
DOI
https://doi.org/10.1081/AGB-200051150

Link to record in KAR
https://kar.kent.ac.uk/7410/

Document Version
UNSPECIFIED

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact: researchsupport@kent.ac.uk
If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html
Rank \(t \mathcal{H} \)-primes in quantum matrices.

Stéphane Launois

Laboratoire de Mathématiques - UMR6056, Université de Reims
Moulin de la Housse - BP 1039 - 51687 REIMS Cedex 2, France
e-mail : stephane.launois@univ-reims.fr

Abstract

Let \(K \) be a (commutative) field and consider a nonzero element \(q \) in \(K \) which is not a root of unity. In [5], Goodearl and Lenagan have shown that the number of \(\mathcal{H} \)-primes in \(R = O_q (\mathcal{M}_n (K)) \) which contain all \((t+1) \times (t+1)\) quantum minors but not all \(t \times t \) quantum minors is a perfect square. The aim of this paper is to make precise their result: we prove that this number is equal to \((t!)^2 S(n+1, t+1)^2 \), where \(S(n+1, t+1) \) denotes the Stirling number of second kind associated to \(n+1 \) and \(t+1 \). This result was conjectured by Goodearl, Lenagan and McCammond. The proof involves some closed formulas for the poly-Bernoulli numbers that were established in [10] and [1].

1 Introduction.

Fix a (commutative) field \(K \) and an integer \(n \) greater than or equal to 2, and choose an element \(q \) in \(K^* := K \setminus \{0\} \) which is not a root of unity. Denote by \(R = O_q (\mathcal{M}_n (K)) \) the quantization of the ring of regular functions on \(n \times n \) matrices with entries in \(K \) and by \((Y_{i, \alpha})_{(i, \alpha) \in [1, n]^2} \) the matrix of its canonical generators. The bialgebra structure of \(R \) gives us an action of the group \(\mathcal{H} := (\mathbb{C}^*)^2n \) on \(R \) by \(K \)-automorphisms (See [5]) via:

\[
(a_1, \ldots, a_n, b_1, \ldots, b_n).Y_{i, \alpha} = a_i b_\alpha Y_{i, \alpha} \quad ((i, \alpha) \in [1, n]^2).
\]

In [9], Goodearl and Letzter have shown that \(R \) has only finitely many \(\mathcal{H} \)-invariant prime ideals (See [9], 5.7. (i)) and that, in order to calculate the prime and primitive spectra of \(R \) (See [9], Theorem 6.6). Next, using the theory of deleting derivations, Cauchon has found a formula for the exact number of \(\mathcal{H} \)-invariant prime ideals in \(R \) (See [4], Proposotion 3.3.2). In this paper, we investigate these ideals.

In [12] (See also [13]), we have proved, assuming that \(K = \mathbb{C} \) (the field of complex numbers) and \(q \) is transcendental over \(\mathbb{Q} \), that the \(\mathcal{H} \)-invariant prime ideals in \(O_q (\mathcal{M}_n (\mathbb{C})) \) are generated by quantum minors, as conjectured by Goodearl and Lenagan (See [5] and [6]). Next, using this result together with Cauchon’s description for the set of \(\mathcal{H} \)-invariant prime ideals of \(O_q (\mathcal{M}_n (\mathbb{C})) \) (See [4], Théorème 3.2.1), we have constructed an algorithm which provides an explicit generating set of quantum minors for each \(\mathcal{H} \)-invariant prime ideal in \(O_q (\mathcal{M}_n (\mathbb{C})) \) (See [11] or [13]).
On the other hand, Goodearl and Lenagan have shown (in the general case where $q \in \mathbb{K}^*$ is not a root of unity) that, in order to obtain descriptions of all the \mathcal{H}-invariant prime ideals of R, we just need to determine the \mathcal{H}-invariant prime ideals of certain "localized step-triangular factors" of R, namely the algebras

$$R^+_t := \frac{R}{\langle Y_{i,\alpha} \mid \alpha > t \text{ or } i < r_{\alpha} \rangle} \left[\prod_{r_{1,1}, \ldots, r_{t,t}}^{-1}, \prod_{r_{1,1}, \ldots, r_{t,t}} \right]$$

and

$$R^c_t := \frac{R}{\langle Y_{i,\alpha} \mid i > t \text{ or } \alpha < c_i \rangle} \left[\prod_{1, c_1, \ldots, t, c_1}^{-1}, \prod_{1, c_1, \ldots, t, c_1}^{-1} \right],$$

where $t \in [0, n]$ and where $r = (r_1, \ldots, r_t)$ and $c = (c_1, \ldots, c_t)$ are strictly increasing sequences of integers in the range $1, \ldots, n$ (See [4], Theorem 3.5). Using this result, Goodearl and Lenagan have computed the \mathcal{H}-invariant prime ideals of $O_q(\mathcal{M}_2(\mathbb{K}))$ (See [5]) and $O_q(\mathcal{M}_3(\mathbb{K}))$ (See [6]).

The aims of this paper are to provide a description for the set $\mathcal{H} \text{-Spec}(R^+_t)$ of \mathcal{H}-invariant prime ideals of R^+_t and to count the rank t \mathcal{H}-invariant prime ideals of R (for $t \in [0, n]$), that is those \mathcal{H}-invariant prime ideals of R which contain all $(t+1) \times (t+1)$ quantum minors but not all $t \times t$ quantum minors. In [5], the authors have shown that the number of rank t \mathcal{H}-invariant prime ideals of R is a perfect square. More precisely, they have established (See [5], 3.6) that, for any $t \in [0, n]$:

$$| \mathcal{H} \text{-Spec}^{[t]}(R) | = \left(\sum_{1 \leq r_1 < \cdots < r_t \leq n} | \mathcal{H} \text{-Spec}(R^+_t) | \right)^2$$

(1)

where $\mathcal{H} \text{-Spec}^{[t]}(R)$ denotes the set of rank t \mathcal{H}-invariant prime ideals of R and where $\mathcal{H} \text{-Spec}(R^+_t)$ denotes the set of rank t \mathcal{H}-invariant prime ideals of R^+_t. The above relation (1) opens a potential route to count the rank t \mathcal{H}-invariant prime ideals of R; if we can compute the number of \mathcal{H}-invariant prime ideals of R^+_t, then we will be able to count the rank t \mathcal{H}-invariant prime ideals of R.

So, to compute the number of rank t \mathcal{H}-invariant prime ideals of R, the first step is to study the \mathcal{H}-invariant prime ideals of R^+_t. Since this algebra is induced from R by factor and localization, we first construct (See Section 2), by using the deleting derivations theory (See [4]), \mathcal{H}-invariant prime ideals of R that provide, after factor and localization, $2^{r_2-r_1} \cdots t^{r_t-r_{t-1}}(t+1)^{n-r_t} \mathcal{H}$-invariant prime ideals of R^+_t (See Section 3.2). Next, by using (1), we are able to show that the number of rank t \mathcal{H}-invariant prime ideals of R is greater than or equal to $(t!)^2 S(n+1, t+1)^2$, where $S(n+1, t+1)$ denotes the Stirling number of second kind associated to $n+1$ and $t+1$ (See Proposition 2.9). Finally, after observing that the number of \mathcal{H}-invariant prime ideals of R is equal to the poly-Bernoulli number $B_n^{(-n)}$ (See Proposition 2.7), we use a closed formula for the poly-Bernoulli number $B_n^{(-n)}$ (See [1], Theorem 2) in order to prove our main result: the number of rank t \mathcal{H}-invariant prime ideals of R is actually equal to $(t!)^2 S(n+1, t+1)^2$. This result was conjectured by Goodearl, Lenagan and McCammond. As a corollary, we obtain a description for the set of \mathcal{H}-invariant prime ideals of R^+_t (See Section 3.3).

2 \mathcal{H}-invariant prime ideals in $O_q(\mathcal{M}_n(\mathbb{K}))$.

