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Abstract 

 

The evolution of bipedalism has been the focus of paleoanthropological 

research, as it is one of the defining traits of hominins. Adaptations for this form of 

locomotion are found throughout the hominin fossil record, however definitive traits 

of obligate bipedal locomotion are only found in the genus Homo. The degree of 

arboreality, as well as the biomechanics of bipedal gait in earlier hominins are still 

debated and it is unclear how this trait evolved into the form seen in modern 

humans. Identifying the links between the locomotion and morphology of extant taxa 

is integral in reconstructing the locomotion of extinct taxa and for this purpose the 

great apes are good analogues to extinct hominins. Inferences of behaviour in extinct 

taxa are usually made based on external morphological traits. With novel, non-

destructive methods however studies have been able to analyse the internal 

trabecular structure in fossils. Trabecular bone remodels throughout life in response 

to mechanical loading and even though non-mechanical factors affect trabecular 

structure, research has shown that the resulting patterns can be informative about 

joint postures used during locomotion. Understanding how this structure varies in 

extant apes with different locomotor repertoires will help reconstruct the past 

behaviour of hominins. In this doctoral dissertation I analysed, for the first time 

holistically, the trabecular patterns of the femur in extant ape taxa, to identify links 

with locomotor behaviour and eventually reconstruct the locomotion of extinct 

hominins from Sterkfontein, South Africa.  

 

I analysed, with a whole-epiphysis method, the trabecular patterns 

throughout the femoral head of African apes, orangutans and modern humans and 

identified a functional signal in the trabecular patterns, which can be linked to 

habitual behaviours. African apes and orangutans showed two regions of high bone 

volume across the femoral head, consistent with the predicted regions of peak 

loading during vertical climbing and terrestrial quadrupedalism, while modern 

humans showed one region of high bone volume, consistent with the predicted 

region of peak loading during bipedalism. Furthermore, overall trabecular 
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architecture generally followed predictions, distinguishing humans from other apes 

through their greater strut alignment and lower overall bone volume.  

 

Additionally, using the same whole-epiphysis approach, I analysed the 

trabecular patterns of the distal femoral epiphysis in extant great apes. Results 

suggested that the distal femur holds a less clear functional signal than the femoral 

head. Chimpanzees and orangutans showed high bone volume in the 

posterosuperior region of the condyles, consistent with the use of highly flexed knee 

postures during vertical climbing. This was not found in gorillas or modern humans. 

Humans were distinguished from other apes by their greater strut alignment, 

reflective of the more stereotypical loading of the condyles during bipedal 

locomotion but did not show the lower bone volume found in prior human studies. 

Furthermore, the human trabecular pattern was not as distinct as initially predicted 

based on their different locomotor mode to the other apes. 

 

Finally, using geometric morphometrics and a whole-epiphysis approach, I 

analysed statistically the patterns of subchondral trabecular bone in the femoral 

head and distal epiphysis of extant apes and extinct hominins from Sterkfontein, 

South Africa. Results showed that two specimens confidently attributed to A. 

africanus (StW 522, TM 1513) had a modern human-like trabecular pattern, 

suggesting that this taxon had a biomechanically similar bipedal gait to modern 

humans and did not frequently climb. Conversely, a geologically younger specimen 

(StW 311), attributed either to early Homo or Paranthropus robustus, had a 

trabecular pattern more similar to non-human apes, suggesting that they engaged in 

both bipedalism and vertical climbing.  

 

Together, the findings of this dissertation provide a better understanding of 

the links between trabecular structure of the femur and locomotor behaviour in 

extant apes, as well as illustrate the importance of analysing trabecular structure 

within entire epiphyses. Additionally, results here provide insight into the evolution 

of locomotion in the hominin lineage and the diversity of bipedal gaits among Plio-

Pleistocene, South African hominins. 
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The aim of my dissertation was twofold. My first aim was to identify potential 

links between the trabecular bone architecture of the femur in extant hominids and 

their locomotor behaviour, while my second aim was to infer the locomotor 

behaviour of extinct hominins based on their femoral trabecular patterns. Below I 

review differences in great ape locomotion and hindlimb morphology and our 

current understanding of the evolution of hominin bipedalism. Following this, I 

review trabecular bone functional adaptation, comparative studies of trabecular 

bone variation across primates, and recent methodological developments in the 

analysis of trabecular structure. 

 

 

1.1. Primate locomotion 

 

Great apes include modern humans as well as the taxa most closely related 

to them. Extant apes have been studied to understand the evolution of bipedalism 

in hominins. They use several locomotor types at different frequencies depending on 

their habitat and their hindlimb shows numerous adaptations linked to their 

behaviour. These include variation in the shape of the pelvis and of the proximal 

femur, as well as variation in the knee and soft tissue anatomy of the hindlimb.  

 

Chimpanzees are primarily terrestrial knuckle-walkers but a considerable 

proportion of their time is spent engaging in other terrestrial as well as arboreal 

activities, such as vertical climbing, suspension, bipedalism and leaping (e.g. Hunt, 

1992; Doran, 1993a,b,1997; Isler, 2005). The small moment arms about the joints 

and the long muscle fascicles in the hindlimb allow them to acquire various joint 

positions during locomotion while moving their joints over large ranges (Payne, 2001; 

Payne et al. 2006 a,b). During development, Pan locomotion changes from mostly 

forelimb dominated behaviours, such as clinging and armhanging, to assisted 

bipedalism with frequent hindlimb use and eventually quadrupedalism (Doran, 

1992). During adulthood, there are several differences in arboreal locomotor 

behaviours between the sexes, with female chimpanzees generally being more 
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arboreal and using more quadrupedalism above branches than males (Doran, 

1993b). During knuckle-walking and vertical climbing the majority of their weight is 

bared by their hindlimbs, which are responsible for propulsion (Demes et al. 1994; 

Hannah et al. 2017). Of great interest has been the bipedal locomotion of Pan, even 

though this form of locomotion is rather facultative. During bipedalism these apes 

have an erect trunk, like modern humans, but maintain bent hips and knees in order 

to balance (Tuttle, 1969; Ankel-Simons, 2007; D’Aout et al. 2004) and compared to 

humans they take shorter steps with a higher frequency (Pontzer et al. 2014).  

 

Similar to chimpanzees, gorillas knuckle-walk when terrestrial. Furthermore, 

they are frequently arboreal. Different Gorilla species vary in locomotor behaviours 

depending on their habitats which range from forests in high altitudes to lowland 

rainforests (Doran and McNeilage, 1998).Western lowland gorillas (Gorilla gorilla 

gorilla) for example are more arboreal than mountain gorillas (Gorilla beringei 

beringei) and spend more time feeding as well as travelling between food sources 

(Tutin and Fernandez, 1985; Kuroda, 1992; Remis, 1994; Doran, 1996,1997). Gorillas 

exhibit strong sexual dimorphism and this is reflected in the frequency of arboreality, 

with females engaging in more suspensory locomotion especially in seasons of fruit 

deficiency (Remis, 1999). Furthermore, age seems to have an effect on the preferred 

locomotor mode and locomotor changes occur faster in Gorilla than in Pan (Doran, 

1997). At younger ages gorillas swing with a higher frequency, a behaviour which 

does not occur very often in older and especially larger individuals (Doran, 1997). The 

increase in size with age also influences the way they climb, with larger individuals 

climbing closer to the trunk of a tree or on bigger branches (Remis, 1995; Remis, 

1999; Isler, 2005).  

 

Orangutans are the most arboreal of the great apes but when locomoting on 

the ground they typically fist-walk (Tuttle, 1969 and references therein). They differ 

from the African apes in their use of torso-pronograde suspensory locomotion, but 

they also employ a more diverse array of positional behaviours while navigating 

intricate canopies (Cant, 1987; Isler and Thorpe, 2003; Thorpe and Crompton, 2006; 

Thorpe et al. 2009). Occasionally orangutans engage in bipedal locomotion; mainly 
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while walking on tree branches (Thorpe and Crompton, 2006). Locomotor differences 

are found between different Pongo species as well as between individuals of the 

same species (Thorpe and Crompton, 2005; Thorpe and Crompton, 2006) and 

environmental variables have a strong influence on the frequency of use of their 

different gaits (Manduell et al. 2012). For example, Pongo abelii individuals in 

Sumatra use less suspensory locomotion and more pronograde locomotion 

compared to their Bornean counterparts of Pongo pygmaeus. Additionally, Sumatran 

orangutans descend less frequently to the ground because of the presence of the 

Sumatran tiger (Sugardjito and van Hooff, 1986). Unlike gorillas and chimpanzees, 

sex and age do not have a great influence on the locomotor preferences of 

orangutans (Thorpe and Crompton, 2005; Manduell et al. 2012).  

 

Humans are the only obligate bipedal apes. Their form of bipedalism is unique 

in that the hips and the knees remain mostly extended through the gait cycle 

(Alexander, 1991; 2004). The gait cycle includes the stance and swing phases with 

several sub-events (Kharb et al. 2011). The beginning of a cycle is marked by initial 

contact of one foot with the ground. This is followed by toe-off and swing of the 

opposing foot, while the grounded foot progresses to heel rise. Finally, the opposite 

foot makes contact with the ground and the cycle is repeated for the newly grounded 

foot. The trajectory of the centre of mass resembles an inverted pendulum and 

travels from the lowest point at heel-strike to the highest at mid-stance ensuring 

balance (Cavagna et al. 1976; Lee and Farley, 1998). Six important lower limb actions 

occur during the gait cycle: pelvic rotation, pelvic tilt, stance knee flexion, heel rise, 

ankle plantarflexion and hip adduction (Saunders et al. 1953; McMahon, 1984; Della 

Croce et al. 2001). During infancy humans crawl or locomote with some support, 

while unaided bipedalism typically occurs around the age of 1 year and is associated 

with changes in locomotor control (Forssberg, 1985). Adult humans also engage in 

running, a behaviour that is mechanically different to walking (e.g. Mann and Hagy, 

1980; Ounpuu, 1990,1994; van den Bogert et al. 1999; Giarmatzis et al. 2015). 

 

Even though general locomotor categories are oversimplifications of actual 

behaviour there are several differences in the locomotion of great apes and these 
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are expected to be reflected in the skeleton. Varying positioning of the hindlimbs 

while navigating through the various habitats of these primates results in differing 

loads on their joints and the expectation is that trabecular organization, specifically 

in the hip and knee joints, will reveal a functional signal that can be linked to their 

locomotor repertoires. Variation across populations, subspecies and sexes, mainly in 

the frequency of positional behaviours, should be taken into account when 

conducting inter-specific comparisons. Furthermore, the kinematics of hindlimb 

joints and the soft tissue anatomy need to be understood before attempting to 

reconstruct behaviour as these define the resulting forces on the skeleton. 

