclic cellular algebra with Sn is again cyclic cellular, thus obtaining the

result of Geetha and Goodman (albeit in a weaker form due to the different

ordering on the set of cell indices, as mentioned above).

Proposition 5.2.1. If X1, . . . , Xr are cyclic A-modules, and for each i, Yi is

a cyclic kSµi-module, then Θµ(X, Y ) is a cyclic A o Sn-module for any r part

composition µ of n. Indeed, if xi is a generator for Xi and yi is a generator

for Yi, the diagram

y1

x1 x1 · · · x1

y2

x2 x2 · · · x2

· · ·

yr

xr xr · · · xr

(where each xi appears µi times) generates Θµ(X, Y ).

Proof. Let d0 be the diagram in the proposition. It is easy to see that we

may obtain any diagram in Θµ(X, Y ) by first applying an element (θ; 1, . . . , 1)
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of A o Sn, where θ ∈ Sµ, in order to replace each element yi in d0 with an

arbitrary element of Yi, then applying (γ; 1, . . . , 1) for some γ ∈ Rµ to arrange

the strings of the diagram, and finally applying an element (e; a1, . . . , an) to

replace each element xi with an arbitrary element of Xi. Since Θµ(X, Y ) is

spanned by diagrams, the proof is complete.

5.3 The iterated inflation structure of the

wreath product algebra

We now turn to the case where our interest lies, which is the case where A is

a cellular algebra. We shall exhibit the wreath product A o Sn as an iterated

inflation of cellular algebras, and hence show that it is in turn a cellular

algebra.

Note that a version of the material in this section formed part of the

author’s M.Sc. thesis [14] as mentioned at the start of the chapter. The

version presented here is an improvement on the version given in [14] because

it makes use of a more sophisticated order on the layers of the iterated inflation

structure. Other than the relatively minor modifications to the arguments

necessary to make use of this improved order, the material is in essentially

the same form as in [14] (the version in [14] used a slightly different cellular

structure on the group algebra of the symmetric group, with the duals of the

Specht modules appearing as the cell modules, but this makes no difference

to the arguments).

Let A be a cellular algebra with anti-involution ∗ and cellular data

(Γ,M,C). We let r = |Γ|, and we fix a numbering of the elements of Γ

as λ1, λ2, . . . , λr, and moreover we choose this numbering such that λi > λj

implies i < j, so that our numbering is in this sense compatible with the
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partial ordering on Γ. We write ∆λ for the right cell module associated to

λ ∈ Γ as noted above. For convenience we may omit the cell index superscript

from elements of the cellular basis, so we write CS,T rather than Cλ
S,T . We have

a basis of A o Sn consisting of all elements of the form (σ;CS1,T1 , . . . , CSn,Tn)

where σ ∈ Sn and each CSi,Ti is some element of the cellular basis of A; note

that we allow the elements CSi,Ti to be associated to different cell indices. We

shall denote this basis by A. Now elements of A are represented by diagrams

like, for example,

CS1,T1 CS2,T2 CS3,T3 CS4,T4 CS5,T5 (5.3.1)

but we want a slightly different representation. Indeed, in the diagram (5.3.1),

we replace each CSi,Ti with the pair Si, Ti, and then move the Si up to the

top of the associated string, to get

S3 S1 S5 S2 S4

T1 T2 T3 T4 T5 .

We thus obtain a different way of representing elements of A, as diagrams of

the form
U1 U2 U3 U4 U5

W1 W2 W3 W4 W5 (5.3.2)

consisting of a permutation diagram where the nodes on the top and bottom

rows are replaced with elements Ui,Wi ∈ tλ∈ΓM(λ), such that if Ui on the top

row is connected to Wj on the bottom row, then we must have Ui,Wj ∈M(λ)

for some λ ∈ Γ (i.e. Ui and Wj lie in the same set M(λ)). Note that the

diagram (5.3.2) represents the element(
(1, 3, 5, 4, 2); CU2,W1 , CU4,W2 , CU1,W3 , CU5,W4 , CU3,W5

)
∈ A o S5.
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Now given any such diagram, for each i ∈ {1, . . . , r} we let µi be the number

of elements Uj such that Uj ∈ M(λi). We thus obtain a composition µ =

(µ1, . . . , µr) of n (note that some of the parts µi may be zero in general).

We call this the layer index of the diagram, and also of the element of A
which it represents. We let kAµ be the k-span of all elements of A with layer

index µ, and we recall that Ωr
n is the set of all r-part compositions of n with

non-negative integer entries. Then A o Sn =
⊕

µ∈Ωrn
kAµ. For a layer index µ,

we define a half diagram of type µ to be a tuple (U1, . . . , Un) of n elements of

tλ∈ΓM(λ), such that there are exactly µi elements of M(λi) for each i. We

define Vµ to be the set of all half diagrams of type µ. Now if (U1, . . . , Un) is a

half diagram of type µ, then we may easily see that there is a unique element

ε of Rµ such that (U(1)ε, . . . , U(n)ε) lies in the set M(λ1)µ1× · · ·×M(λr)
µr . We

shall call this ε the shape of the half diagram (U1, . . . , Un).

Let E be the diagram with top row U1 to Un, bottom row W1 to Wn

(reading from left to right), and where σ ∈ Sn is the permutation such that

Ui is connected to W(i)σ. Thus E represents the element(
σ ; C[U(1)σ−1 ,W1], . . . , C[U(n)σ−1 ,Wn]

)
where to ease the notation we allow ourselves to write C[U,W ] for CU,W .

Suppose E has layer index µ. We may decompose E into three pieces of data,

namely the half diagrams (U1, . . . , Un), (W1, . . . ,Wn) of type µ, formed from

the top and bottom rows of E respectively, and the element (π1, . . . , πr) of

the group Sµi × · · · × Sµr where πi ∈ Sµi is such that (counting from left to

right) the jth element of M(λi) on the top row is connected to the (j)πi
th

element of M(λi) on the bottom row. Thus πi records how the elements

of M(λi) on the top row are connected to the elements of M(λi) on the

bottom row. For example, suppose that r = 3 and that the diagram (5.3.2)

has layer index (3, 0, 2) with U1, U2, U4 ∈M(λ1) and U3, U5 ∈M(λ3). Then
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(π1, π2, π3) =
(
(1, 3, 2), e, (1, 2)

)
(note that e here is the unique element of

the trivial group Sµ2 = S0). It is easy to see that if ε, δ are the shapes of

(U1, . . . , Un) and (W1, . . . ,Wn) respectively, and further if π is the image of

(π1, . . . , πr) under the natural identification of Sµi × · · · ×Sµr with the Young

subgroup Sµ of Sn, then σ = ε−1πδ. If we now let Vµ be the k-vector space

with basis Vµ, then the above decomposition is easily seen to afford a k-linear

bijection

Vµ ⊗ kSµ ⊗ Vµ −→ kAµ

given by mapping

(U1, . . . , Un)⊗ π ⊗ (W1, . . . ,Wn),

to (
ε−1πδ ; C[U(1)(ε−1πδ)−1 ,W1], . . . , C[U(n)(ε−1πδ)−1 ,Wn]

)
where ε is the shape of (U1, . . . , Un) and δ is the shape of (W1, . . . ,Wn).

We thus have a decomposition A o Sn =
⊕

µ∈Ωrn
Vµ ⊗ kSµ ⊗ Vµ, and this

decomposition will allow us to exhibit the desired iterated inflation structure.

For this, we need to equip the set Ωr
n with an ordering. The ordering which

we shall use is neither the lexicographic order nor the dominance order, but

rather a variation on the dominance order which takes account of the partial

order on the set Γ. Indeed, if µ = (µ1, . . . , µr) and α = (α1, . . . , αr) are

elements of Ωr
n, then we define µ DΓ α to mean that for each q = 1, . . . , r we

have ∑
i such that
λi≥λq

µi ≥
∑

i such that
λi≥λq

αi

(and of course we define .Γ to match). We call this (partial) order the

Γ-dominance order 1.

1 The use of the Γ-dominance order on Ωr
n was suggested by the anonymous reviewer
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Now take Vµ as above, Bµ to be kSµ and Bµ to be Sµ. We may easily see

that our basis A is indeed the basis of A o Sn obtained from the bases Vµ and

Bµ as in section 5.1.3, and we shall now prove that our decomposition exhibits

A o Sn as an iterated inflation with respect to the anti-involution given by

(5.2.1) and the cellular structure on the algebras kSµ as in Proposition 5.1.4.

Thus, we must prove that the equations (5.1.3) and (5.1.4) hold. The fact that

equation (5.1.3) holds follows easily from the description of the anti-involution

on A o Sn given after equation (5.2.1). To prove that (5.1.4) holds, we shall

prove the slightly stronger result Proposition 5.3.2, below. First, we need a

lemma, which will allow us to compare layer indices of elements of A o Sn.

Lemma 5.3.1. Suppose that we have s1, . . . , sn, t1, . . . , tn ∈ {1, . . . , r} such

that λsj ≥ λtj in the poset Γ for each j. For each i = 1, . . . , r, let µi be the

number of sj which are equal to i and αi be the number of tj which are equal to

i. Let µ = (µ1, . . . , µr) and α = (α1, . . . , αr) so that α, µ ∈ Ωr
n. Then µ DΓ α,

and if at least one of the inequalities λsj ≥ λtj is strict then we have µ .Γ α.

Proof. This lemma is nothing more than simple combinatorics. We need to

show that ∑
i such that
λi≥λq

µi ≥
∑

i such that
λi≥λq

αi.

But we have for each q = 1, . . . , r that∑
i such that
λi≥λq

µi = |{j : λsj ≥ λq}|

and ∑
i such that
λi≥λq

αi = |{j : λtj ≥ λq}|

who reviewed my article Cellular Structure of Wreath Product Algebras for the Journal of

Pure and Applied Algebra.
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and since the set appearing in the right-hand side of the latter equation is a

subset of the corresponding set in the first equation, we have the required

inequality µ DΓ α. If there is a strict inequality λsj > λtj we clearly have

µ 6= α and hence µ .Γ α.

Proposition 5.3.2. Let µ ∈ Ωr
n, let u = (U1, . . . , Un), w = (W1, . . . ,Wn)

be elements of Vµ and π = (π1, . . . , πr) ∈ Sµ such that the element of A
corresponding to the pure tensor u ⊗ π ⊗ w has layer index µ. Further, let

a = (σ; a1, . . . , an) be a pure tensor in A oSn. Then we have (u⊗ π⊗w) · a ≡
u⊗ π θµ(w, a)⊗ φµ(w, a) modulo elements of A of layer index strictly less (in

the Γ-dominance order) than µ, where θµ(w, a) ∈ Sµ and φµ(w, a) ∈ Vµ are

independent of u and π.

Note that in the proposition we allow the a in θµ(w, a) and φµ(w, a) to

be any pure tensor in A o Sn rather than just an element of A as required in

(5.1.4).

Proof. Let ε, δ ∈ Rµ be the shapes of u and w respectively, so that u⊗ π⊗w
corresponds to the element(

ε−1πδ ; C[U(1)(ε−1πδ)−1 ,W1], . . . , C[U(n)(ε−1πδ)−1 ,Wn]
)
.

Then

(u⊗ π ⊗ w)(σ; a1, . . . , an) =(
ε−1πδ ; C[U(1)(ε−1πδ)−1 ,W1], . . . , C[U(n)(ε−1πδ)−1 ,Wn]

)(
σ; a1, . . . , an

)
=(

ε−1πδσ;C[U(1)(ε−1πδσ)−1 ,W(1)σ−1 ]a1, . . . , C[U(n)(ε−1πδσ)−1 ,W(n)σ−1 ]an
)
.

For each i = 1, . . . , n, let si ∈ {1, . . . , r} be such that U(i)(ε−1πδσ)−1 ,W(i)σ−1 ∈
M(λsi). Then by (5.1.1) we have

C[U(i)(ε−1πδσ)−1 ,W(i)σ−1 ]ai ≡
∑

Xi∈M(λsi )

Rai(W(i)σ−1 , Xi)C[U(i)(ε−1πδσ)−1 , Xi]
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modulo cellular basis elements of lower cell index. Using this, we see that

(u⊗ π ⊗ w)(σ; a1, . . . , an) is congruent to

∑
X1

· · ·
∑
Xn

(
n∏
i=1

Rai

(
W(i)σ−1 , Xi

)) (
ε−1πδσ ; C[U(1)(ε−1πδσ)−1 , X1], . . . ,

C[U(n)(ε−1πδσ)−1 , Xn]
)

(5.3.3)

modulo elements of A of the form

(
ε−1πδσ ;Cλt1 [S1, T1], . . . , Cλtn [Sn, Tn]

)
(5.3.4)

where for each i we have λsi ≥ λti and for at least one i this inequality is

strict. Now let α = (α1, . . . , αr) be the layer index of (5.3.4). By Lemma

5.3.1 we have µ .Γ α, so that (u⊗ π⊗w)(σ; a1, . . . , an) is congruent to (5.3.3)

modulo elements of lower layer index.

Now Xi lies in the same set M(λsi) as W(i)σ−1 , and from this we may

easily see that the shape of (X1, . . . , Xn) is the unique element ζ of Rµ such

that δσ = θζ for θ ∈ Sµ. Thus in (5.3.3) we have

(
ε−1πδσ ; C[U(1)(ε−1πδσ)−1 , X1], . . . , C[U(n)(ε−1πδσ)−1 , Xn]

)
=
(
ε−1πθζ ; C[U(1)(ε−1πθζ)−1 , X1], . . . , C[U(n)(ε−1πθζ)−1 , Xn]

)
which we now see corresponds to the pure tensor u⊗ πθ ⊗ (X1, . . . , Xn), and

hence (5.3.3) is equal to

u⊗ πθ ⊗
(∑

X1

· · ·
∑
Xn

(
n∏
i=1

Rai

(
W(i)σ−1 , Xi

))
(X1, . . . , Xn)

)
.

Thus, setting θµ(w, a) to be the unique element θ of Sµ such that δσ = θζ for

ζ ∈ Rµ and φµ(w, a) to be

∑
X1

· · ·
∑
Xn

(
n∏
i=1

Rai

(
W(i)σ−1 , Xi

))
(X1, . . . , Xn), (5.3.5)
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we see that (u⊗π⊗w)(σ; a1, . . . , an) ≡ u⊗πθµ(w, a)⊗φµ(w, a) modulo lower

layers, and furthermore these values depend only on w and a, as required.

By the results in Section 5.1.3, we now have that A o Sn is a cellular

algebra. Further, we may use Proposition 5.1.4 to see that the set indexing

the cell modules of A o Sn is the set of all pairs
(
µ, (ν1, . . . , νr)

)
where µ is an

r-component composition (µ1, . . . , µr) of n (recalling that r = |Γ|), and νi is a

partition of µi. Thus in any such pair we have µ = (|ν1|, . . . , |νr|), and so we

lose no information if we omit the partition µ from these pairs. Hence we may

identify the set of cell indices of A o Sn with the set of all r-multipartitions

(ν1, . . . , νr) of n. We now give a statement of the cellularity of A o Sn.

Theorem 5.3.3. Let A be a cellular algebra with anti-involution ∗ and poset

Γ of cell indices. Recall that Λr
n denotes the set of all multipartitions of n of

length r. Then A o Sn is a cellular algebra with respect to a tuple of cellular

data including the anti-involution given for σ ∈ Sn and a1, . . . , an ∈ A by

(σ; a1, . . . , an)∗ =
(
σ−1 ; a∗(1)σ, . . . , a

∗
(n)σ

)
and also the poset consisting of Λr

n with the following partial order: if

(ν1, . . . , νr), (η1, . . . , ηr) ∈ Λr
n then (ν1, . . . , νr) > (η1, . . . , ηr) means either

that (|ν1|, . . . , |νr|) DΓ (|η1|, . . . , |ηr|) or that |νi| = |ηi| and νi D ηi for each i.

In the next section, we shall consider the cell modules which arise from

this structure. In particular we shall follow the work of Geetha and Goodman

by proving that if A is cyclic cellular, then so is A o Sn.

Note that the partial order we have obtained on Λr
n is not the dominance

order. Indeed, the dominance order is a strictly smaller order than our

order (meaning that any relation between multipartitions which holds in the

dominance order also holds in the order in Theorem 5.3.3). In their cellularity
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result [12, Theorem 4.1], Geetha and Goodman obtained (subject to the

assumption that A is cyclic cellular) the Γ-dominance order on Λr
n (see [12,

Definition 3.1, (2)]), an order which is in general strictly smaller than the

dominance order on Λr
n and moreover preserves the representation-theoretic

information present in the ordering on Γ. The fact that we have ended up

with our larger ordering on the set Λr
n is fundamentally due to our use of the

method of iterated inflations, which will always yield an order with the kind of

“layered” structure which our order exhibits. This is important to note, since a

smaller ordering on the set of cell indices of a cellular algebra (i.e. an ordering

with fewer relations) provides better representation-theoretic information

about the algebra. Thus we note that in order to use the method of iterated

inflations rather than the intricate arguments of Geetha and Goodman (and

hence obtain a much simpler proof of the cellularity of A o Sn than the proof

given in [12]), we must be content with a slightly weaker result. However, our

result is still sufficient to obtain the desirable results in the next section.

5.4 The cell and simple modules of the

wreath product algebra

In this section we shall use the theory of cellular algebras to prove nice results

about the simple modules of A o Sn, and to establish a condition for the

semisimplicity of A o Sn (where A is a cellular algebra as above).

Note that a version of the material in the first part of this section, up

to and including Proposition 5.4.1, formed part of the author’s M.Sc. thesis

[14] as mentioned at the start of the chapter. The version presented here

is an improvement on the version given in [14] because it makes use of the

more sophisticated Γ-dominance order on the layers of the iterated inflation

112



structure. Other than the relatively minor modifications to the arguments

necessary to make use of this improved order, the material is in essentially

the same form as in [14] (the version in [14] used a slightly different cellular

structure on the group algebra of the symmetric group, with the duals of the

Specht modules appearing as the cell modules, but this makes no difference

to the arguments).

Recall that the cell modules ∆λi of A are indexed by the cell indices

λ1, λ2, . . . , λr. In the sequel we shall also allow ourselves to write ∆λi as ∆(λi)

when this makes our formulae more readable. We shall now consider the cell

modules of A oSn. We know that these are indexed by length r multipartitions

of n. Let ν = (ν1, . . . , νr) be such a multipartition. We shall show that the cell

module ∆ν is isomorphic to the module Θ|ν|
(
(∆λ1 , . . . ,∆λr), (Sν

1
, . . . , Sν

r
)
)

[12, Theorem 4.27].

Now we know from Proposition 5.1.4 and the results in section 5.1.3 that,

as a k-vector space, ∆ν may naturally be identified with

Sν
1 ⊗ · · · ⊗ Sνr ⊗ V|ν|, (5.4.1)

so let us consider the structure of the vector space V|ν|. Indeed, let α1, . . . αn

be elements of Γ such that

(α1, . . . , αn) = (λ1, λ1, . . . , λ1︸ ︷︷ ︸
|ν1| places

, λ2, . . . , λ2︸ ︷︷ ︸
|ν2| places

, λ3, . . . , λr, . . . , λr︸ ︷︷ ︸
|νr| places

). (5.4.2)

Let (X1, . . . , Xn) be a half diagram in V|ν|. Then the shape of (X1, . . . , Xn)

is the unique element γ of R|ν| such that (X1, . . . , Xn) lies in M(α(1)γ−1)×
· · · ×M(α(n)γ−1). We now see that

V|ν| =
⊔

γ∈R|ν|

M(α(1)γ−1)× · · · ×M(α(n)γ−1)
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and hence if we identify the half diagram (X1, . . . , Xn) with the pure tensor

CX1 ⊗ · · · ⊗ CXn , we obtain a natural identification of k-vector spaces

V|ν| =
⊕
γ∈R|ν|

∆(α(1)γ−1)⊗ · · · ⊗∆(α(n)γ−1). (5.4.3)

We shall henceforth consider these two vector spaces to be thus identified.

Further, we shall abuse terminology and use the term pure tensor in V|ν|

to mean any pure tensor in any of the summands in the right hand side of

(5.4.3). For example, we can easily show using (5.1.2) and (5.3.5) that under

the identification (5.4.3) we have

φ|ν|
(
CW1⊗· · ·⊗CWn , (σ; a1, . . . , an)

)
= CW(1)σ−1 a1⊗· · ·⊗CW(n)σ−1 an, (5.4.4)

where φ|ν| is of course the function V|ν| ×A −→ V|ν| which forms part of the

iterated inflation structure on A o Sn. In light of (5.4.1), we shall further

speak of a pure tensor in ∆ν to mean any pure tensor of the form

w1 ⊗ · · · ⊗ wr ⊗ u1 ⊗ · · · ⊗ un,

where wi ∈ Sνi and u1 ⊗ · · · ⊗ un is a pure tensor in V|ν|. Using (5.4.4) and

the expression for θ|ν|(w, a) given near the end of the proof of Proposition

5.3.2, we may now verify that the map taking the pure tensor

x1 ⊗ · · · ⊗ xn ⊗ y1 ⊗ · · · ⊗ yr ⊗ γ

in Θ|ν|
(
(∆λ1 , . . . ,∆λr), (Sν

1
, . . . , Sν

r
)
)

(where γ ∈ R|ν|) to the pure tensor

y1 ⊗ · · · ⊗ yr ⊗ x(1)γ−1 ⊗ · · · ⊗ x(n)γ−1

in ∆ν is an isomorphism of A o Sn-modules (but note that in order to apply

the formula given in section 5.1.3 for the action of an iterated inflation on

its cell modules, the arguments w and a in θ|ν|(w, a) and φ|ν|(w, a) must be

elements of the bases A and V|ν|, respectively). We have thus proved the

following result.
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Proposition 5.4.1. [12, Theorem 4.27] We have for any r-multipartition

ν = (ν1, . . . , νr) of n an isomorphism of A o Sn-modules

Θ|ν|
(
(∆λ1 , . . . ,∆λr), (Sν

1

, . . . , Sν
r

)
) ∼= ∆ν .

We may now use Proposition 5.2.1 and the fact that all Specht modules

are cyclic to obtain the following result. Of course, this is a weaker result

than the corresponding result in [12], since (as already mentioned) Geetha

and Goodman obtain the Γ-dominance order on their cell indices.

Proposition 5.4.2. (compare [12, Theorem 4.1]) If A is cyclic cellular then

so is A o Sn.

Let µ ∈ Ωr
n. Then by (5.1.5), we know that the multiplication within

the layer of A o Sn indexed by µ is determined by a bilinear form, ψµ. Let

(U1, . . . , Un), (W1, . . . ,Wn) be half diagrams in Vµ, so that u = CU1⊗· · ·⊗CUn
and w = CW1 ⊗ · · · ⊗ CWn are pure tensors in Vµ. Now by equation (5.1.5),

(u⊗ e⊗ u)(w ⊗ e⊗ w) ≡ u⊗ ψµ(u,w)⊗ w (5.4.5)

modulo lower layers. The element u⊗ e⊗ u of A o Sn is represented by the

diagram

U1 U2 · · · Un

U1 U2 · · · Un

=
· · ·

CU1,U1CU2,U2 · · · CUn,Un

and of course the element w⊗ e⊗w is represented by a diagram which is the

same except that each U is replaced with a W . Thus we find by concatenating

and simplifying these diagrams that the product (u ⊗ e ⊗ u)(w ⊗ e ⊗ w)

corresponds to

· · ·

CU1,U1CW1,W1 CU2,U2CW2,W2 · · · CUn,UnCWn,Wn . (5.4.6)
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We may expand each of the products CUj ,UjCWj ,Wj
in terms of the cellular

basis of A and use these expansions to write (5.4.6) as a linear combination

of diagrams of the form

· · ·

CX1,Y1 CX2,Y2· · · CXn,Yn .

Now for j = 1, . . . , n, let sj be such that Uj ∈ M(λsj). The we know that

each product CUj ,UjCWj ,Wj
is a linear combination of cellular basis elements

C
λtj
X,Y where λtj ≤ λsj . It follows by Lemma 5.3.1 that all such diagrams have

layer index at most µ (in the Γ-dominance order). Moreover, Lemma 5.3.1

also tells us that, if for any j the element Wj do not lie in M(λsj) (so that

CUj ,UjCWj ,Wj
is a linear combination of cellular basis elements C

λtj
X,Y where

λtj < λsj ), then all of the diagrams in the expansion have layer index strictly

less than µ, and hence by (5.4.5) we see that we must have ψµ(u,w) = 0

in this case. Suppose now that Wj ∈ M(λsj) for each j. By (2.4.1) in [13],

we know that CUj ,UjCWj ,Wj
is congruent to 〈CUj , CWj

〉CUj ,Wj
modulo cellular

basis elements of lower cell index, where 〈·, ·〉 is the appropriate cell form.

Using Lemma 5.3.1 as above, we see that (5.4.6) is congruent modulo lower

layers to

〈CU1 , CW1〉〈CU2 , CW2〉 · · · 〈CUn , CWn〉
U1 U2 · · · Un

W1 W2 · · · Wn ,

which represents the element 〈CU1 , CW1〉〈CU2 , CW2〉 · · · 〈CUn , CWn〉u⊗ e⊗ w,

and hence we find that in this case

ψµ(u,w) = 〈CU1 , CW1〉〈CU2 , CW2〉 · · · 〈CUn , CWn〉.

Note in particular that ψµ is thus in all cases k-valued. We can now use these

values for ψµ in the case where µ = |ν|, together with equation (5.1.6) and
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Proposition 5.1.4 to compute the values of the cell form on the cell module

∆ν . Indeed, if y1 ⊗ · · · ⊗ yr ⊗ u1 ⊗ · · · ⊗ un and z1 ⊗ · · · ⊗ zr ⊗w1 ⊗ · · · ⊗wn
are pure tensors in the cell module ∆ν , then we see that

〈y1 ⊗ · · · ⊗ yr ⊗ u1 ⊗ · · · ⊗ un, z1 ⊗ · · · ⊗ zr ⊗ w1 ⊗ · · · ⊗ wn〉 =

〈y1, z1〉 · · · 〈yr, zr〉〈u1, w1〉 · · · 〈un, wn〉 (5.4.7)

if uj and wj lie in the same ∆(λ) for each i = 1, . . . , n, and

〈y1 ⊗ · · · ⊗ yr ⊗ u1 ⊗ · · · ⊗ un, z1 ⊗ · · · ⊗ zr ⊗ w1 ⊗ · · · ⊗ wn〉 = 0 (5.4.8)

otherwise.

Next we seek to describe the cell radical of ∆ν . Using (5.4.1) and (5.4.3),

we have isomorphisms of k-vector spaces

∆ν ∼= Sν
1 ⊗ · · · ⊗ Sνr ⊗ V|ν|

∼=
⊕
γ∈R|ν|

Sν
1 ⊗ · · · ⊗ Sνr ⊗∆(α(1)γ−1)⊗ · · · ⊗∆(α(n)γ−1).

(5.4.9)

For γ ∈ R|ν|, let Υγ = Sν
1⊗· · ·⊗Sνr⊗∆(α(1)γ−1)⊗· · ·⊗∆(α(n)γ−1). Now we

see from (5.4.8) that if γ, β are distinct elements of R|ν| and u ∈ Υγ , w ∈ Υβ,

then 〈u,w〉 = 0. It follows that, if we let Rγ be the radical of the restriction

to Υγ of 〈·, ·〉, then the cell radical of ∆ν is
⊕

γ∈R|ν| Rγ.

Let us fix a basis in each ∆λ and each Sν . From these bases we obtain

a basis of pure tensors in each Υγ. Let Gνi be the Gram matrix of the cell

form of Sν
i

and Gαi be the Gram matrix of the cell form of ∆αi , with respect

to our chosen bases. If we let Bγ be the Gram matrix of the restriction of the

cell form to Υγ with respect to our basis, then we see by (5.4.7) that Bγ is

the matrix Kronecker product Gν1 ⊗ · · · ⊗Gνr ⊗Gα(1)γ−1 ⊗ · · · ⊗Gα(n)γ−1 . By

fixing some total order on the set Rγ and concatenating our bases of the Υγ

in this order, we obtain a basis of ∆ν . Using (5.4.8), we see that the Gram
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matrix of the cell form with respect to this basis is of block diagonal form

with diagonal blocks Bγ for γ ∈ R|ν|. From this we see (using the fact that

the rank of the Kronecker product of two matrices is the product of their

ranks) that the rank of the cell form on ∆ν is |R|ν|| times the product of the

ranks of the cell forms of the cell modules Sν
1
, . . . , Sν

r
,∆α1 , . . . ,∆αn .

Now in constructing the basis of pure tensors for ∆ν as above, we may

choose our basis of each cell module of A and kSn by taking a basis of the

cell radical and extending this to a basis of the whole cell module. If we do

this, then we see that an element y1 ⊗ · · · ⊗ yr ⊗ u1 ⊗ · · · ⊗ un of the basis of

pure tensors for ∆ν must lie in the cell radical if any yi or ui is an element of

the cell radical of the cell module in which it lies. By the above calculation

of the rank of the cell form on ∆ν , we see that the number of such elements

must be equal to the dimension of the cell radical, and so we have now found

a basis of the cell radical inside a basis of the whole cell module.

We can now use the theory of cellular algebras from section 3 of [13]

together with our basis of ∆ν to deduce some results about the simple

modules Lν and semisimplicity of A o Sn. These results are already known for

wreath products A oSn with A a general (i.e. not cellular) algebra given extra

assumptions on the field (see for example [6, Lemma 3.4]), and in particular

for the case k
(
G o Sn

) ∼= (kG) o Sn where G is a finite group (see for example

Chapter 4 of [21] for the case where the field is algebraically closed). However,

if A is cellular then our work shows that these results hold with no restriction

on the field at all. Given the importance of cellular algebras in certain areas

of representation theory we are confident that they will prove useful.

Recall that Γ0 indexes the simple modules of A. Let
(
Λr
n)0 denote the set

of elements ν ∈ Λr
n such that the cell radical of ∆ν is a proper submodule of

∆ν , so that
(
Λr
n

)
0

indexes the simple modules of A o Sn. Recall that our field
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k has characteristic p, which may be zero or a prime.