Throughout this paper, we use the following conventions:
• If \(I \) is a finite set, \(|I|\) denotes its cardinality.
• \(\mathbb{K} \) denotes a (commutative) field and we set \(\mathbb{K}^* := \mathbb{K} \setminus \{0\} \).
• \(q \in \mathbb{K}^* \) is not a root of unity.
• \(n \) denotes a positive integer with \(n \geq 2 \).
• \(R = O_q(\mathcal{M}_n(\mathbb{K})) \) denotes the quantization of the ring of regular functions on \(n \times n \) matrices with entries in \(\mathbb{K} \); it is the \(\mathbb{K} \)-algebra generated by the \(n \times n \) indeterminates \(Y_{i,\alpha} \), \(1 \leq i, \alpha \leq n \), subject to the following relations:

If \(\begin{pmatrix} x & y \\ z & t \end{pmatrix} \) is any \(2 \times 2 \) sub-matrix of \(Y := (Y_{i,\alpha})_{(i,\alpha)\in[1,n]^2} \), then

1. \(yx = q^{-1}xy, \quad zx = q^{-1}xz, \quad yz = yz, \quad ty = q^{-1}yt, \quad tz = q^{-1}zt. \)

2. \(tx = xt - (q - q^{-1})yz. \)

These relations agree with the relations used in [4], [5], [6], [12] and [11], but they differ from those of [14] and [2] by an interchange of \(q \) and \(q^{-1} \). It is well known that \(R \) can be presented as an iterated Ore extension over \(\mathbb{K} \), with the generators \(Y_{i,\alpha} \) adjoined in lexicographic order. Thus the ring \(R \) is a Noetherian domain. We denote by \(F \) its skew-field of fractions. Moreover, since \(q \) is not a root of unity, it follows from [7, Theorem 3.2] that all prime ideals of \(R \) are completely prime.

• It is well known that the group \(\mathcal{H} := (\mathbb{C}^*)^{2n} \) acts on \(\mathbb{K} \)-algebra automorphisms via:

\[
(a_1, \ldots, a_n, b_1, \ldots, b_n).Y_{i,\alpha} = a_i b_n Y_{i,\alpha} \quad \forall (i, \alpha) \in [1,n]^2.
\]

An \(\mathcal{H} \)-eigenvector \(x \) of \(R \) is a nonzero element \(x \in R \) such that \(h(x) \in \mathbb{K}^* x \) for each \(h \in \mathcal{H} \).

An ideal \(I \) of \(R \) is said to be \(\mathcal{H} \)-invariant if \(h(I) = I \) for all \(h \in \mathcal{H} \). We denote by \(\mathcal{H} \text{-Spec}(R) \) the set of \(\mathcal{H} \)-invariant prime ideals of \(R \).

The aim of this paragraph is to construct \(\mathcal{H} \)-invariant prime ideals of \(R \) that, after factor and localization, will provide \(\mathcal{H} \)-invariant prime ideals of \(R^+ \) (See the introduction for the definition of this algebra). In order to do this, we use the description of the set \(\mathcal{H} \text{-Spec}(R) \) that Cauchon has obtained by applying the theory of deleting derivations (See [4]).

2.1 Standard deleting derivations algorithm and description of \(\mathcal{H} \text{-Spec}(R) \).

In this section, we provide the background definitions and notations for the standard deleting derivations algorithm (See [4, 12, 11]) and we recall the description of the set \(\mathcal{H} \text{-Spec}(R) \) that Cauchon has obtained by using this algorithm (See [4]).

Notations 2.1

• We denote by \(\leq_s \) the lexicographic ordering on \(\mathbb{N}^2 \). We often call it the standard ordering on \(\mathbb{N}^2 \). Recall that \((i, \alpha) \leq_s (j, \beta) \iff [(i < j) \text{ or } (i = j \text{ and } \alpha \leq \beta)] \).

• We set \(E_s = ([1,n]^2 \cup \{(n,n+1)\}) \setminus \{(1,1)\} \).

• Let \((j, \beta) \in E_s \). If \((j, \beta) \neq (n,n+1) \), \((j, \beta)^+ \) denotes the smallest element (relatively to \(\leq_s \)) of the set \(\{(i, \alpha) \in E_s \mid (j, \beta) <_s (i, \alpha)\} \).
In [4], Cauchon has shown that the theory of deleting derivations (See [3]) can be applied to the iterated Ore extension \(R = \mathbb{C}[Y_{1,1}, \ldots, Y_{n,n}; \sigma_{n,n}, \delta_{n,n}] \) (where the indices are increasing for \(\leq s \)). The corresponding deleting derivations algorithm is called the standard deleting derivations algorithm. It consists in the construction, for each \(r \in E_s \), of the family \((Y_{i,\alpha}^{(r)})_{(i,\alpha) \in [1,n]^2} \) of elements of \(F = \text{Fract}(R) \), defined as follows:

1. If \(r = (n,n+1) \), then \(Y_{i,\alpha}^{(n,n+1)} = Y_{i,\alpha} \) for all \((i, \alpha) \in [1,n]^2\).

2. Assume that \(r = (j, \beta) <_s (n, n+1) \) and that the \(Y_{i,\alpha}^{(r)} \) \((i, \alpha) \in [1,n]^2\) are already constructed. Then, it follows from [3, Théorème 3.2.1] that \(Y_{j,\beta}^{(r)} \neq 0 \) and, for all \((i, \alpha) \in [1,n]^2\), we have:

\[
Y_{i,\alpha}^{(r)} = \begin{cases}
Y_{i,\alpha}^{(r)} - Y_{i,\beta}^{(r)} \left(Y_{j,\beta}^{(r)} \right)^{-1} Y_{j,\alpha}^{(r)} & \text{if } i < j \text{ and } \alpha < \beta \\
Y_{i,\alpha}^{(r)} & \text{otherwise}.
\end{cases}
\]

Notation 2.2

Let \(r \in E_s \). We denote by \(R^{(r)} \) the subalgebra of \(F = \text{Fract}(R) \) generated by the \(Y_{i,\alpha}^{(r)} \) \((i, \alpha) \in [1,n]^2\), that is, \(R^{(r)} := \mathbb{C}\langle Y_{i,\alpha}^{(r)} \mid (i, \alpha) \in [1,n]^2 \rangle \).

Notations 2.3

We set \(R := R^{(1,2)} \) and \(T_{i,\alpha} := Y_{i,\alpha}^{(1,2)} \) for all \((i, \alpha) \in [1,n]^2\).

Let \((j, \beta) \in E_s \) with \((j, \beta) \neq (n, n+1) \). The theory of deleting derivations allows us to construct embeddings \(\varphi_{(j,\beta)} : \text{Spec}(R^{(j,\beta)}) \rightarrow \text{Spec}(R^{(j,\beta)}) \) (See [3, 4.3]). By composition, we obtain an embedding \(\varphi : \text{Spec}(R) \rightarrow \text{Spec}(\overline{R}) \) which is called the canonical embedding. In [4], Cauchon has described the set \(\mathcal{H}-\text{Spec}(R) \) by determining its "canonical image" \(\varphi(\mathcal{H}-\text{Spec}(R)) \). To do this, he has introduced the following conventions and notations.

Conventions 2.4

- Let \(v = (l, \gamma) \in [1,n]^2 \).

 1. The set \(C_v := \{ (i, \gamma) \mid 1 \leq i \leq l \} \subset [1,n]^2 \) is called the truncated column with extremity \(v \).

 2. The set \(L_v := \{ (l, \alpha) \mid 1 \leq \alpha \leq \gamma \} \subset [1,n]^2 \) is called the truncated row with extremity \(v \).

- \(W \) denotes the set of all the subsets in \([1,n]^2\) which are a union of truncated rows and columns.

Notation 2.5

Given \(w \in W \), \(K_w \) denotes the ideal in \(\overline{R} \) generated by the \(T_{i,\alpha} \) such that \((i, \alpha) \in w \).

(Recall that \(K_w \) is a completely prime ideal in the quantum affine space \(\overline{R} \) (See [3, 2.1]).)
The following description of the set $\mathcal{H} \text{-Spec}(R)$ was obtained by Cauchon (See [4], Corollaire 3.2.1).