 

 

1.2. Anatomy and kinematics of the ape hindlimb 

 

The femur is central to two main joints of the hindlimb involved in 

locomotion, the hip and the knee. The hip is a complex joint formed by the 

innominate and the proximal femur. The innominate, or pelvic girdle, consists of 

three separate bones: the ilium the ischium and the pubis which fuse during 

development. In humans, the ilium is short and broad and extends from the posterior 

to the anterior of the body. Conversely, in non-human apes it is long and flat and is 

located at the posterior of the body (Aiello and Dean, 2002). The acetabulum, a 

concave surface formed where the three pelvic bones meet, is where the femoral 

head articulates with the pelvis. Its shape defines the mobility of the hip. In Pan and 

Pongo, the acetabulum is relatively shallow (Jenkins, 1972; Zihlman et al. 2011), while 

in Homo it is relatively deep. The acetabulum of Gorilla is the deepest of the apes 

(Schultz, 1969). These bony adaptations potentially allow extensive mobility in Pan 

and Pongo and restrict movement in Homo and Gorilla.  

 

The morphology of the proximal femur also contributes to the biomechanics 

of the hip. In Homo the head is relatively large, the neck long and the greater 

trochanter lengthened mediolaterally (Lovejoy, 1975; Jungers, 1988; Harmon, 2007). 

The long femoral neck compensates for the mechanical disadvantage brought about 
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by the shape of the ilium and the remoteness of the hip joints to the muscles. The 

human femur is at a valgus angle resulting in adduction of their hips during the stance 

phase (O’Neil et al. 2015). These traits produce three lines of major stress across the 

proximal femur during locomotion, which is reflected in the trabecular organisation 

(Ryan and Krovitz, 2006; Skuban et al. 2009). Furthermore, the distribution of cortical 

bone in the femoral neck is unique in humans. They show a gradient with reduced 

bone in the superior compared to the inferior region of the neck (Lovejoy, 1988; 

Lovejoy et al. 2002), as opposed to apes that have equal amounts of cortical bone 

across the two regions (Lovejoy, 1988; Rafferty, 1998). This is consistent with the 

differing loading patterns during locomotion. In Pongo, the morphology of the 

proximal femur is in some ways similar to that of Homo, sharing the large head and 

long neck, but lacks a subchondral insertion of a ligamentum teres (Ruff, 2002; 

Harmon, 2007). In Gorilla the femoral head is relatively small and is located inferiorly 

to the greater trochanter, while the neck is short and the greater trochanter is 

superiorinferiorly lengthened. Pan shares all the traits of Gorilla except that the 

trochanteric fossa is deeper (Harmon, 2007).  

 

Movement in the knee is generally more restricted than in the hip. The knee 

is comprised of the distal femur and the proximal tibia. The shape of the distal 

femoral epiphysis varies between apes. In humans the condyles are equal in size and 

the epiphysis is square when viewed from below (Tardieu, 1981). Furthermore, the 

condyles are elliptical in shape, increasing the radius of curvature (Heiple and Lovejoy 

1971; Tardieu, 1981). In African apes and Pongo the epiphysis is more mediolaterally 

than anteroposteriorly expanded. Additionally, the condyles are more circular, and 

the medial condyle is generally larger than the lateral (Tardieu, 1981). In the non-

human apes these traits allow greater rotation of the knee during locomotion. In 

humans the knee only rotates slightly during the last phase of stance (Tardieu, 1981) 

and traits assist with extension of the knee. 

 

Apes also differ in foot kinematics (Griffin et al. 2010a). When walking 

bipedally, humans place the heel on the ground and subsequently weight is 

transferred from the lateral part of the foot to the medial (Elftman and Manter, 1935; 
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Napier, 1967; Inman et al. 1981). The transverse and longitudinal arches result in 

partial contact of the foot with the ground. African apes can also place their heel on 

the ground with some variation (Gebo, 1992), however the lack of foot arches means 

the base of the foot is in full contact with the substrate. When walking above small 

branches, chimpanzees keep their heel elevated but on larger substrates may place 

their heel on the substrate at the end of the swing phase. When walking terrestrially, 

they are always plantigrade. Gorillas are also plantigrade and place their heel on the 

ground but show less flexibility than chimpanzees in heel elevation (Gebo, 1992). 

Orangutans show the greatest variation in foot positioning, and in contrast to the 

African apes when arboreal they mostly move with an elevated heel (Gebo, 1992). 

Additionally, orangutans can use their feet for grasping.  

 

In addition to bony anatomy, soft tissue anatomy affects the ability of joints 

to move within a certain range. Furthermore, soft tissue helps distribute stress over 

a wider area, as shown in the pelvis of humans during single leg stance (Phillips et al. 

2007). In studies of locomotion, muscle anatomy has contributed a lot to our 

understanding of primate behaviour. Even though great apes do not differ 

significantly in muscle architecture (Myatt et al. 2011), some subtle differences can 

be detected which are attributed to the different demands for stability and mobility 

in their habitats. The main features that define a muscle’s contribution to movement 

are the muscle fascicle length and the moment arm length. A greater muscle fascicle 

length relative to moment arm length allows wider movement about a joint 

(Alexander et al. 1981; Alexander, 1993; Payne et al. 2006b). The variation of these 

muscle traits in primates shows that non-human apes can move their joints across a 

wider range than humans (Payne et al. 2006a, b). Furthermore, individuals that are 

specialised for specific types of locomotion are expected to recruit less muscle 

activity, resulting in reduced stress on the skeleton (Basmajian, 1965; Cartmill et al. 

1987; Hunt, 1991a; Thorpe and Crompton, 2006). 

 

In chimpanzees, the anterior gluteal muscles attach to the ilium, which is 

lengthier than that of humans, and are used during quadrupedal locomotion to 

extend the hip, whereas in humans they have a different function: to abduct the hip. 
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These abductor muscles are unique in their structure and action and may help in 

reducing tensile stress during single leg stance (Lovejoy, 2005b). Chimpanzees lack 

this apparatus. The gluteus maximus differs in size between human and 

chimpanzees. In humans, it is the largest muscle and its origin is found posteriorly on 

the pelvis, while its attachment is posteriorly and laterally on the proximal femur 

(Lovejoy, 1988). It is the main extensor of the hip. In chimpanzees and other apes, it 

is much smaller and does not contribute as much to hip extension (Stern and Susman, 

1981; Lieberman et al. 2006). Furthermore, in humans hip musculature assists with 

the balance of the trunk on top of the hindlimbs (Bergmann et al. 1997; Bergmann et 

al. 2001; Phillips et al. 2007). Gorillas have large knee extensors and the musculature 

of the hindlimb is mainly concentrated proximally serving to stabilize the hip joint 

(Zihlman et al. 2011). Orangutans on the other hand have large knee flexors (Zihlman 

et al. 2011) and a less restricted hip joint, as the muscles are distributed differently 

to those of gorillas. Furthermore, orangutans have a distinct gluteus minimus 

configuration where the muscle is separated into two: the gluteus minimus proper 

and the gluteus scansorius (Sigmon, 1974). Their musculature contributes to their 

extremely flexible hindlimbs that can assume the most diverse positions of the apes. 

 

Stress induced on the skeleton from locomotion and muscular activity should 

affect the underlying trabecular bone. Specifically, joint positioning during the most 

frequent and demanding locomotor activities is expected to be reflected in the 

trabecular bone distribution of major joints. Therefore, apes will have relatively 

discrete organizational patterns especially within the hip and knee that when studied 

can reveal behavioural signals. The aim of this study is to identify these patterns in 

the proximal and distal femur of extant hominids and their links to locomotion with 

the ultimate goal to infer locomotion in extinct hominins. 
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1.3. The evolution of bipedalism in hominins 

 

Bipedalism has long been considered one of the defining traits of the hominin 

lineage (e.g. Darwin, 1871). Traditionally it was thought that this type of locomotion 

evolved in a savannah or more open environment (Dart, 1925; Wheeler, 1992; Potts, 

1998) however it is now widely accepted that it likely evolved in a forested 

environment (e.g. Clarke and Tobias, 1995; WoldeGabriel et al. 2001; Sénut, 2006; 

White et al. 2009). Of course, bipedalism could have evolved multiple times in the 

hominin lineage and many theories have been proposed to explain its adaptive 

significance (e.g. Etkin, 1954; Dart, 1959; Rose, 1976; Wheeler, 1984; Jablonski and 

Chaplin, 1993; Hunt, 1996; Kirschmann, 1999; Thorpe et al. 2007; Wall-Scheffler et 

al. 2007; Watson et al. 2008). Some suggest that it increased survival and/or 

reproduction by freeing the hands for other activities (Etkin, 1954; Hewes, 1961; 

Washburn, 1967; Kirschmann, 1999), some of which could have increased feeding 

efficiency (Eiseley, 1953; Bartholomew and Birdsell, 1953; Jolly, 1970; Lovejoy, 1981). 

Others suggest it could have evolved to scan the environment (Dart, 1959; Rose, 

1976) or as a form of display (Jablonski and Chaplin, 1993). Furthermore, the 

biomechanical differences between early hominin and modern human bipedalism 

have been the subject of debate (Stern and Susman, 1983; Susman et al. 1984; Ward, 

2002; Carey and Crompton, 2005; Lovejoy and McCollum, 2010; Raichlen et al. 2010). 

Evidence from the fossil record as well as behavioural observations from extant apes 

have contributed to the study of the evolution of this trait. 

 

The ability to extend the hindlimb can be traced back to at least 6 million 

years ago in the hominin lineage, close to the panin-hominin split (Arnason et al. 

1998; Pickford and Senut, 2001a; Eizirik et al. 2004; Crompton et al. 2008; Moorjani 

et al. 2016). Orrorin tugenensis, an early hominin, displays a mosaic of femoral traits 

that suggest it could have walked bipedally but may also have engaged in arboreal 

behaviours (Pickford and Senut, 2001b; Senut et al. 2001; Senut, 2003; Crompton et 

al. 2008; Richmond and Jungers, 2008). Furthermore, fossils of other early hominins, 

such as Ardipithecus ramidus, can provide information about the evolution of 
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bipedalism. Adaptations for upright bipedalism are found in the pelvis, femur and 

spine of Ar. ramidus, and specializations for other locomotor types are absent 

(Lovejoy et al. 2009a,b). Its pelvis differs to that of chimpanzees with a clearly 

modified upper ilium but it lacks adaptations of later hominins, indicating that this 

portion of the pelvis was potentially the first to be modified during the transition to 

a more bipedal gait. Additional adaptations for bipedalism are found in later 

hominins, including broadening of the sacrum, lordosis of the spine and modification 

of the abductor apparatus for the prevention of pelvic tilt (Lovejoy and McCollum, 

2010). However, uncertainty about the function of these morphological traits has 

sustained the debate over the form and extent of bipedalism in later hominins, 

specifically those belonging to the Australopithecus genus. These species are widely 

recognized as bipedal hominins but the degree of their arboreality has been 

questioned. Several of their skeletal features that could be suggestive of arboreality 

are regarded as evolutionary retentions by some (e.g. Berge, 1994), while for others 

they are indicative of the commitment to an arboreal environment (e.g. Senut, 1981). 