Theorem 5.4.3. The set
(
Λr
n

)
0

indexing the simple modules of A oSn consists

exactly of those (ν1, . . . , νr) ∈ Λr
n such that νi = () whenever λi ∈ Γ \ Γ0 and

all νi are p-regular (recall that () is p-regular for any p).

In light of Theorem 5.4.3, we see that if we let s be the number of

simple modules of A and we let λ̂1, λ̂2, · · · , λ̂s be the subsequence of the

sequence λ1, λ2, . . . , λr consisting of the elements of Γ0, then the simple A oSn-

modules may in fact be indexed by the set Λs
n(p) consisting of all length s

multipartitions of n with p-regular entries. The main idea of the following

theorem is well known: see [28, p.204] and also [6, Proposition 3.7] and [12,

Theorem 4.25]. As mentioned above, the version presented here is notable for

its lack of conditions on the field.

Theorem 5.4.4. Let ν = (ν1, . . . , νr) ∈
(
Λr
n

)
0
. Then corresponding to the

isomorphism (5.4.9), we have an isomorphism of k-vector spaces

Lν ∼=
⊕
γ∈R|ν|

Dν1 ⊗ · · · ⊗Dνr ⊗ Lα(1)γ−1 ⊗ · · · ⊗ Lα(n)γ−1

(where α1, . . . , αn are as in (5.4.2)). Moreover, Lν has a representation by

diagrams of the form (5.2.6) in exactly the same way as ∆ν, by simply using

elements of Dνi rather than Sν
i

and elements of Lαi rather than ∆αi. The ac-

tion on such diagrams is exactly the same as described above. We thus see that

Lν is isomorphic as an A o Sn-module to Θ|ν|
(
(Lλ1 , . . . , Lλr), (Dν1

, . . . , Dνr)
)
,

where for notational convenience we let Lλ = 0 for λ ∈ Γ \ Γ0.

We thus see that if we index the simple modules by Λs
n(p) as above, then

the simple indexed by ν̂ = (ν̂1, . . . , ν̂s) (where each ν̂i is thus a p-regular

partition) is isomorphic to Θ|ν̂|
(
(Lλ̂1 , . . . , Lλ̂s), (Dν̂1

, . . . , Dν̂s)
)
.
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Theorem 5.4.5. Let ν = (ν1, . . . , νr) ∈
(
Λr
n

)
0
. Then we have Lν ∼= ∆ν if

and only if Dνi ∼= Sν
i

for each i = 1, . . . , r and whenever we have νi 6= () we

have Lλi ∼= ∆λi.

Our final result is a criterion for semisimplicity; compare [6, Lemma 3.5].

Theorem 5.4.6. If A is a cellular algebra, then A o Sn is semisimple if and

only if both kSn and A are semisimple.

5.5 Cellularity results for k
(
Sm o Sn

)
Let us conclude this chapter by considering the case A = kSm so that A o Sn
is the group algebra k(Sm o Sn), and thus applying the work which has been

done in this chapter to the situation which is considered in the rest of the

thesis. Recall that k is a field of characteristic p, where p may be zero or a

prime.

Indeed, we know from Theorem 5.1.3 that kSm is cellular with respect

to the anti-involution induced by mapping each element of Sm to its inverse,

and a tuple of cellular data including the poset Λm of all partitions of m

endowed with the dominance order. Moreover, the cell module associated

to µ ∈ Λm by this structure is the Specht module Sµ, the set
(
Λm

)
0

of cell

indices indexing the simple modules in this structure is the set of all p-regular

partitions of m, and the simple module associated to a p-regular partition µ

by this structure is Dµ.

Taking A = kSm and thus considering the wreath product (kSm) o Sn ∼=
k(Sm o Sn), we recall from (5.2.4) that we have for any α � n an equality of

k(Sm o Sn)-modules

Θα(X, Y ) =
[(
X1, . . . , Xr

)�̃α � (Y1 � · · ·� Yr
)]xmon

moα
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where each Xi is a kSm-module and Yi is a kSαi-module. We thus have for

any r-multipartition λ = (λ1, . . . , λr) of n an equality of k(Sm o Sn)-modules

Sλ = Θ|λ|
(
(Sµ

1

, . . . , Sµ
r

), (Sλ
1

, . . . , Sλ
r

)
)
.

We can now apply the results of this chapter to obtain a cellular structure

on k(Sm o Sn). Before we do so, we require one further definition. Indeed, let

λ = (λ1, . . . , λr) be an r-multipartition of n, and further suppose that each λi

is p-regular, and moreover that for each i such that µi is p-singular we have

λi = (). Then we define a k(Sm o Sn)-module

Dλ =
[(
Dµ1

, . . . , Dµr
)�̃|λ| � (Dλ1

� · · ·�Dλr
)]xmon

mo|λ|

where for notational convenience we take Dµ = 0 for any p-singular partition

µ of m.

Using the foregoing information together with Theorem 5.3.3, Proposition

5.4.1 and Theorems 5.4.3 and 5.4.4, we have the following result.

Theorem 5.5.1. The algebra k(Sm o Sn) is cellular with respect to the anti-

involution induced by mapping each element of Sm o Sn to its inverse, and

a tuple of cellular data including a poset whose underlying set is the set Λr
n

of all r-multipartitions of n. The cell module associated to λ ∈ Λr
n by this

cellular structure is Sλ. The subset
(
Λr
n

)
0

of Λr
n which indexes the simple

modules under this cellular structure is the set of all r-multipartitions λ of n

such that each λi is p-regular and for each i such that µi is p-singular we have

λi = (). If λ is a multipartition in
(
Λr
n

)
0
, then the simple module associated

to λ by this cellular structure is Dλ.

The conclusion of Theorem 5.4.5 is trivial in this case (it is easily obtained

directly from the definition of Dλ). Theorem 5.4.6 says simply that k(Sm oSn)

is semisimple when both kSm and kSn are, which by Maschke’s theorem
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occurs if and only if either p = 0 or p is greater than both m and n. But we

also know by using Maschke’s theorem directly that k(Sm oSn) is semisimple if

and only if p does not divide |Sm oSn| = (m!)nn!, and this occurs exactly when

p = 0 or p is greater than both m and n. Thus we see that the conclusion

of Theorem 5.4.6 is in agreement with the conclusion of Maschke’s theorem

applied to the group Sm o Sn.

Finally we recall from [13, Theorem 3.8] that if a cellular algebra is

semisimple, then its cell modules are all simple and form a complete system of

pairwise non-isomorphic simple modules. We thus have the following result.

Theorem 5.5.2. If k(Sm o Sn) is semisimple, then we have
(
Λr
n

)
0

= Λr
n and

Dλ = Sλ for each λ ∈ Λr
n. Furthermore, the Specht modules Sλ for λ ∈ Λr

n

form a complete system of pairwise non-isomorphic simple k(Sm oSn)-modules.

The results in this section all support our assertion that the modules Sλ

should indeed be considered as the wreath product analogues of the Specht

modules for the symmetric groups, and hence do indeed deserve the name

Specht module.

Original research in Chapter 5: The diagrammatic representation of the

module Θµ(X, Y ) in Section 5.2 is original research.

The use of the method of iterated inflation to establish cellularity of A oSn
is my own work, but as already stated a version of some of this work formed

part of my M.Sc. thesis [14]. As indicated above, the material which was

included in [14] was: the whole of Section 5.1.3; the whole of Section 5.3; the

first part of Section 5.4, from the start of the section up to and including

Proposition 5.4.1. The use of the Γ-dominance order on the set Ωr
n of layer

indexes here does, however, represent an improvement over the work in [14].

Thus the use of the Γ-dominance order is the only aspect of this work which

constitutes original research for the purposes of this present thesis.
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The material about the simple modules of AoSn and in particular k(Sm oSn)

appearing in Section 5.4 after Proposition 5.4.1 and in Section 5.5 might

perhaps not be regarded as entirely new, since versions of these results,

albeit with additional assumptions, are well-known, as indicated in the text.

However, I am not aware of published versions of these results which place no

restrictions on the field of coefficients like the results given here, and further

the method of obtaining these results using the theory of cellular algebras

is my own work, and hence aspects of this material are certainly original

research.

Finally, Proposition 5.1.2 is my own work, although it is fairly trivial.
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Chapter 6

Filtration of modules for

wreath products

Let m,n be non-negative integers. In this chapter, we shall consider how

the constructions of k(SmoSn)-modules from Chapter 4 interact with module

filtrations, and as a first application of the results we shall obtain a k(SmoSn)

analogue of Young’s rule (3.2.1). Much of this material is derived from [6],

but the use of multipartition matrices is novel, and we believe that this is a

useful and efficient way of presenting the results.

6.1 Filtrations and the operation �

Our first result is the following elementary lemma, which shows how the

operation � from Chapter 4 preserves module filtrations.

Lemma 6.1.1. Let G be a subgroup of Sm and H a subgroup of Sn. Let

Z be a k(GoH)-module, and Y a kH-module. Suppose Y has a kH-module

filtration

Y ∼
s

F〈l〉
i=1

aiQi.
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Then Z � Y has a k(GoH)-module filtration

Z � Y ∼
s

F〈l〉
i=1

ai Z �Qi.

On the other hand, if Z has a k(GoH)-module filtration

Z ∼
s

F〈l〉
i=1

biVi,

then Z � Y has a filtration

Z � Y ∼
s

F〈l〉
i=1

bi Vi � Y.

Proof. Recall from above that we have

Z � Y ∼= Z ⊗ InfGoHH Y,

where the right-hand side is an internal tensor product of k(G oH)-modules.

Now trivially the given filtration of Y by the modules Qi yields a filtration

of InfGoHH Y by modules InfGoHH Qi, and both parts of the claim now follow by

Lemma 2.2.8.

6.2 Filtrations and the operation (−)�̃n

Let G be a subgroup of Sm. We now investigate how kG-module filtrations

yield k(GoSn)-module filtrations under the operation (−)�̃n. From [6], we

have the following result.

Proposition 6.2.1. [6, Lemma 4.2] Let G be a subgroup of Sm. Let M be a

kG-module with a filtration

M ∼
t

F〈w〉
i=1

Xi.
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where 1 6 w 6 t and each Xi is a kG-module. Then the k(G o Sn)-module

M �̃n has a filtration

M �̃n ∼F〈[n,w]〉
α∈Ωtn

[
(X1, . . . , Xt)

�̃α
]xGoSn

GoSα

where Ωt
n is the set of all compositions of n with exactly t parts, and [n,w]

represents the composition (0, 0, . . . , 0, n, 0, . . . , 0) of length t where the n

occurs in the wth place. Thus the module at the bottom of this filtration is

isomorphic to X �̃nw .

Our proof of Proposition 6.2.1 is the same as the proof given for Lemma

4.2 in [6]. However, [6] formally has slightly different assumptions to us

(mainly that n! is invertible in k). Further, the statement of [6, Lemma 4.2]

does not explicitly identify the bottom-most factor in the filtration. Due to

these slight differences, we present the proof here in full.

Proof. By renumbering the Xi if necessary, we have without loss of generality

a chain of kG-modules

M = Mt ⊇Mt−1 ⊇ · · · ⊇M1 ⊇M0 = 0

where Mi

Mi−1

∼= Xi for i = 1, . . . , t. Note in particular that the module Xw

occurring at the bottom of the filtration in the statement of the proposition

has been renumbered to X1 here. Let us choose a k-basis b1
1, . . . , b

1
d1

for M1,

(where d1 is thus the k-dimension of X1), which we may then extend by

adding elements b2
1, . . . , b

2
d2

to a k-basis for M2, and so on. We thus obtain a

k-basis

b1
1, . . . , b

1
d1
, b2

1, . . . , . . . , b
t
1, . . . , b

t
dt

for M , where for each i the elements up to and including bidi are a k-basis of

Mi (in particular, di = dimk(Xi)). It follows that the set of all pure tensors

bδ1ε1 ⊗ · · · ⊗ bδnεn
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forms a k-basis of M �̃n. Let us call this basis B.

For an element bδ1ε1 ⊗ · · · ⊗ bδnεn of B (where thus δi ∈ {1, . . . , t} for i =

1, . . . , n), we define R
(
bδ1ε1 ⊗ · · · ⊗ bδnεn

)
= δ1 + · · · + δn, and we call this the

rank of the element. We note that the rank satisfies

n 6 R
(
bδ1ε1 ⊗ · · · ⊗ bδnεn

)
6 nt.

For each N = n, . . . , nt, we define ZN to be the k-span in M �̃n of all elements

of B of rank equal to or less than N . We see that each ZN is a k(G o Sn)-

submodule of M �̃n. Thus, defining Zn−1 to be 0, we have a filtration of the

k(G o Sn)-module M �̃n

M �̃n = Znt ⊇ Znt−1 ⊇ · · · ⊇ Zn ⊇ Zn−1 = 0. (6.2.1)

Let ZN be the quotient module ZN
ZN−1

for each N = n, . . . , nt, and for z ∈ ZN
let z represent z + ZN−1. Then ZN has a basis BN , where

BN =
{
bδ1ε1 ⊗ · · · ⊗ bδnεn : R

(
bδ1ε1 ⊗ · · · ⊗ bδnεn

)
= N

}
.

For an element bδ1ε1 ⊗ · · · ⊗ bδnεn of B, we define W
(
bδ1ε1 ⊗ · · · ⊗ bδnεn

)
to be the

t-composition (α1, . . . , αt) of n where αi is the number of j ∈ {1, . . . , n}
for which δj = i. We call this composition the weight of bδ1ε1 ⊗ · · · ⊗ bδnεn .

Thus W maps B to Ωt
n, the set of compositions of n of length t. Now

for an element bδ1ε1 ⊗ · · · ⊗ bδnεn of B with weight (α1, . . . , αt), we see that

R
(
bδ1ε1 ⊗ · · · ⊗ bδnεn

)
= α1 + 2α2 + · · ·+ tαt, and thus the rank of an element

of B depends only on its weight. Thus we may regard the rank function as

being defined on Ωt
n by the formula

R
(
(α1, . . . , αt)

)
= α1 + 2α2 + · · ·+ tαt

and we may hence speak of the rank of an element of Ωt
n.
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Let α = (α1, . . . , αt) ∈ Ωt
n and N = R(α). We define Bα to be the set of

all elements bδ1ε1 ⊗ · · · ⊗ bδnεn of BN such that W
(
bδ1ε1 ⊗ · · · ⊗ bδnεn

)
= α. Further,

we define Vα to be the k-span of Bα in ZN . Thus Bα is a k-basis of Vα. We

see that Vα is then a k(G o Sn)-submodule of ZN , and moreover that we have

a k(G o Sn)-module decomposition

ZN =
⊕
α∈Ωtn
R(α)=N

Vα. (6.2.2)

In combination with the filtration (6.2.1), we now see that, in order to establish

the filtration as claimed in the proposition, it is enough to prove that we have

a k(G o Sn)-module isomorphism

Vα ∼=
[
(X1, . . . , Xt)

�̃α
]xGoSn

GoSα
. (6.2.3)

In particular, note that the only α ∈ Ωt
n with R(α) = n is (n, 0, . . . , 0),

which implies by (6.2.2) that Zn = V(n,0,...,0). Thus we see that V(n,0,...,0) is

the bottom-most module in our filtration of M �̃n. Recalling that the module

denoted by X1 here is the module denoted by Xw in the statement of the

proposition due to our renumbering of the modules Xi at the start of this

proof, we see that proving (6.2.3) will establish that the bottom-most factor

in our filtration of M �̃n is as in the claimed filtration in the proposition.

We shall use Proposition 2.2.6 to establish (6.2.3). We thus see that we

need to prove that

dimk(Vα) = dimk

((
X1, . . . , Xt

)�̃α)[
G o Sn : G o Sα

]
(6.2.4)

and to find a k(G o Sα)-submodule Y of Vα
yGoSn
GoSα which is isomorphic to the

k(G o Sα)-module
(
X1, . . . , Xt

)�̃α
, and which generates Vα as a k(G o Sn)-

module. The dimension condition (6.2.4) is straightforward. Indeed, we can

calculate dimk(Vα) by counting the elements of the basis Bα, which is the
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same as counting the number of elements bδ1ε1 ⊗ · · · ⊗ bδnεn of B which satisfy

W
(
bδ1ε1 ⊗ · · · ⊗ bδnεn

)
= α. Now W

(
bδ1ε1 ⊗ · · · ⊗ bδnεn

)
= α if and only if, for

each i, exactly αi of the elements bδε are elements of the list bi1, . . . , b
i
di

, where

di = dimk(Xi). Now there are

dimk(X1)α1 · · · dimk(Xt)
αt

ways of choosing α1 elements b1
∗, α2 elements b2

∗, up to αt elements bt∗. Then

for each such choice, there are

n!

α1! · · ·αt!
ways of arranging these elements to form an element of Bα. It follows that

Vα has k-dimension

n! dimk(X1)α1 · · · dimk(Xt)
αt

α1! · · ·αt!
.

On the other hand, by the construction of
(
X1, . . . , Xt

)�̃α
we see that it has

k-dimension dimk(X1)α1 · · · dimk(Xt)
αt , and we have[

G o Sn : G o Sα
]

=
|G o Sn|
|G o Sα|

=
|G|n · n!

|G|n · α1! · · ·αt!

=
n!

α1! · · ·αt!
and thus we see that (6.2.4) holds. To find the required k(G o Sα)-submodule

Y , we let B∗α be the subset of Bα consisting of all elements

b1
ε(1) ⊗ · · · ⊗ b1

ε(α1) ⊗ b2
ε(α1+1) ⊗ · · · ⊗ b2

ε(α1+α2) ⊗ b3
ε(α1+α2+1) · · · · · · ⊗ btn

where for the sake of readability we write ε(i) rather than εi. We define Y to

be the k-span of B∗α in Vα. It is now easy to see that Y is a k(GoSα)-submodule

of Vα which is isomorphic to the k(G o Sα)-module
(
X1, . . . , Xt

)�̃α
and which

generates Vα as a k(G o Sn)-module, as required.
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Proposition 6.2.1 does not allow us to pass information about the multi-

plicities with which isomorphism classes of modules appear in the filtration of

M to the filtration of M �̃n. For this, we need the following more sophisticated

result.

Corollary 6.2.2. Let G be a subgroup of Sm. Let M be a kG-module with a

filtration

M ∼
t

F〈w〉
i=1

aiXi

where 1 6 w 6 t, each Xi is a kG-module, and each ai is a non-negative

integer (so note that aw > 1, since Xw occurs at the bottom of the filtration).

Then the kGoSn-module M �̃n has a filtration

M �̃n ∼F〈[[n,1],w;a1,...,at]〉
α∈Ω(n;a1,...,at)

[
(X1, . . . , Xt)

�̃|α|
]yGoS|α|

GoSα

xGoSn
GoSα

where Ω(n; a1, . . . , at) is the set of all t-multicompositions α = (α1, . . . , αt)

of n such that the length of αi is ai for i = 1, . . . , t, and [[n, 1], w; a1, . . . , at]

represents the element

(
(0, . . . , 0), . . . , (0, . . . , 0), (n, 0, . . . , 0), (0, . . . , 0), . . . , (0, . . . , 0)

)
of Ω(n; a1, . . . , at), where the (n, 0, . . . , 0) occurs in the wth place. Thus the

module at the bottom of this filtration is isomorphic to X �̃nw .

Proof. Let

(Y1, . . . , Ys) = (X1, . . . , X1︸ ︷︷ ︸
a1 places

, X2, . . . , X2︸ ︷︷ ︸
a2 places

, . . . , Xt, . . . , Xt︸ ︷︷ ︸
at places

)

so that s = a1 + · · ·+ at, and let l = a1 + · · ·+ aw−1 + 1. So

M ∼
s

F〈l〉
i=1

Yi.
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So by Proposition 6.2.1,

M �̃n ∼F〈[n,l]〉
α∈Ωsn

[
(Y1, . . . , Ys)

�̃α
]xGoSn

GoSα
.

Now let α ∈ Ωs
n, and take α = (α(1), . . . , α(s)), where we use function

notation rather than subscript notation for the indices of the parts of α in

order to make the formulae below more readable. Now define

α1 =
(
α(1), . . . , α(a1)

)
α2 =

(
α(a1 + 1), . . . , α(a1 + a2)

)
...

αt =
(
α(a1 + · · ·+ at−1 + 1) . . . , α(s)

)
so that αi is a composition of length ai and α = α1 ◦ · · · ◦ αt. We define α =

(α1, . . . , αt), a t-multicomposition of n, and we note that α ∈ Ω(n; a1, . . . , at).

Moreover, we note by the definition of Sα that Sα = Sα. Hence GoSα = GoSα,

so that in particular (Y1, . . . , Ys)
�̃α is thus a k(GoSα)-module. Then we have

equalities of k(GoSα)-modules

(Y1, . . . , Ys)
�̃α = Y

�̃α(1)
1 � · · ·� Y �̃α(s)

s

= (X1)�̃α(1) � · · ·� (X1)�̃α(a1) � (X2)�̃α(a1+1) � · · ·

· · ·� (Xt)
�̃α(s)

=

(
X
�̃|α1|
1

yGoS|α1|

GoSα1

)
� · · ·�

(
X
�̃|αt|
t

yGoS|αt|
GoSαt

)
= (X1, . . . , Xt)

�̃|α|
yGoS|α|
GoSα

.

And if α = [n, l] = (0, . . . , 0, n, 0, . . . , 0), then we see that

α =
(
(0, . . . , 0), . . . , (0, . . . , 0), (n, 0, . . . , 0), (0, . . . , 0), . . . , (0, . . . , 0)

)
= [[n, 1], w; a1, . . . , at].

The result now follows.
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6.3 Multipartition matrices

In order to give further results on filtrations in modules for the wreath product,

we need to introduce some new concepts. Recall that a multipartition is

simply a tuple of partitions, where we allow the empty partition () to occur as

an entry. We also allow the length of the tuple to be zero, yielding the empty

multipartition, which we also denote by (). We define a multipartition

matrix to be a matrix whose entries are multipartitions. We shall typically

denote the multipartition matrix whose (i, j)th entry is the multipartition εij as

[ε]. Let us fix an s×t multipartition matrix [ε]. Then we define multipartitions

Ri[ε] = εi1 ◦ · · · ◦ εit for each i = 1, . . . , s

Cj[ε] = ε1j ◦ · · · ◦ εsj for each j = 1, . . . , t

where, recall, ◦ denotes the concatenation of compositions. Note that thus

Ri[ε] is the concatenation of all of the multipartitions from the ith row of [ε],

while Cj [ε] is the concatenation of all the multipartitions from the jth column

of [ε]. We also define multipartitions

R[ε] = R1[ε] ◦ · · · ◦Rs[ε] = ε11 ◦ ε12 ◦ · · · ◦ ε1t ◦ ε21 ◦ · · · · · · ◦ εst

C[ε] = C1[ε] ◦ · · · ◦ Ct[ε] = ε11 ◦ ε21 ◦ · · · ◦ εs1 ◦ ε12 ◦ · · · · · · ◦ εst

so that R[ε] is the concatenation of all the entries of [ε] taken “row-wise”,

while C[ε] is the concatenation of all the entries of [ε] taken “column-wise”.

Recall that if γ = (γ1, . . . , γw) is a multicomposition, then we have defined

||γ|| to be the integer |γ1|+ · · ·+ |γw|. We have

||Ri[ε]|| =
t∑

j=1

||εij|| , ||Cj[ε]|| =
s∑
i=1

||εij||.

Further, if we let α =
(
||R1[ε]||, . . . , ||Rs[ε]||

)
and β =

(
||C1[ε]||, . . . , ||Ct[ε]||

)
,

so that α and β are both compositions of
∑

i,j ||εij||, then we say that [ε] has
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shape α× β.

For example, if [ε] is the 2× 2 multipartition matrix((1, 1), (), (2, 1)
) (

(), (3, 2, 1)
)(

(), (), (1)
) ()


then

R1[ε] =
(
(1, 1), (), (2, 1), (), (3, 2, 1)

)
R2[ε] =

(
(), (), (1)

)
C1[ε] =

(
(1, 1), (), (2, 1), (), (), (1)

)
C2[ε] =

(
(), (3, 2, 1)

)
.

and

R[ε] =
(
(1, 1), (), (2, 1), (), (3, 2, 1), (), (), (1)

)
C[ε] =

(
(1, 1), (), (2, 1), (), (), (1), (), (3, 2, 1)

)
and further we have

(
||R1[ε]||, ||R2[ε]||

)
= (11, 1),

(
||C1[ε]||, ||C2[ε]||

)
= (6, 6),

so that [ε] has shape (11, 1)×(6, 6).

We also define L[ε] to be the s×t matrix with (i, j)th entry the length of

εij. We call L[ε] the length matrix of [ε]. In the example given above, we

have

L[ε] =

3 2

3 0

 .
Finally, if α, β are compositions of the same integer n and with lengths s and

t respectively, and L is an s×t matrix with non-negative integer entries, then

we define MatΛ(L;α×β) to be the set of all s×t multipartition matrices [ε]

of shape α×β such that L[ε] = L.
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6.4 Filtrations and the operation[
(−, . . . ,−)�̃|η| � (Sη

1
� · · ·� Sηs)

]xmon
mo|η|

In this section we shall develop a result for obtaining filtrations for k(SmoSn)-

modules of the form

[
(Y1, . . . , Ys)

�̃|η| � (Sη
1

� · · ·� Sηs)
]xmon

mo|η| (6.4.1)

(where η is an s-multipartition of n) if we have filtrations of the modules Yi.

The material in this section is contained in Section 4 of [6], but our presentation

of it is somewhat different. In particular the use of multipartition matrices is

an innovation which we believe helps the application of these results in the

cases we are interested in.

We shall begin by showing how a filtration of a kSm-module Y yields a

filtration of the k(SmoSn)-module Y �̃n � Sη, where η is a partition of n. We

will then use the filtration obtained, (6.4.9) below, to tackle the general case

(6.4.1).

So indeed let the kSm-module Y have the filtration

Y ∼
t

F〈w〉
j=1

ajXj.

Let η be a partition of n. By Corollary 6.2.2, we have a filtration

Y �̃n ∼F〈[[n,1],w;a1,...,at]〉
α∈Ω(n;a1,...,at)

(X1, . . . , Xt)
�̃|α|
ymo|α|
moα

xmon
moα

so by Lemma 6.1.1, we have

Y �̃n � Sη ∼F〈[[n,1],w;a1,...,at]〉
α∈Ω(n;a1,...,at)

(
(X1, . . . , Xt)

�̃|α|
ymo|α|
moα

xmon
moα

)
� Sη. (6.4.2)

Now if α = (α1, . . . , αt) ∈ Ω(n; a1, . . . , at), then letting α be the composition
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α1 ◦ · · · ◦ αt of n, we have Sα = Sα. Hence by Proposition 4.3.7 we have(
(X1, . . . , Xt)

�̃|α|
ymo|α|
moα

xmon
moα

)
� Sη ∼=[
(X1, . . . , Xt)

�̃|α|
ymo|α|
moα
� Sη↓nα

]xmon
moα

. (6.4.3)

We shall now obtain a filtration of Sη↓nα, and hence by Lemma 6.1.1 and

Lemma 2.2.2 a filtration of the module (6.4.3). Combining the filtration

(6.4.2) with these filtrations of the modules (6.4.3) (for all α), we shall obtain

our desired filtration of Y �̃n � Sη.
Let us keep α = (α1, . . . , αt) ∈ Ω(n; a1, . . . , at) and α = α1 ◦ · · · ◦ αt � n

as above. We have Sα = Sα, and by (3.2.12) we have that

Sη↓nα ∼ F
ε is a multipartition

|ε| = α

c(η; ε)S(ε). (6.4.4)

We wish to reformulate (6.4.4) slightly to obtain a statement where our tuple

α = (α1, . . . , αt) appears in place of the composition α. The indexing set for

this filtration will be the set of all t-tuples of multipartitions ε = (ε1, . . . , εt)

such that |εj| = αj , and we note that this set is in bijection with the indexing

set in (6.4.4) (namely the set of multipartitions ε such that |ε| = α) by mapping

the tuple ε = (ε1, . . . , εt) to the multipartition ε1 ◦ · · · ◦ εt. Recall that the

Young subgroup S|ε| associated to the multicomposition |ε| = (|ε1|, . . . , |εt|)
is canonically isomorphic to S|ε1| × · · · × S|εt|. Recall from (3.2.9) that for a

multipartition ε = (ε1, . . . , εs), we have defined S(ε) to be the kS|ε|-module

Sε
1
�· · ·�Sεs . We can thus define for a tuple of multipartitions ε = (ε1, . . . , εt)

a kS|ε| -module

S(ε) = S(ε1)� · · ·� S(εt).

Further, given a partition η, we define a Littlewood-Richardson coefficient

c(η; ε) = c(η; ε1 ◦ · · · ◦ εt). (6.4.5)
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We note that if ε is a t-tuple of multipartitions and we let ε = ε1 ◦ · · · ◦ εt, then

c(η; ε) = c(η; ε), and further by the definition of S(ε) we have S(ε) = S(ε).

Noting that Sα = Sα, we now see easily that (6.4.4) is equivalent to

Sη↓nα ∼ F
ε is a t-tuple of multipartitions

|ε| = α

c(η; ε)S(ε). (6.4.6)

By applying Lemmas 6.1.1 and 2.2.2 and the filtration (6.4.6) to the module

(6.4.3), and furthermore noting that if ε is a t-tuple of multipartitions such

that |ε| = α then we have ||ε|| = |α|, we obtain a filtration

[
(X1, . . . , Xt)

�̃|α|
ymo|α|
moα
� Sη

yn
α

]xmon
moα
∼

F
ε is a t-tuple of multipartitions

|ε| = α

c(η; ε)

[
(X1, . . . , Xt)

�̃||ε||
ymo||ε||
mo|ε|

� S(ε)

]xmon
mo|ε|

.