Proposition 2.6

1. Given $w \in W$, there exists a (unique) \mathcal{H}-invariant (completely) prime ideal J_w in R such that $\varphi(J_w) = K_w$.

2. $\mathcal{H} \text{-Spec}(R) = \{J_w \mid w \in W\}$.

2.2 Number of \mathcal{H}-invariant prime ideals in R.

In [4], Cauchon has used his description of the set $\mathcal{H} \text{-Spec}(R)$ in order to give a formula for the total number $S(n)$ of \mathcal{H}-invariant prime ideals of R. More precisely, he has established (See [4], Proposition 3.3.2) that:

$$S(n) = (-1)^{n-1} \sum_{k=1}^{n} (k+1)^n \sum_{j=1}^{k} (-1)^{j-1} \binom{k}{j} j^n,$$

that is

$$S(n) = (-1)^{n} \sum_{k=1}^{n} (-1)^k k!(k+1)^n \left(\frac{(-1)^k}{k!} \sum_{j=1}^{k} (-1)^j \binom{k}{j} j^n \right).$$

Recall (See [15], p. 34) that $\frac{(-1)^k}{k!} \sum_{j=1}^{k} (-1)^j \binom{k}{j} j^n$ is equal to the Stirling number of second kind $S(n, k)$ (See, for example, [15] for more details on the Stirling numbers of second kind). Hence, we have:

$$S(n) = (-1)^n \sum_{k=1}^{n} (-1)^k k!(k+1)^n S(n, k),$$

that is

$$S(n) = (-1)^n \sum_{k=1}^{n} \frac{(-1)^k k!}{(k+1)^n} S(n, k). \quad (2)$$

On the other hand, it follows from [10, Theorem 1] that:

$$(-1)^n \sum_{k=0}^{n} \frac{(-1)^k k!}{(k+1)^n} S(n, k) = B_n^{(-n)},$$

where $B_n^{(-n)}$ denotes the poly-Bernoulli number associated to n and $-n$ (See [10] for the definition of the poly-Bernoulli numbers). Observing that $S(n, 0) = 0$ (See [15]), we get:

$$(-1)^n \sum_{k=1}^{n} \frac{(-1)^k k!}{(k+1)^n} S(n, k) = B_n^{(-n)},$$

and thus, we deduce from (2) that:
Proposition 2.7

| \mathcal{H}-\text{Spec}(R) | = B_n^{-n}.

This rewriting of Cauchon’s formula was first obtained by Goodearl and McCammond.

2.3 Vanishing and non-vanishing criteria for the entries of q-quantum matrices.

Let $J_w (w \in W)$ be an \mathcal{H}-invariant prime ideal of R (See Proposition 2.6). In the next section, we will need to know which indeterminates $Y_{i,\alpha}$ belong to J_w, that is which $y_{i,\alpha} := Y_{i,\alpha} + J_w$ are zero. This problem is dealt with in Proposition 2.12 and Proposition 2.16 where we respectively obtain a non-vanishing criterion and a vanishing criterion for the entries of q-quantum matrices.

For the remainder of this section, K denotes a K-algebra which is also a skew-field. Except otherwise stated, all the considered matrices have their entries in K.

Definitions 2.8

Let $M = (x_{i,\alpha})_{(i,\alpha)\in[1,n]^2}$ be a $n \times n$ matrix and let $(j, \beta) \in E_s$.

- We say that M is a q-quantum matrix if the following relations hold between the entries of M:
 If \(\begin{pmatrix} x & y \\ z & t \end{pmatrix} \) is any 2×2 sub-matrix of M, then
 1. $yx = q^{-1}xy$, $zx = q^{-1}xz$, $zy = yz$, $ty = q^{-1}yt$, $tz = q^{-1}zt$.
 2. $tx = xt - (q - q^{-1})yz$.

- We say that M is a (j, β)-q-quantum matrix if the following relations hold between the entries of M:
 If \(\begin{pmatrix} x & y \\ z & t \end{pmatrix} \) is any 2×2 sub-matrix of M, then
 1. $yx = q^{-1}xy$, $zx = q^{-1}xz$, $zy = yz$, $ty = q^{-1}yt$, $tz = q^{-1}zt$.
 2. If $t = x_v$, then \(\begin{cases} v \geq_s (j, \beta) \implies tx = xt \\ v <_s (j, \beta) \implies tx = xt - (q - q^{-1})yz. \end{cases} \)

Conventions 2.9

Let $M = (x_{i,\alpha})_{(i,\alpha)\in[1,n]^2}$ be a q-quantum matrix.

As r runs over the set E_s, we define matrices $M^{(r)} = (x^{(r)}_{i,\alpha})_{(i,\alpha)\in[1,n]^2}$ as follows:

1. If $r = (n, n+1)$, then the entries of the matrix $M^{(n,n+1)}$ are defined by $x^{(n,n+1)}_{i,\alpha} := x_{i,\alpha}$ for all $(i, \alpha) \in [1,n]^2$.

2. Assume that $r = (j, \beta) \in E_s \setminus \{(n,n+1)\}$ and that the matrix $M^{(r^+)}$ is already known. The entries $x^{(r)}_{i,\alpha}$ of the matrix $M^{(r)}$ are defined as follows:
(a) If $x_{j,\beta}^{(r)} = 0$, then $x_{i,\alpha}^{(r)} = x_{i,\alpha}^{(r)}$ for all $(i, \alpha) \in [1, n]^2$.

(b) If $x_{j,\beta}^{(r)} \neq 0$ and $(i, \alpha) \in [1, n]^2$, then

$$x_{i,\alpha}^{(r)} = \begin{cases} x_{i,\alpha}^{(r)} - x_{i,\beta}^{(r)} \left(x_{j,\beta}^{(r)} \right)^{-1} x_{j,\alpha}^{(r)} & \text{if } i < j \text{ and } \alpha < \beta \\ x_{i,\alpha}^{(r)} & \text{otherwise.} \end{cases}$$

We say that $M^{(r)}$ is the matrix obtained from M by applying the standard deleting derivations algorithm at step r.

3. If $r = (1, 2)$, we set $t_{i,\alpha} := x_{i,\alpha}^{(1,2)}$ for all $(i, \alpha) \in [1, n]^2$.

Observe that the formulas of Conventions 2.9 allow us to express the entries of $M^{(r)}$ in terms of those of $M^{(r)}$.

Proposition 2.10 (Restoration algorithm)

Let $M = (x_{i,\alpha})_{(i,\alpha)\in[1,n]^2}$ be a q-quantum matrix and let $r = (j, \beta) \in E_s$ with $r \neq (n, n + 1)$.

1. If $x_{j,\beta}^{(r)} = 0$, then $x_{i,\alpha}^{(r)} = x_{i,\alpha}^{(r)}$ for all $(i, \alpha) \in [1, n]^2$.

2. If $x_{j,\beta}^{(r)} \neq 0$ and $(i, \alpha) \in [1, n]^2$, then

$$x_{i,\alpha}^{(r)} = \begin{cases} x_{i,\alpha}^{(r)} + x_{i,\beta}^{(r)} \left(x_{j,\beta}^{(r)} \right)^{-1} x_{j,\alpha}^{(r)} & \text{if } i < j \text{ and } \alpha < \beta \\ x_{i,\alpha}^{(r)} & \text{otherwise.} \end{cases}$$

Note that our definitions of q-quantum matrix and (j, β)-q-quantum matrix slightly differ from those of [2] (See [2], Définitions III.1.1 and III.1.3). Because of this, we must interchange q and q^{-1} whenever carrying over result of [2].

Lemma 2.11

Let $(j, \beta) \in E_s$.

If $M = (x_{i,\alpha})_{(i,\alpha)\in[1,n]^2}$ is a q-quantum matrix, then the matrix $M^{(j,\beta)}$ is (j, β)-q-quantum.

Proof: This lemma is proved in the same manner as [2] Proposition III.2.3.1. ■

We deduce from the above Lemma 2.11 the following non-vanishing criterion for the entries of a q-quantum matrix.