Furthermore, the biomechanics of australopith bipedal locomotion has been 

debated (Stern and Susman, 1983; White and Suwa, 1987; Ward, 2002; Lovejoy et al. 

2002; Carey and Crompton, 2005; Raichlen et al. 2010). Some researchers propose 

that they were efficient, upright bipedal walkers that used extended hindlimbs like 

modern humans (Carey and Crompton, 2005; Lovejoy and McCollum, 2010; Raichlen 

et al. 2010), while others suggest that they used a bent-hip, bent-knee locomotion 

when bipedal, similar to chimpanzees (Stern and Susman, 1983; Susman et al. 1984). 

This debate mainly stemmed from the fact that some traits of the A. afarensis pelvis 

were considered indicative of biomechanical similarities with bipedal chimpanzees 

(Stern and Susman, 1983). Recent studies though support that this taxon did not rely 

on a bent-hip, bent-knee gait (Crompton et al. 1998; Sellers et al. 2004; Pontzer et al. 

2009). 

 

Several biomechanically different bipedal gaits may have coexisted during the 

Plio-Pleistocene (Haile-Selassie et al. 2012; DeSilva et al. 2013). Australopithecus 

afarensis (3.7-3 Ma) and A. africanus (3-2.4 Ma) show combinations of primitive and 

derived traits in the shoulder (Berger, 1994), the pelvis (Stern and Susman, 1983; 
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Lovejoy, 2005a), the femur (Lovejoy and Heiple, 1970; Tardieu, 1981; Lovejoy, 2007; 

Harmon, 2009a) and the foot (Clarke and Tobias, 1995; Ward et al. 2011), that 

suggest they were habitual bipeds which engaged in varying degrees of arboreal 

locomotion. The proportions of their limbs (Richmond et al. 2002; Green et al. 2007) 

and relative size of their hindlimb joints (Jungers, 1988) are intermediate between 

extant apes and modern humans, indicating that their gait was, to an extent, 

functionally different to that of modern humans. Similarly, the more recent 

Australopithecus sediba (1.977 Ma) shows a combination of hindlimb traits indicating 

both arboreal locomotion and habitual bipedalism (Berger et al. 2010; Kibii et al. 

2011; Zipfel et al. 2011), however its lower limb anatomy, and specifically that of the 

foot, suggests that A. sediba had a distinct form of bipedal locomotion (DeSilva et al. 

2013). Its contemporaneous taxon Paranthropus robustus (2-1.5 Ma) shows 

adaptations for bipedal locomotion in the pelvis and femur (Napier, 1964; Robinson, 

1972), though the morphology of its pelvis is less human-like than that of A. 

africanus, perhaps indicating a less efficient form of bipedal locomotion in this taxon 

(Napier, 1964). Together, these findings indicate that more than one form of 

bipedalism probably existed during the Plio-Pleistocene and research up to now has 

not clarified how the bipedalism of modern humans emerged after that time. More 

definitive traits of H. sapiens-like obligate bipedalism are found in H. erectus (Day, 

1971; Ruff, 2008, 2009; Hatala et al. 2016), however the form of bipedal locomotion 

of earlier Homo taxa is debated (Susman and Stern, 1982; Berillon, 1999; Wood and 

Collard, 1999; Bramble and Lieberman, 2004; Harcourt-Smith and Aiello, 2004). 

Study of species such as Homo naledi (Berger et al. 2015), which has highly derived 

foot morphology but retains ape-like curved hand phalanges, indicate that 

interpretations of behaviour based on the external morphology of isolated 

postcranial elements can be problematic. However, additional information could be 

gleaned by studying traits that change through development. Specifically, trabecular 

analysis can provide evidence for past behaviours in hominins as this tissue changes 

throughout an individual’s lifetime. 
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1.4. Trabecular bone and bone functional adaptation 

 

Trabecular (or cancellous) bone is the porous tissue found in the epiphyses of 

long bones as well as short and irregular bones such as the metacarpals, the sternum, 

the pelvis and the vertebrae (Keaveny et al. 2001). It is composed of groups of 

lamellar bone (Choi and Goldstein, 1992) and is very similar in composition to cortical 

bone. This tissue’s main function is to absorb the load applied on joints and transfer 

it to the diaphyseal cortical bone (Currey, 2002) and to provide essential stiffening of 

the bone while retaining its lightness (Parr et al. 2013). Its structure changes through 

deposition of bone by osteoblasts and resorption by osteoclasts (Dempster, 1992; 

Ott, 1996). Bone is created and replaced constantly to repair damage and its turnover 

rate is controlled by genes (Kelly et al. 1991; Garnero et al. 1996). This tissue also 

functions as a mineral reserve and is important in maintaining homeostasis (Rodan, 

1998).  

 

The mechanical properties of trabecular bone have been studied extensively 

and they vary across anatomical site, between sexes and different pathological states 

(Goldstein, 1987; Keaveny et al. 2001; Yeni et al 2011). The amount of trabecular 

bone tissue as well as the degree of trabecular strut alignment determine a bone’s 

mechanical strength (Goulet et al. 1994; Maquer et al. 2015) and are expressed 

through two variables: Bone volume fraction (BV/TV) and degree of anisotropy (DA). 

BV/TV is the ratio of bone to total volume within a specific region, while DA is the 

level of trabecular strut alignment. Fully isotropic structures have struts that point in 

all directions, while fully anisotropic structures have struts that point in one main 

direction. Additionally, the number of trabeculae (Tb.N.) and their thickness (Tb.Th), 

as well as the separation of the trabecular struts (Tb.Sp) are important parameters 

which help describe the mechanical properties of trabecular bone and are measured 

in trabecular studies (Kleerekoper et al. 1985; Goldstein et al. 1993; McCalden, 

McGeough and Court-Brown, 1997). The efficiency of this tissue is related to the 

direction of load and differs when a bone is under compression, tension or shear 
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forces (Keaveny et al. 1994; Ford and Keaveny, 1996; Kopperdahl and Keaveny, 1998; 

Keaveny et al. 2001). 

 

Wolff (1892) was one of the first to propose that trabecular bone reflects 

loads incurred on the skeleton during an individuals’ life. This concept is known as 

“Wolff’s law”, or, more accurately, “bone functional adaptation”, and it suggests that 

the orientation of trabecular struts within a joint adjusts in response to applied forces 

by aligning to the direction of primary load (e.g. Pontzer et al. 2006; Barak et al. 

2011). The apparent density of cancellous bone and its links to bone strength was 

initially assessed using scanning electron microscopy (Keaveny and Hayes, 1993). 

Studies then focused on producing simple analytical models to understand the 

properties of trabeculae, and more specifically the mechanisms of deformation and 

failure (Gibson, 1985; Rajan, 1985). With improved computational models, the focus 

shifted to trabecular bone’s mechanical properties, investigating dependence of 

strength, modulus and apparent density on anatomical locations, ages and the 

directions of loading (Keaveny and Hayes, 1993), as well as comparing pathological 

to healthy bone (e.g. Hipp et al. 1992). Research then focused on specific regions of 

interest (2D) or volumes of interest (3D) at different sites of the skeleton. Finite 

element models (FEM) were integral to these studies, as they realistically represent 

the in vivo structure (Fyhrie and Hamid, 1993; Hollister et al. 1994; Van Rietbergen 

et al. 1995). The new methods were used to measure loading and elastic properties 

of trabecular bone (Feldkamp pet al. 1989; Hollister et al. 1994; Van Rietbergen et al. 

1995, 1996; Ulrich et al. 1997). More recently clinical studies focused on 

understanding how trabecular morphology is affected by age-related diseases, such 

as osteoporosis (e.g. Chen et al. 2010; Nikodem, 2012), as well as implications for 

bone fracture susceptibility (e.g. Ciarelli et al. 2000; Sran et al. 2007; Hordon et al. 

2000).  

 

Recent research has focused on testing bone functional adaptation via 

experimental methods in various taxa and sites of the skeleton using three-

dimensional, non-destructive methods. Pontzer and colleagues (2006) studied the 

sensitivity of trabecular strut orientation to altered load direction in the distal femur 
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of guinea fowl. Compared to a control group, they found that trabecular struts 

responded to changes in load orientation from exercise on inclined treadmills 

(Pontzer et al. 2006). Age, activity level and phylogeny were controlled for, thus these 

changes were correlated to the mechanical stimulus. Similar results were found in 

the distal tibia of sheep. Comparison of two groups of sheep that exercised daily on 

treadmills with different inclinations revealed that the trabecular struts of the distal 

tibia in the group on the more inclined treadmill shifted in response to changes in 

the tibial angle (Barak et al. 2011). Furthermore, compared to a sedentary group, 

exercised groups had relatively higher BV/TV, Tb.Th and Tb.N, lower Tb.Sp and more 

plate-like trabeculae, suggesting that both changes in the direction as well as in the 

magnitude/frequency of load can stimulate remodelling. Furthermore, Volpato and 

colleagues (2008) demonstrated that bipedally-trained and untrained Japanese 

macaques show significantly different DA patterns across the ilium and proximal 

femur. Differences in the DA of the trained macaque were consistent with the 

transition to bipedalism, but the bipedal pattern was different to that of humans 

reflecting the different shape and size of the pelvis, as well as the genetic differences 

between the taxa (Ruff et al. 2006; Ryan and Ketcham, 2005). Tb.Th and BV/TV 

distribution patterns did not differ between macaques, reflecting similar habitual 

activities in the two groups. Mazurier and colleagues (2010) further showed that a 

bipedal-trained macaque exhibited a thicker cortico-trabecular complex (CTC) 

underlying the tibial plateau, especially in the medial condyle, reflecting loads 

associated with bipedalism. The CTC was defined as the most dense bone beneath 

the articular surface, which includes both the cortical shell and the adjacent 

trabeculae. The links between trabecular distribution and locomotor loads have been 

further explored using computer simulation. Boyle and Kim (2001) subjected an 

initially isotropic model of the proximal femur to the predominant forces from 

walking and climbing stairs, while a space optimisation algorithm assigned material 

to areas of greatest loading. The struts aligned to the direction of the principal load 

and the resultant pattern resembled that of the human proximal femur reflecting, 

this tissues’ importance in responding to the mechanical loading of locomotion. 