(6.4.7)

It remains only to consider the bottom-most factor in the filtration (6.4.2).

Indeed, if α = [[n, 1], w; a1, . . . , at] and ε = (ε1, . . . , εt) is a t-tuple of multipar-

titions such that |ε| = α, then we have

|εj| =

(n, 0, . . . , 0) if j = w

(0, . . . , 0) if j 6= w

so that we must have εj =
(
(), . . . , ()

)
for j 6= w and εw =

(
ν, (), . . . , ()

)
for

some ν ` n. Thus we have

c(η; ε) = c(η; ε1 ◦ · · · ◦ εt)

= c
(
η;
(
(), (), . . . , (), ν, (), . . . , ()

))
= c
(
η; (ν)

)
(by (3.2.3))
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We thus have by (3.2.5) that

c(η; ε) =

1 if ν = η

0 otherwise.

So the only tuple of multipartitions ε appearing with non-zero multiplicity in

the filtration (6.4.7) for α = [[n, 1], w; a1, . . . , at] is the t-tuple of multiparti-

tions whose wth component is the multicomposition (η, (), . . . , ()) of length

aw, and whose ith component for i 6= w is the multicomposition of length ai

with all components equal to (). We denote this tuple by [[η, 1], w; a1, . . . , at],

and so we have

[[η, 1], w; a1, . . . , at] =
(
((), . . . , ()), . . . , (η, (), . . . , ()), . . . , ((), . . . , ())

)
(6.4.8)

where the (η, (), . . . , ()) occurs in the w-th place and all the other entries are

tuples of empty partitions.

Thus, if we write len(ε) for the length of a multipartition ε, we obtain

the following filtration by combining the filtration given for each α by (6.4.7)

with the filtration (6.4.2) and the equation (6.4.3).

Y �̃n � Sη ∼

F〈[[η,1],w;a1,...,at]〉

ε is a t-tuple of multipartitions

|||ε|||=n, len(εj)=aj

c(η; ε)

[
(X1, . . . , Xt)

�̃||ε||
ymo||ε||
mo|ε|

� S(ε)

]xmon
mo|ε|

,

where, recall, |||ε||| is the sum of all of the parts of all of the partitions occurring

as components in all of the multipartitions εi which are the components of ε.

We want to reformulate this result slightly. Firstly, it is easy to see that we
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have an isomorphism of k(Sm o S|ε|)-modules

(X1, . . . , Xt)
�̃||ε||

ymo||ε||
mo|ε|

� S(ε)

∼=
((

X
�̃||ε1||
1

ymo||ε1||
mo|ε1|

)
� · · ·�

(
X
�̃||εt||
t

ymo||εt||
mo|εt|

))
�(

S(ε1)� · · ·� S(εt)
)
,

and from (4.3.5) this is isomorphic to

t

�
j=1

(
X
�̃||εj ||
j

ymo||εj ||
mo|εj |

� S(εj)

)
.

Hence we obtain our desired filtration

Y �̃n � Sη ∼

F〈[[η,1],w;a1,...,at]〉

ε is a t-tuple of multipartitions

|||ε|||=n, len(εj)=aj

c(η; ε)

[
t

�
j=1

(
X
�̃||εj ||
j

ymo||εj ||
mo|εj |

� S(εj)

)]x
mon

mo|ε|
. (6.4.9)

This filtration, though rather complicated and unpleasant-looking at first

sight, is none-the-less the key to obtaining our filtration of (6.4.1).

So let us now derive the desired filtration for the module (6.4.1). In order

to do this, we introduce some further notation. If W1, . . . ,Wl are kSm-modules

and λ = (λ1, . . . , λl) is an l-component multipartition of n, then we define

the k(SmoSn)-module Sλ(W1, . . . ,Wl) by setting

Sλ(W1, . . . ,Wl) =
[(
W1, . . . ,Wl

)�̃|λ|�(Sλ1

� · · ·� Sλl
)]xmon

mo|λ|
. (6.4.10)

Note that taking l = r and Wi = Sµ
i

in this construction yields the

Specht module Sλ. Now suppose we have kSm-modules Y1, . . . , Ys and an

s-component multipartition η of n. We consider the module (6.4.1), which

in our new notation is denoted by Sη(Y1, . . . , Ys). Moreover suppose we
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have kSm-modules X1, . . . , Xt such that for each i = 1, . . . , s there exists a

filtration

Yi ∼
t

F〈wi〉
j=1

aijXj.

We shall next obtain a filtration of the module Sη(Y1, . . . , Ys) by modules

Sν(X1, . . . , Xt) for t-component multipartitions ν of n. Indeed, we have from

(4.3.6) an isomorphism of k(SmoSn)-modules

Sη(Y1, . . . , Ys) ∼=
[(
Y
�̃|η1|

1 � Sη1
)
� · · ·�

(
Y �̃|η

s|
s � Sηs

)]xmon
mo|η|

. (6.4.11)

Now by (6.4.9), we have for each i a filtration of k(SmoS|ηi|)-modules

(
Yi
)�̃|ηi|�Sηi ∼
F〈[[ηi,1],wi;ai1,...,a

i
t]〉

εi is a t-tuple of multipartitions

|||εi|||=|ηi|, len(εij)=aij

c(ηi; εi)

[
t

�
j=1

(
X
�̃||εij ||
j

ymo||εij ||
mo|εij |

� S(εij)

)]x
mo|ηi|

mo|εi|
.

(6.4.12)

Hence by Lemma 2.1.2, we may obtain a filtration of the k(SmoS|η|)-module(
Y
�̃|η1|

1 � Sη1
)
� · · ·�

(
Y �̃|η

s|
s � Sηs

)
and hence by (6.4.11) and Lemma 2.2.2 we may obtain a filtration of

Sη(Y1, . . . , Ys). The indexing set of the filtration so obtained is rather compli-

cated, so we shall simplify it before we state the filtration. Indeed, the indexing

set is the set of all s-tuples (ε1, . . . , εs) where εi is a tuple of multipartitions as

in (6.4.12). Thus each εi is a t-tuple of multipartitions such that |||εi||| = |ηi|
and len(εij) = aij for each j. By identifying the tuple (ε1, . . . , εs) with the s× t
multipartition matrix [ε] whose ith row is the tuple εi of multipartitions, we

may instead index the filtration with the set of s×t multipartition matrices

[ε] satisfying ||Ri[ε]|| = |ηi| for i = 1, . . . , s and L[ε] = A where A is the s×t
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integer matrix whose (i, j)-th entry is aij. Note that under this identification,

the jth entry εij of the tuple εi = (εi1, . . . , εit) becomes the (i, j)th entry of [ε],

and hence we have an equality Ri[ε] = εi1◦· · ·◦εit of multipartitions. It follows

that under this identification we have S|εi| = S|Ri[ε]|, so that the operationsxmo|ηi|
|εi| and

xmo|ηi|
|Ri[ε]| coincide, and further that c(ηi; εi) = c(ηi;Ri[ε]) (by (6.4.5)).

Turning to the bottom-most factor in our filtration, we see that index of this

factor before applying our identification with multipartition matrices is the

tuple (ε1, . . . , εs) where εi = [[ηi, 1], wi; a
i
1, . . . , a

i
t]. Under our identification

of indices (ε1, . . . , εs) with multipartitions, we may now easily see that the

module at the bottom of the filtration is indexed by the multipartition matrix

with length matrix A and whose (i, j)-th entry is [ηi, 1] if j = wi and a tuple

of empty partitions otherwise. We shall denote this multipartition matrix

by M(η;w1, . . . , ws). Thus as explained above we have by (6.4.12), Lemma

2.1.2, (6.4.11), and Lemma 2.2.2 a filtration of k(Sm o Sn)-modules

Sη(Y1, . . . , Ys) ∼ F〈M(η;w1,...,ws)〉
[ε] s×t multipartition matrix
||Ri[ε]||=|ηi|, L[ε]=A

(
s∏
i=1

c(ηi;Ri[ε])

)
·

 s

�
i=1

[
t

�
j=1

X
�̃||εij ||
j

ymo||εij ||
mo|εij |

� S(εij)

]x
mo|ηi|

mo|Ri[ε]|

x
mon

mo|η|

. (6.4.13)

We now wish to reformulate the filtration (6.4.13). For any [ε] an s×t
multipartition matrix as in the filtration (6.4.13) and any i, j, we define

a k(SmoS|εij |)-module (recalling that, since εij is a multipartition, |εij| is a

composition of the integer ||εij||) by setting

Zij
[ε] = X

�̃||εij ||
j

ymo||εij ||
mo|εij |

� S(εij).
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Thus we write the modules occurring in the filtration (6.4.13) as s

�
i=1

[
t

�
j=1

Zij
[ε]

]x
mo|ηi|

mo|Ri[ε]|

x
mon

mo|η|

.

Recalling that R[ε] is the multicomposition R1[ε] ◦ · · · ◦ Rs[ε], we see that

S|R1[ε]| × · · · × S|Rs[ε]| ∼= S(|R1[ε]|,...,|Rs[ε]|) = S|R[ε]|, and so we have an equality

of k(SmoSn)-modules s

�
i=1

[
t

�
j=1

Zij
[ε]

]x
mo|ηi|

mo|Ri[ε]|

x
mon

mo|η|

=

[
s

�
i=1

t

�
j=1

Zij
[ε]

]x
mo|η|

mo|R[ε]|

x
mon

mo|η|

and by transitivity of induction, this is[
s

�
i=1

t

�
j=1

Zij
[ε]

]x
mon

mo|R[ε]|
.

Now |R[ε]| is the composition (|ε11|, |ε12|, . . . , |ε1t|, |ε21|, . . . , |εst|) of n. On the

other hand, we recall that C[ε] is the multicomposition C1[ε] ◦ · · · ◦Ct[ε], and

so |C[ε]| is the composition (|ε11|, |ε21|, . . . , |εs1|, |ε12|, . . . , |εst|) of n, and hence

by Proposition 4.3.6 we have[
s

�
i=1

t

�
j=1

Zij
[ε]

]x
mon

mo|R[ε]|

∼=
[

t

�
j=1

s

�
i=1

Zij
[ε]

]x
mon

mo|C[ε]|
.

Now we have S|C[ε]| = S(|C1[ε]|,...,|Ct[ε]|) ∼= S|C1[ε]| × · · · × S|Ct[ε]|, and hence we

note that�s

i=1 Z
ij
[ε] is a k(SmoS|Cj [ε]|)-module for each j = 1, . . . , t. We shall
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now obtain a filtration of this module. Indeed, we have

s

�
i=1

Zij
[ε] =

s

�
i=1

X
�̃||εij ||
j

ymo||εij ||
mo|εij |

� S(εij)

=

(
X
�̃||ε1j ||
j

ymo||ε1j ||
mo|ε1j |

� S(ε1j)

)
� · · ·�

(
X
�̃||εsj ||
j

ymo||εsj ||
mo|εsj |

� S(εsj)

)

= X
�̃||Cj [ε]||
j

ymo||Cj [ε]||
mo|Cj [ε]|

�
(
S(ε1j)� · · ·� S(εsj)

)
(
by (4.3.5) and the fact that ||Cj[ε]|| = ||ε1j||+ · · ·+ ||εsj||

)
= X

�̃||Cj [ε]||
j

ymo||Cj [ε]||
mo|Cj [ε]|

� S(Cj[ε])

where the final equality follows from the definition of the module S(α) for

α a multipartition and the fact that Cj[ε] = ε1j ◦ · · · ◦ εsj. We thus have a

k(SmoSn)-module isomorphism[
t

�
j=1

s

�
i=1

Zij
[ε]

]x
mon

mo|C[ε]|

∼=
[

t

�
j=1

X
�̃||Cj [ε]||
j

ymo||Cj [ε]||
mo|Cj [ε]|

� S(Cj[ε])

]x
mon

mo|C[ε]|
.

(6.4.14)

Now for each j = 1, . . . , t, we have that |Cj [ε]| is a composition of the integer

||Cj[ε]||. It follows that the Young subgroup S(|C1[ε]|,...,|Ct[ε]|) ∼= S|C1[ε]| × · · · ×
S|Ct[ε]| of Sn is a subgroup of S(||C1[ε]||,...,||Ct[ε]||) ∼= S||C1[ε]|| × · · · × S||Ct[ε]||. By

transitivity of induction, we now see that the right-hand side of (6.4.14) is[
t

�
j=1

[
X
�̃||Cj [ε]||
j

ymo||Cj [ε]||
mo|Cj [ε]|

� S(Cj[ε])

]xmo||Cj [ε]||
mo|Cj [ε]|

]x
mon

mo(||C1[ε]||,...,||Ct[ε]||)

and by Proposition 4.3.7, this is[
t

�
j=1

X
�̃||Cj [ε]||
j �

(
S(Cj[ε])

x||Cj [ε]||
|Cj [ε]|

)]x
mon

mo(||C1[ε]||,...,||Ct[ε]||)
.
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Hence, recalling (6.4.13), we have now shown that s

�
i=1

[
t

�
j=1

X
�̃||εij ||
j

ymo||εij ||
mo|εij |

� S(εij)

]x
mo|ηi|

mo|Ri[ε]|

x
mon

mo|η|

∼=
[

t

�
j=1

X
�̃||Cj [ε]||
j �

(
S(Cj[ε])

x||Cj [ε]||
|Cj [ε]|

)]x
mon

mo(||C1[ε]||,...,||Ct[ε]||)
. (6.4.15)

Now by (3.2.11), we have (recalling that Cj[ε] is a multipartition)

S(Cj[ε])
x||Cj [ε]||
|Cj [ε]| ∼ F

νj`||Cj [ε]||
c(νj;Cj[ε])S

νj

and so (using Lemmas 2.2.2, 2.1.2 and 6.1.1), the right-hand side of (6.4.15)

has a filtration[
t

�
j=1

X
�̃||Cj [ε]||
j �

(
S(Cj[ε])

x||Cj [ε]||
|Cj [ε]|

)]x
mon

mo(||C1[ε]||,...,||Ct[ε]||)
∼

F
ν is a t-multipartition

of n

|ν|=(||C1[ε]||,...,||Ct[ε]||)

(
t∏

j=1

c(νj;Cj[ε])

)[
t

�
j=1

X
�̃||Cj [ε]||
j � Sνj

]x
mon

mo(||C1[ε]||,...,||Ct[ε]||)
.

Using the fact that for any multipartition ν as in the filtration we have[
t

�
j=1

X
�̃||Cj [ε]||
j � Sνj

]x
mon

mo(||C1[ε]||,...,||Ct[ε]||)
= Sν(X1, . . . , Xt),

this filtration becomes[
t

�
j=1

X
�̃||Cj [ε]||
j �

(
S(Cj[ε])

x||Cj [ε]||
|Cj [ε]|

)]x
mon

mo(||C1[ε]||,...,||Ct[ε]||)
∼

F
ν is a t-multipartition of n
|ν|=(||C1[ε]||,...,||Ct[ε]||)

(
t∏

j=1

c(νj;Cj[ε])

)
Sν(X1, . . . , Xt). (6.4.16)

In light of the isomorphism (6.4.15), we see that we may use the filtration

(6.4.16) to refine the filtration (6.4.13) of Sη(Y1, . . . , Ys), to obtain a filtration

Sη(Y1, . . . , Ys) ∼ F
([ε], ν)

(
s∏
i=1

c(ηi;Ri[ε])

)(
t∏

j=1

c(νj;Cj[ε])

)
Sν(X1, . . . , Xt)

(6.4.17)
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where ([ε], ν) ranges over all pairs where [ε] is an s×t multipartition matrix

such that ||Ri[ε]|| = |ηi| for each i = 1, . . . , s and L[ε] = A, and ν is a t-

multipartition of n such that |ν| = (||C1[ε]||, . . . , ||Ct[ε]||). This is our desired

filtration of Sη(Y1, . . . , Ys), but before stating this result in its final form as a

proposition, we shall pause to consider a special case which will be important

in our work below.

Suppose that we have s = t and moreover that we have wi = i for each

i = 1, . . . , t. Then the multipartition matrix M(η;w1, . . . , wt) = M(η; 1, . . . , t)

which indexes the bottom-most factor in the filtration (6.4.13) has (i, i)th

entry (ηi, (), . . . , ()), and all entries off the main diagonal are tuples of empty

partitions. Thus M(η; 1, . . . , t) has the form

(η1, (), . . . , ()) ((), . . . , ()) · · · · · · ((), . . . , ())

((), . . . , ()) (η2, (), . . . , ()) ((), . . . , ()) · · · ((), . . . , ())
...

...
. . .

...
...

. . . ((), . . . , ())

((), . . . , ()) ((), . . . , ()) · · · ((), . . . , ()) (ηt, (), . . . , ())


.

Hence, if we take [ε] = M(η; 1, . . . , t) in (6.4.16), then we find that

Cj[ε] =
(
(), . . . , (), ηj, (), . . . , ()

)
for each j. Now if we have a partition ν ` n and a multipartition α =(
(), . . . , (), η, (), . . . , ()

)
, where η is some partition, such that the Littlewood-

Richardson coefficient c(ν;α) is non-zero, then we see by (3.2.3) and (3.2.5)

that we must have η = ν, and that c(ν;α) = 1 in this case. It now follows

that for any t-multipartition ν of n, we have that
∏t

j=1 c(ν
j;Cj[ε]) is equal

to 1 if ν = η, and is zero if ν 6= η. Thus we see that for [ε] = M(η; 1, . . . , t),

the only module occurring with non-zero multiplicity in the filtration (6.4.16)

is Sη(X1, . . . , Xt). Since the filtration (6.4.17) was obtained by refining the
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filtration (6.4.13) using the filtration (6.4.16), it follows that in this special

case, the module occurring at the very bottom of the filtration (6.4.17) is

Sη(X1, . . . , Xt).

From (6.4.17), we thus see that we have obtained the following result,

which is essentially a reformulated version of [6, Lemma 4.4, (1)].

Proposition 6.4.1. [6, Lemma 4.4, (1)] Let Y1, . . . , Ys and X1, . . . , Xt be

kSm-modules such that for each i = 1, . . . , s we have a filtration

Yi ∼
t

F〈wi〉
j=1

aijXj,

and let η be an s-component multipartition of n. Then we have a filtration

Sη(Y1, . . . , Ys) ∼

F
ν

 ∑
[ε]∈MatΛ(A;|η|×|ν|)

(
s∏
i=1

c(ηi;Ri[ε])

)(
t∏

j=1

c(νj;Cj[ε])

)
Sν(X1, . . . , Xt)

where ν runs over all t-multipartitions of n and where A is the s× t integer

matrix whose (i, j)th entry is aij. Further, suppose that we have s = t and

moreover that we have wi = i for each i = 1, . . . , t. Then the module occurring

at the bottom of this filtration is Sη(X1, . . . , Xt).

6.5 Unitriangular systems and Young’s rule

for the wreath product

If we assume certain extra conditions on the system of filtrations for the mod-

ules Yi in Proposition 6.4.1, we can obtain more precise results on the filtration

obtained, as the following proposition (which is essentially a reformulation of

[6, Proposition 4.7]) shows.
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Proposition 6.5.1. [6, Lemma 4.7] With the hypotheses of Proposition 6.4.1,

let us further assume that s = t and moreover that

1. for all i and j we have that j > i implies aij = 0

2. we have aii = 1 for each i = 1, . . . , t

so that the matrix A is in fact square and lower unitriangular. Then the

multiplicity of Sν(X1, . . . , Xt) in the filtration of Sη(Y1, . . . , Ys) in Proposition

6.4.1 is 1 if ν = η and 0 if ν 4 η.

Proof. Firstly, note that the multiplicity of Sν(X1, . . . , Xt) in the filtration

of Sη(Y1, . . . , Yt) in proposition 6.4.1 (with s = t) is

∑
[ε]∈MatΛ(A;|η|×|ν|)

(
t∏
i=1

c(ηi;Ri[ε])

)(
t∏

j=1

c(νj;Cj[ε])

)
. (6.5.1)

Assume that for some ν and some η, (6.5.1) is non-zero. So we must have

some [ε] ∈ MatΛ(A; |η| × |ν|) such that(
t∏
i=1

c(ηi;Ri[ε])

)(
t∏

j=1

c(νj;Cj[ε])

)
6= 0.

This implies that

c(ηi;Ri[ε]) 6= 0 for i = 1, . . . , t (6.5.2)

and

c(νj;Cj[ε]) 6= 0 for j = 1, . . . , t. (6.5.3)

Further, we have of course that

||Ri[ε]|| = |ηi| for i = 1, . . . , t (6.5.4)

and

||Cj[ε]|| = |νj| for j = 1, . . . , t. (6.5.5)
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We claim that we must have ν D η, and so by the definition of the dominance

order on multipartitions, we need to show that for any p = 1, . . . , t and

q = 1, 2, 3, . . ., we have

p−1∑
i=1

|νi| +

q∑
j=1

νpj >
p−1∑
i=1

|ηi| +

q∑
j=1

ηpj .

Indeed, let us fix such p and q. Then by (6.5.2) and (6.5.3) we have

0 6= c(ηp;Rp[ε]) = c
(
ηp; εp,1 ◦ · · · ◦ εp,t

)
(6.5.6)

and

0 6= c(νp;Cp[ε]) = c
(
νp; ε1,p ◦ · · · ◦ εt,p

)
. (6.5.7)

By our assumptions about the coefficients aij, we know that the matrix A

is lower unitriangular. Since we know that L[ε] = A (where, recall, L[ε] is

the matrix whose (i, j)th entry is the length of the multipartition εij which is

the (i, j)th entry of the multipartition matrix [ε]), it follows that εii = (εi) for

partitions ε1, . . . , εt, and that εij = () if j > i. Thus [ε] has the form

[ε] =



(ε1) () · · · · · · ()

∗ (ε2) () · · · ()
...

...
. . .

...
...

. . . ()

∗ ∗ · · · ∗ (εt)


. (6.5.8)

We thus see that

Rp[ε] = εp,1 ◦ · · · ◦ εp,t = (∗, . . . , ∗, εp) (6.5.9)

and

Cp[ε] = ε1,p ◦ · · · ◦ εt,p = (εp, ∗, . . . , ∗) . (6.5.10)

147



Since c(νp;Cp[ε]) 6= 0 by (6.5.7), we thus have by (6.5.10) and Lemma 3.2.3

(2) that
q∑
j=1

νpj >
q∑
j=1

εpj . (6.5.11)

Further, since c(ηp;Rp[ε]) 6= 0 by (6.5.6), we see by (6.5.9) and Lemma 3.2.3

(3) that we have a partition ζ of |ηp| − |εp| such that

q∑
j=1

ηpj 6
q∑
j=1

εpj +

q∑
j=1

ζj. (6.5.12)

Further we have by (6.5.5) that
∑p−1

i=1 |νi| is equal to the sum of all of the

sizes of the partitions occurring as components of the multipartitions in the

first p− 1 columns of [ε]. By (6.5.4) we have that
∑p

i=1 |ηi| is the sum of all

of the sizes of the partitions occurring as components of the multipartitions

in the first p rows of [ε]. Further, from (6.5.8) we see that all of the partitions

which occur as components of the multipartitions in the first p rows of [ε],

except for the εp occurring in the (p, p)th entry, lie in the first p− 1 columns

of [ε]. Hence

p−1∑
i=1

|νi| >
(

p∑
i=1

|ηi|
)
− |εp|

=

(
p−1∑
i=1

|ηi|
)

+ |ηp| − |εp|

=

(
p−1∑
i=1

|ηi|
)

+ |ζ|

>
p−1∑
i=1

|ηi| +

q∑
j=1

ζj. (6.5.13)
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Thus we have
p−1∑
i=1

|νi| +

q∑
j=1

νpj >
p−1∑
i=1

|νi| +

q∑
j=1

εpj (by (6.5.11))

>
p−1∑
i=1

|ηi| +

q∑
j=1

ζj +

q∑
j=1

εpj (by (6.5.13))

>
p−1∑
i=1

|ηi| +

q∑
j=1

ηpj (by (6.5.12))

as required, so indeed ν D η.

Finally, we consider the case ν = η. We seek to show that in this case

(6.5.1) is equal to 1. Indeed, if ν = η then (6.5.1) becomes

∑
[ε]∈MatΛ(A;|η|×|η|)

(
t∏
i=1

c(ηi;Ri[ε])

)(
t∏

j=1

c(ηj;Cj[ε])

)
. (6.5.14)

Now we know that any multipartition matrix [ε] in MatΛ(A; |η| × |η|) is of

the form (6.5.8), and moreover that the sum of the sizes of all partitions

occurring as components of the multipartitions in the ith column is |ηi|, and

that the sum of the sizes of all partitions occurring as components of the

multipartitions in the ith row is also |ηi|. Considering the first row of (6.5.8),

we see that we must have ||ε1,1|| = |ε1| = |η1|. But then considering the first

column of (6.5.8), we see that all of the multipartitions εi,1 in the first column

of [ε] where i 6= 1 must satisfy ||εi,1|| = 0. Moving on to the second row and

second column of (6.5.8), we see by the same logic that all multipartitions

εij appearing on the second row or second column of [ε] satisfy ||εij|| = 0,

except for ε2,2, which satisfies ||ε2,2|| = |ε2| = |η2|. Continuing in this manner

down the rows and columns, we see that the multipartitions εij which are the

entries of [ε] must satisfy

||εij|| =

|η
i| if i = j

0 if i 6= j
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and hence [ε] is a t×t multipartition matrix whose (i, i)-th entry is (εi) for

some εi ` |ηi|, and where all the other entries are either empty multipartitions

or tuples of empty partitions. We thus see that for each i = 1, . . . , t, both

Ri[ε] and Ci[ε] are multipartitions where one component is εi and all other

components are (). It follows by (3.2.3) and (3.2.5) that for all i and j we

have

c(ηi;Ri[ε]) =

1 if ηi = εi

0 otherwise

and

c(ηj;Cj[ε]) =

1 if ηj = εj

0 otherwise

by which we see that the only ε for which the summand in (6.5.14) is non-zero

is the ε where we have εi = ηi for i = 1, . . . , t and where all the other entries

are either empty multipartitions or tuples of empty partitions. Further, we

see that for this ε the summand is 1. Thus (6.5.14) equals 1 as claimed.

We conclude by applying Proposition 6.5.1 to obtain a filtration of the

module Mλ by modules Sν , thus proving an analogue of Young’s rule for

k(SmoSn).

Recall that we have fixed the distinct partitions of m, in the lexicographic

order, to be

(m) = µ1 > µ2 > . . . > µr = (1m).

Let us define Ki
j to be the Kostka number K(µj, µi), which recall is the

multiplicity of Sµ
j

in Mµi in the filtration (3.2.1) given by Young’s rule.

Mµi ∼
r

F〈i〉
j=1

Ki
jS

µj . (6.5.15)

Thus we have by (3.2.2) that Ki
i = 1 and Ki

j = 0 if i < j. Let us define K to

be the r× r matrix whose (i, j)th entry is Ki
j , so that K is lower unitriangular.
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Proposition 6.5.2. Let λ be an r-multipartition of n. Then we have a

filtration of k(Sm o Sn)-modules

Mλ ∼

F〈λ〉
ν∈Λrn

∑
([ε], η)

(
r∏
l=1

K(ηl, λl)

)(
r∏
i=1

c(ηi;Ri[ε])

)(
r∏
j=1

c(νj;Cj[ε])

)Sν

where for each multipartition ν ∈ Λr
n (recalling that Λr

n is the set of all multi-

partitions of n with length r), the pair ([ε], η) ranges over all pairs consisting

of a multipartition matrix [ε] ∈ MatΛ(K; |λ|×|ν|) and a multipartition η ∈ Λr
n

such that |η| = |λ|.
The multiplicity of Sν in this filtration is 0 if ν 4 λ and 1 if ν = λ. Thus

Mλ has a filtration by modules Sν for ν D λ, in which Sλ occurs exactly once

at the very bottom of the filtration.

We may regard this result as a wreath product analogue of Young’s rule,

and the coefficients with which the modules Sν appear as wreath product

analogues of the Kostka numbers.

Proof. We have λ = (λ1, . . . , λr), and

Mλ =
[(
Mµ1

, . . . ,Mµr
)�̃|λ|�(Mλ1

� · · ·�Mλr
)]xmon

mo|λ|
.

We may use Young’s rule (3.2.1) and Lemma 2.1.2 to see that the k(SmoS|λ|)-
module Mλ1

� · · ·�Mλr has a filtration

Mλ1

� · · ·�Mλr ∼ F〈λ〉
η∈Λrn
|η|=|λ|

(
r∏
l=1

K(ηl, λl)

)
Sη

1

� · · ·� Sηr .

Thus by Lemmas 6.1.1 and 2.2.2, we have a filtration

Mλ ∼ F〈λ〉
η∈Λrn
|η|=|λ|

(
r∏
l=1

K(ηl, λl)

)
Sη
(
Mµ1

, . . . ,Mµr
)
. (6.5.16)
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Now suppose that η is a multipartition of n with |η| = |λ| such that

r∏
l=1

K
(
ηl, λl

)
6= 0.

Then by (3.2.2), we must have ηl D λl for l = 1, . . . , r, which in turn implies

η D λ (since |η| = |λ|). Hence the multiplicity of Sη
(
Mµ1

, . . . ,Mµr
)

in

(6.5.16) is zero unless η D λ. Further, if η = λ, then we have by (3.2.2) that

r∏
l=1

K
(
ηl, λl

)
=

r∏
l=1

K
(
λl, λl

)
= 1

so the multiplicity of Sλ
(
Mµ1

, . . . ,Mµr
)

in the filtration (6.5.16) is 1.