Proposition 2.12

Let $M = (x_{i,\alpha})_{(i,\alpha)\in[1,n]^2}$ be a q-quantum matrix and let $(i, \alpha) \in [1, n]^2$.

If $t_{i,\alpha} \neq 0$, then $x_{i,\alpha} \neq 0$. In other words, if $x_{i,\alpha} = 0$, then $t_{i,\alpha} = 0$.

Proof: Assume that $x_{i,\alpha} = 0$. We first prove that $x_{i,\alpha}^{(j,\beta)} = 0$ for all $(j, \beta) \in E_s$. To achieve this aim, we proceed by decreasing induction (for \leq_s) on (j, β).

Since $x_{i,\alpha}^{(n, n+1)} = x_{i,\alpha}$, the case $(j, \beta) = (n, n+1)$ is done. Assume now that $(j, \beta) <_s (n, n+1)$ and $x_{i,\alpha}^{(j,\beta)^+} = 0$. If $x_{i,\alpha}^{(j,\beta)^-} = x_{i,\alpha}^{(j,\beta)^+}$, we obviously have $x_{i,\alpha}^{(j,\beta)} = 0$. Next, if $x_{i,\alpha}^{(j,\beta)} \neq x_{i,\alpha}^{(j,\beta)^+}$, then...
\(i < j \) and \(\alpha < \beta \). Hence, it follows from Lemma 2.11 that the matrix
\[
\begin{pmatrix}
 x_{i,\alpha} \quad x_{i,\beta} \\
 x_{j,\alpha} \quad x_{j,\beta}
\end{pmatrix}
\]
is \(q \)-quantum, so that
\[
x_{j,\beta} x_{i,\alpha} - x_{i,\alpha} x_{j,\beta} = -(q - q^{-1})x_{i,\beta} x_{j,\alpha}.
\]

Since \(x_{i,\alpha} = 0 \), we deduce from this equality that, in \(K \), \(x_{i,\beta} x_{j,\alpha} = 0 \). Thus, \(x_{i,\beta} = 0 \) or \(x_{j,\alpha} = 0 \). On the other hand, since \(i < j \) and \(\alpha < \beta \), we have \(x_{i,\alpha} = x_{i,\beta} - x_{j,\alpha} (x_{j,\beta})^{-1} x_{j,\alpha} \). Now it follows from the induction hypothesis that \(x_{i,\beta} = 0 \). Hence, we have
\[
x_{i,\alpha} = -x_{i,\beta} (x_{j,\beta})^{-1} x_{j,\alpha}.
\]
Finally, since \(x_{i,\beta} = 0 \) or \(x_{j,\alpha} = 0 \), we get \(x_{i,\alpha} = 0 \), as desired. This achieves the induction.

In particular, we have shown that \(x_{i,\alpha}^{(1,2)} = 0 \), that is \(t_{i,\alpha} = 0 \). ■

Proposition 2.12 furnishes a non-vanishing criterion for the entries of a \(q \)-quantum matrix. In order to construct, in the next section, \(\mathcal{H} \)-invariant prime ideals of \(R \) that will provide, after factor and localization, \(\mathcal{H} \)-invariant prime ideals of \(R_{\mathcal{R}} := \frac{R}{(Y_{i,\alpha} \mid \alpha > t \text{ or } i < r_{\alpha})} \left[Y_{r_{1},1}, \ldots, Y_{r_{t},t}^{-1} \right] \) \((r = (r_{1}, \ldots, r_{t}) \text{ with } 1 \leq r_{1} < \cdots < r_{t} \leq n)\), we also need to get a vanishing criterion for the entries \(x_{i,\alpha}, \alpha > t \text{ or } i < r_{\alpha} \), of a \(q \)-quantum matrix. This is what we do now.

Notation 2.13

*If \(t \) denotes an element of \([0, n]\), we set:
\[
R_{t} := \{(r_{1}, \ldots, r_{t}) \in \mathbb{N} \mid 1 \leq r_{1} < \cdots < r_{t} \leq n\}.
\]
(If \(t = 0 \), then \(R_{0} = \emptyset \).)

For the remainder of this section, we fix \(t \in \mathbb{N} \) and \(r = (r_{1}, \ldots, r_{t}) \in R_{t} \), and we denote by \(w_{r} \) the subset of \([1, n]^{2}\) corresponding to indeterminates \(Y_{i,\alpha} \) that have been set equal to zero in \(R_{r}^{+} \), that is, we set:
\[
w_{r} := \bigcup_{\alpha \in [1, t]} \left[1, r_{\alpha} - 1 \right] \times \{\alpha\} \bigcup [1, n] \times [t + 1, n].
\]

For instance, if \(n = 3, t = 2 \) and \(r = (1, 3) \), we have:
\[
w_{(1,3)} = \begin{array}{c|c|c|c|c|c|c|c}
\end{array}
\]
, where the black boxes symbolize the elements of \(w_{(1,3)} \).

Note that \(w_{r} \) is a union of truncated columns, so that:

Remark 2.14

\(w_{r} \) belongs to \(W \).
Recall (See Proposition 2.6) that, if \(w \in H_{2.4} \) associated to prime ideals in \(i, \beta \), we conclude as in the previous case that \((i, \alpha) \leq t\). Hence, \((i, \beta) \leq t \) and \(i \leq r_\alpha - 1 \). If \(\beta > t \), we conclude as in the previous case that \((i, \beta) \in w_R\). So we assume that \(\beta \leq t \). Since \(i \leq r_\alpha - 1 \) and since \(\alpha \leq \beta \leq t \), we have \(i \leq r_\alpha - 1 \leq \beta \). Hence, \((i, \beta) \in [1, r_\beta - 1] \times \{ \beta \} \subseteq w_R\), as desired. ■

This observation allows us to prove the following vanishing criterion:

Proposition 2.16

Let \(M = (x_{i,\alpha})_{(i,\alpha) \in [1,n]^2} \) be a q-quantum matrix.

If \(t_{i,\alpha} = 0 \) for all \((i, \alpha) \in w_R\), then \(x_{i,\alpha} = 0 \) for all \((i, \alpha) \in w_R\).

Proof: Assume that \(t_{i,\alpha} = 0 \) for all \((i, \alpha) \in w_R\). We first prove by induction on \((j, \beta)\) (with respect of \(\leq_s \)) that \(x_{i,\alpha}^{(j,\beta)} = 0 \) for all \((i, \alpha) \in w_R\) and \((j, \beta) \in E_s\).

If \((j, \beta) = (1, 2)\), then \(x_{i,\alpha}^{(1,2)} = t_{i,\alpha} = 0 \) for all \((i, \alpha) \in w_R\), as required. Assume now that \((j, \beta) <_s (n, n + 1)\) and that \(x_{i,\alpha}^{(j,\beta)} = 0 \) for all \((i, \alpha) \in w_R\). Let \((i, \alpha) \in w_R\). If \(x_{i,\alpha}^{(j,\beta)} = x_{i,\alpha}^{(j,\beta)}\), the desired result follows from the induction hypothesis. Next, if \(x_{i,\alpha}^{(j,\beta)} \neq x_{i,\alpha}^{(j,\beta)}\), it follows from Proposition 2.10 that \(x_{i,\alpha}^{(j,\beta)} \neq 0\), \(i < j\), \(\alpha < \beta\) and \(x_{i,\alpha}^{(j,\beta)} = x_{i,\alpha}^{(j,\beta)} + x_{i,\alpha}^{(j,\beta)} x_{j,\beta}^{(j,\beta)} x_{i,\alpha}^{(j,\beta)}\). Since \((i, \alpha) \in w_R\), we deduce from the induction hypothesis that \(x_{i,\alpha}^{(j,\beta)} = 0\), so that \(x_{i,\alpha}^{(j,\beta)} = x_{i,\alpha}^{(j,\beta)} x_{j,\beta}^{(j,\beta)} x_{i,\alpha}^{(j,\beta)}\). Moreover, since \((i, \alpha) \in w_R\) and \(\alpha < \beta\), it follows from Observation 2.15 that \((i, \beta) \in w_R\). Then, we deduce from the induction hypothesis that \(x_{i,\beta}^{(j,\beta)} = 0\), so that \(x_{i,\alpha}^{(j,\beta)} = x_{i,\beta}^{(j,\beta)} x_{j,\beta}^{(j,\beta)} x_{i,\alpha}^{(j,\beta)} = 0\). This achieves the induction.