Together, these experimental studies offer strong support for bone functional 

adaptation and reveal that a wealth of information can be gained from trabecular 
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analysis.  

 

Some studies, however, have produced contradictory results. For example, 

Carlson and colleagues (2008) failed to find differences in the DA of the distal femoral 

metaphysis across three groups of mice with different assigned locomotor modes. 

The first group was restricted to moving in a linear direction, the second was 

restricted to moving in a turning tube and the third was allowed to move freely with 

no limitations in direction. Their results indicated that the groups did not differ 

significantly in the orientation of their trabeculae despite the differences in the 

predominant moving direction, which resulted in their suggestion that the trabecular 

bone of the knee may not be an appropriate subject when attempting to reconstruct 

locomotor modes. Furthermore, Wallace and colleagues (2014) found that cortical 

bone growth is not closely connected to local strain magnitude in the tibia of sheep. 

Even though they found that exercise induced bone formation, the regions of 

greatest bone deposition did not coincide with regions of presumed highest loading. 

These studies highlight the complexity of studying functional signals with trabecular 

bone, especially since it is not completely clear how remodelling is triggered. Some 

suggest that low frequency, high intensity loads stimulate remodelling, while others 

suggest that high frequency, low intensity loads are most important (Whalen et al. 

1988; Rubin et al. 1990; Rubin et al. 2001; Judex et al. 2003; Scherf et al. 2013). 

Furthermore, a range of activities which fall between the extremes may affect the 

final structure. Along with these, factors such as age, sex, diet, genetics and 

hormones (Simkin et al. 1987; Martinon-Torres, 2003) contribute to the variation. 

Research has shown that bone mineral density and bone turnover rate are largely 

hereditary (e.g. Dequeker et al. 1987; Kelly et al. 1991; Harris et al. 1998) and that 

different genes regulate the response of bone at different sites of the skeleton (Judex 

et al. 2002, 2009). Furthermore, some difference in trabecular architecture between 

taxa are systemic and could be attributed to factors other than mechanical stimulus. 

For example, analysis in epiphyses throughout the skeleton revealed systemic patters 

in the BV/TV of Pan and Homo, but not DA, indicating that some parameters can be 

less informative about functional history than others in certain cases (Tsegai et al. 
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2018a). Therefore, interpretations of trabecular structure should be made with 

caution. 

 

Despite the complexities and contradictions in previous studies, overall 

trabecular analysis has found support for bone functional adaptation. Trabecular 

struts align parallel to the trajectories of major load (e.g. Pontzer et al. 2006; Volpato 

et al. 2008) and bone mass increases in regions of highest loading (e.g. Mazurier et 

al. 2010). This can occur through increased thickness and/or number of trabeculae 

(Barak et al. 2011). Since trabecular patterns show links to load, the structure of this 

tissue reflects mechanical stimuli. However, trabecular bone functions within a wider 

framework which includes the adjacent cortical structure. 

 

 

1.5. Trabecular bone and cortical bone 

 

Trabecular bone does not function in isolation, as it interacts with the 

surrounding cortical shell. Both tissues react to load and can be informative about 

the mechanical loading history of a bone. In cortical bone studies, diaphyseal cross-

sectional shape and robusticity have been shown to reflect loading (e.g. Ruff, 1987; 

Jones et al. 1977; van der Meulen et al. 1993; Ruff et al. 1994, 2006; Shaw and Stock, 

2009a), as well as mobility patterns (Shaw and Stock, 2009b, 2013) and can 

differentiate between taxa/individuals with different locomotor repertoires (e.g. 

Burr et al. 1989; Marchi, 2005; Ruff, 2009).  

 

Correlations between cortical traits and locomotion have been found in great 

apes. Carlson (2005) found that African apes with increased arboreal locomotion 

have more circular femoral cross-sections that those that engage in less climbing, 

which perhaps reflects more variable loading of the femoral diaphysis during 

arboreal locomotion compared to terrestrial locomotion. Furthermore, Ruff (2002) 

found that variation in relative forelimb to the hindlimb strength, as indicated by 

cortical cross-sectional properties, reflects frequency of climbing in apes. More 
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suspensory taxa, such as orangutans, show relatively stronger forelimb shafts than 

hindlimb shafts than more terrestrial or leaping taxa. Additionally, African apes show 

variation in their proportional strengths consistent with differences in the frequency 

of their climbing. Chimpanzees show relatively higher ratios of forelimb to hindlimb 

strength than gorillas, while lowland gorillas show higher ratios than mountain 

gorillas (Ruff, 2002). Variation in between limb robustness is also found in humans 

that engage in different habitual behaviours. Highly mobile, terrestrial foragers show 

stronger lower limb bones, while humans that incorporate a great proportion of 

marine mobility in their repertoire show stronger upper limb bones (Stock and 

Pfeiffer, 2001). Furthermore, between humans and non-human apes, cortical cross-

sectional traits show differences that reflect loading. In the femoral neck, for 

example, the distribution of cortical bone differs between ape taxa. Humans show a 

thin superior cortex that thickens distally, perhaps resulting from tension along the 

superior cortex and compression along the inferior cortex of the neck during bipedal 

gait, while African apes show a more evenly distributed thick cortex perhaps resulting 

from larger axially compressive loads (Lovejoy, 1988; Ohman et al. 1997; Rafferty, 

1998). Furthermore, cortical bone distribution in the distal tibia and talus of Pan and 

Homo reflects variation in dorsiflexion at the talocrural joint and levels of mobility at 

the talonavicular joint (Tsegai et al. 2017). Together, these studies suggest that both 

cortical and trabecular bone may hold functional signals and it is important to study 

both tissues. 

 

Cross-sectional properties have been used to infer past behaviour (Ruff and 

Hayes, 1983; Brock and Ruff, 1988; Ruff et al. 1993; Trinkaus et al. 1994; Nikita et al. 

2011; Stock and Macintosh, 2016), however, inferences of behaviour based solely on 

cortical cross-sectional shape should be made with caution, as studies have indicated 

that cortical bone is not always preferentially reinforced in regions of highest load 

(e.g. Demes et al. 1998; Wallace et al. 2014) and other factors such as climate (e.g. 

Pearson, 2000) may affect diaphyseal robusticity. Understanding the relationship 

between cortical and trabecular bone is also important in anthropological studies. 

Shaw and Ryan (2012) examined the correlation between trabecular bone 

distribution and cross-sectional, mid-diaphyseal cortical bone in the humerus and 
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femur of primates. They found a correlation between the architecture of the two 

tissues in the humerus, suggesting that the trabecular and cortical bone of this bone 

respond to overall loading in a similar manner. However, they did not find a 

correlation in the architecture of the two in the femur implying that the relationship 

of the two tissues varies across skeletal sites and is perhaps complex. The sensitivity 

of trabecular bone to mechanical loading may be affected by the response of cortical 

bone. Since diaphyseal cortical bone for example responds to changes in loading 

direction (Carlson and Judex, 2007), the response of epiphyseal trabecular bone may 

in such cases be reduced. This highlights the dependency of the two tissues.  

 

Although the value of studying cortical structure in combination with 

trabecular bone is recognised, analysis of cortical bone properties was not within the 

scope of this doctoral dissertation. The emphasis of my dissertation was functional 

signals in the trabecular bone of the femur in extant apes, as trabecular bone 

remodels at a faster rate than cortical bone and it can yield information about how 

an individual loaded its limbs throughout life (Eriksen, 1986; Currey, 2002; Eriksen, 

2010), therefore it can be more informative than cortical bone about joint positioning 

in extinct hominins. It can reflect the actual joint loading in individuals rather than 

implied joint positioning based on external morphology, which may be inaccurate in 

instances of phylogenetic lag, rendering it remarkably valuable in studies of 

functional morphology and locomotion. 

 

 

1.6. Functional signals in the trabecular structure of extant taxa 

 

Trabecular structure has been studied across several skeletal sites in 

mammals (e.g. Thomason, 1985a,b; Dumont et al. 2013; Chirchir et al. 2016; Amson 

et al. 2017; Mielke et al. 2018) and more specifically primates (e.g. MacLatchy and 

Muller, 2002; Ryan and Ketcham, 2002; Ducher et al. 2004; Maga et al. 2006; Lazenby 

et al. 2011a; Schilling et al. 2013; Matarazzo, 2015) to understand the relationship 

between this tissues’ morphology and individual behaviour. Two-dimensional studies 
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provided a first overview of trabecular architecture (e.g. Rafferty and Ruff, 1994), 

however they lacked valuable information about the three-dimensional structure of 

trabecular bone. Studies analysing a volume of interest within epiphyses have 

provided more informative insight into trabecular architecture and a considerable 

amount of that research focused on the proximal femur of primates. MacLatchy and 

Muller (2002) compared the femoral head and neck structure of two strepsirrhines, 

Perodicticus potto [potto] and Galago senegalensis [bushbaby] and found differences 

linked to variation in loading. The two taxa, despite not showing differences in 

femoral head BV/TV, showed differences in trabecular orientation with G. 

senegalensis having more anisotropic trabeculae reflecting the more stereotypical 

loading of their femur. This link was also apparent in the femoral neck trabecular 

structure, where G. senegalensis had anisotropic trabeculae, but also significantly 

lower bone density than P. potto. Similar results were found for leaping versus non-

leaping primates (Ryan and Ketcham, 2002), as well as for primates that are 

specialised for one mode of locomotion versus non-specialised primates (Scherf, 

2008). In both studies, taxa in which the femur experiences more stereotypical 

loading (i.e. leaping and specialised primates) showed more anisotropic proximal 

femoral trabecular structure.  

 

Modern humans were also shown to have highly anisotropic femoral head 

structure, compared to African apes and Pongo, reflecting their more specialised 

locomotion (Ryan and Shaw, 2012, 2015; Ryan et al. 2018). Additionally, primary strut 

orientation is similar between human populations, as well as between Pan and 

Gorilla (Ryan et al. 2018), which reflects the similar loading patterns in these groups 

during bipedal and knuckle-walking locomotion respectively. Studies have also 

shown that the BV/TV of the proximal (e.g. Ryan and Shaw, 2015) and distal (e.g. 