Now the filtrations (6.5.15) of the modules Mµi by the modules Sµ
j

satisfy

the additional condition in Proposition 6.4.1 (i.e. that “s = t and moreover

that we have wi = i for each i = 1, . . . , t ”), and also all of the conditions

in Proposition 6.5.1. Hence by applying Propositions 6.4.1 and 6.5.1 to the

module Sη(Mµ1
, . . . ,Mµr), and using the fact that Sν(Sµ

1
, . . . , Sµ

r
) = Sν ,

we have for any r-multipartition η of n a filtration

Sη(Mµ1

, . . . ,Mµr) ∼

F〈η〉
ν∈Λrn

 ∑
[ε]∈MatΛ(K;|η|×|ν|)

(
r∏
i=1

c(ηi;Ri[ε])

)(
r∏
j=1

c(νj;Cj[ε])

)Sν (6.5.17)

where the multiplicity of Sη equals 1 and the multiplicity of Sν equals

zero if ν 4 η. The filtration of Mλ in the statement of the proposition

now follows by combining the filtration (6.5.16) with the filtration (6.5.17),

noting in particular that Sλ
(
Mµ1

, . . . ,Mµr
)

occurs at the bottom of the

filtration (6.5.16) and that Sλ occurs at the bottom of the filtration of

Sλ
(
Mµ1

, . . . ,Mµr
)

given by (6.5.17), so that Sλ is the bottom-most factor

in the filtration of Mλ obtained by using the filtration (6.5.17) to refine the

filtration (6.5.16).
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The claims made in the proposition about multiplicities follow easily from

the facts about multiplicities in the filtrations (6.5.16) and (6.5.17), namely

that in the filtration (6.5.16) the multiplicity of Sη
(
Mµ1

, . . . ,Mµr
)

is zero

unless η D λ and the multiplicity of Sλ
(
Mµ1

, . . . ,Mµr
)

is 1, and that in the

filtration (6.5.17) the multiplicity of Sη equals 1 and the multiplicity of Sν

equals zero if ν 4 η.

Original research in Chapter 6: The work in this chapter is almost all

a reformulation of results from [6] and thus is not really original research.

However, the use of multipartition matrices to state and prove these results is

a novel idea which I believe improves the clarity and usability of the results,

and furthermore allows for more transparent proofs. Proposition 6.5.2, while

technically new, is really just an application of the results of [6] and thus is

not really original. Corollary 6.2.2 is my own work, although this is a fairly

straightforward result.

153



Chapter 7

Tableau combinatorics

In the coming chapters, we shall make crucial use of Mackey’s theorem (The-

orem 2.2.5). In our applications of Mackey’s theorem, we shall be confronted

with the problem of finding a system of (H,K)-double coset representatives

for certain subgroups H,K of Sn, and moreover of understanding the sub-

groups Hx ∩K where x is one of our chosen coset representatives (recalling

that Hx denotes the conjugate subgroup x−1Hx of H by x). In particular,

we shall be interested in the case where K is the Young subgroup Sα for some

α � n, and where H is either Sγ for γ a composition of n, or else H is Sγ for

some multicomposition γ of n. In this chapter, we shall develop the theory of

certain kinds of Young tableau which provide a natural and convenient way

of dealing with these questions. We draw on the account given by Wildon in

his unpublished note [34]: the material for the case where H = Sγ is taken

more-or-less directly from this note, while the corresponding material for the

case H = Sγ is of course closely based on the H = Sγ case. However, the

material in section 7.4 is original.

Throughout this chapter we fix α = (α1, α2, . . . , αl) to be an l part

composition of n, γ = (γ1, γ2, . . . , γt) to be a t part composition of n, and
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γ = (γ1, γ2, . . . , γt) to be a t component multicomposition of n, where thus

γi = (γi1, γ
i
2, . . . , γ

i
li
) � |γi| for each i, with |γ1|+ · · ·+ |γt| = n.

7.1 Tableaux and the action of Sn

A tableau of shape α and type γ is a Young diagram of shape α where

each box contains a positive integer i such that for each i ∈ {1, . . . , t}, i
occurs exactly γi times, while a tableau of shape α and type γ is a Young

diagram of shape α where each box contains a pair (i, j) of positive integers,

such that for each i and j the pair (i, j) occurs exactly γij times.

Example 7.1.1. Take n = 31, α = (7, 5, 6, 4, 7, 2) and γ = (5, 9, 3, 8, 6). Then

one possible tableau of shape α and type γ is

2 4 2 4 5 3 5

4 1 2 4 1

2 5 2 5 5 2

5 1 3 2

1 4 2 3 4 4 1

2 4

.

Further, if

γ =
(
(2, 3), (3, 4, 2), (3), (4, 4), (2, 3, 1)

)
,
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then one possible tableau of shape α and type γ is

(2,1) (4,2) (2,3) (4,2) (5,2) (3,1) (5,1)

(4,1) (1,1) (2,2) (4,2) (1,2)

(2,2) (5,3) (2,1) (5,2) (5,2) (2,3)

(5,1) (1,1) (3,1) (2,2)

(1,2) (4,1) (2,1) (3,1) (4,1) (4,2) (1,2)

(2,2) (4,1)

.

Since we allow α to have zero parts, our Young diagrams can have rows

with no boxes in them. For example if α = (0, 3, 5, 0, 7, 0, 0, 1), then the

Young diagram of shape α might be drawn as

Example 7.1.2. Take n = 16, α = (0, 3, 5, 0, 7, 0, 0, 1) and γ = (0, 3, 8, 0, 5).
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Then one possible tableau of shape α and type γ is

3 5 3

5 2 3 3 5

3 3 5 2 3 5 3

2

.

Further, if

γ =
(
(), (1, 0, 2), (3, 5, 0), (), (0, 0, 2, 3)

)
,

then one possible tableau of shape α and type γ is

(3,2) (5,3) (3,1)

(5,3) (2,3) (3,2) (3,2) (5,4)

(3,2) (3,1) (5,4) (2,1) (3,2) (5,4) (3,1)

(2,3)

.
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Tableaux are of little interest as static objects: in order to make use of

them, we must introduce an action of Sn which transforms one tableau into

another. For our fixed composition α of n, we let Sn act (from the right) on

both the set of tableaux of shape α and type γ, and the set of tableaux of

shape α and type γ, by permuting the entries of a tableau in the manner

which we shall now describe.

Firstly, we introduce a numbering of the boxes in a Young diagram of

shape α. Indeed, we number the boxes of the tableau from 1 to n going from

left to right across each row in turn, starting with the top row and working

down. Thus if n = 9 and α = (3, 0, 2, 3, 0, 1), the numbering of the boxes is

1 2 3

4 5

6 7 8

9

.

Now let τ be a tableau of shape α and type γ or γ, and let σ ∈ Sn. Then

τσ is defined to be the tableau obtained from τ by moving the number or

pair of numbers in box number i to box number (i)σ, for each i = 1, . . . , n.

Example 7.1.3. For example, let us take n = 13, α = (5, 3, 4, 1), γ =

158



(
(2, 1, 0, 1), (3, 2), (1, 3)

)
, σ = (1, 12, 3, 6)(5, 7, 13)(8, 10) ∈ S13, and

τ =

(1,1) (2,1) (1,2) (3,1) (2,1)

(2,2) (3,2) (2,2)

(2,1) (3,2) (1,1) (3,2)

(1,4)

.

We write the box numbers into τ to obtain

(1,1)
1

(2,1)
2

(1,2)
3

(3,1)
4

(2,1)
5

(2,2)
6

(3,2)
7

(2,2)
8

(2,1)
9

(3,2)
10

(1,1)
11

(3,2)
12

(1,4)
13

,

and then performing the above operation yields

(2,2)
1

(2,1)
2

(3,2)
3

(3,1)
4

(1,4)
5

(1,2)
6

(2,1)
7

(3,2)
8

(2,1)
9

(2,2)
10

(1,1)
11

(1,1)
12

(3,2)
13

.
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Thus we have

τσ =

(2,2) (2,1) (3,2) (3,1) (1,4)

(1,2) (2,1) (3,2)

(2,1) (2,2) (1,1) (1,1)

(3,2)

.

It is easy to see that this definition does indeed yield Sn actions as claimed,

and it is obvious that these Sn actions are transitive. It is natural to ask

what the stabilizer of a given tableau is under this action, and in order to

answer this we now consider certain special tableaux of shape α and type

γ or γ. Indeed, for our compositions α and γ, we construct the standard

tableau of shape α and type γ as follows: we begin with a Young diagram

of shape α with the boxes numbered as described above, and then working

from box 1 to box n we enter first γ1 1’s, then γ2 2’s, and so on. We denote

this tableau by ταγ . For example, if we take n = 13, α = (2, 0, 3, 1, 3, 4) and

γ = (3, 5, 0, 4, 1), then we have

ταγ =

1 1

1 2 2

2

2 2 4

4 4 4 5

.

Similarly, for our multicomposition γ, we begin with a Young diagram of shape

α with the boxes numbered as described above, and then working from box 1

to box n we enter symbols (i, j) one per box, starting with γ1
1 pairs (1, 1), then
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γ1
2 pairs (1, 2), and so on until we run out of parts in γ1. We then enter γ2

1 pairs

(2, 1), then γ2
2 pairs (2, 2), and so on, and so on. We thus obtain a tableau of

shape α and type γ, and we define ταγ to be this tableau. For example, take

n = 13, α = (2, 0, 3, 1, 3, 4) and γ =
(
(1, 3), (2, 2), (), (1, 0, 3), (1)

)
. Then from

γ we see that, to form a tableau of shape α and type γ, we need 1 pair (1, 1),

3 pairs (1, 2), 2 pairs (2, 1), 2 pairs (2, 2), 1 pair (4, 1), 3 pairs (4, 3), and 1

pair (5, 1). Entering these into a Young diagram of shape α in the manner

described above gives

ταγ =

(1,1) (1,2)

(1,2) (1,2) (2,1)

(2,1)

(2,2) (2,2) (4,1)

(4,3) (4,3) (4,3) (5,1)

.

Now it is clear from the definition of ταγ and ταγ that their stabilizers under

the action of Sn are the Young subgroups Sγ and Sγ, respectively. Now let

σ ∈ Sn. Then for any θ ∈ Sn we have (writing Stab(−) to denote a stabilizer)

θ ∈ Stab
(
ταγ σ

)
⇐⇒ ταγ σ = ταγ σθ

⇐⇒ ταγ = ταγ
(
σθσ−1

)
⇐⇒ σθσ−1 ∈ Stab

(
ταγ
)

= Sγ

⇐⇒ θ ∈ σ−1Sγσ.
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We may apply the same argument to prove that

θ ∈ Stab
(
ταγ σ

)
⇐⇒ θ ∈ σ−1Sγσ

and hence we have the following.

Proposition 7.1.4. (See for example [34], proof of Proposition 5.2) For any

σ ∈ Sn, we have Stab
(
ταγ σ

)
=
(
Sγ
)σ

and Stab
(
ταγ σ

)
=
(
Sγ
)σ

.

7.2 Weakly increasing rows and double cosets

Our purpose in studying tableaux is to gain an understanding of certain kinds

of double cosets in Sn, and in this section we shall show how we may use a

particular subset of tableaux to index these double cosets in a natural way.

We say that a tableau of shape α and type γ has weakly increasing

rows if the entries in its rows are weakly increasing from left to right. We

say that a tableau of shape α and type γ has weakly increasing rows if

the entries in its rows are weakly increasing from left to right when we equip

the pairs (i, j) with the lexicographic order

(i, j) < (p, q) ⇐⇒ (i < p) or (i = p and j < q).

Example 7.2.1. None of the tableaux in Examples 7.1.1 or 7.1.2 have weakly

increasing rows, but if we keep α and γ as in Example 7.1.1, then

1 1 1 3 4 4 5

2 2 3 4 5

1 2 2 2 5 5

3 4 4 5

1 2 2 2 4 4 5

2 4

162



is a tableau of shape α and type γ with weakly increasing rows. Further, if

we keep γ as in Example 7.1.1, then

(1,1) (1,2) (1,2) (3,1) (4,1) (4,2) (5,2)

(2,2) (2,3) (3,1) (4,1) (5,1)

(1,1) (2,1) (2,2) (2,2) (5,1) (5,3)

(3,1) (4,1) (4,2) (5,2)

(1,2) (2,1) (2,2) (2,3) (4,2) (4,2) (5,2)

(2,1) (4,1)

is a tableau of shape α and type γ with weakly increasing rows.

We now seek a condition on σ ∈ Sn which ensures that the tableaux ταγ σ

and ταγ σ have weakly increasing rows. To do this, we recall from page 45 the

notion of the length of a permutation, which is defined to be the total number

of inversions of the permutation, where an inversion of a permutation σ ∈ Sn
is a pair (i, j) such that 1 ≤ i < j ≤ n and (i)σ > (j)σ.

We shall prove that if σ ∈ Sn is of minimal length in its Sα-coset σSα,

then the tableaux ταγ σ and ταγ σ have weakly increasing rows. For this, we

shall need a well-known combinatorial fact. We define a descent of σ to be

an inversion (j, j + 1) of σ for some 1 ≤ j < n.

Lemma 7.2.2. Let σ ∈ Sn, and suppose that (j, j + 1) is a descent of σ−1.

Then len
(
σ(j, j + 1)

)
= len(σ)− 1.

Proof. ([34], Lemma 2.1) We establish the claim by proving the following two

properties for any θ ∈ Sn
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1. len(θ) = len(θ−1)

2. if (j, j + 1) is a descent of θ, then len
(
(j, j + 1)θ

)
= len(θ)− 1.

For the first property, we have that

(x, y) is an inversion of θ ⇐⇒ x < y and (x)θ > (y)θ

⇐⇒ (xθ)θ−1 < (yθ)θ−1 and (x)θ > (y)θ

⇐⇒ ((y)θ, (x)θ) is an inversion of θ−1

and clearly the map (x, y) 7−→ ((y)θ, (x)θ) is a bijection from {1, . . . , n} ×
{1, . . . , n} to itself. Hence the inversions of θ and θ−1 are in bijection, so that

len(θ) = len(θ−1).

For the second property, we have trivially for any x, y ∈ {1, . . . , n} that

(x)θ > (y)θ ⇐⇒ (x)
(

(j, j + 1)(j, j + 1)θ
)
> (y)

(
(j, j + 1)(j, j + 1)θ

)
⇐⇒

(
(x)(j, j + 1)

)(
(j, j + 1)θ

)
>
(
(y)(j, j + 1)

)(
(j, j + 1)θ

)
.

From this we may easily see that if x < y and the pair (x, y) does not equal

the pair (j, j + 1), then (x)(j, j + 1) < (y)(j, j + 1). Moreover, (x, y) is then

an inversion of θ if and only if
(

(x)(j, j + 1), (y)(j, j + 1)
)

is an inversion of

(j, j + 1)θ. Further, the pair (j, j + 1) is by assumption a descent of θ but is

not a descent of (j, j + 1)θ, and the second property is now established.

The proof of the claim is now trivial: we have

len
(
σ(j, j + 1)

)
= len

(
((j, j + 1)σ−1)−1

)
= len

(
(j, j + 1)σ−1

)
= len

(
σ−1
)
− 1

= len(σ)− 1.
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Proposition 7.2.3. (Compare [34], Proposition 5.2 and Theorem 4.1) If

σ ∈ Sn is of minimal length in its left Sα-coset σSα, then both ταγ σ and ταγ σ

have weakly increasing rows.

Proof. The proofs for ταγ σ and ταγ σ are identical (indeed, γ and γ play no

role in the argument), and hence we give both in parallel by writing τα to

represent either ταγ or ταγ .

Suppose that τασ does not have weakly increasing rows. Indeed, suppose

that the ith row of τασ is not weakly increasing, and let us define

a = 1 +
i−1∑
j=1

αi

and

b =
i∑

j=1

αi

so that (with our numbering of the boxes of a Young diagram as above) the

boxes on the ith row of τασ are numbered from a to b. Thus the numbering

of the boxes on the ith row of τασ looks like

a a+ 1
· · · · · ·

b − 1 b
.

The fact that the ith row of τασ is not weakly increasing means that we have

some (p, q) with a ≤ p < q ≤ b such that the entry in the box of τασ with

number p is greater (in the appropriate ordering) than the entry in the box

of τασ with number q. Now by the definition of the action of Sn on tableaux,

we have for any j that the entry which is in box number j in τασ is the entry

from box number (j)σ−1 in τα. By the definition of τα, if i < j then the entry

in the box of τα with number i is less (in the appropriate ordering) than the

entry in the box of τα with number j. Hence we must have (p)σ−1 > (q)σ−1,
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and so (p, q) is an inversion of σ−1. This implies that there must be a descent

(j, j + 1) of σ−1 such that a ≤ j < b, for if not then we must have

(a)σ−1 < (a+ 1)σ−1 < · · · < (b− 1)σ−1 < (b)σ−1,

a contradiction. But then σ(j, j + 1) ∈ σSα since (j, j + 1) ∈ Sα, and

by Lemma 7.2.2, σ(j, j + 1) has length one less than σ, contradicting the

minimality of the length of σ in σSα.

We now demonstrate how tableaux with weakly increasing rows can be

used to index double cosets. Let us define Wα
γ to be the set of all tableaux of

shape α and type γ with weakly increasing rows, and Wα
γ to be the set of all

tableaux of shape α and type γ with weakly increasing rows. Further, let us

take Ωα
γ to be a complete system of (Sγ, Sα)-double coset representatives in

Sn and Ωα
γ to be a complete system of (Sγ, Sα)-double coset representatives

in Sn, where each element σ of Ωα
γ or Ωα

γ is of minimal length in its left coset

σSα.

Proposition 7.2.4. ([34], Corollary 5.1) The maps

fγ : Ωα
γ −→Wα

γ

σ 7−→ ταγ σ

and

fγ : Ωα
γ −→Wα

γ

σ 7−→ ταγ σ

are bijections.

Proof. To prove that fγ is onto, let τ be an element of Wα
γ . Then certainly

τ = ταγ θ for some θ ∈ Sn, since our action of Sn on tableaux is transitive.

But θ = uσv for some σ ∈ Ωα
γ , u ∈ Sγ, v ∈ Sα, so that τ = ταγ uσv. Now by
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Proposition 7.1.4, the stabilizer of ταγ under the action of Sn is Sγ, and so

τ = ταγ σv. Hence τv−1 = ταγ σ. But σ is certainly of minimal length in its left

Sα-coset, and hence by Proposition 7.2.3 ταγ σ has weakly increasing rows, so

τv−1 has weakly increasing rows. But v−1 ∈ Sα, and so the action of v−1 on

τ just permutes the elements within each row of τ . The fact that τv−1 and τ

both have weakly increasing rows now implies that τ = τv−1 and thus that

τ = ταγ σ. Hence fγ is onto.

To see that fγ is one-to-one, suppose that ταγ σ1 = ταγ σ2 for σ1, σ2 ∈ Ωα
γ .

Thus ταγ σ1σ
−1
2 = ταγ and hence by Proposition 7.1.4 σ1σ

−1
2 ∈ Sγ. It now

follows at once that Sγσ1Sα = Sγσ2Sα and hence that σ1 = σ2. Thus fγ is

one-to-one.

The proof for fγ works in exactly the same way, using the fact that by

Proposition 7.1.4 Sγ is the stabilizer of ταγ under the action of Sn.

Corollary 7.2.5. Suppose that we have σ1, . . . , σN ∈ Sn such that if i 6= j

then ταγ σi 6= ταγ σj and further {ταγ σi | 1 6 i 6 N} = Wα
γ . Then σ1, . . . , σN

is a complete system of (Sγ, Sα)-double coset representatives in Sn without

redundancy. Further, this corollary remains true if one replaces γ with γ

throughout.

Proof. With our system of (Sγ, Sα)-double coset representatives Ωα
γ as above,

we may by Proposition 7.2.4 list the distinct elements of Ωα
γ as ω1, . . . , ωN

such that ταγ σi = ταγ ωi. This implies that ταγ = ταγ ωiσ
−1
i , and hence that

ωiσ
−1
i ∈ Stab(ταγ ), so that by Proposition 7.1.4 we have ωiσ

−1
i ∈ Sγ. Hence

SγσiSα = Sγ(ωiσ
−1
i )σiSα = SγωiSα, and so σ1, . . . , σN is a complete system

of (Sγ, Sα)-double coset representatives in Sn without redundancy.

The above argument remains valid if we simply replace γ with γ throughout.
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7.3 Tableaux and subgroups of Sn

As mentioned at the start of the chapter, now that we have identified our

sets Ωα
γ and Ωα

γ of double coset representatives, we want to understand the

subgroups Sα ∩
(
Sγ
)σ

and Sα ∩
(
Sγ
)σ

, where σ lies in Ωα
γ or Ωα

γ , respectively.

Now by Proposition 7.1.4, Stab
(
ταγ σ

)
=
(
Sγ
)σ

. Further, it is clear that

Stab
(
ταγ σ

)
consists exactly of those elements of Sn which permute the equal

entries in the tableau ταγ σ. Further, for any tableau of shape α, it is immediate

that the Young subgroup Sα of Sn is exactly the set of elements of Sn

which permute the entries within the rows of the tableau (i.e. that do not

move any entries between rows). We may apply the same arguments to

Stab
(
ταγ σ

)
=
(
Sγ
)σ

. We thus obtain the following result.

Lemma 7.3.1. ([34], proof of Proposition 5.2) For any σ ∈ Sn, Sα ∩
(
Sγ
)σ

is the set of all elements of Sn which permute the equal entries within each

row of the tableau ταγ σ, while Sα ∩
(
Sγ
)σ

is the set of all elements of Sn which

permute the equal entries within each row of the tableau ταγ σ.

Example 7.3.2. Let us take n = 13, γ =
(
(2, 1), (3), (2, 2), (2), (1)

)
, α =

(4, 3, 4, 2) and σ = (1, 11, 13, 12, 5, 2, 8, 3)(9, 10). Note that

Sα = S{1,2,3,4} × S{5,6,7} × S{8,9,10,11} × S{12,13}

and

Sγ = S{1,2} × S{3} × S{4,5,6} × S{7,8} × S{9,10} × S{11,12} × S{13}.
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We have

ταγ =

(1,1) (1,1) (1,2) (2,1)

(2,1) (2,1) (3,1)

(3,1) (3,2) (3,2) (4,1)

(4,1) (5,1)

and

ταγ σ =

(1,2) (2,1) (3,1) (2,1)

(4,1) (2,1) (3,1)

(1,1) (3,2) (3,2) (1,1)

(5,1) (4,1)

so that(
Sγ
)σ

= S{1} × S{2,4,6} × S{3,7} × S{5,13} × S{8,11} × S{9,10} × S{12}

and

Sα ∩
(
Sγ
)σ

= S{2,4} × S{8,11} × S{9,10}.

Proposition 7.3.3. ([34], Proposition 5.2) Suppose that σ ∈ Sn is of minimal

length in its left Sα-coset σSα. Then Sα ∩
(
Sγ
)σ

and Sα ∩
(
Sγ
)σ

are Young

subgroups of Sn.

Proof. By Proposition 7.2.3, ταγ σ has weakly increasing rows, and so within

each row the equal entries occur in contiguous blocks. Since by Lemma 7.3.1

Sα ∩
(
Sγ
)σ

is the set of all elements of Sn which permute the equal entries

in each row of ταγ σ, Sα ∩
(
Sγ
)σ

is indeed a Young subgroup. An identical

argument works for Sα ∩
(
Sγ
)σ

.
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So note that the σ in Example 7.3.2 is not of minimal length in its left

Sα-coset, since the subgroup Sα ∩
(
Sγ
)σ

is not a Young subgroup of Sn.

In fact if σ ∈ Sn is of minimal length in σSα, we may use the tableaux

ταγ and ταγ to read off compositions ε, δ of n such that Sα ∩
(
Sγ
)σ

= Sδ and

Sα ∩
(
Sγ
)σ

= Sε, as the following example demonstrates.

Example 7.3.4. Take n = 16 and

α = (5, 4, 5, 2)

γ =
(
(3, 4), (4, 1), (1), (3)

)
σ = (1, 6, 2, 15, 5, 10, 16, 14, 13, 9, 8, 11, 12, 4)(3, 7).

Then σ is of minimal length in σSα (see below for a justification of this) and

we have by direct calculation that

ταγ σ =

(1,2) (1,2) (1,2) (2,2) (4,1)

(1,1) (1,1) (2,1) (3,1)

(1,2) (2,1) (2,1) (4,1) (4,1)

(1,1) (2,1)

so that Sα ∩
(
Sγ
)σ

is the Young subgroup

S{1,2,3} × S{6,7} × S{11,12} × S{13,14}

associated to the composition Γ = (3, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1) � 16 and so

Sα ∩
(
Sγ
)σ

= SΓ.

Now it is not immediately clear that the σ in this example is indeed of

minimal length in its coset σSα. However, there is an easy way of seeing this.
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Indeed, we find by direct calculation that τα(116)σ is

4 6 7 12 15

1 3 9 13

5 8 11 14 16

2 10

and we see that this tableau has weakly (indeed, strictly) increasing rows.

Now choose θ ∈ Sα such that σθ is of minimal length in σSα. By Proposition

7.2.3, τα(116)σθ has weakly increasing rows. But θ ∈ Sα, so the action of θ on

any tableau of shape α is to permute the entries within each row, and since

τα(116)σθ and τα(116)σ both have weakly increasing rows, it follows that they are

equal. But tableaux of type (116) have distinct entries, and so we immediately

see that τα(116)ε = τα(116)δ implies ε = δ for any ε, δ ∈ Sn. Thus σ = σθ and so

σ is of minimal length as claimed.

7.4 The tuple of multicompositions

associated to a tableau

In Example 7.3.4, we have seen how Sα ∩
(
Sγ
)σ

may be characterised as

the Young subgroup associated to a composition of n, provided that σ is of

minimal length in σSα. We now show how we can characterise Sα ∩
(
Sγ
)σ

in a slightly different way, namely as the Young subgroup associated to an

l-tuple of length t multicompositions with total size n. This characterisation

will prove critical to our work on the structure of the spaces Hommon (Sν ,Mγ)

and Ext1
mon (Sν ,Mγ) in Chapter 9.

Recall that we have fixed a composition α = (α1, α2, . . . , αl) of n and a t

component multicomposition of n, γ = (γ1, γ2, . . . , γt).
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First, we explain how obtain an l-tuple of multicompositions of length

t from a tableau τ of shape α and type γ. We shall illustrate this process

with an example once we have given the definition. Indeed, for each i, j, s

let Γi,js (τ) be the number of times the pair (j, s) occurs on the ith row of τ

(so Γi,js (τ) is an integer). We then define for each i ∈ {1, . . . , l} and each

j ∈ {1, . . . , t} a composition

Γi,j(τ) =
(
Γi,j1 (τ),Γi,j2 (τ), . . . ,Γi,jp (τ)

)
where p is the highest integer such that a pair (j, p) occurs on the ith row

of τ . If there are no pairs (j, s) for any s on the ith row, then Γi,j(τ) = ().

Thus Γi,j(τ) records how many of each pair (j, s) occur on the ith row of

τ for different integers s. We then define for each i ∈ {1, . . . , l} a length t

multicomposition

Γi(τ) =
(
Γi,1(τ),Γi,2(τ), . . . ,Γi,t(τ)

)
.

Thus Γi(τ) records how many of each pair (j, s) occur on the ith row of τ for

different integers j and s. Finally, we define an l-tuple of t-multicompositions

Γ(τ) =
(
Γ1(τ),Γ2(τ), . . . ,Γl(τ)

)
.

We call Γ(τ) the tuple of multicompositions associated to τ .

Example 7.4.1. Let us take

n = 20

α = (5, 4, 5, 2, 4)

γ =
(
(3, 4, 1), (4, 3), (1, 1), (3)

)
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and thus in this case l = 5 and t = 4. Then we let τ be the tableau of shape

α and type γ given by

τ =

(2,2) (4,1) (1,2) (1,2) (2,2)

(1,1) (3,2) (2,1) (1,1)

(1,2) (4,1) (2,1) (4,1) (2,1)

(3,1) (2,1)

(1,3) (2,2) (1,1) (1,2)

.

We can now read off Γ(τ). Indeed, from the first row we have

Γ1(τ) =
(
(0, 2), (0, 2), (), (1)

)
and similarly from the second, third, fourth, and fifth rows, we have

Γ2(τ) =
(
(2), (1), (0, 1), ()

)
Γ3(τ) =

(
(0, 1), (2), (), (2)

)
Γ4(τ) =

(
(), (1), (1), ()

)
Γ5(τ) =

(
(1, 1, 1), (0, 1), (), ()

)
and so

Γ(τ) =(Γ1,Γ2,Γ3,Γ4,Γ5)

=
((

(0, 2), (0, 2), (), (1)
)
,(

(2), (1), (0, 1), ()
)
,(

(0, 1), (2), (), (2)
)
,(

(), (1), (1), ()
)
,(

(1, 1, 1), (0, 1), (), ()
))
.
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Proposition 7.4.2. If σ ∈ Sn is of minimal length in its left Sα-coset σSα,

then we have

Sα ∩
(
Sγ
)σ

= SΓ(ταγ σ).

Proof. By Lemma 7.3.1, Sα ∩
(
Sγ
)σ

is the subgroup of Sn consisting of all

permutations which permute the equal elements in each row of the tableau

ταγ σ. We see by the definition of Γ(ταγ σ) that if ταγ σ has weakly increasing

rows, then SΓ(ταγ σ) is also the set of all permutations which permute the

equal elements in each row of the tableau ταγ σ. But Proposition 7.3.3 tells

us that ταγ σ does indeed have weakly increasing rows, and so the proposition

follows.

Example 7.4.3. Let us return to the α, γ, σ of Example 7.3.4, so that

n = 16

α = (5, 4, 5, 2)

γ =
(
(3, 4), (4, 1), (1), (3)

)
σ = (1, 6, 2, 15, 5, 10, 16, 14, 13, 9, 8, 11, 12, 4)(3, 7)

and thus in this case l = t = 4. Recall from Example 7.3.4 that this σ is of

minimal length in its left Sα-coset σSα. Recall also that

ταγ σ =

(1,2) (1,2) (1,2) (2,2) (4,1)

(1,1) (1,1) (2,1) (3,1)

(1,2) (2,1) (2,1) (4,1) (4,1)

(1,1) (2,1)

We can now read off Γ(ταγ σ) from this tableau. Indeed, from the first row we
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have

Γ1 =
(
(0, 3), (0, 1), (), (1)

)
and similarly from the second, third, and fourth rows, we have

Γ2 =
(
(2), (1), (1), ()

)
Γ3 =

(
(0, 1), (2), (), (2)

)
Γ4 =

(
(1), (1), (), ()

)
.