In particular, we have proved that \(x_{i,\alpha} = x_{i,\alpha}^{(n,n+1)} = 0\) for all \((i, \alpha) \in w_R\). ■

2.4 \(H \)-invariant prime ideals \(J_w \) with \(w_R \subseteq w \).

As in the previous section, we fix \(t \in [0, n] \) and \(r = (r_1, \ldots, r_t) \in R_t\), and we set:

\[
\begin{aligned}
w_R := \bigcup_{\alpha \in [1,t]} [1, r_\alpha - 1] \times \{ \alpha \} \cup [1, n] \times [t + 1, n].
\end{aligned}
\]

Recall (See Proposition 2.6) that, if \(w \in W\), there exists a (unique) \(H \)-invariant prime ideal of \(R \) associated to \(w \) (See Proposition 2.6) and that the \(J_w (w \in W) \) are exactly the \(H \)-invariant prime ideals in \(R \). This section is devoted to the \(H \)-invariant prime ideals \(J_w (w \in W) \) of \(R \) with \(w_R \subseteq w \). More precisely, we want to know which indeterminates \(Y_{i,\alpha} \) belong to these ideals.
Let \(w \in W \).

1. Set \(R_w := \frac{R}{J_w} \). It follows from \([3, \text{Lemme 5.3.3}]\) that, using the notations of Section 2.1, \(R_w \) and \(\frac{R}{K_w} \) are two Noetherian algebras with no zero-divisors, which have the same skew-field of fractions. We set \(F_w := \text{Fract}(R_w) = \text{Fract}\left(\frac{R}{K_w}\right) \).

2. If \((i, \alpha) \in [1, n]^2\), \(y_{i, \alpha} \) denotes the element of \(R_w \) defined by \(y_{i, \alpha} := Y_{i, \alpha} + J_w \).

3. We denote by \(M_w \) the matrix, with entries in the \(K \)-algebra \(F_w \), defined by:

\[
M_w := (y_{i, \alpha})_{(i, \alpha) \in [1, n]^2}.
\]

Let \(w \in W \). Since \(Y = (Y_{i, \alpha})_{(i, \alpha) \in [1, n]^2} \) is a \(q \)-quantum matrix, \(M_w \) is also a \(q \)-quantum matrix. Thus, we can apply the standard deleting derivations algorithm to \(M_w \) (See Conventions 2.9 with \(K = F_w \)) and if we still denote \(t_{i, \alpha} := y_{i, \alpha}^{(1, 2)} \) for \((i, \alpha) \in [1, n]^2\), we get:

Proposition 2.18

\(t_{i, \alpha} = 0 \) if and only if \((i, \alpha) \in w \).

Proof: By \([3, \text{Propositions 5.4.1 and 5.4.2}]\), there exists a \(K \)-algebra homomorphism \(f_{(1, 2)} : \overline{R} \to F_w \) such that \(f_{(1, 2)}(T_{i, \alpha}) = t_{i, \alpha} \) for \((i, \alpha) \in [1, n]^2\). Its kernel is \(K_w \) and its image is the subalgebra of \(F_w \) generated by the \(t_{i, \alpha} \) with \((i, \alpha) \in [1, n]^2\). Hence, \(t_{i, \alpha} = 0 \) if and only if \(T_{i, \alpha} \in K_w \), that is, if and only if \((i, \alpha) \in w \). \(\blacksquare \)

Consider now an element \(w \in W \) with \(w_r \subseteq w \) and denote by \(J_w \) the (unique) \(\mathcal{H} \)-invariant prime ideal of \(R \) associated to \(w \) (See Proposition 2.18). Since \(w_r \subseteq w \), we deduce from Proposition 2.18 that \(t_{i, \alpha} = 0 \) for all \((i, \alpha) \in w_r \). Hence, we can apply Proposition 2.16 to the \(q \)-quantum matrix \(M_w \) and we obtain that \(y_{i, \alpha} = 0 \) for all \((i, \alpha) \in w_r \), that is, \(Y_{i, \alpha} \in J_w \) for all \((i, \alpha) \in w_r \). So we have just established:

Proposition 2.19

Let \(w \in W \) with \(w_r \subseteq w \). If \((i, \alpha) \in w_r \), then \(Y_{i, \alpha} \) belongs to \(J_w \).

We will now add truncated rows to the "\(w_r \) diagram" in order to obtain \(\mathcal{H} \)-invariant prime ideals of \(R \) that will provide, after factor and localisation, \(\mathcal{H} \)-invariant prime ideals of \(R^+_l \). We will see later (See Section 3.4) that the \(\mathcal{H} \)-invariant prime ideals of \(R \) obtained by adding truncated rows to the "\(w_r \) diagram" are the only \(\mathcal{H} \)-invariant prime ideals of \(R \) that will provide, after factor and localisation, \(\mathcal{H} \)-invariant prime ideals of \(R^+_l \).

Notation 2.20

We set \(\Gamma_r := \{(\gamma_1, \ldots, \gamma_n) \in \mathbb{N}^n \mid \gamma_k \in [0, t] \text{ if } k \in [r_l + 1, r_{l+1}] \} \). (Here \(r_0 = 0 \) and \(r_{l+1} = n \).)
For instance, if $n = 3$, $t = 2$ and $r = (1, 3)$, we have:

$$
\Gamma_r = \{(\gamma_1, \gamma_2, \gamma_3) \in \mathbb{N}^3 \mid \gamma_1 = 0, \ \gamma_2 \leq 1 \text{ and } \gamma_3 \leq 1\}.
$$

Theorem 2.21

Let $(\gamma_1, \ldots, \gamma_n) \in \Gamma_r$ and set $w_{r,(\gamma_1, \ldots, \gamma_n)} := w_r \cup \bigcup_{k \in [1, n]} \{k\} \times [1, \gamma_k]$. Then $w_{r,(\gamma_1, \ldots, \gamma_n)}$ belongs to W and the H-invariant prime ideal $J_{w_{r,(\gamma_1, \ldots, \gamma_n)}}$ of R has the following properties:

1. $Y_{i,\alpha} \in J_{w_{r,(\gamma_1, \ldots, \gamma_n)}}$ for all $(i, \alpha) \in w_r$.
2. $Y_{r_k,k} \notin J_{w_{r,(\gamma_1, \ldots, \gamma_n)}}$ for all $k \in [1, t]$.

Proof: Since w_r is a union of truncated columns and since $\bigcup_{k \in [1, n]} \{k\} \times [1, \gamma_k]$ is a union of truncated rows, $w_{r,(\gamma_1, \ldots, \gamma_n)}$ is a union of truncated rows and columns, so that $w_{r,(\gamma_1, \ldots, \gamma_n)} \in W$.

Since $w_r \subseteq w_{r,(\gamma_1, \ldots, \gamma_n)}$, we deduce from Proposition 2.19 that $Y_{i,\alpha} \in J_{w_{r,(\gamma_1, \ldots, \gamma_n)}}$ for all $(i, \alpha) \in w_r$.

Now we want to prove that $Y_{r_k,k} \notin J_{w_{r,(\gamma_1, \ldots, \gamma_n)}}$ for all $k \in [1, t]$. Assume this is not the case, that is, assume that there exists $k \in [1, t]$ with $Y_{r_k,k} \in J_{w_{r,(\gamma_1, \ldots, \gamma_n)}}$. Then, $y_{r_k,k} = 0$ and it follows from Proposition 2.12 that $y_{r_k,k}^{(1,2)} = t_{r_k,k} = 0$. Thus, we deduce from Proposition 2.18 that $(r_k,k) \in \Gamma_{r,(\gamma_1, \ldots, \gamma_n)}$.