Chang et al. 2008) femur reflects activity level in humans. The femoral head of highly 

active human hunter-gatherers shows higher BV/TV than that of more sedentary 

agriculturalists (Ryan and Shaw, 2015; Saers et al. 2016; Ryan et al. 2018). Additional 

studies have revealed locomotor signals in other joints of the ape hindlimb. Mazurier 

and colleagues (2010) showed that humans have a thicker cortico-trabecular 

complex in the medial condyle of the proximal tibia than Pan, which is consistent 
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with the location of maximum force during adduction of the knee in bipedal 

locomotion (Mazurier et al. 2010). Furthermore, Maga and colleagues (2006) showed 

that the calcaneal trabecular structure differs in modern humans to African apes and 

Pongo, by having higher DA, lower BV/TV and a unique pattern of trabecular 

orientation. Additionally, Griffin and colleagues (2010b) showed that the first and 

second metatarsals of humans differ from those of other great apes in having higher 

DA in the dorsal aspect of the metatarsal head, which reflects propulsion with the 

forefoot during bipedal locomotion.  

 

However, the predicted functional signals within trabecular structure are not 

always clear. Schilling and colleagues (2013) studied the trabecular structure of the 

lunate, the scaphoid, and the capitate in apes, baboons and spider monkeys. They 

analysed VOIs from the three bones and found that BV/TV did not reflect their 

locomotor modes. Furthermore, Scherf and colleagues (2013) did not find a link 

between the trabecular structure of the humerus and respective locomotion in 

Pongo pygmaeus, Pan troglodytes and Homo sapiens. Some studies of the trabecular 

bone of hindlimb joints also failed to find locomotor links. Fajardo and colleagues 

(2007) evaluated femoral neck trabecular structure in New World monkeys, Old 

World monkeys and apes and found no significant differences between taxa assigned 

to different locomotor groups despite presumed differences in their loading 

patterns. Furthermore, they found no significant differences in superior/inferior 

distributions of trabecular bone, though they noted that quadrupeds appear to have 

higher BV/TV inferiorly and that suspensory taxa have more even BV/TV 

distributions. Similarly, studies of the trabecular distribution in the humeral and 

femoral heads of Old-world monkeys, chimpanzees and howler monkeys (Ryan and 

Walker, 2010), as well as the femoral head of anthropoids (Shaw and Ryan, 2012) 

failed to find a functional signal in the trabecular distribution. Furthermore, calcaneal 

trabecular architecture was found to be similar between humans and chimpanzees 

despite their variation in Achilles tendon length (Kuo et al. 2013), which appears to 

contradict previous research in potoroos showing that the complete disuse of the 

Achilles tendon has a great effect on calcaneal trabecular architecture (Biewener et 

al. 1996). 
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Generally, studies in extant taxa have demonstrated that trabecular structure 

shows links to behaviour and more precisely that the trabecular bone of the major 

primate hindlimb joints holds locomotor signals. Taxa that are specialised for one 

mode of locomotion have more aligned trabeculae compared to taxa with more 

variable locomotion (e.g. MacLatchy and Muller, 2002; Scherf, 2008) and trabecular 

organisation in key joints reflects loading from locomotor behaviours (e.g. Mazurier 

et al. 2010; Ryan et al. 2018). Therefore, determining the links between trabecular 

bone structure and locomotion may be useful to studies of the locomotion of extinct 

hominins.  

 

 

1.7. Functional signals in the trabecular structure of fossil hominids 

 

Trabecular studies have provided insight into the behaviour of extinct 

hominins. Using two-dimensional radiographs, Rook and colleagues (1999) 

compared the iliac trabecular structure of Oreopithecus to that of Homo, Pan, 

Hylobates and Papio and concluded that this hominin shares traits with Homo linked 

to bipedality. Similarly, by analysing iliac trabecular patterns, Macchiarelli and 

colleagues (1999) found that A. africanus and P. robustus have a unique trabecular 

pattern which may have developed as a result of both arboreal climbing and 

bipedalism. Pelvic trabecular organisation has also revealed that humans and 

chimpanzees have different patterns of strut orientation above the acetabulum 

which reflect their hip biomechanics and that Neanderthals have a pattern which 

resembles that of humans (Martinon-Torres, 2003). Femoral trabecular patterns 

have also been used to infer locomotion in fossil hominoids. Scherf (2008) studied 

the proximal femoral structure in Old World monkeys, New World monkeys and 

apes, they compared the trabecular patterns found to those of two Miocene apes, 

Paidopithex rhenanus and Pliopithecus vindobonensis. Their results revealed that the 

structure in these Miocene apes was not the same as any of the studied taxa and that 

they were generalists that occasionally engaged in high impact activities. More 

recently, Ryan and colleagues (2018) found human-like femoral head trabecular 
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structure in Australopithecus africanus and Paranthropus robustus. Although 

individuals of the extinct taxa had significantly higher BV/TV than modern humans 

(apart from one highly active human group), they overlapped in DA values with the 

modern human groups and almost all showed human-like primary strut orientation. 

Similar results were found for the distal tibia (Barak et al. 2013a) and talus (DeSilva 

and Devlin, 2012). Barak and colleagues (2013a) showed that humans use an 

extended ankle during locomotion while chimpanzees use a more flexed ankle, and 

this is reflected in the different trabecular strut orientation of the distal tibia in the 

two taxa. Comparison with Australopithecus africanus specimens from Sterkfontein 

revealed that the trabecular strut orientation in these hominins is similar to that of 

humans, suggesting the use of an extended ankle. However, other parameters fall 

mostly between the human and chimpanzee ranges. Similarly, DeSilva and Devlin 

(2012) found that trabecular patterns in the talus of A. africanus are generally more 

similar to humans than African apes, Pongo and Papio, though similarities across taxa 

suggest that this may not solely be a result of mechanical loading. 

 

Analysis of the A. africanus and P. robustus trabecular structure has produced 

mixed results. The trabecular structure of the femur (Ryan et al. 2018) and the tibia 

(Barak et al 2013a) suggests that these taxa are similar to modern humans, 

specifically in DA values and strut orientation. These results have been interpreted 

as showing that these hominins were obligate bipeds and potentially had a 

biomechanically similar gait to modern humans. However, the trabecular patterns of 

the ilium (Macchiarelli et al. 1999) and the talus (DeSilva and Devlin, 2012) suggest 

that A. africanus and P. robustus also share some trabecular traits with African apes 

and Pongo. This perhaps indicates that these taxa were not specialised, obligate 

bipeds but also engaged in some arboreal behaviours. Therefore, these studies have 

produced inconsistent results that complicate inferences of behaviour in these 

extinct hominins. 

 

The majority of trabecular research, in both extant and extinct taxa, has 

focused on isolated regions within the epiphyses. Therefore, the lack of a strong 

functional signal in some studies may be an artefact of analysing a subvolume which 



 35 

excludes much of the diversity in the trabecular structure. The size and placement of 

a VOI has been shown to have a significant effect on results (Fajardo and Müller, 

2001; Maga et al. 2006; Lazenby et al. 2011b; Kivell et al. 2011). For example, analysis 

of the primate capitate and third metacarpal revealed that the VOI location, and to 

a lesser extend the size of the VOI, affects findings relating to trabecular connectivity, 

DA and the principal orientation of trabeculae (Kivell et al. 2011). The assumption of 

bone continuity (Harrigan et al. 1988; Hoffler et al. 2000) could also be violated. 

These factors should be taken into consideration when interpreting results from 

studies that focus on just one small VOI of a given bone, though the influence of size 

and location of the VOI may not be as great when the shape of the structure is 

spherical (Maga et al. 2006; Marangalou et al. 2014). Alternatively, trabecular 

structure can be analysed within entire epiphyses. 

 

 

1.8. The whole-epiphysis approach to trabecular bone analysis 

 

More recently research has focused on analysing entire epiphyses with a new 

3D method called medtool (see Gross et al. 2014 for description). Medtool (www.dr-

pahr.at) quantifies trabecular structure throughout an epiphysis and visualises the 

3D distribution of BV/TV and DA in the form of a colour map in which values are 

represented by a selected colour range. The resulting colour maps depict the 

distribution of parameters across the epiphysis allowing for better interpretation of 

joint loading.  

 

This holistic approach has been used to investigate trabecular architecture 

variation in the third metacarpal of knuckle-walking (Pan, Gorilla) and suspensory 

apes (Pongo, Hylobates, Symphalangus) in comparison to humans, that mainly use 

their hands for manipulation (Tsegai et al. 2013). Results showed that BV/TV 

distribution in the third metacarpal head coincides with the predicted regions of 

highest stress based on differences in hand posture during habitual activities. 

Furthermore, DA is high in knuckle-walking taxa, low in suspensory brachiators and 
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variable in humans. This is consistent with predictions based on loading of the hand 

in more stereotypical postures during knuckle walking, compared to climbing and 

manipulative behaviours. The same approach was used to investigate functional 

signals in the trabecular structure of metacarpals and infer hand use of 

Australopithecus africanus (Skinner et al. 2015). The authors showed that trabecular 

bone distribution matches predictions of peak loading during predominant hand 

postures in humans and non-human apes and concluded that A. africanus may have 

loaded their hands in a more human-like way. Additionally, holistic investigations 

using medtool revealed locomotor-related patterns in the talus and distal tibia of Pan 

and Homo (Tsegai et al. 2017) and detected bilateral asymmetry in the thumb of 

these taxa (Stephens et al. 2016). These studies demonstrate that analysing the 

whole epiphysis provides additional information about trabecular structure, such as 

the 3D and subarticular distribution of parameters, as well as evidence about 

potential joint posture which could be missed when analysing isolated volumes 

within the centre of an epiphysis. However, this method is limited in that it lacks 

statistical comparisons (up to this point), something that was possible with the 

traditional VOI studies. 

 

The trabecular architecture of hindlimb joints has been studied extensively 

using VOIs (see above), though never using a whole-epiphysis approach. The aim of 

this doctoral dissertation is to identify locomotor-related trabecular patterns in the 

femur of hominids by analysing the femoral head and distal femur holistically, with 

the ultimate aim of inferring the locomotor behaviour of South African extinct 

hominins. 

 

 

1.9. Trabecular bone and body mass 

 

One factor affecting trabecular structure is body mass. Doube and colleagues 

(2011) investigated allometric relationships in the trabecular structure of the femoral 

head in a wide range of mammals and birds, ranging from 3 to 3400 kg. They 
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concluded that BV/TV and DA do not scale to body mass in mammals but other 

parameters, such as Tb.Th and Tb.Sp, scale with positive allometry suggesting that 

larger mammals have relatively thicker trabeculae and that their trabeculae are 

relatively more widely spaced. However, the slopes for Tb.Th and Tb.Sp indicate a 

negative allometric relationship for these parameters, suggesting that their 

relationship with body mass is the opposite to what the authors reported and 

therefore that larger mammals have relatively thinner trabeculae and that their 

trabeculae are relatively less widely spaced. Furthermore, they showed that larger 

mammals have relatively few trabeculae which is reflected in the negative allometric 

relationship of connectivity (Conn.D) with body mass. Ryan and Shaw (2013) 

evaluated the allometric relationships of trabecular parameters within the humeral 

and femoral heads in a sample of primates. They performed both conventional and 

phylogenetic regressions and found that DA does not scale to body size. However, 

they found a weak, positive allometric relationship between BV/TV and body size. 