Thus

Γ(ταγ σ) =(Γ1,Γ2,Γ3,Γ4)

=
((

(0, 3), (0, 1), (), (1)
)
,(

(2), (1), (1), ()
)
,(

(0, 1), (2), (), (2)
)
,(

(1), (1), (), ()
))
.

We conclude this chapter with a combinatorial result which will be vital

to our work in Chapter 9 on the structure of the spaces Hommon (Sν ,Mγ) and

Ext1
mon (Sν ,Mγ).

Proposition 7.4.4. Let γ and ν be multicompositions of n of length t, and

let τ be a tableau of shape |ν| and type γ.

1. Let i, j ∈ {1, . . . , t}. Then Γi,j(τ) 6= () if and only if some pair (j, ∗)
appears on the ith row of τ .

2. Suppose that ν 4 γ. Suppose further that for each j ∈ {1, . . . , t}, no

pair (j, ∗) occurs lower than the jth row of τ , where by “lower” we mean

further down the tableau, i.e. in the lth row for some l > j. Then we
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have some i and some j such that the first i− 1 entries of Γi are (), so

that we have

Γi(τ) =
(
(), (), . . . , (),Γi,i(τ),Γi,i+1(τ), . . . ,Γi,t(τ)

)
,

and such that we also have

j∑
q=1

Γi,iq (τ) >

j∑
q=1

νiq.

Proof. The first claim of the proposition is simply a restatement of part of

the definition of the composition Γi,j(τ), so all we need to do is prove the

second claim.

Since ν 4 γ, we have i and j such that

i−1∑
p=1

|γp| +

j∑
q=1

γiq >
i−1∑
p=1

|νp| +

j∑
q=1

νiq. (7.4.1)

The fact that the first i− 1 entries of Γi are () follows from the first part of

the proposition and our assumptions, and so all that remains is to prove the

final inequality.

Now there are
∑i−1

p=1 |νp| boxes on the first i − 1 rows of τ (since τ has

shape |ν|). Also, τ is of type γ, and hence the number of pairs (p, ∗) for p < i

occurring in τ is
∑i−1

p=1 |γp|. By our assumption that no pair (j, ∗) occurs

lower than the jth row of τ , these pairs must all occur on the first i− 1 rows.

Thus we see that there can be at most

i−1∑
p=1

|νp| −
i−1∑
p=1

|γp|

pairs (i, ∗) on the first i− 1 rows of τ , and hence in particular at most this

many pairs (i, q) for q ≤ j on the first i − 1 rows of τ . But τ is of type γ,

and this means in particular that the total number of pairs (i, q) for q ≤ j
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occurring in the tableau τ is
∑j

q=1 γ
i
q. By our assumption that no pair (j, ∗)

occurs lower than the jth row of τ , all of these pairs must occur within the

first i rows of τ . Thus at least(
j∑
q=1

γiq

)
−
(

i−1∑
p=1

|νp| −
i−1∑
p=1

|γp|
)

pairs (i, q) with q ≤ j occur on the ith row of τ . By definition of Γ(τ), we

see that the number of pairs (i, q) for q ≤ j occurring on the ith row of τ is∑j
q=1 Γi,iq (τ), and thus we have

j∑
q=1

Γi,iq (τ) ≥
(

j∑
q=1

γiq

)
−
(

i−1∑
p=1

|νp| −
i−1∑
p=1

|γp|
)

=
i−1∑
p=1

|γp|+
j∑
q=1

γiq −
i−1∑
p=1

|νp|

>

j∑
q=1

νiq. (by (7.4.1))

as required.

Original research in Chapter 7: Most of the material in this chapter

is taken from [34] with adaptations for use in subsequent chapters of this

thesis, although the use of tableaux containing pairs of numbers and the

associated wreath product action are original. The contents of Section 7.4,

and in particular Proposition 7.4.4, are original research.
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Chapter 8

Specht branching rules for the

wreath product

A famous and fundamental result in the representation theory of the symmetric

group is the result which Kleschchev in [22] calls the “Classical Branching

Theorem” [22, Theorem 3.1], but which we shall call the “Specht branching

rule”. This gives a Specht filtration for the restriction of a Specht module

from kSn to kSn−1 with an elegant combinatorial description of the set of

Specht modules occurring in this filtration. Indeed, recall that we have for

each n > 0 a natural embedding of the symmetric group Sn−1 into Sn by

letting σ ∈ Sn−1 act on 1, . . . , n by fixing n and permuting the other elements

as it does in Sn−1. Thus we can regard Sn−1 as a subgroup of Sn and hence

we may induce a module X from kSn−1 to kSn, or restrict a module Y from

kSn to kSn−1. In keeping with notations we have already introduced, we shall

write these operations as

X↑nn−1 and Y ↓nn−1 .

Theorem 8.0.1. (Specht branching rule) ([20], Theorem 9.3) Let λ ` n where
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n > 0, and let k be a field. Then the kS(n−1)-module Sλ
yn
n−1

has a Specht

filtration where for ν ` (n− 1), Sν occurs exactly once if the Young diagram

of ν can be obtained from the Young diagram of λ by removing a single box,

and Sν does not occur otherwise.

Recall that if kSn is semisimple (which occurs if and only if char(k) = 0

or char(k) > n), the Specht modules (indexed by all partitions of n) form

a complete system of simple kSn-modules without redundancy. Hence in

this semisimple case, Theorem 8.0.1 describes the composition series of the

restriction of a simple module from Sn to Sn−1 in the chain of nested groups

S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ Sn ⊆ Sn+1 ⊆ · · · , and thus is a “branching rule” in the

more usual sense of this term.

In this chapter, we shall produce analogues of the Specht branching rule

for the wreath product Sm o Sn of two symmetric groups. Now since our

wreath product has two parameters m and n, we have two branching rules to

investigate. Firstly, we can embed Sm−1 o Sn into Sm o Sn using the canonical

embedding of Sm−1 into Sm, thus identifying Sm−1 o Sn with the subgroup

of Sm o Sn consisting of all elements (σ;α1, . . . , αn) where σ ∈ Sn and each

αi is an element of the subgroup Sm−1 of Sm. Hence we can consider the

restriction

Sλ
ymon

(m−1)on

of a Specht module Sλ from k(Sm o Sn) to k(Sm−1 o Sn). Secondly, we can

embed Sm o Sn−1 into Sm o Sn via the mapping

(σ;α1, . . . , αn−1) 7−→ (σ;α1, . . . , αn−1, e)

where σ ∈ Sn−1, αi ∈ Sm, and e represents the identity element of Sm (note

that we are making use of the canonical embedding of Sn−1 into Sn). We
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thus have the restriction

Sλ
ymon
mo(n−1)

of a Specht module Sλ from k(Sm o Sn) to this copy of k(Sm o Sn−1) inside

k(Sm o Sn). We shall see below that it is the Specht branching rule for the

latter restriction which is most closely analogous to the Specht branching rule

for the symmetric group.

As in previous chapters, we let the distinct partitions of m, in the lexico-

graphic order, be

(m) = µ1 > µ2 > . . . > µr = (1m).

8.1 Specht branching rule for Sλ
ymon

(m−1)on

Let us fix some r-multipartition λ = (λ1, . . . , λr) of n and consider the

k(Sm−1 o Sn)-module

Sλ
ymon

(m−1)on .

Let us define a k(Sm o S|λ|)-module

T λ =
(
Sµ

1

, . . . , Sµ
r)�̃|λ|�(Sλ1

� · · ·� Sλr
)

so that

Sλ = T λ
xmon
mo|λ| .

We then have

Sλ
ymon

(m−1)on
∼= T λ

xmon
mo|λ|

ymon
(m−1)on

∼=
⊕
u∈U

(
T λ
)uy(mo|λ|)u

(mo|λ|)u ∩ (m−1)on
x(m−1)on

(mo|λ|)u ∩ (m−1)on (8.1.1)

where the last isomorphism follows by Mackey’s Theorem (Theorem 2.2.5),

with U representing a complete non-redundant system of (Sm oS|λ|, S(m−1) oSn)-

double coset representatives in Sm o Sn, and where we allow ourselves a slight
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abuse of notation by writing (m o |λ|)u to represent the subgroup (Sm o S|λ|)u

conjugate to Sm o S|λ| by u, and (m o |λ|)u ∩ (m− 1) o n for the intersection

of this subgroup with S(m−1) o Sn. But it turns out that in fact the group

Sm o Sn is a single (Sm o S|λ|, S(m−1) o Sn)-double coset. Indeed, choosing

(σ;α1, . . . , αn) ∈ Sm o Sn, we have equalities of double cosets

SmoS|λ| (σ;α1, . . . , αn)S(m−1)oSn
= SmoS|λ| (e;α(1)σ, . . . , α(n)σ)(e; e, . . . , e)(σ; e, . . . , e)S(m−1)oSn
= SmoS|λ| (e; e, . . . , e)S(m−1)oSn

and so we may take U = {(e; e, . . . , e)}. We then have by (8.1.1) that

Sλ
ymon

(m−1)on
∼= T λ

ymo|λ|
mo|λ| ∩ (m−1)on

x(m−1)on
mo|λ| ∩ (m−1)on

and clearly
(
Sm o S|λ|

)
∩
(
S(m−1) o Sn

)
= S(m−1) o S|λ| (note that formally these

are subgroups of Sm o Sn, so that S(m−1) o S|λ| is the subgroup of Sm o Sn
consisting of all elements (σ;α1, . . . , αn) for σ ∈ S|λ| and αi ∈ S(m−1) 6 Sm).

Thus we have

Sλ
ymon

(m−1)on
∼= T λ

ymo|λ|
(m−1)o|λ|

x(m−1)on
(m−1)o|λ|.
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We then have

T λ
ymo|λ|

(m−1)o|λ|
x(m−1)on

(m−1)o|λ|
∼=
[ r

�
i=1

(
Sµ

i)�̃|λi| � Sλi]ymo|λ|
(m−1)o|λ|

x(m−1)on

(m−1)o|λ|

∼=
[ r

�
i=1

[(
Sµ

i)�̃|λi| � Sλi]ymo|λi|
(m−1)o|λi|

]x(m−1)on

(m−1)o|λ|

∼=
[ r

�
i=1

[(
Sµ

i)�̃|λi|ymo|λi|
(m−1)o|λi|

]
� Sλi

]x(m−1)on

(m−1)o|λ|

(easy to see directly)

∼=
[ r

�
i=1

(
Sµ

i
ym
m−1

)�̃|λi|
� Sλi

]x(m−1)on

(m−1)o|λ|

(by Proposition 4.3.5)

∼= Sλ
(
Sµ

1ym
m−1

, . . . , Sµ
rym

m−1

)
(using the isomorphism (4.3.6); see

(6.4.10) for the definition of this notation).

We thus see that

Sλ
ymon

(m−1)on
∼= Sλ

(
Sµ

1ym
m−1

, . . . , Sµ
rym

m−1

)
.

Now let us fix the partitions of m− 1 just as we have done for m. Indeed, let

t be the number of distinct partitions of m− 1, and let

(m− 1) = θ1 > θ2 > . . . > θt = (1m−1)

be the partitions of m− 1 in lexicographic order. Then by Theorem 8.0.1, we

have for any i ∈ {1, . . . , r} that

Sµ
i
ym
m−1
∼

t

F
j=1

aijS
θj

where

aij =

1 if θj can be obtained by removing a box from µi

0 otherwise.
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It now follows by Proposition 6.4.1 that we have a filtration

Sλ
ymon

(m−1)on ∼

F
ν is a t-multipartition

of n

 ∑
[ε]∈MatΛ(A;|λ|×|ν|)

(
r∏
i=1

c(λi;Ri[ε])

)(
t∏

j=1

c(νj;Cj[ε])

)Sν
(8.1.2)

where A is the r× t integer matrix whose (i, j)th entry is aij . This filtration is

the basis of our desired Specht branching rule, but we would like some kind

of combinatorial interpretation of the coefficient with which Sν occurs. Our

task is now to find such an interpretation.

So with λ as above and ν as in (8.1.2), consider, for a given multipartition

matrix [ε] ∈ MatΛ(A; |λ| × |ν|) the coefficient(
r∏
i=1

c(λi;Ri[ε])

)(
t∏

j=1

c(νj;Cj[ε])

)
(8.1.3)

occurring in (8.1.2). Recall that the length matrix A of [ε] is defined to be

the integer matrix whose (i, j)th entry is the length of the (i, j)th entry of [ε].

Thus A is the integer matrix whose (i, j)th entry is 1 if θj can be obtained by

removing a box from µi, and 0 otherwise. Thus the (i, j)th entry of [ε] is a

multipartition of length 1, say (εij), if θj can be obtained by removing a box

from µi, and () otherwise. This gives us an alternative way to think of such

multipartition matrices and calculate the associated coefficient (8.1.3), as we

shall now explain.

Recall that we can arrange the set of all partitions of all non-negative

integers in a graphical structure called the Young graph, by arranging the

partitions in layers, with the partitions of size s forming the sth layer, and

then for each partition λ ` s in the sth layer, drawing an edge from λ to each

partition of s − 1 in the (s − 1)th layer which can be obtained from λ by
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removing a single box. For example, the second and third rows of the Young

graph, together with the edges connecting them, look like this

. (8.1.4)

For our purposes, we are interested in the subgraph of the Young graph

consisting of the mth and (m− 1)th layers together with the edges connecting

them. Let us call this subgraph Ym. So for example if m = 3, Y3 is the graph

(8.1.4). We see that there is a natural one-to-one correspondence between

the 1’s in the matrix A and the edges in Ym. Indeed, a 1 in the (i, j)th place

of A corresponds to an edge linking θj ` m− 1 and µi ` m in Ym. We now

see that a multipartition matrix [ε] ∈ MatΛ(A; |λ| × |ν|) may be identified

with a labelling of the edges in Ym by partitions. Indeed, to obtain such a

labelling from such a matrix [ε], we label the edge linking θj and µi in Ym,

if it exists, with the partition εij which is the unique entry of the length 1

multipartiton which is the (i, j)th entry of [ε]. We may easily see that we have

now established a one-to-one correspondence between on the one hand the

set MatΛ(A; |λ| × |ν|) and on the other hand labellings of the edges of Ym by

integer partitions, such that for each i = 1, . . . , r the sizes of the partitions

labelling the edges touching the node µi ` m of Ym add up to |λi|, and

similarly for each j = 1, . . . , t the sizes of the partitions labelling the edges

touching the node θj ` m− 1 of Ym add up to |νi|. We shall henceforth call

such a labelling of Ym a labelling of shape |λ| × |ν|. The diagram (8.1.6)

below is an example of such a labelling.

We now explain how to calculate the coefficient (8.1.3) associated to a

184



labelling of Ym of shape |λ| × |ν|. In order to do this, we need to introduce

a graph which is a modified version of Ym. Indeed, recall that we have

multipartitions λ = (λ1, . . . , λr) and ν = (ν1, . . . , νt) of n. We define Ym(λ, ν)

to be the graph obtained by replacing each partition µi ` m with λi, and each

partition θj ` m− 1 with νj. Thus for example if m = 3 (so that r = 3 and

t = 2) and n = 6, and we take λ =
(
(2), (1, 1), (1, 1)

)
and ν =

(
(3), (2, 1)

)
,

then Y3(λ, ν) is the graph

. (8.1.5)

We now see that a labelling of Ym of shape |λ|× |ν| corresponds to a labelling

of the edges Ym(λ, ν) by partitions in such a way that, for each partition

γ lying at a node of Ym(λ, ν), the sizes of the partitions labelling all the

edges touching γ add up to |γ|. We call such a labelling of Ym(λ, ν) a good

labelling of Ym(λ, ν). To continue our example, one good labelling of the

graph Y3(λ, ν) depicted in (8.1.5) is

. (8.1.6)

Looking back through our arguments, we see that this labelling corresponds
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to the multipartition matrix

(3) (2, 1)


(2)

(
(2)
) ()

(1, 1)
(
(1)
) (

(1)
)

(1, 1)
() (

(1, 1)
)

(where we have labelled the rows and columns with the entries of λ and ν

respectively) and further we see that the coefficient (8.1.3) associated to this

multipartition matrix is

c
(

(2);
(
(2)
))
· c
(

(1, 1);
(
(1), (1)

))
· c
(

(1, 1);
(
(1, 1)

))
·

c
(

(3);
(
(2), (1)

))
· c
(

(2, 1);
(
(1), (1, 1)

))
.

By using (3.2.5) and (3.2.6), and by counting the appropriate kinds of skew

tableaux as per the Littlewood-Richardson rule, we may see that each of these

Littlewood-Richardson coefficients is 1, and hence the coefficient associated

to the graph (8.1.6) is 1.

In the general case, we see that the coefficient associated to a good labelling

of Ym(λ, ν) is formed by taking the product, over all partitions γ which are

nodes of Ym(λ, ν) (that is, over all partitions of m and of m − 1), of the

Littlewood-Richardson coefficients c
(
γ; (δ1, . . . , δs)

)
, where δ1, . . . , δs are the

partitions labelling all of the edges which touch γ in Ym(λ, ν). If L is a good

labelling of Ym(λ, ν), we denote this coefficient by M
(
L
)
.

We have now proved the following Specht branching rule.

Theorem 8.1.1. Let m > 0, and as above let r be the number of distinct

partitions of m and t the number of distinct partitions of m − 1. Let λ
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be an r-multipartition of n. Then we have a filtration of the k(Sm−1 o Sn)-

module Sλ
ymon

(m−1)on by Specht modules Sν for t-multipartitions ν of n, where

the multiplicity of Sν is the sum over all good labellings L of Ym(λ, ν) of the

coefficients M
(
L
)
.

We note that the multiplicities in this theorem are independent of the

field k.

Let us now extend our example to calculate the multiplicity with which

S((3),(2,1)) occurs in our filtration of S((2),(1,1),(1,1))
y3 o 6

2 o 6. We have already calcu-

lated that the coefficient M
(
L
)

is equal to 1 when L is the labelling (8.1.6).

We shall show that if λ =
(
(2), (1, 1), (1, 1)

)
and ν =

(
(3), (2, 1)

)
, then for any

good labelling L of Y3(λ, ν) other than (8.1.6), we haveM
(
L
)

= 0. Thus the

multiplicity which we seek is in fact 1. Indeed, suppose that we have some

good labelling L of Y3(λ, ν). Then L is equal to

δ1 δ2 δ3 δ4

for some integer partitions δ1, δ2, δ3, δ4. Now by the definition of a good

labelling of Y3(λ, ν), we see that we must have |δ1| = 2, |δ2| = 1, |δ3| =

1, |δ4| = 2, so that δ2 = δ3 = (1). We now see that

M
(
L
)

= c
(

(2);
(
δ1
))
· c
(

(1, 1);
(
(1), (1)

))
· c
(

(1, 1);
(
δ4
))
·

c
(

(3);
(
δ1, (1)

))
· c
(

(2, 1);
(
(1), δ4

))
.

By (3.2.5), the only case where this is nonzero is the case where δ1 = (2) and

δ4 = (1, 1), as in (8.1.6).
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8.2 Specht branching rule for Sλ
ymon
mo(n−1)

Now let us take n > 0, and fix some r-multipartition λ = (λ1, . . . , λr) of n

and consider the k(Sm o Sn−1)-module

Sλ
ymon
mo(n−1)

where we recall that we are regarding Sn−1 as the subgroup of Sn consisting of

all permutations of {1, . . . , n} which fix n, and hence regarding Sm o Sn−1 as

the subgroup of all elements of the form (σ;α1, . . . , αn−1, e) where σ ∈ Sn−1,

αi ∈ Sm, and e represents the identity element of Sm. So as in the previous

section we have

Sλ
ymon
mo(n−1)

∼= T λ
xmon
mo|λ|

ymon
mo(n−1)

∼=
⊕
u∈U

(
T λ
)uy(mo|λ|)u

(mo|λ|)u ∩mo(n−1)

xmo(n−1)

(mo|λ|)u ∩mo(n−1)
(8.2.1)

where again we have used Mackey’s Theorem (Theorem 2.2.5) with minor

notational abuses as above, and where U now represents a complete non-

redundant system of (Sm o S|λ|, Sm o Sn−1)-double coset representatives in

Sm o Sn. We thus want to find such a set of double coset representatives.

Indeed, recall that for σ ∈ Sn, we write σ̂ for the element (σ; e, . . . , e) of Sm oSn.

Let σ1, . . . , σN be a complete non-redundant system of (S|λ|, Sn−1)-double

coset representatives in Sn. We claim that σ̂1, . . . , σ̂N is then a complete

non-redundant system of (Sm o S|λ|, Sm o Sn−1)-double coset representatives in

Sm o Sn. Indeed, if (θ;α1, . . . , αn) ∈ Sm o Sn, then we have θ = εσiδ for some

i ∈ {1, . . . , N}, ε ∈ S|λ| and δ ∈ Sn−1, and it follows that

(θ;α1, . . . , αn) = (ε;α(1)σi , . . . , α(n)σi)︸ ︷︷ ︸
∈SmoS|λ|

(σi; e, . . . , e)︸ ︷︷ ︸
= σ̂i

(δ; e, . . . , e)︸ ︷︷ ︸
∈SmoSn−1
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which establishes completeness. For non-redundancy, suppose that we have

some i, j such that

(
Sm o S|λ|

)
σ̂i
(
Sm o Sn−1

)
=
(
Sm o S|λ|

)
σ̂j
(
Sm o Sn−1

)
.

Hence σ̂i ∈
(
Sm o S|λ|

)
σ̂j
(
Sm o Sn−1

)
, so that we have ε ∈ S|λ|, δ ∈ Sn−1 and

elements αi, βi of Sm such that

(σi; e, . . . , e) = (ε;α1, . . . , αn)(σj; e, . . . , e)(δ; β1, . . . , βn−1, e)

from which it follows that σi = εσjδ and hence that i = j. Thus we now seek

such σ1, . . . , σN , and to do this we shall make use of our work on tableaux.

Now recall that if α, γ are compositions of n, then we have defined the

tableau ταγ to be the tableau of shape α whose entries, read from left to

right across each row in turn starting with the top row, consist of γ1 1’s,

then γ2 2’s, then γ3 3’s, and so on. So for example if n = 9, α = (8, 1) and

γ = (3, 1, 0, 2, 3), then

ταγ =
1 1 1 2 4 4 5 5

5

.

Further, we know by Corollary 7.2.5 that if we have σ1, . . . , σN ∈ Sn such

that ταγ σ1, . . . , τ
α
γ σN is a complete list, with no repetition, of the tableaux of

shape α and type γ with weakly increasing rows, then σ1, . . . , σN is in fact a

complete system of (Sγ, Sα)-double coset representatives without redundancy.

We now apply this in the case where α = (n − 1, 1) and γ = |λ| to obtain

our desired system of (S|λ|, Sn−1)-double coset representatives in Sn, noting

that the subgroup Sn−1 of Sn is exactly the Young subgroup S(n−1,1). The

following example should serve to illustrate the general argument which we

shall give below.
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Keep n = 9, and suppose that |λ| = (3, 1, 0, 2, 3) as above. Then the

possible tableaux of shape (n− 1, 1) and type |λ| with weakly increasing rows

are

1 1 1 2 4 4 5 5

5

1 1 1 2 4 5 5 5

4

1 1 1 4 4 5 5 5

2

1 1 2 4 4 5 5 5

1

.

Thus, a complete non-redundant system of (S|λ|, S(n−1,1))-double coset rep-

resentatives is e, (6, 9, 8, 7), (4, 9, 8, 7, 6, 5), (3, 9, 8, 7, 6, 5, 4), recalling that in

our action of Sn on tableaux, σ ∈ Sn acts by moving the contents of the ith

box to the (i)σth box, where the boxes of a tableau are numbered with the

numbers 1, . . . , n from left to right across each row, working from the top row

to the bottom row.

The general case works in exactly the same way as the example. Indeed,

recall that λ = (λ1, . . . , λr). For i = 1, . . . , r we let bi = |λ1| + · · · + |λi|,
so that we have a sequence 0 ≤ b1 ≤ b2 ≤ · · · ≤ br = n. Then for each

i = 1, . . . , r such that bi 6= 0 we define an element ρi of Sn by letting

ρi =

(bi, n, n− 1, . . . , bi + 1) if bi < n

e if bi = n

(where e is the identity element). By letting i run through all 1, . . . , r such

that |λi| > 0, we obtain a complete list of all the distinct ρi without repetition.
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As in the above example, we see that the set of all tableaux τ
(n−1,1)
|λ| ρi for

i such that |λi| > 0 forms a complete list of all of the tableaux of shape

(n − 1, 1) and type |λ| with weakly increasing rows. Hence by Corollary

7.2.5 we see that the collection of all ρi for i such that |λi| > 0 forms a

complete non-redundant system of (S|λ|, Sn−1)-double coset representatives in

Sn, and hence the collection of all ρ̂i for i such that |λi| > 0 forms a complete

non-redundant system of (Sm o S|λ|, Sm o Sn−1)-double coset representatives in

Sm o Sn.

Looking back to (8.2.1), we see that we want to understand the module(
T λ
)ρ̂iy(mo|λ|)ρ̂i

(mo|λ|)ρ̂i ∩mo(n−1)

xmo(n−1)

(mo|λ|)ρ̂i ∩mo(n−1)

for i such that |λi| > 0. Our first step in doing so will be to understand the

subgroup
(
Sm o S|λ|

)ρ̂i ∩ (Sm o Sn−1

)
of Sm o Sn and its action on the module(

T λ
)ρ̂i .
So choose i such that |λi| > 0. It is easy to show directly that

(
Sm oS|λ|

)ρ̂i
is equal to Sm o

(
S|λ|
)ρi . Thus we have(

Sm o S|λ|
)ρ̂i ∩ (Sm o Sn−1

)
= Sm o

(
S|λ|
)ρi ∩ (Sm o Sn−1

)
and it is easy to show directly that Sm o

(
S|λ|
)ρi ∩ (Sm o Sn−1

)
is equal to the

subgroup of Sm o Sn consisting of all elements of the form

(σ;α1, . . . , αn−1, e) (8.2.2)

where σ is an element of the subgroup
(
S|λ|
)ρi ∩ Sn−1 of Sn and αi ∈ Sm. We

thus wish to understand the subgroup
(
S|λ|
)ρi ∩ Sn−1 of Sn. By Proposition

7.1.4,
(
S|λ|
)ρi is the stabilizer (under the action of Sn) of the tableau τ

(n−1,1)
|λ| ρi.

It is easy to see that the tableau τ
(n−1,1)
|λ| ρi is the unique tableau of shape

(n − 1, 1) and type |λ| with weakly increasing rows which has an i in the

box on the second row; such tableaux are illustrated in the above example.
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For any subset Ω of {1, . . . , n}, let us write S(Ω) to denote the subgroup of

Sn consisting of all permutations which fix any number not lying in Ω. We

easily see that the stabilizer of the tableau τ
(n−1,1)
|λ| ρi is the subgroup X i

|λ| of

Sn, where we define (recalling that |λi| > 0 and hence bi > bi−1, where b0 is

taken to be 0)

X i
|λ| = S

(
{1, . . . , b1}

)
× S

(
{b1 + 1, . . . , b2}

)
× · · ·

×S
(
{bi−1 +1, . . . , bi−1, n}

)
×S
(
{bi, . . . , bi+1−1}

)
×S
(
{bi+1, . . . , bi+2−1}

)
×

· · · × S
(
{br−1, . . . , br − 1 = n− 1}

)
(note that here we are using the × symbol to denote an internal direct product

of subgroups, and that if bi = bi+1 then {bi, . . . , bi+1−1} represents the empty

set, and that if bi = bi−1 + 1 then {bi−1 + 1, . . . , bi − 1, n} = {n}), and hence(
S|λ|
)ρi = X i

|λ|. We now introduce a small piece of notation. Indeed, if

γ = (γ1, . . . , γr) is a composition of n, and i ∈ {1, . . . , r} such that γi > 0,

then we write [γ]i for the composition (γ1, . . . , γi−1, γi − 1, γi+1, γr) of n− 1.

We see that X i
|λ| ∩ Sn−1 is the subgroup

S
(
{1, . . . , b1}

)
× S

(
{b1 + 1, . . . , b2}

)
× · · ·

×S
(
{bi−1 + 1, . . . , bi− 1}

)
×S

(
{bi, . . . , bi+1− 1}

)
×S

(
{bi+1, . . . , bi+2− 1}

)
×

· · · × S
(
{br−1, . . . , br − 1 = n− 1}

)
of Sn, and under our embedding of Sn−1 into Sn this is exactly the subgroup

S[|λ|]i of Sn−1. Hence, recalling that we are viewing Sm o Sn−1 as a subgroup

of Sm o Sn via the embedding (σ;α1, . . . , αn−1) 7−→ (σ;α1, . . . , αn−1, e), we

see that the subgroup
(
Sm o S|λ|

)ρ̂i ∩ (Sm o Sn−1

)
of Sm o Sn is equal to the

subgroup Sm o S[|λ|]i of the subgroup Sm o Sn−1 of Sm o Sn.

We now turn our attention to the action of
(
Sm o S|λ|

)ρ̂i ∩ (Sm o Sn−1

)
on

the k
(
Sm o S|λ|

)ρ̂i-module
(
T λ
)ρ̂i . We know by the definition of conjugate
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modules (see page 32) that
(
T λ
)ρ̂i is the module formed by equipping T λ

with the k
(
Sm o S|λ|

)ρ̂i-action ∗ given for x ∈ T λ and y ∈
(
Sm o S|λ|

)ρ̂i by

x ∗ y = x(ρ̂i y ρ̂
−1
i ) (where the action on the right-hand side is the action of

Sm o S|λ| on T λ, noting that ρ̂i y ρ̂
−1
i does indeed lie in Sm o S|λ|). Thus to

calculate the action of an element

(σ;α1, . . . , αn−1, e) ∈
(
Sm o S|λ|

)ρ̂i ∩ (Sm o Sn−1

)
on the module

(
T λ
)ρ̂i , we need to calculate ρ̂i(σ;α1, . . . , αn−1, e)ρ̂

−1
i . We have

ρ̂i(σ;α1, . . . , αn−1, e)ρ̂
−1
i = (ρi; e, . . . , e)(σ;α1, . . . , αn−1, e)(ρ

−1
i ; e, . . . , e)

= (ρiσρ
−1
i ;α(1)ρi , . . . , α(n)ρi) (taking αn = e)

= (ρiσρ
−1
i ;α1, α2, . . . , αbi−1, e, αbi , αbi+1,

. . . , αn−2, αn−1).