Observe now that, since $k \leq t$, $(r_k,k) \notin [1, n] \times [t + 1, n]$. Further, it is obvious that $(r_k,k) \notin \bigcup_{\alpha \in [1, t]} \{1, r_{\alpha} - 1\} \times \{\alpha\}$. Hence, $(r_k,k) \notin w_r$.

All this together shows that $(r_k,k) \in w_{r,(\gamma_1, \ldots, \gamma_n)} \setminus w_r = \bigcup_{l \in [1, n]} \{l\} \times [1, \gamma_l]$, so that $k \leq \gamma_{r_k}$.

However, since $(\gamma_1, \ldots, \gamma_n) \in \Gamma_r$, we have $\gamma_{r_k} \leq k - 1$. This is a contradiction and thus we have proved that $Y_{r_k,k} \notin J_{w_{r,(\gamma_1, \ldots, \gamma_n)}}$ for all $k \in [1, t]$. $$

Let us now give an example for the elements $w_{r,(\gamma_1, \ldots, \gamma_n)} ((\gamma_1, \gamma_2, \gamma_3) \in \Gamma_r)$ of Theorem 2.21.

If $n = 3$, $t = 2$ and $r = (1, 3)$, we have already note that

$$
\Gamma_r = \{(\gamma_1, \gamma_2, \gamma_3) \in \mathbb{N}^3 \mid \gamma_1 = 0, \ \gamma_2 \leq 1 \text{ and } \gamma_3 \leq 1\},
$$

so that the elements $w_{r,(\gamma_1, \ldots, \gamma_n)} ((\gamma_1, \gamma_2, \gamma_3) \in \Gamma_r)$ of Theorem 2.21 are:

- $w_{(1,3),(0,0,0)} = w_{(1,3)}$
- $w_{(1,3),(0,1,0)}$
- $w_{(1,3),(0,0,1)}$
- $w_{(1,3),(0,1,1)}$
(As previously, if \(w \in W \), the black boxes symbolize the elements of \(w \).)

3 Number of rank \(t \) \(\mathcal{H} \)-invariant prime ideals in \(O_q(\mathcal{M}_n(\mathbb{K})) \).

In this paragraph, using the previous section, we begin by constructing \(\mathcal{H} \)-invariant prime ideals of the algebra \(R^+_t := \frac{O_q(\mathcal{M}_n(\mathbb{K}))}{\langle Y_{i,\alpha} \mid \alpha > t \text{ or } i < r_{\alpha} \rangle \left[Y_{r_{1,1}}, \ldots, Y_{r_{t,t}} \right] \} \), where \(t \in [0, n] \) and \(r = (r_1, \ldots, r_t) \) is a strictly increasing sequence of integers in the range 1, \ldots, \(n \). Next, following the route sketched in the introduction, we establish our main result: the number \(|\mathcal{H}-\text{Spec}^t(R)| \) of \(\mathcal{H} \)-invariant prime ideals of \(R = O_q(\mathcal{M}_n(\mathbb{K})) \) which contain all \((t + 1) \times (t + 1)\) quantum minors but not all \(t \times t \) quantum minors is equal to \((t!)^2 S(n + 1, t + 1)^2\), where \(S(n + 1, t + 1) \) denotes the Stirling number of second kind associated to \(n + 1 \) and \(t + 1 \). From this result, we derive a description of the set of \(\mathcal{H} \)-invariant prime ideals of \(R^+_t \).

3.1 \(\mathcal{H} \)-invariant prime ideals in \(R^+_{t,0} \).

Throughout this section, we fix \(t \in [0, n] \) and \(r = (r_1, \ldots, r_t) \in R_t \), and we define \(w_r \) as in the previous section.

As in [5, 2.1], we set \(R^+_{t,0} = \frac{R}{\langle Y_{i,\alpha} \mid (i, \alpha) \in w_r \rangle} \).

Recall (See [5, 2.1]) that \(R^+_{t,0} \) can be written as an iterated Ore extension over \(\mathbb{K} \). Thus, \(R^+_{t,0} \) is a Noetherian domain. Moreover, since \(q \) is not a root of unity, it follows from [7, Theorem 3.2] that all primes of \(R \) are completely prime and thus, since this property survive in factors, all primes in the algebra \(R^+_{t,0} \) are completely prime.

Observe now that, since the indeterminates \(Y_{i,\alpha} \) are \(\mathcal{H} \)-eigenvectors, \(\langle Y_{i,\alpha} \mid (i, \alpha) \in w_r \rangle \) is an \(\mathcal{H} \)-invariant ideal of \(R \). Hence, the action of \(\mathcal{H} \) on \(R \) induces an action of \(\mathcal{H} \) on \(R^+_{t,0} \) by automorphisms. As usually, an \(\mathcal{H} \)-eigenvector \(x \) of \(R^+_{t,0} \) is a nonzero element \(x \in R^+_{t,0} \) such that \(h(x) \in \mathbb{K}^*x \) for each \(h \in \mathcal{H} \), and an ideal \(I \) of \(R^+_{t,0} \) is said to be \(\mathcal{H} \)-invariant if \(h(I) = I \) for all \(h \in \mathcal{H} \). Further, we denote by \(\mathcal{H}-\text{Spec}(R^+_{t,0}) \) the set of \(\mathcal{H} \)-invariant prime ideals of \(R^+_{t,0} \).

Notations 3.1

- We denote by \(\pi^+_{t,0} : R \to R^+_{t,0} \) the canonical surjective \(\mathbb{K} \)-algebra homomorphism.

- If \((i, \alpha) \in [1, n]^2\), \(Y_{i,\alpha} \) denotes the element of \(R^+_{t,0} \) defined by \(Y_{i,\alpha} := \pi^+_{t,0}(Y_{i,\alpha}) \).

Let \((\gamma_1, \ldots, \gamma_n) \in \Gamma_r \) (See Notation 2.20) and define \(w_{r,(\gamma_1, \ldots, \gamma_n)} \) as in Theorem 2.21. Recall (See Theorem 2.22) that \(w_{r,(\gamma_1, \ldots, \gamma_n)} \) is an element of \(W \) and that the \(\mathcal{H} \)-invariant prime ideal \(J_{w_{r,(\gamma_1, \ldots, \gamma_n)}} \) of \(R \) contains the indeterminates \(Y_{i,\alpha} \) with \((i, \alpha) \in w_r \), so that \(\langle Y_{i,\alpha} \mid (i, \alpha) \in w_r \rangle \subseteq J_{w_{r,(\gamma_1, \ldots, \gamma_n)}} \). Thus, \(\pi^+_{t,0}(J_{w_{r,(\gamma_1, \ldots, \gamma_n)}}) \) is a (completely) prime ideal of \(R^+_{t,0} \). More precisely, we have:
We have already explained that $J^+_{w_r,(\gamma_1,\ldots,\gamma_n)} := \pi^+_r \left(J_{w_r,(\gamma_1,\ldots,\gamma_n)} \right)$ is an \mathcal{H}-invariant (completely) prime ideal of $R^+_{r,0}$ which does not contain the $\mathcal{Y}_{r_k,k} (k \in [1,t])$.

Proof: We have already explained that $J^+_{w_r,(\gamma_1,\ldots,\gamma_n)}$ is a (completely) prime ideal of $R^+_{r,0}$. Moreover, since $J^+_{w_r,(\gamma_1,\ldots,\gamma_n)}$ is \mathcal{H}-invariant, it is easy to check that $J^+_{w_r,(\gamma_1,\ldots,\gamma_n)}$ is also \mathcal{H}-invariant. Finally, since $J^+_{w_r,(\gamma_1,\ldots,\gamma_n)}$ does not contain the indeterminates $Y_{r_k,k}$ with $k \in [1,t]$ (See Theorem 2.21), $J^+_{w_r,(\gamma_1,\ldots,\gamma_n)}$ does not contain the $\mathcal{Y}_{r_k,k} = \pi^+_r (Y_{r_k,k})$ with $k \in [1,t]$.

3.2 \mathcal{H}-invariant prime ideals in R^+_r.