Furthermore, in contrast to what Doube and colleagues (2011) reported, they found 

that Tb.N, Tb.Th and Tb.Sp scale with negative allometry suggesting that large 

primates have relatively few, thin trabeculae, that are closer to each other compared 

to small animals. These results were largely in accordance to allometric relationships 

found previously in primate vertebrae (Cotter et al. 2009). Barak and colleagues 

(2013b) conducted a meta-analysis of existing data on trabecular allometry in mice, 

rats and humans. They did not find an allometric relationship between BV/TV or DA 

with body mass, but found a negative allometric relationship for Tb.N, Tb.Th and 

Tb.Sp, similar to what was found by Ryan and Shaw (2013). They also investigated 

the correlation of Tb.Th and Tb.N with BV/TV and found that the relationships differ 

between rodents and humans. Similarly, Barak and colleagues (2011) found that in 

rodents, higher BV/TV was achieved through increasing the number of trabeculae 

whereas in humans it was achieved through increasing their thickness, suggesting 

that BV/TV is increased through different mechanisms depending on the size of the 

animal. These studies found a negative correlation between body mass and Tb.N but 

a positive correlation with Tb.Th and Tb.Sp, indicating that larger animals have 

absolutely fewer, thicker and more widely spaced trabecular. 
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Overall, these studies suggest that Tb.N, Tb.Th and Tb.Sp can be significantly 

affected by body mass and therefore this should be taken into account when 

interpreting the trabecular structure, especially in comparative studies in which the 

sample varies substantially either intra- and/or interspecifically in body mass. 

 

 

1.10. Trabecular bone ontogeny 

 

Trabecular architecture changes while an individual is growing, and many 

studies have focused on how trabecular parameters change through early 

development. Both modelling and remodelling of bone in response to strain vary 

with age (Bertram and Swartz, 1991; Ruff et al. 1994; Lieberman et al. 2003), with 

changes in bone structure being more obvious during childhood. Studies have 

suggested that ontogenetic loading defines the adult structure (Pearson and 

Lieberman, 2004; Pettersson et al. 2010), however research showing the effects of 

adult mechanical loading on bone modelling suggests that adult loading patterns are 

also important for the final pattern (Ruff et al. 2006 and references therein). 

Therefore, both childhood as well as adult mechanical loading are likely represented, 

to varying extents, in the adult bone form. The ontogeny of trabecular bone is well 

documented in some regions of the human skeleton (e.g. Ding et al. 2005; Ryan and 

Krovitz, 2006; Raichlen et al. 2015; Milovanovic et al. 2017), but far less so in other 

apes (e.g. Zeininger, 2013; Tsegai et al. 2018b). 

 

The human pelvis and associated soft tissues start emerging in utero from one 

mesenchymal mass that originates from the lateral mesoderm (Chevallier, 1977; Lee 

and Eberson, 2006; Pomikal and Streicher, 2010). The hindlimb starts developing at 

3 weeks and is pivotal in the development of the pelvis, as normal morphogenesis of 

the acetabulum depends on the interactions with the femoral head (Harrison, 1961; 

Lee and Eberson, 2006) and is controlled by muscular loading of the hip (Hall, 1972; 

Pitsillides, 2006). The trabecular structure of the proximal femur derives from two 

growth plates; the capital epiphyseal plate of the femoral head and the apophyseal 
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plate of the greater trochanter (Taussig et al. 1976; Serrat et al. 2007). The separate 

compartments eventually fuse to form one continuous trabecular structure. In the 

distal femur, the diaphysis of humans is elongated by preferential deposition of bone 

on the medial compartment of the distal portion during development, leading to the 

human valgus angle (Tardieu and Preuschoft, 1995 and references therein). 

Additionally, in humans the sacrum becomes more curved, the pelvic girdle becomes 

more stable and lumbar lordosis starts appearing (Le Damany, 1905; Abitbol, 

1987a,b; Tardieu, 2000; Tardieu et al. 2013). These skeletal changes are linked to the 

development of a bipedal gait and the associated loads are expected to be reflected 

in the trabecular architecture.  

 

Analysis of ontogenetic trabecular patterns in the human hindlimb has shown 

that the patterns show links to different locomotor phases during development. Ryan 

and Krovitz (2006) used a sample of bones from humans that ranged in age from a 

foetus to 8-10 years old to show that trabecular patterns reflect locomotion-related 

loading at each developmental stage. Their results revealed an initial decrease in 

BV/TV, Tb.N and DA from 6 to 12 months postnatally and a slight increase between 

the ages of 2 and 3, associated with a shift to unaided walking. These are consistent 

with findings from the femoral neck (Milovanovic et al. 2017). Furthermore, Raichlen 

and colleagues (2015) used a sample of tibiae from children aged 1 to 8 years and 

kinematic data from an age-matched population to show that trabecular orientation 

in the distal tibial metaphysis reflects locomotion at different ages. Specifically, they 

showed an association between changes in tibial angle variation and DA. Older 

individuals had higher and less variable DA, which may be linked to greater stability 

as gait matures (Sutherland et al. 1980; Adolph, 2003). Eventually patterns converge 

towards a bipedal adult pattern, though trabecular architecture continues to change, 

to a lesser extent, until later ages. For example, bone volume fraction in the femoral 

neck declines with age in both sexes, but the effect is more intense in women 

(Slemenda et al. 1996). Furthermore, trabecular number in the proximal tibia 

decreases with age and this loss appears to vary between sexes (Ding et al. 2005) but 

always leads to decreased mechanical integrity of the tibia. 
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Variation in trabecular structure during growth is less well-documented in 

non-human apes. Zeininger (2013) analysed the trabecular structure within VOIs of 

the talus, calcaneus and first metatarsal in African apes and found that trabecular 

parameters do not vary significantly with age. Though she generally did not find 

differences in DA between the age groups of the taxa, results showed that the 

orientation of trabeculae in the talus changes as age increases in the African apes, 

perhaps reflecting changes in joint positioning during development. Interestingly, 

chimpanzees presented more differences in trabecular structure across age groups 

than gorillas, perhaps reflecting the different rates of their locomotor development 

(Doran, 1997). More recently, Tsegai and colleagues (2018b) investigated trabecular 

ontogenetic variation in the chimpanzee humerus, femur and tibia and found that 

BV/TV as well as Tb.Th increase with age in all the studied skeletal elements. 

Together with a higher ratio of femoral to humeral BV/TV at later ages, this reflects 

increased loading of these elements during chimpanzee development, perhaps 

associated with the increasing use of knuckle-walking. DA in the humerus and tibia 

also reflects the transition to increased terrestrial knuckle-walking at the age of 5 

years (Sarringhaus et al. 2014), as at this age DA starts increasing. Furthermore, 

BV/TV distribution changes through growth in all three elements and patterns reflect 

changing loading conditions within each of the joints. 

 

Despite evidence for a link between trabecular bone structure and changes 

in locomotion during ontogeny, some propose that there is a basic genetic blueprint 

which dictates how trabecular bone is distributed. Cunningham and Black (2009a,b,c) 

reported that trabecular, as well as cortical bone, in the ilia of prenatal and neonatal 

humans are distributed in a similar manner to adults. They propose that since the 

hindlimb is not bearing any weight at this point of the development (Walker, 1991) 

this pattern should be interpreted based on other parameters, such as genetic 

factors and involuntary limb movement while in utero. They further suggest that 

remodelling of the tissue is superimposed on the pre-existing pattern when load is 

applied. However, the studies presented here show a strong link between trabecular 

morphology and loads associated with developing locomotor skills at different ages. 

Since locomotor maturity can affect trabecular structure, the age of a specimen is an 
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important variable in studies aiming to determine locomotion from trabecular 

patterns. 

 

 

1.11. New methods in trabecular analysis: Geometric 

morphometrics 

 

Recently, geometric morphometrics have been incorporated into trabecular 

bone analyses to better quantify and compare potential variation in bone structure 

across different taxa (Sylvester and Terhune, 2017). Traditionally, geometric 

morphometrics (GM) have been used to examine external, rather than internal, 

morphological variation in skeletal elements. In GM, overall form (size and shape) or 

isolated shape (with variation in size removed) is compared using homologous 

landmarks on specimens which define the structure (Bookstein, 1991; Dryden and 

Mardia, 1998; Mitteroecker and Gunz, 2009). Three types of landmarks are used: 

Type I landmarks which are clearly identifiable, biologically homologous points on 

the structure (e.g. the intersection of tissues), Type II landmarks which are points 

defined based on the geometry (e.g. the tip of a curve) and Type III landmarks which 

are points that are defined relative to other points of the structure (e.g. one end of 

the longest dimension) (Bookstein, 1991). After landmarks are defined on all 

specimens, they are centred, scaled and rotated to minimize Euclidean distances 

between homologous landmarks; a method known as Procrustes analysis (Rohlf and 

Slice, 1990; Bookstein, 1996; Dryden and Mardia, 1998). This landmark-based 

analysis can be extended to surfaces that lack identifiable landmarks by using 

semilandmarks (Bookstein, 1997; Gunz et al. 2005). Semilandmarks are allowed to 

move following certain optimization criteria (Mitteroecker and Gunz, 2009) and do 

not represent anatomical traits. Three different types of semi-landmarks have been 

described (Weber and Bookstein, 2011; Cooke and Terhune, 2015): Type IV which 

are semilandmarks on curves, Type V which are semi-landmarks on surfaces and Type 

VI which are constructed semilandmarks. In trabecular analysis geometric 
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morphometrics can be used to identify homologous landmarks across specimens so 

that trabecular structure can be compared across three-dimensional surfaces. 

 

Sylvester and Terhune (2017) used GM to assess trabecular variation across 

the articular surfaces of the talus and distal femur in apes. Semilandmarks were used 

to locate appropriate homologous locations across the surfaces of these bones 

where VOIs were placed to sample trabecular bone. Trabecular parameters were 

extracted at each location and compared between samples. Results revealed that 

trabecular parameters are not evenly distributed across articular surfaces and that 

the 3D distribution of parameters may be more important that looking at mean 

values. Similar methodology was applied to study BV/TV and DA distributions in the 

metacarpals of apes (Dunmore et al. in press) and revealed locomotor-linked 

patterns in the trabecular bone. What these studies add to trabecular analysis is the 

ability to statistically compare the distribution of trabecular parameters over large 

surfaces. In prior studies, variation in trabecular parameters within a structure was 

evaluated with the use of multiple VOIs (e.g. Ryan and Ketcham, 2002; Barak et al. 