But by our description (8.2.2) of the elements of
(
Sm o S|λ|

)ρ̂i ∩ (Sm o Sn−1

)
,

we see that σ ∈
(
S|λ|
)ρi ∩ Sn−1, which implies that ρiσρ

−1
i ∈ S|λ| ∩

(
Sn−1

)ρ−1
i .

By direct calculation, any element of
(
Sn−1

)ρ−1
i fixes bi, and hence we see that

ρiσρ
−1
i is an element of S|λ| which fixes bi. Now we know that the subgroup

S|λ| of Sn has an internal direct product factorisation

S
(
{1, . . . , b1}

)
× S

(
{b1 + 1, . . . , b2}

)
× · · ·

· · · × S
(
{bi−1 + 1, . . . , bi}

)
× S

(
{bi + 1, . . . , bi+1}

)
× · · ·

· · · × S
(
{br−1 + 1, . . . , br = n}

)
.

Thus any element π of S|λ| has a unique factorisation π = θ1 · · · θr where

θj ∈ S
(
{bj−1 + 1, . . . , bj}

)
(with b0 taken to be 0). We thus see that ρiσρ

−1
i

has such a factorisation ρiσρ
−1
i = θ1 · · · θr, where θi fixes bi. Thus we see

that our element (σ;α1, . . . , αn−1, e) of
(
Sm o S|λ|

)ρ̂i ∩ (Sm o Sn−1

)
acts on the
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module
(
T λ
)ρ̂i as the element

(
θ1 · · · θr; α1, α2, . . . , αbi−1, e, αbi , αbi+1, . . . , αn−2, αn−1

)
of Sm o S|λ| acts on T λ (recalling that

(
T λ
)ρ̂i and T λ are equal as k-vector

spaces). But we know that
(
Sm oS|λ|

)ρ̂i ∩ (Sm oSn−1

)
is equal to the subgroup

Sm o S[|λ|]i of the subgroup Sm o Sn−1 of Sm o Sn, and we now see that if we

identify Sm o S[|λ|]i with

(Sm o S|λ1|)× (Sm o S|λ2|)× · · ·

· · · × (Sm o S|λi−1|)× (Sm o S|λi|−1)× (Sm o S|λi+1|)× · · · × (Sm o S|λr|)

in the canonical way, then by the definition of the k(Sm oS|λ|)-module T λ, the

k(Sm o S[|λ|]i)-module

(
T λ
)ρ̂iy(mo|λ|)ρ̂i

(mo|λ|)ρ̂i ∩mo(n−1)
=
(
T λ
)ρ̂iy(mo|λ|)ρ̂i

mo[|λ|]i

is isomorphic to

((
Sµ

1)�̃|λ1| � Sλ1
)
� · · ·�

((
Sµ

i)�̃|λi| � Sλi)ymo|λi|
mo(|λi|−1)

� · · ·

· · ·�
((
Sµ

r)�̃|λr| � Sλr) . (8.2.3)

Thus, we want to investigate the k(Sm o S|λi|−1)-module((
Sµ

i)�̃|λi| � Sλi)ymo|λi|
mo(|λi|−1)

.

Now the restriction operation
ymo|λi|
mo(|λi|−1)

may be expressed as

ymo|λi|
mo(|λi|−1,1)

ymo(|λi|−1,1)

mo(|λi|−1)
,

where, we recall, m o (|λi| − 1, 1) represents the subgroup Sm o S(|λi|−1,1) of

Sm o S|λi| consisting of all elements of the form (σ;α1, . . . , αn) for αi ∈ Sm
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and σ ∈ S(|λi|−1,1), while m o (|λi| − 1) represents the subgroup Sm o S(|λi|−1) of

Sm oS|λi| consisting of all elements of the form (σ;α1, . . . , αn−1, e) for αi ∈ Sm
and σ ∈ S(|λi|−1,1). Now we have by Proposition 4.3.7 that((

Sµ
i)�̃|λi| � Sλi)ymo|λi|

mo(|λi|−1,1)
=
(
Sµ

i)�̃|λi|ymo|λi|
mo(|λi|−1,1)

� Sλi
y|λi|

(|λi|−1,1)
.

Upon further restriction to Sm o S(|λi|−1), we see that this is isomorphic to the

direct sum of dimk(S
µi) copies of(

Sµ
i)�̃|λi|−1 � Sλ

i
y|λi|
|λi|−1

.

It now follows by Theorem 8.0.1 and Lemma 6.1.1 that we have a filtration((
Sµ

i)�̃|λi| � Sλi)ymo|λi|
mo(|λi|−1)

∼ F
δ∈R(λi)

dimk(S
µi)
(
Sµ

i)�̃|λi|−1 � Sδ

where if ε is any partition, we define R(ε) to be the set of all partitions of

|ε| − 1 which may be obtained from ε by removing a box. Using (8.2.3), it

now follows that we have a filtration of k(Sm o S[|λ|]i)-modules(
T λ
)ρ̂iy(mo|λ|)ρ̂i

(mo|λ|)ρ̂i ∩mo(n−1)
=
(
T λ
)ρ̂iy(mo|λ|)ρ̂i

mo[|λ|]i

∼ F
δ is an r-multipartition of n− 1

δj=λj for j 6= i
δi∈R(λi)

dimk(S
µi) T δ.

By Lemma 2.2.2, it now follows that we have a filtration of k(Sm o Sn−1)-

modules(
T λ
)ρ̂iy(mo|λ|)ρ̂i

(mo|λ|)ρ̂i ∩mo(n−1)

xmo(n−1)

(mo|λ|)ρ̂i ∩mo(n−1)

=
(
T λ
)ρ̂iy(mo|λ|)ρ̂i

mo[|λ|]i

xmo(n−1)

mo[|λ|]i

∼ F
δ is an r-multipartition of n− 1

δj=λj for j 6= i
δi∈R(λi)

dimk(S
µi) Sδ.

Refering back to the decomposition (8.2.1), we now see that we have proved

the following result, which is our desired Specht branching rule.
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Theorem 8.2.1. Let n > 0, and let λ be an r-multipartition of n. Then we

have a filtration of the k(Sm o Sn−1)-module Sλ
ymon
mo(n−1)

by Specht modules

Sδ for r-multipartitions δ of n − 1. For a multipartition δ of n − 1, if δ

may be obtained from λ by removing a single box from the partition λi for

some i (while leaving all other partitions λj unchanged), then Sδ occurs with

multiplicity dimk(S
µi) in the filtration, and otherwise Sδ does not occur in

the filtration.

We note that the multiplicities dimk(S
µi) occuring in this filtration have

a simple and elegant combinatorial interpretation via the hook length formula

(see for example [20, Chapter 20]), from which we see that they are in fact

independent of the field k. We also note the similarity of this result to

Theorem 8.0.1.

Original research in Chapter 8: All of the material in Sections 8.1 and

8.2 is original research.
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Chapter 9

Structure of Hommon (Sν,M
γ)

and Ext1mon (S
ν,Mγ)

This chapter contains the most substantial new results of this thesis. Let

m and n be non-negative integers and k a field as in previous chapters,

and let ν be an r component multipartition of n and γ an r component

multicomposition of n, where r is the number of distinct partitions of m as

before. We shall prove that if the characteristic of k is not 2, then

Hommon (Sν ,Mγ) ∼=

k if ν = γ,

0 if ν 4 γ,

(9.0.1)

and further if the characteristic of k is neither 2 nor 3, then

Ext1
mon (Sν ,Mγ) = 0.

These results are wreath product analogues of the symmetric group results

(3.3.1) and Proposition 3.3.4. In the next chapter we shall use these results

to prove wreath product versions of (3.3.2) and Theorem 3.3.2, and hence by

Corollary 3.4.2 show (as was done in Section 3.4 for the symmetric group)
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that Specht filtration multiplicities are well-defined in the wreath product

case over an algebraically closed field whose characteristic is neither 2 nor 3.

Recall that, for our fixed non-negative integer m, we have fixed the distinct

partitions of m, in the lexicographic order, to be

(m) = µ1 > µ2 > . . . > µr = (1m).

Recall also that if α is some composition of n and i ∈ {1, . . . , r}, then we

write [α, i] to denote the r-multicomposition of n which has α in the ith place

and () in all other places.

We shall begin by considering the structure of the spaces Hommon (Sν ,Mγ)

and Ext1
mon (Sν ,Mγ) for ν = [ν, i] and γ = [γ, j]. From this we move to the

case where ν = [ν, i] but γ is any multicomposition. Finally, we shall use this

special case to derive our desired results in the general case.

9.1 Structure of Hommon
(
S [ν,i],M [γ,j]

)
We begin by proving (9.0.1) in the case where ν = [ν, i] and γ = [γ, j].

Proposition 9.1.1. Let k be a field such that char(k) 6= 2. Let ν ` n, and

γ � n, and let i, j ∈ {1, . . . , r}. Then

Hommon
(
S[ν,i],M [γ,j]

) ∼=


0 if i > j,

0 if i = j and ν 4 γ,

k if i = j and ν = γ.

Proof. Recall that

Hommon
(
S[ν,i],M [γ,j]

)
= Hommon

((
Sµ

i)�̃n�Sν , (Mµj
)�̃n�Mγ

)
.
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For the first case where i > j, note that i > j implies that µj > µi in the

lexicographic order. Hence µj 
 µi, and so µi 4 µj. Thus by (3.3.1) we have

Homm

(
Sµ

i

,Mµj
)

= 0. (9.1.1)

Now the subgroup of SmoSn consisting of all elements of the form (e;σ, e, . . . , e)

for σ ∈ Sm may be identified with Sm in the obvious way, and hence any

k(SmoSn)-module X becomes a kSm-module under the action of this subgroup.

Let us denote the resulting kSm-module by X. We now see that if U is a kSm-

module and V is a kSn-module, then the kSm-module U �̃n � V is the k-vector

space U⊗n⊗V with action given on pure tensors by (u1⊗u2⊗· · ·⊗un⊗v)σ =

u1σ ⊗ u2 ⊗ · · · ⊗ un ⊗ v, and hence this module is isomorphic to a direct sum

of copies of U . Hence the kSm-modules

(
Sµi
)�̃n�Sν and

(
Mµj

)�̃n�Mγ

are isomorphic to direct sums of copies of Sµ
i

and Mµj , respectively. It

follows by (9.1.1) that any kSm-module homomorphism from the former

module to the latter must be zero. But if X and Y are k(SmoSn)-modules,

then any k(SmoSn)-module homomorphism f : X → Y must be a kSm-module

homomorphism f : X → Y , and it follows that

Hommon
((
Sµ

i)�̃n�Sν , (Mµj
)�̃n�Mγ

)
= 0.

The second and third cases will follow from (3.3.1) by proving that for

any µ ` m, we have

Hommon
((
Sµ
)�̃n�Sν , (Mµ

)�̃n�Mγ
)
∼= Homn

(
Sν ,Mγ

)
(9.1.2)

as k-vector spaces. Indeed, let B be the subgroup of SmoSn consisting of all

elements of the form (e;σ1, σ2, . . . , σn) for σl ∈ Sm (where e is as usual the
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identity element of Sn), so that B is canonically isomorphic to
(
Sm
)n

(the

direct product of n copies of Sm). Now let x1, . . . , xp be a k-basis of Sν . Then[(
Sµ
)�̃n�Sν]yk(SmoSn)

kB
=

p⊕
i=1

Wi

where Wi is the k-subspace spanned by pure tensors u1 ⊗ u2 ⊗ · · · ⊗ un ⊗ xi
for ut ∈ Sµ. Thus Wi is a kB-submodule which is isomorphic to

(
Sµ
)�n

(the

external tensor product of n copies of Sµ) when B is identified with
(
Sm
)n

in the canonical way; the isomorphism is given by u1 ⊗ u2 ⊗ · · · ⊗ un ⊗ xi 7→
u1 ⊗ u2 ⊗ · · · ⊗ un. Similarly, if y1, . . . , yq is a k-basis of Mγ, then[(

Mµ
)�̃n�Mγ

]yk(SmoSn)

kB
=

q⊕
j=1

Zj

where Zj is the k-subspace spanned by pure tensors v1⊗ v2⊗ · · · ⊗ vn⊗ yj for

vt ∈Mµ. Thus Zj is a kB-submodule which is isomorphic to
(
Mµ
)�n

when

B is identified with
(
Sm
)n

in the canonical way; the isomorphism is given by

v1 ⊗ v2 ⊗ · · · ⊗ vn ⊗ yj 7→ v1 ⊗ v2 ⊗ · · · ⊗ vn. By using Proposition 2.1.3 and

the fact that (by (3.3.1)) Homm

(
Sµ,Mµ

) ∼= k, we may now easily see that

for each i and j, the k-vector space HomkB (Wi, Zj) has dimension 1, and

hence we have

HomkB (Wi, Zj) = {αΦi,j | α ∈ k}

where Φi,j is the map given on pure tensors by

u1 ⊗ u2 ⊗ · · · ⊗ un ⊗ xi 7−→ u1 ⊗ u2 ⊗ · · · ⊗ un ⊗ yj

(recalling that Sµ ⊆Mµ). Now

Hommon
((
Sµ
)�̃n�Sν , (Mµ

)�̃n�Mγ
)

(9.1.3)

is a k-subspace of

HomkB

(
p⊕
i=1

Wi,

q⊕
j=1

Zj

)
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which we may identify in the obvious way with

p⊕
i=1

q⊕
j=1

HomkB (Wi, Zj) .

Under this identification, for any element f of (9.1.3) we have

f =

p∑
i=1

q∑
j=1

αi,jΦi,j (9.1.4)

for unique scalars αi,j ∈ k. For each such f , let us define a k-linear map

f̂ : Sν →Mγ by letting

f̂(xi) =

q∑
j=1

αi,jyj.

By a simple direct calculation, it is easy to show that for any x ∈ Sν and any

u1, . . . , un ∈ Sµ we have

f(u1 ⊗ u2 ⊗ · · · ⊗ un ⊗ x) = u1 ⊗ u2 ⊗ · · · ⊗ un ⊗ f̂(x).

Then if x ∈ Sν and σ ∈ Sn, we may fix some non-zero u ∈ Sµ and note that

u⊗ · · · ⊗ u⊗ (f̂(x)σ) =
(
u⊗ · · · ⊗ u⊗ f̂(x)

)
(σ; e, . . . , e)

= f(u⊗ · · · ⊗ u⊗ x)(σ; e, . . . , e)

= f ((u⊗ · · · ⊗ u⊗ x)(σ; e, . . . , e))

= f(u⊗ · · · ⊗ u⊗ xσ)

= u⊗ · · · ⊗ u⊗ f̂(xσ)

which implies that f̂(x)σ = f̂(xσ) and hence that f̂ is a kSn-module homo-

morphism. We claim that the map f 7−→ f̂ is the required isomorphism

(9.1.2). To see that this map is onto, let g ∈ Homn

(
Sν ,Mγ

)
and define f to

be the k-linear map from
(
Sµ
)�̃n�Sν to

(
Mµ
)�̃n�Mγ given on pure tensors

by

f(u1 ⊗ u2 ⊗ · · · ⊗ un ⊗ x) = u1 ⊗ u2 ⊗ · · · ⊗ un ⊗ g(x).
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We may easily show by direct calculation that f is a k(SmoSn)-module

homomorphism and moreover it is clear that f̂ = g, and so the map

f 7−→ f̂ is onto. To see that the map f 7−→ f̂ is injective, let f1, f2 ∈
Hommon

((
Sµ
)�̃n�Sν , (Mµ

)�̃n�Mγ
)

and suppose that f̂1 = f̂2. Now if we

decompose f1 as in (9.1.4) with coefficients α1
i,j and similarly decompose f2

with coefficients α2
i,j , then by the definition of f̂1 and f̂2, we see that we must

have α1
i,j = α2

i,j for all i and j, which implies that f1 = f2. Thus f 7−→ f̂ is

indeed an isomorphism as required.

9.2 Structure of Ext1mon
(
S [ν,i],M [γ,j]

)
In this section, we shall prove the following result.

Proposition 9.2.1. Suppose that k has characteristic not 2 or 3, and let

ν ` n and γ � n and i, j ∈ {1, . . . , r}. Then

Ext1
mon
(
S[ν,i],M [γ,j]

)
= 0.

The arguments in this section are based on the arguments given in Section

3.3 to prove Proposition 3.3.4 about extensions between modules Sµ and Mα

over the symmetric group (and those arguments are themselves based on the

work of Erdmann in [10]). This section is rather long and the arguments it

contains are somewhat complicated, but once we have completed them the

greater part of the work in this chapter will be behind us.

For the rest of this section, we take k to be a field whose characteristic is

neither 2 nor 3.

Recall that if δ = (δ1, . . . , δt) is a multipartition of m, then |δ| is the

composition (|δ1|, . . . , |δt|) of m, so that we have a Young subgroup S|δ| of Sm.
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Recall further from page 57 that we define a kS|δ|-module S(δ) by setting

S(δ) = Sδ
1

� Sδ
2

� · · ·� Sδt .

Reduction 9.2.2. To prove Proposition 9.2.1, it is enough to prove that for

any µ ` m, any δ a multipartition of m with |δ| = µ, and any ε ` n, we have

Ext1
µon

(
S(δ)�̃n � Sε,1µon

)
= 0.

Proof. With the hypotheses of Proposition 9.2.1, we have by Proposition 4.4.1

that M [γ,j] = 1
xmon
W[γ,j]

. But of course [γ, j] =
(
(), . . . , (), γ, (), . . . , ()

)
with γ

appearing in the jth place, and hence we see easily that W[γ,j] (see page 72

for the definition of Wγ for a multipartition γ) is the subgroup Sµj o Sγ of

Sm o Sn. Thus we have

Ext1
mon
(
S[ν,i],M [γ,j]

) ∼= Ext1
mon

(
S[ν,i],1µj oγ

xmon
µj oγ

)
∼= Ext1

µj oγ

(
S[ν,i]

ymon
µj oγ ,1µj oγ

)
(9.2.1)

(by Theorem 2.2.4).

Now we have

S[ν,i]
ymon
µj oγ =

[(
Sµ

i)�̃n�Sν]ymon
µj oγ

=
[(
Sµ

i)�̃n�Sν]ymon
µj on

yµj on
µj oγ

(by transitivity of induction).

Now recall from (4.3.2) that
(
Sµ

i)�̃n � Sν =
(
Sµ

i)�̃n ⊗ Infmonn Sν (recalling

from page 75 that if G is a subgroup of Sm, H is a subgroup of Sn, and Y is

a kH-module, then InfGoHH Y is the k(G oH)-module obtained by equipping Y

with the action defined by y(σ;α1, . . . , αn) = yσ for y ∈ Y , α1, . . . , αn ∈ G,

and σ ∈ H). Thus by (2.2.4), we have[(
Sµ

i)�̃n�Sν]ymon
µj on
∼=
(
Sµ

i)�̃nymon
µj on
⊗ Infmonn Sν

ymon
µj on.
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But it is clear that Infmonn Sν
ymon
µj on is the k(Sµj o Sn)-module Infµ

j on
n Sν , while(

Sµ
i)�̃nymon

µj on
is
(
Sµ

i↓mµj
)�̃n

by Proposition 4.3.5. Thus we have

S[ν,i]
ymon
µj oγ
∼=
[(
Sµ

i↓mµj
)�̃n � Sν]yµj on

µj oγ

∼=
(
Sµ

i↓mµj
)�̃nyµj on

µj oγ � Sν
yn
γ

(by Proposition 4.3.7).

Now let t be the length of γ, so that γ = (γ1, . . . , γt). Then by (3.2.12) Sν↓nγ
is filtered by modules of the form Sλ

1
� · · · � Sλt where λl ` γl. Hence by

Lemma 6.1.1, the k(Sµj o Sγ)-module S[ν,i]
ymon
µj oγ has a filtration by modules of

the form(
Sµ

iym
µj

)�̃nyµj on
µj oγ �

(
Sλ

1

� · · ·� Sλt
)
∼=((

Sµ
iym

µj

)�̃γ1 � · · ·�
(
Sµ

iym
µj

)�̃γt) � (
Sλ

1

� · · ·� Sλt
)

and under the natural isomorphism of Sµj o Sγ with Sµj o Sγ1 × · · · × Sµj o Sγt ,
this means by the isomorphism (4.3.5) that S[ν,i]

ymon
µj oγ has a filtration by

modules ((
Sµ

iym
µj

)�̃γ1�Sλ1
)
� · · ·�

((
Sµ

iym
µj

)�̃γt�Sλt) .
Hence by (9.2.1) and Proposition 2.1.1, we see that to prove that the space

Ext1
mon
(
S[ν,i],M [γ,j]

)
is zero, it suffices to prove that if λl ` γl for l = 1, . . . , t,

then the module

Ext1
µj oγ

(((
Sµ

iym
µj

)�̃γ1�Sλ1
)
� · · ·�

((
Sµ

iym
µj

)�̃γt�Sλt) ,1µj oγ
)

(9.2.2)

is zero. By writing the k(Sµj o Sγ)-module 1µj oγ as 1µj oγ1
� · · · � 1µj oγt and

applying Proposition 2.1.3, we see that the module (9.2.2) is isomorphic as a

k-vector space to a direct sum of the terms

Ext1
µj oγl

((
Sµ

iym
µj

)�̃γl�Sλl ,1µj oγl) ⊗ ⊗
p=1,...,t
p 6=l

Homµj oγp

((
Sµ

iym
µj

)�̃γp�Sλp ,1µj oγp)
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for l = 1, . . . , t. Hence we see that it suffices to prove that

Ext1
µj on

((
Sµ

iym
µj

)�̃n�Sλ,1µj on) = 0 (9.2.3)

for any partition λ of a non-negative integer n and any i, j ∈ {1, . . . , r}. So

let us fix some such λ and i, j. Now by (3.2.12), the kSµj -module Sµ
i↓mµj is

filtered by modules S(δ) = Sδ
1
� · · · � SδLj where δ is a multipartition of

m with |δ| = µj, and Lj represents the length of µj. Explicitly, we have a

filtration

Sµ
i↓mµj ∼

p

F
l=1

S(δl)

for some (not necessarily pairwise unequal) multipartitions δ1, . . . , δp of m

(p some integer), where |δl| = µj for each l. Thus by Lemma 6.1.1 and

Proposition 6.2.1 we find that the k(Sµj o Sn)-module(
Sµ

iym
µj

)�̃n
�Sλ

has a filtration by modules of the form

[(
S(δ1), . . . , S(δp)

)�̃α]xµj on
µj oα
� Sλ =[
S(δ1)�̃α1 � · · ·� S(δp)�̃αp

]xµj on
µj oα
� Sλ (9.2.4)

where α = (α1, . . . , αp) is some composition of n. Then by Proposition 4.3.7,

(9.2.4) is isomorphic to[(
S(δ1)�̃α1 � · · ·� S(δp)�̃αp

)
� Sλ↓nα

]xµj on
µj oα

(9.2.5)

and by (3.2.12) Sλ↓nα has a filtration by modules Sε
1
� · · ·�Sεp where εl ` αl,

so (using the isomorphism (4.3.5)) the module (9.2.5) is filtered by modules[(
S(δ1)�̃α1 � Sε1

)
� · · ·�

(
S(δp)�̃αp � Sεp

)]xµj on
µj oα

.
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Hence, by Proposition 2.1.1, to prove (9.2.3) it is enough to prove that

Ext1
µj on

([ p

�
l=1

S(δl)�̃αl � Sεl
]xµj on

µj oα
,1µj on

)
= 0.

But by Theorem 2.2.4 (the Eckmann-Shapiro lemma),

Ext1
µj on

([ p

�
l=1

S(δl)�̃αl � Sεl
]xµj on

µj oα
,1µj on

)

= Ext1
µj oα

( p

�
l=1

S(δl)�̃αl � Sεl ,1µj on

yµj on
µj oα

)
= Ext1

µj oα

( p

�
l=1

S(δl)�̃αl � Sεl ,
p

�
l=1

1µj oαl

)
.

By Proposition 2.1.3 this is isomorphic to the direct sum of the terms

Ext1
µj oαl

(
S(δl)�̃αl � Sεl ,1µj oαl

)
⊗⊗
s=1,...,p
s 6=l

Homµj oαs

(
S(δs)�̃αs � Sεs ,1µj oαs

)

for l = 1, . . . , p, and hence proving that Ext1
µon

(
S(δ)�̃n � Sε,1µon

)
= 0 for

any µ ` m, any δ a multipartition of m with |δ| = µ, and any ε ` n will

indeed prove Proposition 9.2.1.

We shall now reformulate the condition in Reduction 9.2.2 to obtain the

condition which we shall prove below. For this reformulation, we shall need a

lemma and some new notation. For β = (β1, . . . , βt) � m, recall from page

45 that we have defined a sign module Sgnβ = Sgnn↓nβ ∼= Sgnβ1
� · · ·� Sgnβt .

We define a sign module Sgnβon for k(SβoSn) by letting

Sgnβon = (Sgnβ)�̃n � Sgnn.

We note that

Sgnβon ∼=
(
Sgnβ1

� Sgnβ2
� · · ·� Sgnβt

)�̃n � Sgnn.
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We may easily verify that we have an isomorphism of k(SβoSn)-modules

Sgnβon ⊗ Sgnβon ∼= 1βon. (9.2.6)

Further, recall that we are writing ν ′ for the conjugate partition of a

partition ν and that if ν = (ν1, . . . , νt) is a multipartition, then we have

defined ν ′ to be the multipartition
(
(ν1)′, . . . , (νt)′

)
.

Lemma 9.2.3. With µ, δ, and ε as in Reduction 9.2.2,(
S(δ′)�̃n � Sε′

)∗ ∼= Sgnµon ⊗
(
S(δ)�̃n � Sε

)
as k(Sµ o Sn)-modules (recall that U∗ denotes the dual of a module U).

Proof. Since we have ε′′ = ε and δ′′ = δ, the claim in the lemma is equivalent

to (
S(δ)�̃n � Sε

)∗ ∼= Sgnµon ⊗
(
S(δ′)�̃n � Sε′

)
,

and it is this result which we shall prove. By Proposition 4.3.2 have(
S(δ)�̃n � Sε

)∗ ∼= (S(δ)�̃n
)∗
� (Sε)∗ .

Now by Proposition 3.1.3 we have (Sε)∗ ∼= Sgnn ⊗ Sε
′
, and by Proposition

4.3.4 we have
(
S(δ)�̃n

)∗ ∼= (S(δ)∗)�̃n. Further, if we let t be the length of δ

(and hence also the length of µ, since |δ| = µ), then

S(δ)∗ ∼=
(
Sδ

1

� · · ·� Sδt
)∗

∼=
(
Sδ

1)∗
� · · ·�

(
Sδ

t)∗
(by (2.2.2))

∼=
(
Sgnµ1

⊗ S(δ1)′
)
� · · ·�

(
Sgnµt ⊗ S(δt)′

)
(by Proposition 3.1.3)

∼=
(
Sgnµ1

� · · ·� Sgnµt
)
⊗
(
S(δ1)′ � · · ·� S(δt)′

)
,

where the last isomorphism is due to the easily proved fact that if G1, . . . , Gt

are finite groups and for each i = 1, . . . , t, Xi and Yi are kGi-modules,
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then the two k(G1 × · · · × Gt)-modules
(
X1 ⊗ Y1

)
� · · · �

(
Xt ⊗ Yt

)
and(

X1 � · · ·�Xt

)
⊗
(
Y1 � · · ·� Yt

)
are isomorphic in the obvious way. Thus

we have

(S(δ)∗)�̃n ∼=
((

Sgnµ1
� · · ·� Sgnµt

)
⊗
(
S(δ1)′ � · · ·� S(δt)′

))�̃n
∼=
(
Sgnµ1

� · · ·� Sgnµt
)�̃n ⊗ (S(δ1)′ � · · ·� S(δt)′

)�̃n
(by Proposition 4.3.3).

Thus
(
S(δ)�̃n

)∗
� (Sε)∗ is isomorphic as a k(Sµ o Sn)-module to((

Sgnµ1
� · · ·� Sgnµt

)�̃n ⊗ (S(δ1)′ � · · ·� S(δt)′
)�̃n)� (Sgnn ⊗ Sε

′
)

which by (4.3.2) is isomorphic to(
Sgnµ1

� · · ·� Sgnµt
)�̃n ⊗ (S(δ1)′ � · · ·� S(δt)′

)�̃n ⊗ Infmonn

(
Sgnn ⊗ Sε

′
)

which by Proposition 4.3.1 is isomorphic to

(
Sgnµ1

� · · ·� Sgnµt
)�̃n ⊗ (S(δ1)′ � · · ·� S(δt)′

)�̃n⊗
Infmonn (Sgnn)⊗ Infmonn (Sε

′
).

By commutativity of the inner tensor product of group modules, this is

isomorphic to

(
Sgnµ1

� · · ·� Sgnµt
)�̃n ⊗ Infmonn (Sgnn)⊗(

S(δ1)′ � · · ·� S(δt)′
)�̃n ⊗ Infmonn (Sε

′
)

which by (4.3.2) is isomorphic to((
Sgnµ1

� · · ·� Sgnµt
)�̃n � Sgnn

)
⊗
((
S(δ1)′ � · · ·� S(δt)′

)�̃n � Sε′)
which is

Sgnµon ⊗
(
S(δ′)�̃n � Sε′

)
as required.
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Proposition 9.2.4. With µ, δ and ε as in Reduction 9.2.2, we have a k-vector

space isomorphism

Ext1
µon

(
S(δ)�̃n � Sε,1µon

)
∼= Ext1

µon

(
Sgnµon, S(δ′)�̃n � Sε′

)
.