As in the previous section, we fix $t \in [0,n]$ and $r = (r_1,\ldots,r_t) \in R_t$. In [5, 2.1], Goodearl and Lenagan have observed that the $\mathcal{Y}_{r_k,k}$ with $k \in [1,t]$ are regular normal elements in R^+_r, so that we can form the Ore localization:

$$R^+_r := R^+_{r,0} S_r^{-1},$$

where S_r denotes the multiplicative system of $R^+_{r,0}$ generated by the $\mathcal{Y}_{r_k,k}$ with $k \in [1,t]$.

In the previous section, we have noted that all the primes of $R^+_{r,0}$ are completely prime. Since this property survives in localization, all the primes of R^+_r are also completely prime.

Observe now that, since the $\mathcal{Y}_{r_k,k}$ with $k \in [1,t]$ are \mathcal{H}-eigenvectors of $R^+_{r,0}$, the action of \mathcal{H} on $R^+_{r,0}$ extends to an action of \mathcal{H} on R^+_r by automorphisms. We say that an ideal I of R^+_r is \mathcal{H}-invariant if $h(I) = I$ for all $h \in \mathcal{H}$ and we denote by $\mathcal{H}-\text{Spec}(R^+_r)$ the set of \mathcal{H}-invariant prime ideals of R^+_r. Observe now that contraction and extension provide inverse bijections between the set $\mathcal{H}-\text{Spec}(R^+_r)$ and the set of those \mathcal{H}-invariant prime ideals of $R^+_{r,0}$ which are disjoint from S_r.

Let $(\gamma_1,\ldots,\gamma_n) \in \Gamma_r$ (See Notation 2.20) and define $w_r,(\gamma_1,\ldots,\gamma_n)$ as in Theorem 2.21. By Proposition 3.2, $J^+_{w_r,(\gamma_1,\ldots,\gamma_n)} := \pi^+_r \left(J_{w_r,(\gamma_1,\ldots,\gamma_n)} \right)$ is an \mathcal{H}-invariant (completely) prime ideal of $R^+_{r,0}$ which does not contain the $\mathcal{Y}_{r_k,k} (k \in [1,t])$. Since S_r is generated by the $\mathcal{Y}_{r_k,k} (k \in [1,t])$, $J^+_{w_r,(\gamma_1,\ldots,\gamma_n)}$ is an \mathcal{H}-invariant (completely) prime ideal of $R^+_{r,0}$ which is disjoint from S_r. Thus, we have the following statement:

Proposition 3.3

$J^+_{w_r,(\gamma_1,\ldots,\gamma_n)} S_r^{-1}$ is an \mathcal{H}-invariant (completely) prime ideal of R^+_r.

We will prove later (See Section 3.3) that the $J^+_{w_r,(\gamma_1,\ldots,\gamma_n)} S_r^{-1} ((\gamma_1,\ldots,\gamma_n) \in \Gamma_r)$ are exactly the \mathcal{H}-invariant prime ideals of R^+_r.

We deduce from the above Proposition 3.3 that:

Corollary 3.4

R^+_r has at least $1^t \cdot 2^{r_2-r_1} \ldots t^{r_1-r_{t-1}} (t+1)^{n-r_t}$ \mathcal{H}-invariant prime ideals.
Proof: It follows from Proposition 3.3 that R^+_r has at least $|\Gamma_r|$ \mathcal{H}-invariant prime ideals, and it is obvious that $|\Gamma_r| = 1^{t_1}2^{t_2-\cdots}t^{t_t-1}(t+1)^{n-\cdots}$.

3.3 Number of rank t \mathcal{H}-invariant prime ideals in $O_q(\mathcal{M}_n(\mathbb{K}))$.

For convenience, we recall the following definitions (See [14]):

Definitions 3.5

- Let m be a positive integer and let $M = (x_{i,\alpha})_{(i,\alpha)\in[1,m]^2}$ be a square q-quantum matrix. The quantum determinant of M is defined by:

$$\det_q(M) := \sum_{\sigma \in S_m} (-q)^{l(\sigma)}x_{1,\sigma(1)}\cdots x_{m,\sigma(m)},$$

where S_m denotes the group of permutations of $[1,m]$ and $l(\sigma)$ denotes the length of the m-permutation σ.

- Let $\mathcal{Y} := (Y_{i,\alpha})_{(i,\alpha)\in[1,n]^2}$ be the q-quantum matrix of the canonical generators of R. The quantum determinant of a square sub-matrix of \mathcal{Y} is called a quantum minor.

We can now define the rank t \mathcal{H}-invariant prime ideals of R, as follows:

Definition 3.6

Let $t \in [0,n]$. An \mathcal{H}-invariant prime ideal J of $R = O_q(\mathcal{M}_n(\mathbb{K}))$ has rank t if J contains all $(t+1)\times(t+1)$ quantum minors but not all $t\times t$ quantum minors.

As in [5, 3.6], we denote by \mathcal{H}-Spec$^{[t]}(R)$ the set of rank t \mathcal{H}-invariant prime ideals of R.

Note that there is only one element in \mathcal{H}-Spec$^{[t]}(R)$: $\langle Y_{i,\alpha} \mid (i,\alpha) \in [1,n]^2 \rangle$, the augmentation ideal of R. Further, Goodearl and Lenagan have observed (See [5, 3.6]) that $|\mathcal{H}$-Spec$^{[1]}(R)| = (2^n - 1)^2$ and $|\mathcal{H}$-Spec$^{[n]}(R)| = (n!)^2$.

Observation 3.7

The sets \mathcal{H}-Spec$^{[t]}(R)$ ($t \in [0,n]$) partition the set \mathcal{H}-Spec$^{[t]}(R)$.

Proof: Let P be an \mathcal{H}-invariant prime ideal of R. Let $t \in [0,n]$ be maximal such that P does not contain all $t\times t$ quantum minors. Then P clearly belongs to \mathcal{H}-Spec$^{[t]}(R)$. Hence, we have proved that \mathcal{H}-Spec$(R) = \bigcup_{t \in [0,n]} \mathcal{H}$-Spec$^{[t]}(R)$. Since this union is obviously disjoint, we get \mathcal{H}-Spec$(R) = \bigcup_{t \in [0,n]} \mathcal{H}$-Spec$^{[t]}(R)$, as desired.

In [5], the authors have established the following result that will be our starting point to compute the cardinality of \mathcal{H}-Spec$^{[t]}(R)$:
Proposition 3.8 (See [5], 3.6)
For all \(t \in [0, n] \), we have \(|\mathcal{H}\text{-Spec}^{(t)}(R)| = \left(\sum_{r \in R_t} |\mathcal{H}\text{-Spec}(R^+_t)| \right)^2\).

Before computing \(|\mathcal{H}\text{-Spec}^{(t)}(R)|\), we first give a lower bound for \(\sum_{r \in R_t} |\mathcal{H}\text{-Spec}(R^+_t)|\).

Proposition 3.9
For any \(t \in [0, n] \), we have
\[
\sum_{r \in R_t} |\mathcal{H}\text{-Spec}(R^+_t)| \geq t! S(n + 1, t + 1),
\]
where \(S(n + 1, t + 1) \) denotes the Stirling number of second kind associated to \(n + 1 \) and \(t + 1 \) (See, for instance, [15] for the definition of \(S(n + 1, t + 1) \)).