2013a; Barak et al. 2017). However, using VOIs misses the fine detail that landmark-

based analyses can provide, as analysis is confined to these selected locations. 

Results from these studies highlight the importance of the distribution of trabecular 

parameters in understanding variation of joint position during locomotion, and 

therefore the need to incorporate three-dimensional statistical analysis into 

trabecular studies. In this doctoral dissertation, geometric morphometrics and the 

whole-epiphysis approach are combined to analyse trabecular patterns beneath the 

subchondral layer of the femoral epiphyses and better understand locomotor signals 

in the femur of hominoids. 
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1.12. Summary 

 

The evolution of bipedalism, from its initial appearance to the modern form, 

has received great attention over the last decades. Many have tried to investigate 

how this trait evolved however the debate persists. Trabecular bone analysis can be 

of great value in this research. This tissue’s overall structure increases the bones’ 

integrity while maintaining a light structure and is correlated to joint loads. Given 

that individuals with different locomotor repertoires position their limbs in various 

ways and apply different loads on their limbs we expect that they will have distinct 

trabecular networks. Therefore, analysing these patterns in extant apes can help 

understand relationships with behaviour and eventually understand extinct hominin 

locomotion.  

 

Expanding on prior research which focused on small subvolumes, I analyse 

the whole trabecular structure within the femoral head and the distal femoral 

epiphysis of great apes and humans to identify locomotor signals. Furthermore, I 

extent this methodology to the analysis of extinct hominin trabecular patterns in an 

attempt to understand their modes of locomotion. 
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Chapter 2 

 

Materials and Methods 
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2.1. Sample and Scanning 

 

Individuals from four ape genera were selected to investigate variation in the 

trabecular bone of the femur in extant hominids. The Pan sample was comprised of 

two subspecies. Pan troglodytes verus individuals came from the Taï forest collection 

of the Max Planck Institute for Evolutionary Anthropology. Pan troglodytes 

troglodytes individuals came from a collection of the Smithsonian National Museum 

of Natural History. Four of the P.t.troglodytes individuals were from Gabon and one 

was from Cameroon. The Gorilla individuals were selected from the Primate 

collection of the Powell-Cotton museum. All were western lowland gorillas (Gorilla 

gorilla gorilla); one individual was from the Democratic Republic of the Congo and 

thirteen individuals were from Cameroon. The Pongo individuals came from the 

Mammal collection of the Zoologische Staatssammlung München. The Pongo sample 

consisted of one Pongo abelii individual, one unspecified and five Pongo pygmaeus 

individuals. All specimens were adult and showed no signs of pathologies. The non-

human apes were wildshot, except two orangutans which came from zoos. The 

captive orangutans were only included in the analysis when they showed no 

significant differences to the wild individuals.  

 

The Homo sapiens individuals were from two 19th-20th century cemeteries in 

Germany. One was located at the village of Inden and the other in Gottingen. These 

individuals were selected as they were considered representative of modern human 

populations which (presumably) do not frequently engage in significant levels of high 

impact activities, such as running, since my aim was to identify a bipedal walking 

signal in humans. However, as there were no life history data for these individuals 

this assumption was approached with caution. Additional specimens, for which the 

life history information was available, were scanned from the skeletal collection 

curated by the Skeletal Biology Research Centre at the University of Kent. Inspection 

of the resulting scans however revealed non-bone inclusions which could not be 

separated from the trabecular structure during segmentation and therefore the 
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scans could not be used. Further human specimens were excluded from analysis due 

to permission issues.  

 

Three fossil specimens were included in this dissertation to help identify 

locomotor signals in the femur of Plio-Pleistocene South African hominins. Two were 

proximal femora (StW 311 and StW 522) that came from the Sterkfontein caves in 

South Africa and are curated at the University of Witwatersrand, South Africa. Both 

preserve a complete femoral head but incomplete proximal femoral epiphyses. StW 

522 preserves the femoral neck and part of the proximal diaphysis, while StW 311 

only has a partial femoral neck. Originally, these were both assigned to 

Australopithecus africanus based on the remains and the age of the stratigraphic 

layer they were found in, however after a review of the Sterkfontein stratigraphy 

(Kuman and Clarke, 2000) StW 311 was given a younger age. The additional specimen 

was a distal femur from Sterkfontein (TM 1513) curated at the Ditsong museum, 

South Africa. This was also assigned to A. africanus. TM 1513 is nearly complete, only 

missing part of the lateral portion of the articulation for the patella. Furthermore, to 

examine variation in the trabecular patterns of the femoral head in extinct obligate 

bipeds, a fossil Homo sapiens (OHALO II H2) curated at the University of Tel Aviv, and 

two Neanderthal specimens (Krapina 213 and Krapina 214) curated at the Croatian 

Museum of Natural History were included in the analysis. These specimens preserve 

complete proximal epiphyses. Additional fossil specimens (D322 15, D322 16, SK 82, 

SK 97, SK 3121 and SKW 19) were scanned and processed, however were excluded 

from analyses as either they did not preserve enough of the trabecular structure or 

they presented issues during segmentation. 

 

Micro-computed tomographic scans of the extant sample were obtained 

using a Nikon XT 225 ST microCT scanner in the Cambridge Biotomography Centre 

(Gorilla) and a BIR ACTIS 225/300 industrial microCT scanner in the Department of 

Human Evolution at the MPI (Pan, Pongo, Homo and fossils). Both epiphyses were 

scanned separately to achieve the highest possible resolution and resolutions ranged 

from 0.030 to 0.085 μm. Scans were reconstructed from 1080 projections into 16-bit 

TIFF image stacks of isotropic voxel sizes. The scans were reoriented into approximal 
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anatomical position in AVIZO 6.3® (Visualization Sciences Group, SAS) and cropped 

to reduce dataset size. Large scans were down-sampled before further processing.  

 

 

2.2. Segmentation 

 

In preparation for analysis in medtool 4.1 the extant sample scans and the 

Neanderthals were converted from 16-bit unsigned short datasets into 8-bit datasets 

using the Ray Casting Algorithm (Scherf and Tilgner, 2009) (Figure 2.1). This algorithm 

separates bone from air by tracking the edges of the trabeculae and cortical bone. It 

requires the definition of three values: a lower and upper threshold of the greyscale 

range of bone, as well as an edge strength value which represents the difference 

between grey values in neighbouring bone voxels. The three parameters are selected 

independently for each individual and tested prior to final segmentation. The product 

of the segmentation is a binary dataset where everything that is not bone has a value 

of 0, while bone has a value of 1.  

 

 

Figure 2.1. Example of RCA segmentation of a Gorilla distal femur. (A) Original greyscale 

dataset. (B) Resulting segmented dataset. 

 

 

The remaining fossils were segmented using the MIA-clustering method 

(Dunmore et al. 2018). This method requires the definition of a grid-size and a set 
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number of classes. Voxels are assigned to the different classes on a probability basis. 

Initially, this is done with a global segmentation within each sub-volume, or grid, and 

then a local fuzzy c-means segmentation. Voxels in overlapping cubes are assigned 

to the class with the highest membership probability. In this dissertation grid-size 

was selected by measuring the thickness of the thickest trabeculae in a cross-section 

of the fossils and selecting a slightly higher value. Three classes were used for the A. 

africanus fossils and two for the H. sapiens to distinguish inclusions from bone and 

air. Finally, a labels-field was used in AVIZO 6.3® (Visualization Sciences Group, SAS) 

to isolate the cortical and trabecular structure and obtain the segmented binary file.  

 

 

2.3. Trabecular architecture analysis 

 

Following segmentation, the binary datasets were processed in medtool 4.1 

(www.dr-pahr.at). A clean filter was initially applied to remove voxels defined as 

bone which are not attached to the main structure. This was used to eliminate 

“noise” voxels which were incorrectly classified as bone. Subsequently, a close 

operation was performed to seal holes along the outer cortical bone. In this 

operation a sphere of predefined size was used to identify small inconsistencies in 

the outer shell and then classify them as bone. The size of the sphere was selected 

based on the mean thickness of trabeculae.  

 

Morphological filters were then used to define the area of the whole 

structure. Seven rays, one in each direction of a unit cube and three across the 

diagonals, were used to detect the edges of the cortical shell. These identified the 

first voxels in each direction that were marked as “bone”, or had a value of 1, and 

the last voxels on the opposite end to identify the area of the structure. All outer 

voxels that were met and marked as bone more, or equal, to 5 out of 7 times were 

considered as edge voxels. A closing operation with a spherical kernel then “closed” 

all voxels between those of the external shell, by assigning them a value of 1. This 

resulted in a dataset where the area of the bone (including the cortical shell, 



 49 

trabecular bone and the inner air) had a value of 1 and everything surrounding the 

cortical shell had a value of 0. Next, the area deep to the cortical shell was defined. 

Voxels of the outer shell were identified and the first empty voxels deep to those 

were used to mark the beginning of the trabecular area. In the resulting dataset all 

voxels of the outer shell and air were given a value of 0, and the inner voxels a value 

of 1 (Figure 2.2A). In this step, both an opening and a closing operation were 

performed to ensure accurate isolation of the inner area.  

 

Figure 2.2. Example of processing steps prior to meshing. (A) Definition of inner trabecular 

area. (B) Trichromatic dataset with defined outer air (0), inner air (1) and trabecular bone 

(2). (C) Background grid used to measure BV/TV and DA. 

 

 

During the definition of the different areas, separation of trabecular from 

cortical bone was sometimes problematic, specifically in c-shaped regions of the 

bone. This was overcome by applying a corrective filter within a manually defined 

bounding box. The filter runs an iterative algorithm within the selected volume and 

re-assigns voxels to bone or air. This step was added when inspection of the initial 

separation of areas revealed errors. 

 

Next, the defined trabecular area, was subtracted from the whole bone area 

to separate the area occupied by the cortical shell. This was then subtracted from 

the segmented dataset to isolate the trabecular structure for subsequent analysis. 

Pixel-based trabecular thickness was calculated from the trabecular structure 

dataset using the BoneJ plugin in ImageJ. BoneJ calculates the mean thickness of the 
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trabeculae by fitting maximal spheres in all the points of the structure. Local 

thickness is equal to the diameter of the largest sphere fitting within the structure 

and that contains each point. The weighted average is then calculated. This was used 

to validate the size of the sphere used in each specimen in the initial close filter. 