Proof. We have

Ext1
µon

(
Sgnµon, S(δ′)�̃n � Sε′

)
∼= Ext1

µon

(
Sgnµon,

(
S(δ′)�̃n � Sε′

)∗∗
⊗1µon

)
(since both (−)∗∗ and −⊗ 1µon are operations which do not

change the isomorphism class of a module)

∼= Ext1
µon

(
Sgnµon ⊗

(
S(δ′)�̃n � Sε′

)∗
,1µon

)
(by Proposition 2.2.3)

and by Lemma 9.2.3,

Sgnµon ⊗
(
S(δ′)�̃n � Sε′

)∗
is isomorphic to

Sgnµon ⊗ Sgnµon ⊗
(
S(δ)�̃n � Sε

)
which by (9.2.6) is isomorphic to S(δ)�̃n � Sε.

In light of Proposition 9.2.4 and Reduction 9.2.2, we see that in order

to establish Proposition 9.2.1, it suffices to prove that for µ, δ and ε as in

Reduction 9.2.2, we have

Ext1
µon

(
Sgnµon, S(δ)�̃n � Sε

)
= 0 (9.2.7)

(by taking δ′ in place of δ and ε′ in place of ε, noting that of course we have

δ′′ = δ and ε′′ = ε and |δ′| = |δ| = µ). In order to do this, we shall require

a number of lemmas. Recall from (3.2.10) that for δ a multipartition of m

with |δ| = µ where µ is of length t, we have defined a kSµ-module

M(δ) = M δ1

� · · ·�M δt .
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Lemma 9.2.5. With µ, δ and ε as in Reduction 9.2.2, the k(Sµ o Sn)-module

M(δ)�̃n �M ε has a filtration where S(δ)�̃n � Sε occurs at the bottom and all

other factors Q satisfy

Homµon
(
Sgnµon, Q

)
= 0.

Proof. By Young’s rule (3.2.1) and properties of Kostka numbers (3.2.2),

together with Lemma 6.1.1, the module M(δ)�̃n �M ε has a filtration by

modules M(δ)�̃n�Sν for ν ` n, where the bottom-most factor is M(δ)�̃n�Sε

and all the other factors satisfy ν . ε. Let ν ` n with ν . ε, and let us consider

the k-vector space

Homµon(Sgnµon,M(δ)�̃n � Sν) ∼=

Homµon
(
(Sgnµ)�̃n � Sgnn,M(δ)�̃n � Sν

)
. (9.2.8)

Now the subgroup of Sµ o Sn consisting of all elements (σ; e, . . . , e) for σ ∈ Sn
(where e is the identity element of Sµ) is isomorphic to Sn, and hence a

k(SµoSn)-module may be considered to be a kSn-module by virtue of restriction

to this subgroup. If we thus view (Sgnµ)�̃n � Sgnn and M(δ)�̃n � Sν as kSn-

modules, then we see easily that the former is isomorphic to the kSn-module

Sgnn while the latter is a direct sum of copies of Sν . It now follows that

the k-vector space (9.2.8) may be exhibited as a subspace of a direct sum of

copies of the space Homn(Sgnn, S
ν) = Homn(S(1n), Sν). But ν D ε . (1n) and

so by (3.3.1) we have Homn(S(1n), Sν) = 0, so that in turn the space (9.2.8)

is zero.

To prove the lemma, it now suffices to show that M(δ)�̃n � Sε has a

filtration where the bottom-most factor is S(δ)�̃n � Sε and all other factors

Q satisfy

Homµon
(
Sgnµon, Q

)
= 0.
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Now if we let t be the length of µ, then δ also has length t since µ = |δ|. We

have that M(δ) = M δ1
� · · ·�M δt with δi ` µi for each i. By Young’s rule

(3.2.1) and the properties of the Kostka numbers (3.2.2), M δi has a filtration

by modules Sγ for γ ` µi, where in the bottom-most factor we have γ = δi

and in all other factors we have γ . δi. It now follows by Lemma 2.1.2 that

M(δ) has a filtration by modules S(γ) = Sγ
1
� · · ·� Sγt with |γ| = µ where

in the bottom-most factor we have γ = δ and in all the other factors we have

γl . δl for at least one l ∈ {1, . . . , t}. Explicitly, we have

M(δ) ∼
p

F〈1〉
i=1

S(γi)

for some (not necessarily pairwise unequal) multipartitions γ1, . . . , γp of m (p

some integer), where |γi| = µ and γ1 = δ but for each i > 1 we have some

l such that γi,l . δl (where γi = (γi,1, . . . , γi,t)). Hence by Lemma 6.2.1 and

Lemma 6.1.1, M(δ)�̃n � Sε has a filtration

M(δ)�̃n � Sε ∼F〈[n,1]〉
α∈Ωpn

[(
S(γ1), . . . , S(γp)

)�̃α]xµon
µoα
� Sε.

The bottom-most factor in this filtration (indexed by α = [n, 1]) is S(δ)�̃n�Sε,
and so to prove our claim it now suffices to show that if α 6= [n, 1] then

Homµon

(
Sgnµon,

[(
S(γ1), . . . , S(γp)

)�̃α]xµon
µoα
� Sε

)
= 0. (9.2.9)

But for α = (α1, . . . , αp) ∈ Ωp
n, we have by Proposition 4.3.7 that[(

S(γ1), . . . , S(γp)
)�̃α]xµon

µoα
� Sε ∼=[(

S(γ1)�̃α1 � · · ·� S(γp)�̃αp
)
� Sε↓nα

]xµon
µoα

and so by Theorem 2.2.4 we see that the left-hand side of (9.2.9) is isomorphic

to

Homµoα

([
(Sgnµ)�̃n � Sgnn

]yµon
µoα

,
(
S(γ1)�̃α1 � · · ·� S(γp)�̃αp

)
� Sε↓nα

)
.

(9.2.10)
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Now let α = (α1, . . . , αp) ∈ Ωp
n with α 6= [n, 1]. So we have some i ∈ {2, . . . , p}

such that αi > 0, and from above we then have some l such that γi,l . δl.

Now let us consider the subgroup of Sµ o Sα consisting of all elements of

the form (e; e, . . . , e, σ, e, . . . , e) where the element σ ∈ Sµ occurs in place

α1 + · · ·+αi−1 + 1. This subgroup is isomorphic to Sµ, and hence a k(Sµ oSα)-

module may be considered to be a kSµ-module by virtue of restriction to this

subgroup. If we thus consider the module[
(Sgnµ)�̃n � Sgnn

]yµon
µoα

=
[(

Sgnµ1
� · · ·� Sgnµt

)�̃n � Sgnn

]yµon
µoα

to be a kSµ-module, then we easily see that it is isomorphic to the module

Sgnµ1
� · · ·� Sgnµt . Further, if we view the module(

S(γ1)�̃α1 � · · ·� S(γp)�̃αp
)
� Sε↓nα

as a kSµ-module in this way, then we see that it is isomorphic to a direct

sum of copies of S(γi). It now follows that, as a k-vector space, (9.2.10) is

contained in a direct sum of copies of

Homµ(Sgnµ1
� · · ·� Sgnµt , S(γi)), (9.2.11)

and hence to prove our claim, it now suffices to prove that the module (9.2.11)

is zero. We have S(γi) = Sγ
i,1
� · · ·� Sγi,t as a kSµ-module, and hence by

Proposition 2.1.3, (9.2.11) is isomorphic as a k-vector space to

t

�
s=1

Homµs(Sgnµs , S
γi,s).

Recall that we have some l such that γi,l . δl. But then Sgnµl is the Specht

module indexed by the partition (1µl), and we have γi,l . δl D (1µl), so by

(3.3.2) we see that Homµl(Sgnµl , S
γi,l) = 0. It follows that (9.2.11) is zero,

and the proof is complete.
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Lemma 9.2.6. For m,n non-negative integers and any composition µ of m,

we have

Ext1
µon(Sgnµon,1µon) = 0.

Proof. Now suppose we have some k(SµoSn)-module E with x ∈ E such that

kx is a k(SµoSn)-submodule of E with kx ∼= 1µon (where kx denotes the

k-span of x in E), and E
kx
∼= Sgnµon. By Proposition 2.1.4, it is enough to

show that E has a direct sum decomposition

E = kx⊕ Z (9.2.12)

as a k(SµoSn)-module. Before we do this, we must do a little preliminary

work.

Firstly, we let

B = {(e;α1, . . . , αn) | αi ∈ Sµ}

and

T = {(σ; e, . . . , e) | σ ∈ Sn},

so that B and T are subgroups of SµoSn, with B isomorphic to the direct

product of n copies of Sµ and T isomorphic to Sn.

Let t be the length of µ. Recall that we have defined a sign module Sgnµ =

Sgnn↓nµ for Sµ, and under the canonical isomorphism Sµ ∼= Sµ1 × · · · × Sµt
we have from (3.1.1) that Sgnµ corresponds to the module

Sgnµ1
� · · ·� Sgnµt .

We therefore have that

Ext1
µ

(
Sgnµ,1µ

) ∼= Ext1
µ

(
Sgnµ1

� · · ·� Sgnµt ,1µ1 � · · ·�1µt

)
and then by applying Proposition 2.1.3 and Lemma 3.3.7 we see that

Ext1
µ(Sgnµ,1µ) = 0. (9.2.13)
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Now under our identification of T with Sn, we see that kx is a kSn-

submodule of E↓µonT , and moreover that kx ∼= 1n, while the quotient of E↓µonT
by kx is isomorphic to Sgnn. It follows by Proposition 2.1.4 and Lemma 3.3.7

that we have some y ∈ E such that, as a kT -module,

E↓µonT ∼= kx⊕ ky

and moreover that an element (σ; e, . . . , e) of T acts on y as multiplication

by sgn(σ). We can perform a similar analysis on the module E↓µonB . For this,

we recall that B is isomorphic to (Sµ)n, and under this identification we may

easily see that kx is a k(Sµ)n-submodule of the k(Sµ)n-module E↓µonB , and

moreover that kx ∼= 1(Sµ)n , while the quotient of E↓µonB by kx is isomorphic

to the k(Sµ)n-module (Sgnµ)�n (the external tensor product of n copies of

Sgnµ). But we have

Ext1
k(Sµ)n

(
(Sgnµ)�n,1(Sµ)n

)
∼= Ext1

k(Sµ)n

(
(Sgnµ)�n,

(
1µ

)�n)
and by applying Proposition 2.1.3 and (9.2.13) we see that this space is zero.

It follows by Proposition 2.1.4 that we have some z ∈ E such that, as a

kB-module

E↓µonkB ∼= kx⊕ kz

and moreover an element (e;α1, . . . , αn) of B acts on z as multiplication by

sgn(α1) · · · sgn(αn).

So we have y = ax + bz for some a, b ∈ k. Since B and T generate the

group Sµ o Sn, in order to establish the desired decomposition (9.2.12), it

suffices to prove that a = 0. Now if n or m is 1 then the proposition reduces

to Lemma 3.3.7, so let us assume that both n and m are at least 2. Let us
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fix some elements of T and B. Indeed, let us define

σ =
(
(1, 2); e, . . . , e

)
∈ T

τ1 =
(
e; (1, 2), e . . . , e

)
∈ B

τ2 =
(
e; e, (1, 2), e . . . , e

)
∈ B.

We have

xσ = xτ1 = xτ2 = x

yσ = −y

zτ1 = zτ2 = −z.

Therefore we have

yτ1σ = (ax+ bz)τ1σ

= (ax− bz)σ

= (2ax− (ax+ bz))σ

= (2ax− y)σ

= 2ax+ y.

We also have

yστ2 = −yτ2

= −(ax+ bz)τ2

= −(ax− bz)

= −ax+ bz.
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But we also have τ1σ = στ2, and so we have

2ax+ y = −ax+ bz

=⇒ 2ax+ ax+ bz = −ax+ bz

=⇒ 4ax = 0

=⇒ a = 0

where the last implication uses the facts that x 6= 0 and that char(k) is not

2.

Lemma 9.2.7. With µ, δ, and ε as in Reduction 9.2.2,

Ext1
µon

(
Sgnµon, M(δ)�̃n �M ε

)
= 0.

Proof. Firstly let us prove that

M(δ)�̃n �M ε ∼= 1
xµon
δoε (9.2.14)

for which we shall use Corollary 2.2.7. Recall from (3.1.2) that if α is some

composition then dimk(M
α) =

|S|α||
|Sα| . Let t be the length of µ, so that t is

also the length of δ since |δ| = µ. Recalling that M(δ) = M δ1
� · · · �M δt ,

we see that

dimk

(
M(δ)�̃n �M ε)

)
= dimk

(
M(δ)

)n
dimk

(
M ε)

=

(
t∏
i=1

|S|δi||
|Sδi |

)n( |S|ε||
|Sε|

)

=

(
t∏
i=1

|Sµi |
|Sδi |

)n( |Sn|
|Sε|

)
(because |δ| = µ and ε ` n)

=

( |Sµ|
|Sδ|

)n( |Sn|
|Sε|

)
=
|Sµ o Sn|
|Sδ o Sε|
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as required. Now recall from page 47 that for any composition α, we have an

element τ(α) ∈Mα upon which Sα acts trivially, but which generates Mα as

a kS|α|-module. It is easy to check that the pure tensor

(
τ(δ1)⊗ · · · ⊗ τ(δt)

)⊗n ⊗ τ(ε) ∈ M(δ)�̃n �M ε

(where (x)⊗n denotes the tensor product of n copies of an element x) generates

M(δ)�̃n �M ε as a k(Sµ o Sn)-module, but is acted upon trivially by Sδ o Sε.
Hence all of the conditions of Corollary 2.2.7 are satisfied. Thus (9.2.14)

holds. We now have, using Theorem 2.2.4 (the Eckmann-Shapiro lemma),

that

Ext1
µon
(
Sgnµon, M(δ)�̃n �M ε

) ∼= Ext1
µon

(
Sgnµon, 1δoε

xµon
δoε
)

∼= Ext1
δoε
(

Sgnµon
yµon
δoε , 1δoε

)
.

Now we have by transitivity of induction that Sgnµon
yµon
δoε = Sgnµon

yµon
µoε
yµoε
δoε .

But using Proposition 4.3.7, we have

Sgnµon
yµon
µoε =

[(
Sgnµ

)�̃n � Sgnn

]yµon
µoε

=
(
Sgnµ

)�̃nyµon
µoε � Sgnn

yn
ε
.

By the isomorphism (4.3.2), this is in fact the internal tensor product(
Sgnµ

)�̃nyµon
µoε ⊗ Infµoεε

(
Sgnn

yn
ε

)
of k(Sµ o Sε)-modules. Hence, we see that

Sgnµon
yµon
δoε
∼=
[(

Sgnµ
)�̃nyµon

µoε ⊗ Infµoεε
(
Sgnn

yn
ε

)]yµoε
δoε

as k(Sδ o Sε)-modules. By (2.2.4), the right-hand side is isomorphic to

(
Sgnµ

)�̃nyµon
µoε
yµoε
δoε ⊗ Infµoεε

(
Sgnn

yn
ε

)yµoε
δoε

which is clearly equal to

(
Sgnµ

)�̃nyµon
δoε ⊗ Infδoεε

(
Sgnn

yn
ε

)
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and by (4.3.2), this is the k(Sδ o Sε)-module
(
Sgnµ

)�̃nyµon
δoε � Sgnn

yn
ε
. Using

(3.1.1), we see that if ε = (ε1, . . . , εs), then this module is isomorphic to((
Sgnµ

)�̃ε1yµoε1
δoε1 � · · ·�

(
Sgnµ

)�̃εsyµoεs
δoεs

)
�
(
Sgnε1 � · · ·� Sgnεs

)
and so by (4.3.5) we have

Sgnµon
yµon
δoε
∼=
((

Sgnµ
)�̃ε1yµoε1

δoε1 � Sgnε1

)
� · · ·�

((
Sgnµ

)�̃εsyµoεs
δoεs � Sgnεs

)
.

(9.2.15)

But we have by Proposition 4.3.5 that

(
Sgnµ

)�̃εiyµoεi
δoεi =

(
Sgnµ

yµ
δ

)�̃εi
and using (3.1.1) we have

Sgnµ
yµ
δ

=
[
Sgnµ1

� · · ·� Sgnµt
]yµ

δ

=
(

Sgnµ1

yµ1

δ1

)
� · · ·�

(
Sgnµt

yµt
δt

)
= Sgnδ1 � · · ·� Sgnδt

and this is just Sgnδ, where δ is the composition of m defined by δ = δ1◦· · ·◦δt.
Hence, we have for each i = 1, . . . , s that

(
Sgnµ

)�̃εiyµoεi
δoεi � Sgnεi

∼=
(
Sgnδ

)�̃εi � Sgnεi = Sgnδoεi .

It now follows from (9.2.15) that Sgnµon
yµon
δoε
∼= Sgnδoε1 � · · ·� Sgnδoεs . Thus,

we have

Ext1
δoε

(
Sgnµon

yµon
δoε , 1δoε

)
∼= Ext1

δoε

(
Sgnδoε1 � · · ·� Sgnδoεs , 1δoε

)
∼= Ext1

δoε

(
Sgnδoε1 � · · ·� Sgnδoεs , 1δoε1 � · · ·�1δoεs

)
.
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By Proposition 2.1.3, we see that this k-vector space is the direct sum of the

terms

Ext1
δoεi

(
Sgnδoεi ,1δoεi

)
⊗
⊗

p=1,...,s
p6=i

Homδoεp

(
Sgnδoεp ,1δoεp

)
for i = 1, . . . , s, and by Lemma 9.2.6 these terms are all zero, thus establishing

the claim.

We now complete our proof of Proposition 9.2.1 by proving that (9.2.7)

holds.

Proposition 9.2.8. For µ ` m, δ a multipartition of m with |δ| = µ, and

ε ` n, we have

Ext1
µon

(
Sgnµon, S(δ)�̃n � Sε

)
= 0.

Proof. Using the filtration from Lemma 9.2.5, we have a short exact sequence

0 // S(δ)�̃n � Sε // M(δ)�̃n �M ε // M(δ)�̃n�Mε

S(δ)�̃n�Sε
// 0

(9.2.16)

where the module
M(δ)�̃n �M ε

S(δ)�̃n � Sε

has a filtration by modules Q such that Homµon
(
Sgnµon, Q

)
= 0, whence we

have by Proposition 2.1.1 that

Homµon

(
Sgnµon,

M(δ)�̃n �M ε

S(δ)�̃n � Sε

)
= 0. (9.2.17)

Now let us apply the functor Homµon
(
Sgnµon,−

)
to (9.2.16) to obtain a long
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exact sequence

0→ Homµon
(

Sgnµon, S(δ)�̃n � Sε
)

// Homµon
(

Sgnµon,M(δ)�̃n �M ε
)

uu

Homµon
(

Sgnµon,
M(δ)�̃n�Mε

S(δ)�̃n�Sε

)
// Ext1

µon

(
Sgnµon, S(δ)�̃n � Sε

)
uu

Ext1
µon

(
Sgnµon,M(δ)�̃n �M ε

)
// · · ·

and the result now follows by (9.2.17) and Lemma 9.2.7.

9.3 Structure of Hommon
(
S [ν,i],Mγ

)
and

Ext1mon
(
S [ν,i],Mγ

)
We now consider the spaces Hommon

(
S[ν,i],Mγ

)
and Ext1

mon
(
S[ν,i],Mγ

)
, where

γ may be any multicomposition. We begin by proving the following lemma,

which is essentially a consequence of [6, Lemma 3.3 (2)].

Lemma 9.3.1. Let ν ` n and α = (α1, . . . , αt) � n. Let i ∈ {1, . . . , r}. Then

the k(SmoSn)-module

S[ν,i]
ymon
moα

has (identifying Sm o Sα with (Sm o Sα1)× · · · × (Sm o Sαt) via the canonical

isomorphism) a filtration by modules of the form

S[ε1,i]�S[ε2,i]� · · ·�S[εt,i],

where for each j ∈ {1, . . . , t}, we have εj ` αj and εj ⊆ ν.
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Proof. We have using Proposition 4.3.7 that

S[ν,i]
ymon
moα
∼=
[(
Sµ

i)�̃n � Sν]ymon
moα

∼=
(
Sµ

i)�̃nymon
moα
� (Sν↓nα) (9.3.1)

as k(Sm o Sα)-modules. Now by Lemma 3.2.3 and (3.2.12), we may see that

Sν↓nα has a filtration by modules Sε
1
� · · ·� Sεt where εj ` αj and εj ⊆ ν for

j = 1, . . . , t. Thus using Lemma 6.1.1, we see that the module (9.3.1) has a

filtration by modules of the form(
Sµ

i)�̃nymon
moα
�
(
Sε

1

� · · ·� Sεt
)

(9.3.2)

where εj ` αj and εj ⊆ ν for j = 1, . . . , t. Using the canonical identification of

SmoSα with (SmoSα1)×· · ·×(SmoSαt) and the fact that under this isomorphism

the module
(
Sµ

i)�̃nymon
moα

corresponds to
(
Sµ

i)�̃α1 � · · ·�
(
Sµ

i)�̃αt
, we see by

the isomorphism (4.3.5) that the module (9.3.2) is isomorphic to((
Sµ

i)�̃α1 � Sε1
)
� · · ·�

((
Sµ

i)�̃αt � Sεt)
which is precisely

S[ε1,i] � · · ·� S[εt,i]

and the claim now follows.

Proposition 9.3.2. Let k be a field whose characteristic is not 2. Let ν ` n
and i ∈ {1, . . . , r}, and further let γ = (γ1, . . . , γr) be an r component

multicomposition of n. We have

Hommon
(
S[ν,i],Mγ

) ∼=
0 if [ν, i] 4 γ

k if [ν, i] = γ.

Further, if the characteristic of k is neither 2 nor 3, then for any such [ν, i]

and γ we have

Ext1
mon
(
S[ν,i],Mγ

)
= 0.
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Proof. Firstly, if we have [ν, i] = γ, then we have Mγ = M [ν,i] and thus

Hommon
(
S[ν,i],Mγ

)
is isomorphic to k by Proposition 9.1.1.

Now it is clear by the definition of Mγ and the isomorphism (4.3.6) that

we have

Mγ =
[
M [γ1,1]�M [γ2,2]�· · ·�M [γr,r]

]xmon
mo|γ|,

and hence by the Eckmann-Shapiro lemma (Theorem 2.2.4) we have an

isomorphism of k-vector spaces

Hommon
(
S[ν,i],Mγ

) ∼= Hommo|γ|
(
S[ν,i]

ymon
mo|γ| ,M

[γ1,1]�M [γ2,2]�· · ·�M [γr,r]
)
.

Now by Lemma 9.3.1, we know that the module S[ν,i]
ymon
mo|γ| is filtered by

modules of the form S[ε1,i]�S[ε2,i]� · · ·�S[εr,i] where εj ` |γj| and εj ⊆ ν for

each j. Thus in order to prove that Hommon
(
S[ν,i],Mγ

)
= 0, it suffices by

Proposition 2.1.1 to prove that for any such ε1, . . . , εr, we have

Hommo|γ|
(
S[ε1,i]�S[ε2,i]� · · ·�S[εr,i],M [γ1,1]�M [γ2,2]�· · ·�M [γr,r]

)
= 0.

But by Proposition 2.1.3,

Hommo|γ|
(
S[ε1,i]�S[ε2,i]� · · ·�S[εr,i],M [γ1,1]�M [γ2,2]�· · ·�M [γr,r]

)
is isomorphic as a k-vector space to

Hommo|γ1|
(
S[ε1,i],M [γ1,1]

)
⊗ · · · ⊗ Hommo|γr|

(
S[εr,i],M [γr,r]

)
and thus it suffices to prove that whenever we have [ν, i] 4 γ and ε1, . . . , εr such

that εj ` |γj| and εj ⊆ ν for each j, then we must have some l ∈ {1, . . . , r}
such that the space Hommo|γl|

(
S[εl,i],M [γl,l]

)
is zero. Now it is easy to see

that the condition [ν, i] 4 γ is equivalent to having either γj 6= () for some

j < i or else having some s such that
∑s

j=1 νj <
∑s

j=1 γ
i
j. Now suppose
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[ν, i] 4 γ. If we have some j < i such that γj 6= (), then for any partition

ε ` |γj| we have by Proposition 9.1.1 that

Hommo|γj |
(
S[ε,i],M [γj ,j]

)
= 0,

and hence Hommon
(
S[ν,i],Mγ

)
= 0. On the other hand, if we have some s

such that
∑s

j=1 νj <
∑s

j=1 γ
i
j, then for any partition ε ` |γi| such that ε ⊆ ν,

we certainly have ε 4 γi, and so we have by Proposition 9.1.1 that

Hommo|γi|
(
S[ε,i],M [γi,i]

)
= 0,

and hence Hommon
(
S[ν,i],Mγ

)
= 0.

Finally, we assume that the characteristic of k is neither 2 nor 3, and we

consider the space Ext1
mon
(
S[ν,i],Mγ

)
. By the same argument that was used

above for the space Hommon
(
S[ν,i],Mγ

)
(using the Eckmann-Shapiro lemma,

Lemma 9.3.1, and Proposition 2.1.1), we find that it is enough to show that

for any ε1, . . . , εr where εj ` |γj|, we have

Ext1
mo|γ|

(
S[ε1,i]�S[ε2,i]� · · ·�S[εr,i],M [γ1,1]�M [γ2,2]�· · ·�M [γr,r]

)
= 0,

and this follows at once from Proposition 2.1.3 and Proposition 9.2.1.

9.4 Structure of Hommon (Sν,Mγ) and

Ext1mon (S
ν,Mγ)

We now consider the spaces Hommon (Sν , Mγ) and Ext1
mon (Sν , Mγ), where

ν is a multipartition of n of length r and γ is a multicomposition of n of

length r (n, m, and r as above). Recall from page 180 that we have defined a

k(Sm o S|ν|)-module

T ν =
(
Sµ

1

, . . . , Sµ
r)�̃|ν|�(Sν1

� · · ·� Sνr
)
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so that we have Sν = T ν ↑monmo|ν|. Thus we have (see page 72 for the definition

of the subgroup Wγ of Sm o Sn)

Hommon (Sν , Mγ) ∼= Hommon

(
T ν↑monmo|ν| , 1

xmon
Wγ

)
(by Proposition 4.4.1)

∼= Hommo|ν|

(
T ν , 1

xmon
Wγ

ymon
mo|ν|

)
(by Theorem 2.2.4)

(9.4.1)

and by exactly the same reasoning we have

Ext1
mon (Sν , Mγ) ∼= Ext1

mo|ν|

(
T ν , 1

xmon
Wγ

ymon
mo|ν|

)
. (9.4.2)

Our main work in this section will be to use our work on tableaux to obtain

a direct sum decomposition of the module

1
xmon
Wγ

ymon
mo|ν| (9.4.3)

where the summands are indexed by tableaux of shape |ν| and type γ with

weakly increasing rows, and hence obtain corresponding direct sum decompo-

sitions of the above Hom and Ext1 spaces. These decompositions will be the

key to proving our desired results.

So let us consider the module (9.4.3). The natural tool to apply to this

module is Mackey’s theorem (Theorem 2.2.5), and so we want to obtain a com-

plete non-redundant system U of
(
Wγ , SmoS|ν|

)
-double coset representatives

in SmoSn, since then by Mackey’s theorem we shall have

1
xmon
Wγ

ymon
mo|ν| ∼=

⊕
u∈U
1
u
y(Wγ)u

(Wγ)u∩(SmoS|ν|)
xSmoS|ν|

(Wγ)u∩(SmoS|ν|)

where superscript u denotes conjugation of subgroups and modules (see page

32). But clearly

1
u
y(Wγ)u

(Wγ)u∩(SmoS|ν|) = 1
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as modules for (Wγ)
u ∩ (SmoS|ν|), so

1
xmon
Wγ

ymon
mo|ν| ∼=

⊕
u∈U
1
xSmoS|ν|

(Wγ)u∩(SmoS|ν|). (9.4.4)

Thus we wish to understand the modules 1
xSmoS|ν|

(Wγ)u∩(SmoS|ν|). For this, a good

choice of the system of coset representatives U is key. The following lemma

allows us to obtain such a set U from a system of (Sγ, S|ν|)-double coset

representatives in Sn. For σ ∈ Sn, let us write σ̂ for the element (σ ; e, e, . . . , e)

of SmoSn. Thus the map σ 7−→ σ̂ is an isomorphic embedding of Sn into

SmoSn.

Lemma 9.4.1. Let σ1, σ2, . . . , σN be a complete non-redundant system of

(Sγ, S|ν|)-double coset representatives in Sn. Then σ̂1, σ̂2, . . . , σ̂N is a complete

non-redundant system of
(
Wγ , SmoS|ν|

)
-double coset representatives in SmoSn.

Proof. The proof is essentially by direct calculation.

To prove that the system is complete, let (σ;α1, . . . , αn) ∈ SmoSn. Then

we have some i ∈ {1, . . . , N} such that

SγσS|ν| = SγσiS|ν|.

Thus σ = εσiδ for some ε ∈ Sγ and some δ ∈ S|ν|. Then

Wγ(σ;α1, . . . , αn)SmoS|ν| = Wγ(σ; e, . . . , e) (e;α1, . . . , αn)︸ ︷︷ ︸
∈SmoS|ν|

SmoS|ν|

= Wγ(σ; e, . . . , e)SmoS|ν|
= Wγ(εσiδ; e, . . . , e)SmoS|ν|
= Wγ (ε; e, . . . , e)︸ ︷︷ ︸

∈Wγ

(σi; e, . . . , e) (δ; e, . . . , e)︸ ︷︷ ︸
∈SmoS|ν|

SmoS|ν|

= Wγ(σi; e, . . . , e)SmoS|ν|
= Wγ σ̂i SmoS|ν|.
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Thus the elements σ̂1, σ̂2, . . . , σ̂N are indeed a complete set of
(
Wγ , SmoS|ν|

)
-

double coset representatives in SmoSn.