Proof: First, we deduce from Corollary 3.3 the following inequality:
\[
\sum_{r \in R_t} |\mathcal{H}\text{-Spec}(R^+_t)| \geq \sum_{r \in R_t} 1^{r_1} 2^{r_2 - r_1} \cdots t^{r_t - r_{t-1}} (t + 1)^{n - r_t}. \tag{3}
\]

On the other hand, we know (See [15], Exercise 16 p46) that:
\[
S(n + 1, t + 1) = \sum_{a_1 + \cdots + a_{t+1} = n+1} 1^{a_1-1} 2^{a_2-1} \cdots (t+1)^{a_{t+1}-1}. \tag{4}
\]

Observe now that the map \(f : \{(a_1, \ldots, a_{t+1}) \in (\mathbb{N}^+)^{t+1} | a_1 + \cdots + a_{t+1} = n+1\} \to \{(r_1, \ldots, r_t) \in (\mathbb{N}^+)^t | 1 \leq r_1 < \cdots < r_t \leq n\} = R_t \) defined by \(f(a_1, \ldots, a_{t+1}) = (a_1, a_1 + a_2, \ldots, a_1 + \cdots + a_t) \) is a bijection and that its inverse \(f^{-1} \) is defined by \(f^{-1}(r_1, \ldots, r_t) = (r_1, r_2 - r_1, \ldots, r_t - r_{t-1}, n + 1 - r_t) \) for all \((r_1, \ldots, r_t) \in R_t\). Thus, by means of the change of variables \((a_1, \ldots, a_{t+1}) = f^{-1}(r_1, \ldots, r_t)\), the above equality (4) is transformed to
\[
S(n + 1, t + 1) = \sum_{1 \leq r_1 < \cdots < r_t \leq n} 1^{r_1-1} 2^{r_2 - r_1} \cdots t^{r_t - r_{t-1} - 1} (t + 1)^{n - r_t},
\]
so that
\[
t! S(n + 1, t + 1) = \sum_{(r_1, \ldots, r_t) \in R_t} 1^{r_1} 2^{r_2 - r_1} \cdots t^{r_t - r_{t-1} - 1} (t + 1)^{n - r_t}.
\]

Thus, we deduce from inequality (3) that:
\[
\sum_{r \in R_t} |\mathcal{H}\text{-Spec}(R^+_t)| \geq t! S(n + 1, t + 1),
\]
as desired. \(\blacksquare \)

Remark 3.10
The proof of the above Proposition shows that, if there exists \(t \in [0, n] \) and \(r = (r_1, \ldots, r_t) \in R_t \) such that \(|\mathcal{H}\text{-Spec}(R^+_t)| > 1^{r_1} 2^{r_2 - r_1} \cdots t^{r_t - r_{t-1} - 1} (t + 1)^{n - r_t} \), then
\[
\sum_{r \in R_t} |\mathcal{H}\text{-Spec}(R^+_t)| > t! S(n + 1, t + 1).
\]

15
We can now prove our main result which was conjectured by Goodearl, Lenagan and McCammond:

Theorem 3.11

If $t \in [0, n]$, then $| \mathcal{H} \text{-} \text{Spec}^t(R) | = (t!S(n + 1, t + 1))^2$.

Proof: First, since the sets $\mathcal{H} \text{-} \text{Spec}^t(R)$ ($t \in [0, n]$) partition $\mathcal{H} \text{-} \text{Spec}(R)$ (See Observation 3.7), we have:

$$| \mathcal{H} \text{-} \text{Spec}(R) | = \sum_{t=0}^{n} | \mathcal{H} \text{-} \text{Spec}^t(R) | .$$

Recall now (See Proposition 2.7) that $| \mathcal{H} \text{-} \text{Spec}(R) |$ is equal to the poly-Bernoulli number $B_n^{(-n)}$. Thus, we deduce from the above equality that:

$$B_n^{(-n)} = \sum_{t=0}^{n} | \mathcal{H} \text{-} \text{Spec}^t(R) | .$$

Further, by Theorem 2), $B_n^{(-n)}$ can also be written as follows:

$$B_n^{(-n)} = \sum_{t=0}^{n} (t!S(n + 1, t + 1))^2 .$$

Hence, we have:

$$\sum_{t=0}^{n} | \mathcal{H} \text{-} \text{Spec}^t(R) | = \sum_{t=0}^{n} (t!S(n + 1, t + 1))^2 ,$$

that is:

$$\sum_{t=0}^{n} \left(| \mathcal{H} \text{-} \text{Spec}^t(R) | - (t!S(n + 1, t + 1))^2 \right) = 0 . \tag{5}$$

On the other hand, recall (See 3.6) that $| \mathcal{H} \text{-} \text{Spec}^t(R) | = \left(\sum_{r \in R^t} | \mathcal{H} \text{-} \text{Spec}(R^t) | \right)^2$. Thus, since $\sum_{r \in R^t} | \mathcal{H} \text{-} \text{Spec}(R^t) | \geq t!S(n + 1, t + 1)$ (See Proposition 3.9), we have:

$$| \mathcal{H} \text{-} \text{Spec}^t(R) | \geq (t!S(n + 1, t + 1))^2 .$$

In other words, each of the terms which appears in the sum on the left hand side of (5) is non-negative. Since this sum is equal to zero, each term of this sum must be zero, that is, for all $t \in [0, n]$, we have:

$$| \mathcal{H} \text{-} \text{Spec}^t(R) | = (t!S(n + 1, t + 1))^2 .$$

Remark 3.12

The cases $t = 0$, $t = 1$ and $t = n$ were already known (See 3.6).
3.4 Description of the set $\mathcal{H}\text{-Spec}(R^+_r)$.

Throughout this section, we fix $t \in \{0, n\}$ and $r = (r_1, \ldots, r_t) \in \mathbb{R}_t$. We now use the above Theorem 3.11 to obtain a description of the set $\mathcal{H}\text{-Spec}(R^+_r)$. More precisely, we show that the only \mathcal{H}-invariant prime ideals of R^+_r are those obtained in Proposition 3.3, that is, in the notations of Section 3.2:

Theorem 3.13

$$\mathcal{H}\text{-Spec}(R^+_r) = \{ J^+_{w_r,(\gamma_1, \ldots, \gamma_n)} S_r^{-1} | (\gamma_1, \ldots, \gamma_n) \in \Gamma_r \}.$$

Proof: We already know (See Proposition 3.3) that

$$\mathcal{H}\text{-Spec}(R^+_r) \supseteq \{ J^+_{w_r,(\gamma_1, \ldots, \gamma_n)} S_r^{-1} | (\gamma_1, \ldots, \gamma_n) \in \Gamma_r \}.$$

Assume now that

$$\mathcal{H}\text{-Spec}(R^+_r) \supsetneq \{ J^+_{w_r,(\gamma_1, \ldots, \gamma_n)} S_r^{-1} | (\gamma_1, \ldots, \gamma_n) \in \Gamma_r \}.$$

Then we have $| \mathcal{H}\text{-Spec}(R^+_r) | > | \Gamma_r |$. Since $| \Gamma_r | = 1^{r_1} 2^{r_2-r_1} \ldots t^{r_t-r_{t-1}}(t+1)^{n-r_t}$, we get $| \mathcal{H}\text{-Spec}(R^+_r) | > 1^{r_1} 2^{r_2-r_1} \ldots t^{r_t-r_{t-1}}(t+1)^{n-r_t}$. Thus, it follows from Remark 3.10 that

$$\sum_{r \in \mathbb{R}_t} | \mathcal{H}\text{-Spec}(R^+_r) | > t! S(n+1, t+1).$$

Hence we have

$$\left(\sum_{r \in \mathbb{R}_t} | \mathcal{H}\text{-Spec}(R^+_r) | \right)^2 > (t! S(n+1, t+1))^2.$$

Recall now (See [3, 3.6]) that

$$| \mathcal{H}\text{-Spec}^{[t]}(R) | = \left(\sum_{r \in \mathbb{R}_t} | \mathcal{H}\text{-Spec}(R^+_r) | \right)^2.$$

All this together shows that $| \mathcal{H}\text{-Spec}^{[t]}(R) | > (t! S(n+1, t+1))^2$.

However, it follows from Theorem 3.11 that $| \mathcal{H}\text{-Spec}^{[t]}(R) | = (t! S(n+1, t+1))^2$. This is a contradiction and thus we have proved that $\mathcal{H}\text{-Spec}(R^+_r) = \{ J^+_{w_r,(\gamma_1, \ldots, \gamma_n)} S_r^{-1} | (\gamma_1, \ldots, \gamma_n) \in \Gamma_r \}$.

\blacksquare

Acknowledgments.

I thank T.H. Lenagan for very helpful conversations, and K.R. Goodearl for useful comments.
References