For non-redundancy, suppose that

Wγ σ̂i SmoS|ν| ∼= Wγ σ̂j SmoS|ν|

for some i, j ∈ {1, . . . , N}. So we have an element (x ; α1, . . . , αn) of Wγ and

an element (y ; β1, . . . , βn) of SmoS|ν| such that

σ̂i = (x ; α1, . . . , αn)σ̂j(y ; β1, . . . , βn)

= (x ; α1, . . . , αn)(σj ; e, . . . , e)(y ; β1, . . . , βn)

= (xσjy ; α(1)σ−1
j
β1, . . . , α(n)σ−1

j
βn)

and so σi = xσjy, where x ∈ Sγ and y ∈ S|ν|, so indeed i = j.

We now fix a complete non-redundant system σ1, σ2, . . . , σN of (Sγ, S|ν|)-

double coset representatives in Sn, where moreover each σi is of minimal

length in its left S|ν|-coset σiS|ν|. This extra assumption will allow us to apply

our work on tableaux from Chapter 7 to the situation at hand. We have

by Lemma 9.4.1 that σ̂1, σ̂2, . . . , σ̂N is a complete non-redundant system of(
Wγ , SmoS|ν|

)
-double coset representatives in SmoSn. Thus we have by (9.4.4)

that

1
xmon
Wγ

ymon
mo|ν| ∼=

N⊕
i=1

1
xSmoS|ν|

(Wγ)σ̂i∩(SmoS|ν|). (9.4.5)

We therefore need to understand the subgroups (Wγ)
σ̂i ∩ (SmoS|ν|), and it

is here that we shall use our work on tableaux, by means of the following

lemma. Recall that if α is a composition of n and γ is a multicomposition

of n, then we have defined (see page 161) a tableau ταγ of shape α and

type γ. Further, if we let l be the length of α and t be the length of

γ, then to any tableau τ of shape α and type γ, we have associated (see
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page 172) an l-tuple Γ(τ) =
(
Γ1(τ),Γ2(τ), . . . ,Γl(τ)

)
of t-multicompositions

such that ||Γ1(τ)|| + ||Γ2(τ)|| + · · · + ||Γl(τ)|| = n. So in particular for our

multicomposition γ and multipartition ν which both have length r, we have

for any σ ∈ Sn an r-tuple Γ(τ
|ν|
γ σ) of r-multicompositions. Recall further

that if γ is a tuple of r-multicompositions such that |||γ||| = n, then we have

associated (see page 73) to γ a subgroup Wγ of Sm o Sn.

Lemma 9.4.2. Let σ ∈ Sn be of minimal length in its left S|ν|-coset σS|ν|.

Then we have

(Wγ)
σ̂ ∩ (SmoS|ν|) = W

Γ(τ
|ν|
γ σ)

.

Proof. Now by definition, Wγ consists exactly of the elements of SmoSn of the

form (
π ; α1

1 , α
1
2 , . . . , α

1
|γ1|︸ ︷︷ ︸

∈Sµ1≤Sm

, α2
1 , . . . , α

2
|γ2|︸ ︷︷ ︸

∈Sµ2≤Sm

, α3
1 , . . . . . . , α

r
|γr|
)

where π ∈ Sγ and, as indicated, each αi∗ lies in Sµi . Further, (Wγ)
σ̂ consists

exactly of all elements σ̂−1(π ; α1, . . . , αn)σ̂ for (π ; α1, . . . , αn) ∈ Wγ. Now

σ̂−1(π ; α1, . . . , αn)σ̂ = (σ−1 ; e, . . . , e)(π ; α1, . . . , αn)(σ ; e, . . . , e)

= (σ−1πσ ; α(1)σ−1 , α(2)σ−1 , . . . , α(n)σ−1).
(9.4.6)

Now define Xγ to be the n-tuple

Xγ = (1, 1, . . . , 1︸ ︷︷ ︸
|γ1| places

, 2, . . . , 2︸ ︷︷ ︸
|γ2| places

, . . . , r, . . . , r︸ ︷︷ ︸
|γr| places

)

and define xi to be the ith entry of Xγ for i = 1, . . . , n. Now define Xσ
γ to be

the n-tuple

Xσ
γ = (x(1)σ−1 , x(2)σ−1 , . . . , x(n)σ−1)

and define xσi to be the ith entry of Xσ
γ for i = 1, . . . , n. Then by (9.4.6)

we see that (Wγ)
σ̂ is exactly the set of elements of SmoSn of the form
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(θ ; β1, β2, . . . , βn) for θ ∈ (Sγ)
σ and βi ∈ Sµ̂i where µ̂i = µx

σ
i . Further,

since SmoS|ν| is exactly the set of elements (δ ; ε1, ε2, . . . , εn) for δ ∈ S|ν| and

εi ∈ Sm, we see that (Wγ)
σ̂ ∩ (SmoS|ν|) consists exactly of those elements of

the form (θ ; β1, β2, . . . , βn) for θ ∈ (Sγ)
σ ∩ S|ν| and βi ∈ Sµ̂i where µ̂i = µx

σ
i .

Now to ease the notation let us define Γ = Γ(τ
|ν|
γ σ), and as usual denote

the ith component of Γ as Γi (a multicomposition), the jth component of Γi as

Γi,j (a composition), and the sth part of Γi,j as Γi,js (an integer). We consider

WΓ. By definition, WΓ is the subgroup of SmoSn consisting of all elements of

the form(
σ;

α1,1
1 , α1,1

2 , . . . , α1,1
|Γ1,1|︸ ︷︷ ︸

∈Sµ1≤Sm

, α1,2
1 , . . . , α1,2

|Γ1,2|︸ ︷︷ ︸
∈Sµ2≤Sm

, α1,3
1 , . . . . . . , α1,r

1 , . . . , α1,r
|Γ1,r|︸ ︷︷ ︸

∈Sµr≤Sm

,

α2,1
1 , α2,1

2 , . . . , α2,1
|Γ2,1|︸ ︷︷ ︸

∈Sµ1≤Sm

, α2,2
1 , . . . . . . . . . . . . , α2,r

1 , . . . , α2,r
|Γ2,r|︸ ︷︷ ︸

∈Sµr≤Sm

,

...
...

...

αr,11 , αr,12 , . . . , αr,1|Γr,1|︸ ︷︷ ︸
∈Sµ1≤Sm

, αr,21 , . . . , αr,2|Γr,2|︸ ︷︷ ︸
∈Sµ2≤Sm

, αr,31 , . . . . . . , αr,r1 , . . . , αr,r|Γr,r|︸ ︷︷ ︸
∈Sµr≤Sm

)
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where σ ∈ SΓ. Let us define YΓ to be the n-tuple

YΓ =
(

1, 1, . . . , 1︸ ︷︷ ︸
|Γ1,1| places

, 2, 2, . . . , 2︸ ︷︷ ︸
|Γ1,2| places

, 3, . . . . . . , r, r, . . . , r︸ ︷︷ ︸
|Γ1,r| places

,

1, 1, . . . , 1︸ ︷︷ ︸
|Γ2,1| places

, 2, . . . . . . , . . . . . . , r,

...
...

1, 1, . . . , 1︸ ︷︷ ︸
|Γr,1| places

, 2, 2, . . . , 2︸ ︷︷ ︸
|Γr,2| places

, 3, . . . . . . , r, r, . . . , r︸ ︷︷ ︸
|Γr,r| places

)
,

and let us define yi to be the ith entry of YΓ. Thus WΓ consists exactly of

the elements of SmoSn of the form (θ ; β1, β2, . . . , βn) for θ ∈ SΓ an βi ∈ Sµ̃i
where µ̃i = µyi . But by Proposition 7.4.2 and the minimality of the length of

σ, we have SΓ = (Sγ)
σ ∩ S|ν|. Hence, to prove that (Wγ)

σ̂ ∩ (SmoS|ν|) = WΓ

it is now sufficient to prove that Xσ
γ = YΓ.

Let us define Zγ to be the n-tuple

Zγ =
(

(1, 1), (1, 1), . . . , (1, 1)︸ ︷︷ ︸
γ1

1 places

, (1, 2), . . . , (1, 2)︸ ︷︷ ︸
γ1

2 places

, (1, 3), . . . . . .
)

where, recall, γ = (γ1, . . . , γr) and γi = (γi1, . . . , γ
i
r). Further, let zi be the ith

entry of Zγ, and let us define Zσ
γ to be the n-tuple

Zσ
γ =

(
z(1)σ−1 , z(2)σ−1 , . . . , z(n)σ−1

)
.

Recall the numbering of the boxes of a Young diagram from Section 7.1, and

recall also that the tableau τ
|ν|
γ is defined by entering the lth entry of Zγ into

box number l of a Young diagram of shape |ν|, for each l = 1, . . . , n. Then

τ
|ν|
γ σ is obtained by moving the pair in box number l of τ

|ν|
γ into box number

(l)σ, for each l = 1, . . . , n. Thus τ
|ν|
γ σ is the tableau of shape |ν| where for

each l = 1, . . . , n, the box numbered l contains the
(
(l)σ−1

)
th entry of Zγ.
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Thus in fact τ
|ν|
γ σ is the tableau obtained by entering the lth entry of Zσ

γ into

box number l of a Young diagram of shape |ν|, for each l = 1, . . . , n. Thus,

if we form an n-tuple U(τ
|ν|
γ σ) of numbers from the set {1, . . . , r} by taking

the lth entry of U(τ
|ν|
γ σ) to be the first element of the pair in box number l of

τ
|ν|
γ σ (i.e. if the pair in the box with number l is (i, j) then the lth entry of

U(τ
|ν|
γ σ) is i), then it is immediate that U(τ

|ν|
γ σ) is equal to the n-tuple Ẑσ

γ

whose lth entry is defined to be the first element of the pair which appears

in the lth place of the tuple Zσ
γ . But it is clear that this tuple Ẑσ

γ is also

the n-tuple obtained by first forming the n-tuple whose lth entry is the first

element of the pair which appears in the lth place of Zγ, and then for each

l = 1, . . . , n moving the entry from the lth place of this tuple to the (l)σth

place. But this tuple is Xσ
γ (by the definition of Xσ

γ ). Thus U(τ
|ν|
γ σ) = Xσ

γ .

On the other hand, recall from the definition of Γ = Γ(τ
|ν|
γ σ) (see page

172) that |Γi,j| is the number of pairs (j, ∗) on the ith row of τ
|ν|
γ σ. Further,

σ is of minimal length in σS|ν|, and so by Proposition 7.2.3 τ
|ν|
γ σ has weakly

increasing rows. Hence, on the ith row of τ
|ν|
γ σ, all of the |Γi,1| pairs of the

form (1, ∗) come first (reading left-to-right), followed by all of the |Γi,2| pairs

of the form (2, ∗), and so on. It now follows at once that U(τ
|ν|
γ σ) is equal to

YΓ (by the definition of YΓ). Hence Xσ
γ = YΓ as required.

So looking back to (9.4.5), we see that, with Γ = Γ(τ
|ν|
γ σ) as in the

foregoing proof, we have

1
xSmoS|ν|

(Wγ)σ̂i∩(SmoS|ν|)
∼= 1

xSmoS|ν|
WΓ

and to understand this module, we can use the following result.

Lemma 9.4.3. Let n, m, and r be as above. Let γ be an r-tuple of r-

multicompositions such that

||γ1||+ · · ·+ ||γr|| = n.
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Let α = (||γ1||, . . . , ||γr||) � n. Then the subgroup Wγ of SmoSn lies in the

subgroup SmoSα, and further we have a module isomorphism

1
xmoα
Wγ
∼= Mγ1

� · · ·�Mγr

where the k
(
SmoS||γ1|| × · · · × SmoS||γr||

)
module on the right-hand side is

viewed as a k(SmoSα) via the canonical isomorphism

SmoSα ∼= SmoS||γ1|| × · · · × SmoS||γr||.

Proof. The fact that Wγ lies in SmoSα is immediate from the definition of Wγ

(see 73). Recall that for each i = 1, . . . , r, we have a k(SmoS||γi||)-module Mγi .

Indeed, recalling that |γi| is a composition of ||γi|| (of length r), we have by

Proposition 4.4.1 that

Mγi ∼= 1
xmo||γi||
Wγi

.

Now let us identify SmoSα with
(
SmoS||γ1||

)
× · · · ×

(
SmoS||γr||

)
via the canonical

isomorphism. Under this identification Wγ corresponds to the subgroup

Wγ1 × · · · ×Wγr

(see (4.2.2)). Thus we have

1
xmoα
Wγ = 1

xSmoS||γ1||× ···× SmoS||γr ||
Wγ1×···×Wγr

∼= 1
xmo||γ1||
Wγ1 � · · ·� 1

xmo||γr||
Wγr

∼= Mγ1

� · · ·�Mγr

where the last isomorphism is again by Proposition 4.4.1.

We can now combine Lemmas 9.4.3 and 9.4.2 with (9.4.5), to obtain

1
xmon
Wγ

ymon
mo|ν| ∼=

N⊕
i=1

MΓ1(τ
|ν|
γ σi) � · · ·�MΓr(τ

|ν|
γ σi).
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Further, by Proposition 7.2.4, we know that our complete non-redundant

system of (Sγ, S|ν|)-double coset representatives σ1, . . . , σN (each of minimal

length in its left S|ν|-coset σiS|ν|) is in bijective correspondence with the set

W |ν|γ of tableaux of shape |ν| and type γ with weakly increasing rows, via the

map

σi 7−→ τ |ν|γ σi.

Hence, we can use W |ν|γ to index the summation. We thus obtain

1
xmon
Wγ

ymon
mo|ν| ∼=

⊕
τ∈W|ν|γ

MΓ1(τ) � · · ·�MΓr(τ) (9.4.7)

and this form makes it clear that this decomposition is independent of a choice

of double coset representatives. Note that we have not made any assumptions

about the characteristic of k in obtaining (9.4.7).

We now apply (9.4.7) to (9.4.1), and we thus have

Hommon
(
Sν , Mγ

) ∼= ⊕
τ ∈W|ν|γ

Hommo|ν|
(
T ν , MΓ1(τ) � · · ·�MΓr(τ)

)
. (9.4.8)

Now recall that

T ν =
(
Sµ

1

, . . . , Sµ
r)�̃|ν|�(Sν1

� · · ·� Sνr
)
,

so that, using the isomorphism (4.3.6), T ν is the module(
(Sµ

1

)�̃|ν
1| � Sν1

)
� · · ·�

(
(Sµ

r

)�̃|ν
r| � Sνr

)
= S[ν1,1] � · · ·� S[νr,r].

Hence, by (9.4.8), we have a direct sum decomposition of k-vector spaces

Hommon
(
Sν , Mγ

) ∼=⊕
τ ∈W|ν|γ

Hommo|ν|
(
S[ν1,1] � · · ·� S[νr,r], MΓ1(τ) � · · ·�MΓr(τ)

)
, (9.4.9)
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and we shall return to this decomposition after dealing with the Ext1 case.

Indeed, by applying (9.4.7) to (9.4.2) as we have done for the Hom-space, we

also obtain a decomposition

Ext1
mon
(
Sν , Mγ

) ∼=⊕
τ ∈W|ν|γ

Ext1
mo|ν|

(
S[ν1,1] � · · ·� S[νr,r], MΓ1(τ) � · · ·�MΓr(τ)

)
. (9.4.10)

If we take k to be a field whose characteristic is neither 2 nor 3, then all of

the summands on the right-hand side of the decomposition (9.4.10) are easily

seen to be zero via Proposition 2.1.3 and Proposition 9.3.2. We have thus

proved the following result, which is our desired result on Ext1-spaces.

Theorem 9.4.4. Let k be a field whose characteristic is neither 2 nor 3. Let

ν be a multipartition of n with length r, and γ a multicomposition of n with

length r. Then

Ext1
mon
(
Sν , Mγ

)
= 0.

Now let us take k to be a field whose characteristic is not 2. Returning to

the Hom-space decomposition (9.4.9), we find that by Proposition 2.1.3 we

have an isomorphism of k-vector spaces

Hommo|ν|
(
S[ν1,1] � S[ν2,2] � · · ·� S[νr,r], MΓ1(τ) � · · ·�MΓr(τ)

) ∼=
Hommo|ν1|

(
S[ν1,1],MΓ1(τ)

)
⊗ · · · ⊗ Hommo|νr|

(
S[νr,r],MΓr(τ)

)
.

Thus we have obtained a decomposition of Hom-spaces

Hommon
(
Sν , Mγ

) ∼=⊕
τ ∈W|ν|γ

Hommo|ν1|
(
S[ν1,1],MΓ1(τ)

)
⊗ · · · ⊗ Hommo|νr|

(
S[νr,r],MΓr(τ)

)
. (9.4.11)
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We can in fact refine the indexing set in (9.4.11) somewhat. Indeed, let

τ ∈ W |ν|γ and suppose that for some j ∈ {1, . . . , r}, a pair (j, ∗) appears in

some row of τ which lies lower than the jth row, say on the ith row (so we

have i > j). Then by the first part of Proposition 7.4.4, we have Γi,j(τ) 6= (),

which implies that [νi, i] 4 Γi(τ), and so by Proposition 9.3.2 we have

Hommo|νi|
(
S[νi,i],MΓi(τ)

)
= 0.

Thus the τ th summand of (9.4.11) is zero unless for each j ∈ {1, . . . , r}, no

pair (j, ∗) appears lower than the jth row of τ . We have thus proved the

following result.

Theorem 9.4.5. Let k be a field whose characteristic is not 2. Let ν be a

multipartition of n with length r, and γ a multicomposition of n with length

r. Let Ŵ |ν|γ be the set of all tableaux τ of shape |ν| and type γ with weakly

increasing rows such that for each j ∈ {1, . . . , r}, no pair (j, ∗) appears lower

than the jth row of τ . Then we have an isomorphism of k-vector spaces

Hommon
(
Sν , Mγ

) ∼=⊕
τ ∈Ŵ|ν|γ

Hommo|ν1|
(
S[ν1,1],MΓ1(τ)

)
⊗ · · · ⊗ Hommo|νr|

(
S[νr,r],MΓr(τ)

)
.

We can now prove our desired result on the structure of the Hom-space

Hommon (Sν ,Mγ).

Theorem 9.4.6. Let k be a field whose characteristic is not 2. Let ν be a

multipartition of n with length r, and γ a multicomposition of n with length

r. Then

Hommon (Sν ,Mγ) ∼=

k if ν = γ,

0 if ν 4 γ.
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Proof. If ν = γ, then it is easy to see that Ŵ |ν|γ = {τ |ν|ν }. It is also easy to

see that

Γ(τ |ν|ν ) =
(
[ν1, 1], [ν2, 2], . . . , [νr, r]

)
,

so that by Theorem 9.4.5, we find that Hommon (Sν ,Mν) is isomorphic to

Hommo|ν1|
(
S[ν1,1],M [ν1,1]

)
⊗ · · · ⊗ Hommo|νr|

(
S[νr,r],M [νr,r]

)
.

By Proposition 9.3.2, this is indeed just k.

If ν 4 γ, then by Proposition 7.4.4 we have for each τ ∈ Ŵ |ν|γ an i ∈
{1, . . . , r} and some j such that

Γi(τ) =
(
(), (), . . . , (),Γi,i(τ),Γi,i+1(τ), . . . ,Γi,r(τ)

)
and such that

j∑
q=1

Γi,iq (τ) >

j∑
q=1

νiq,

and the existence of such a j implies that [ν, i] 4 Γi(τ). Hence by Proposi-

tion 9.3.2 we have

Hommo|νi|
(
S[νi,i],MΓi(τ)

)
= 0

and hence the τ th summand of the summation in Theorem 9.4.5 is zero. Thus

indeed

Hommon
(
Sν ,Mγ

)
= 0

as required.

Original research in Chapter 9: Everything in Chapter 9 is original

research.
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Chapter 10

Homomorphisms and

extensions between wreath

Specht modules, and a

stratifying system for k (SmoSn)

In this short final chapter, we shall prove wreath product analogues of (3.3.2)

and Theorem 3.3.2, and using these we shall deliver the promised proof that,

if k is algebraically closed and has characteristic neither 2 nor 3, then the

Specht modules for k(SmoSn) yield a stratifying system as defined in Section

3.4, and hence that Specht filtration multiplicities are well-defined for the

wreath product algebra k(SmoSn) as for the symmetric group algebra kSn.

We shall use an argument closely based on the corresponding work for kSn

in Section 3.4. Since the symmetric group Sn is a special case of the wreath

product Sm oSn, the same counter examples which prove that Specht filtration

multiplicities for kSn are not well-defined in characteristic 2 or 3 (see page

67) also prove that Specht filtration multiplicities for k(Sm o Sn) are not
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well-defined in characteristic 2 or 3. Thus the result which we shall obtain is

the best we could hope for.

As in previous chapters, we let m and n be non-negative integers and we

let r be the number of distinct partitions of m.

10.1 Homomorphisms and extensions

between wreath Specht modules

Now if k is a field whose characteristic is not 2, and ν, λ are multipartitions

of n with length r, then we have by Theorem 9.4.6 that

Hommon
(
Sν ,Mλ

) ∼=
k if ν = λ,

0 if ν 4 λ,

and by Proposition 6.5.2 we know that Sλ is a submodule of Mλ. We have

thus established the following theorem.

Theorem 10.1.1. Let k be a field whose characteristic is not 2. Let ν and λ

be multipartitions of n with length r. Then we have

Hommon
(
Sν , Sλ

) ∼=
k if ν = λ,

0 if ν 4 λ.

Corollary 10.1.2. Let k be a field whose characteristic is not 2 and let ν

be a multipartition of n with length r. Then the k(Sm o Sn)-module Sν is

indecomposable.

Proof. If Sν were not indecomposable, we could project to any non-zero

proper summand and thus obtain an endomorphism of Sν which is not a

scalar multiple of the identity, contradicting Theorem 10.1.1.
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Theorem 10.1.3. Let k be a field whose characteristic is neither 2 nor 3.

Let ν and λ be multipartitions of n with length r such that ν 7 λ. Then we

have

Ext1
mon
(
Sν , Sλ

)
= 0.

Proof. By Proposition 6.5.2, we know that Mλ has a filtration by modules

Sα, where Sλ occurs exactly once at the bottom of the filtration, and all the

other modules Sα which appear satisfy α . λ. Thus we have a short exact

sequence

0 −→ Sλ −→Mλ −→ Mλ

Sλ
−→ 0

where Mλ

Sλ
has a filtration by modules Sα for multipartitions α . λ. But α . λ

implies ν 4 α (for if ν D α then we have ν D α . λ, contradicting ν 7 λ),

and so if α . λ then we have by Theorem 10.1.1 that

Hommon (Sν , Sα) = 0.

It follows by Proposition 2.1.1 that

Hommon

(
Sν ,

Mλ

Sλ

)
= 0. (10.1.1)

We apply the functor Hommon (Sν ,−) to our short exact sequence to obtain a

long exact sequence

0→ Hommon
(
Sν , Sλ

)
// Hommon

(
Sν ,Mλ

)
// Hommon

(
Sν , M

λ

Sλ

)
ww

Ext1
mon
(
Sν , Sλ

)
// Ext1

mon
(
Sν ,Mλ

)
// Ext1

mon

(
Sν , M

λ

Sλ

)
ww

Ext2
mon
(
Sν , Sλ

)
// · · ·

and so by (10.1.1) and Theorem 9.4.4 we have

Ext1
mon
(
Sν , Sλ

)
= 0.
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10.2 A stratifying system for k (SmoSn)

From now on, we take k to be an algebraically closed field whose characteristic

is neither 2 nor 3.

We now require a total ordering of the set Λr
n of r-multipartitions of n,

where r is as above the number of distinct partitions of m. Let > be any

(strict) total order on Λr
n such that > extends the dominance order . (that

is, such that for any multipartitions α, β ∈ Λr
n, we have that α . β implies

α > β). Beyond this requirement, the exact choice of the order > does not

matter. Let us write m for the (strict) total order on Λr
n obtained by reversing

> (that is, by defining αm β to mean α < β). It is now easy to prove that

αm β ⇒ α 4 β and α ·> β ⇒ α 7 β. (10.2.1)

Recall from Corollary 3.4.2 that in order to show that Specht filtration

multiplicities are well-defined for k(Sm o Sn), it suffices to prove that

• for any ν ∈ Λr
n, Sν is indecomposable

• Hommon
(
Sν , Sλ

)
= 0 if ν m λ

• Ext1
mon
(
Sν , Sλ

)
= 0 if ν ·> λ.

The first result is just Corollary 10.1.2, and the other two conditions are

immediate from Theorems 10.1.1 and 10.1.3 by (10.2.1). Thus we have proved

the following theorem, which we might say establishes the “Hemmer-Nakano

property” for the group algebra k(Sm o Sn).

Theorem 10.2.1. Over an algebraically closed field k whose characteristic

is neither 2 nor 3, if a k(Sm o Sn)-module has a filtration by Specht modules

then the multiplicities with which the Specht modules appear are independent

of the choice of a filtration.
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Original research in Chapter 10: Everything in Chapter 10 is original

research, based on the argument used in [10] to establish the corresponding

result for the symmetric group.
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Appendix A

Future directions

The new results presented in this thesis offer a number of interesting possibil-

ities for future work, and in this short appendix we shall briefly consider a

selection of these.

Firstly, we note that our definition of the modules Sλ and Mλ is by

means of a general method of constructing modules for the wreath product.

However, these modules are clearly analogous to the modules Sλ and Mλ for

the symmetric group, and so we might expect them to have a combinatorial

construction parallel to the construction of Sλ and Mλ given in [20]. Indeed,

by Proposition 4.4.1, we know that Mλ is the permutation module for Sm oSn
on the cosets by the subgroup Wλ, and it is easy to imagine that such cosets

would have some tableau representation, perhaps involving tableaux whose

entries are pairs of numbers like those in Chapter 7. Such a combinatorial

construction could allow us to apply methods analogous to those in [20].

Continuing this theme, we note that Proposition 6.5.2 may be regard as

a wreath-product analogue of Young’s rule (3.2.1), since it gives a filtration

of Mλ by modules Sν . However, Proposition 6.5.2 lacks a combinatorial

interpretation of the multiplicities which occur in the filtration, and one might
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hope to find an interpretation analogous to the combinatorial characterisation

of the Kostka numbers. Going further in this direction, we note that the

Specht branching rule and Young’s rule, as presented in [20], give not only

the multiplicities with which factors occur, but also some information about

the order in which those factors occur in the filtrations, and it seems likely

that by taking more care in the arguments one might be able to get similar

information in the wreath product results.

Now the Specht branching rule and Young’s rule for the symmetric group

may be regarded as special cases of the general results (3.2.12) and (3.2.11)

for induction and restriction of Specht modules and tensor products thereof,

which feature Littlewood-Richardson coefficients as multiplicities. A rather

more ambitious aspiration than those mentioned above would be to formu-

late and prove an appropriate generalisation of these results to the wreath

product case, including a combinatorial interpretation of the multiplicities

occurring therein, analogous to the Littlewood-Richardson rule. A much more

ambitious goal would be to use these coefficients as a starting point to forge a

connection between the representation theory of wreath products, the theory

of symmetric functions, and the representation theory of general linear groups

(or some extension or generalisation of these), paralleling the deep and fruitful

connections enjoyed by the symmetric group.

Returning to rather more humble and concrete possibilities, we note that

the treatment of the spaces Homn(Sλ,Mγ) in [20] makes use of the notion

of semistandard homomorphisms, and indeed constructs a basis of this space

using them. It seems very probable that Theorem 9.4.5, which provides a

decomposition of the Hom-space Hommon
(
Sν , Mγ

)
, could be a starting-point

for an analogous result in the wreath product case.

Another possible direction would be to explore the consequences of the
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existence of the stratifying system from Chapter 10. Indeed, our sole use

for this fact in Chapter 10 was to allow us to establish the Hemmer-Nakano

property for k(Sm o Sn), but there are other interesting corollaries to this

fact, as mentioned in [10]. For example (see [10, Lemma 2.2]), the stratifying

system allows us to associate a certain algebra A to k(Sm o Sn) (A is in

fact the endomorphism algebra of a certain k(Sm o Sn)-module) which can

be viewed as analogous to the classical Schur algebra. The classical Schur

algebra and its relatives appear prominently in, and are intimately connected

to, the representation theory of the symmetric group and its generalisations.

Moreover, the classical Schur algebra features in the famous and profound

Schur-Weyl duality which connects the representation theory of the symmetric

group with the polynomial representation theory of the general linear group.

The algebra A defined above would enjoy the same close relationship to

k(Sm o Sn), and moreover by Theorem 10.1.1 we know (again, see [10, Lemma

2.2]) that A is a quasi-hereditary algebra, which would provide a good starting

point for studying its representation theory.

Let us consider now the setting of Chapter 5, in which we study the wreath

product A o Sn where A is a cellular algebra. One possible extension of this

work would be to attempt to augment the cellular structure on A o Sn with

cohomological information via the identification of suitable idempotents within

the layers of the iterated inflation structure, thus exhibiting a cohomological

stratification, a concept introduced in [18] (such a structure would certainly

require some extra assumptions on the algebra A). Doing so would be one

possible route by which we could seek to generalise the results of Chapters

9 and 10 to algebras of the form A o Sn, given suitable assumptions on the

algebra A. Of course, it might be possible to directly generalise the arguments

of Chapters 9 and 10 to algebras A o Sn, since those arguments make use
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of only a relatively limited set of properties of the Specht modules of kSm,

and any algebra A with a suitable set of modules might be amenable to

those methods. The main impediment to some initial attempts to carry

out this latter generalisation seems to be the fact that, for general algebras

A, the operations of induction and coinduction (see [3, Definition 2.8.1])

do not coincide, and so we do not have the same very nice form of the

Eckmann-Shapiro lemma (Theorem 2.2.4).
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