When this calculated sphere size differed to the initial sphere size used, the previous 

steps (from the close filter to the subtraction of the cortical shell) were repeated.  

 

The inner area and trabecular structure datasets were then combined to 

create a trichromatic mask (Figure 2.2B). In this, the outer air had a value of 0, the 

air between trabeculae had a value of 1 and trabecular bone had a value of 2. Before 

trabecular analysis, the isolated inner structure was used to create a 3D mesh. The 

resolution of the inner area dataset was coarsened by a factor of 4 and a cleaning 

filter, followed by a closing operation, was applied. Tetrahedral finite elements with 

a size of 0.6 mm were fitted to the resulting dataset, creating the model of the inner 

area and smoothing of the mesh was achieved through optimization filters. 

Tetrahedral elements were preferred over hexahedral elements as they have been 

previously used in similar trabecular analysis (e.g. Tsegai et al. 2013; Skinner et al. 

2016) and research has shown that finite element models built with tetrahedral 

elements produce better results in trabecular analysis than hexahedral element 

models (Ulrich et al. 1998). 

 

Finally, the trichromatic dataset was divided into rectangular cells with 

3.5mm width (Figure 2.2C) and a spherical sampling sphere of 7.5 mm was used to 

calculate local BV/TV and DA at each node of the grid. The size of the sphere was 

chosen to ensure a meaningful measurement of trabeculae. BV/TV was calculated as 

the ratio of bone voxels to air voxels within each sphere and DA was calculated with 

the Mean Intercept Length method and as DA=1-(smallest eigenvalue/largest 

eigenvalue). The calculated values were then interpolated onto the centre of the 

different tetrahedral elements. This resulted in the visualisation of the 3D 

distribution of these values, where BV/TV and DA values were represented by a 

colour scale (Figure 2.3). Additionally, in the proximal femur a Paraview function was 

used to threshold BV/TV values and visualise internal concentrations.  
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Figure 2.3. Distribution maps. (A) BV/TV distribution map. (B) DA distribution map. 

 

Medtool 4.1 was further used to obtain mean values for trabecular 

parameters within regions of the epiphyses. Trabecular separation (Tb.Sp) and 

trabecular thickness (Tb.Th) were calculated based on the Hildebrand and Ruesegger 

(1997) method, which is similar to what is described in the BoneJ plugin. Trabecular 

number (Tb.N) was calculated as Tb.N=1/(Tb.Th+Tb.Sp). 

 

 

2.4. Geometric morphometrics 

 

Interspecific differences in BV/TV distributions beneath the subchondral layer 

were examined statistically using geometric morphometrics in combination with the 

approach described above. Homologous landmarks were selected on the femoral 

head and the distal femoral articular surface of the four studied taxa (described in 

Tables 2.1 and 2.2). BV/TV values at each landmark were used for further statistical 

analysis. 
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Table 2.1. Femoral head landmark description. 

Landmark  Description Type 

1 Medial point on head-neck border at neck 
midline 

III 

2 Lateral point on head-neck border at neck 
midline 

III 

3 Posterior point on head-neck border at neck 
midline 

III 

4 Anterior point on head-neck border at neck 
midline 

III 

5 Superior point at midpoint of the head III 
6-12 Curve between fixed landmarks 1 and 3 IV 
13-19 Curve between l fixed landmarks 3 and 2 IV 
20-26 Curve between fixed landmarks 2 and 4 IV 
27-33 Curve between fixed landmarks 4 and 1 IV 
34-41 Semilandmarks between fixed landmarks 1 

and 5 
Semilandmarks 

42-49 Semilandmarks between fixed landmarks 5 
and 2 

Semilandmarks 

50-57 Semilandmarks between fixed landmarks 3 
and 5 

Semilandmarks 

58-65 Semilandmarks between fixed landmarks 5 
and 4 

Semilandmarks 

66-109 Semilandmarks across the inferior-posterior 
quarter 

Semilandmarks 

110-153 Semilandmarks across the superior-posterior 
quarter 

Semilandmarks 

154-197 Semilandmarks across the superior-anterior 
quarter 

Semilandmarks 

198-241 Semilandmarks across the inferior-anterior 
quarter 

Semilandmarks 
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Table 2.2. Distal femur landmark description. 

Landmark Description Type 

1 Point where superior border meets medial 
edge of patellar groove 

III 

2 Point where medial border of patellar groove 
meets medial border of medial condyle 

II 

3 Medialmost point of superior border of 
medial condyle 

III 

4 Lateralmost point of superior border of 
medial condyle 

III 

5 Deepest point of intercondylar notch II 
6 Medialmost point of superior border of 

lateral condyle 
III 

7 Lateralmost point of superior border of 
lateral condyle 

III 

8 Point where lateral border of patellar groove 
meets lateral border of lateral condyle 

II 

9 Point where superior border meets lateral 
edge of patellar groove 

III 

10-14 Curve between fixed landmarks 1 and 2 IV 
15-23 Curve between fixed landmarks 2 and 3 IV 
24-26 Curve between fixed landmarks 3 and 4 IV 
27-34 Curve between fixed landmarks 4 and 5 IV 
35-41 Curve between fixed landmarks 5 and 6 IV 
42-43 Curve between fixed landmarks 6 and 7 IV 
44-49 Curve between fixed landmarks 7 and 8 IV 
50-52 Curve between fixed landmarks 9 and 1 IV 
53-120 Semilandmarks across the patellofemoral 

articulation 
Semilandmarks 

121-169 Semilandmarks across the lateral condyle Semilandmarks 
170-253 Semilandmarks across the medial condyle Semilandmarks 

 

 

Prior to landmarking, the surface tetrahedra of each model were extracted 

and Poisson surface reconstruction was used in MeshLab to smooth the surface. The 

fixed homologous landmarks were first identified for both epiphyses and a 

repeatability test was used to evaluate their reliability. For this, the fixed landmarks 

were selected on three individuals of the same taxon at ten different occasions and 

their PCA coordinates were visualised using R v3.4.1 (R Core Team, 2017) (Figure 2.4). 

Since the difference between each set of repeated landmarks was smaller than the 

difference between individuals these landmarks were deemed appropriate.  
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Figure 2.4. Repeatability test for fixed landmarks used in the proximal and distal femur. 

(A) Repetitions of fixed landmarks on the femoral head of three Gorilla gorilla specimens; 

prox1 is specimen M95, prox2 is specimen M96 and prox3 is specimen M798. PC1 explains 

53% of the variance and PC2 explains 35% of the variance. (B) Repetitions of fixed 

landmarks on the distal femur of three Pan troglodytes verus specimens; dist1 is specimen 

MPITC 11778, dist2 is specimen MPITC 11800 and dist3 is specimen MPITC 13434. PC1 

explains 68% of the variance and PC2 explains 18% of the variance. 

 

 

The landmark template used for both epiphyses are shown in Figure 2.5. In 

the proximal femur, five fixed landmarks were selected; one in each direction of the 

head-neck boundary and one on the surface of the femoral head at the midpoint of 

the four corner landmarks. Four curves were then defined along the boundary of the 

articulation between the corner landmarks. In the distal femur, nine fixed landmarks 

were selected on the boundary of the articular surface following Gould (2014). Eight 

curves were defined between these fixed landmarks. The curve extending along the 

later border of the articulation for the patella was excluded as it is missing in TM1513.  

 

Equally-spaced semilandmarks were then defined across the articular surface 

for each epiphysis (Figure 2.5). In the proximal femur two hundred and eight 

semilandmarks were defined, while in the distal femur two hundred and one 

semilandmarks were defined. Both the fixed landmarks and the curve landmarks 

were placed on all individuals using Checkpoint (Stratovan Corporation), while the 
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surface semilandmarks were placed on one specimen and then projected on the 

remaining specimens using the Morpho package in R v3.4.1 (R Core Team, 2017) for 

each epiphysis. Semilandmarks were then relaxed onto the surface of the specimens 

reducing bending energy. Subsequently, the curve as well as surface semilandmarks 

were allowed to slide in 3D while minimising Procrustes distance. 

 

 

Figure 2.5. Template of landmarks used for the proximal and distal femur. Fixed 

landmarks are displayed in red, curve landmarks are displayed in blue and patch landmarks 

are displayed in green. (A) Lateral (B) anterior and (C) superior views of the proximal femur. 

(D) Anterior, (E) inferior and (F) posterior views of the distal femur. 

 

 

The resulting landmarks of each individual were matched to the closest 

neighbouring tetrahedron of their distribution map using nearest neighbour 

interpolation. This utilises the coordinates of each landmark to find the surface 

tetrahedron of the individual’s BV/TV distribution map with the closest centroid 

coordinates. Since the centroid holds the BV/TV value of the tetrahedron this value 

can be extracted to the landmark. Here BV/TV values were extracted for all the 

landmarks of the individuals and average distribution maps were constructed to 
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visualise taxon-specific patterns of trabecular bone distribution, as well as compare 

patterns interspecifically. 

 

2.5. Statistical analysis 

 

All statistical analyses were performed using R v3.4.1 (R Core Team, 2017). The 

Kruskal-Wallis test was used to test for interspecific differences in trabecular 

parameters and the Wilcoxon rank sum test was used for post-hoc pairwise 

comparisons. Furthermore, principal components (PC) analyses were used to further 

evaluate interspecific differences.  

 

Additionally, to test for interspecific differences in the landmark-based 

distribution I performed a PCA and a pairwise permutational MANOVA test. The first 

three principal components, which explain more than 50% of the variation in the 

PCA, were used in the latter as the initial number of variables (i.e. BV/TV values at 

each landmark) exceeded the number of individuals. Finally, permutational 

Hotelling’s T2 tests with Bonferroni corrections were carried out to evaluate whether 

the distributions of the fossils could belong to the extant taxa samples.  The 

permutational Hotelling’s T2 tests could not be performed for Pan troglodytes 

troglodytes or Pongo due to their small sample sizes. 
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Chapter 3 

 

Trabecular architecture of the great ape and 

human femoral head 
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This chapter has been submitted for publication to the Journal of Anatomy. 

 

 

Abstract 

 

Studies of femoral trabecular structure have shown that the orientation and 

volume of bone is associated with variation in loading and could be informative about 

individual joint positioning during locomotion. In this study I analyse for the first time 

trabecular bone patterns throughout the femoral head using a whole-epiphysis 

approach to investigate how potential trabecular variation in humans and great apes 

relates to differences in locomotor modes. Trabecular architecture was analysed 

using microCT scans of Pan troglodytes (n=20), Gorilla gorilla (n=14), Pongo sp. (n=5) 

and Homo sapiens (n=12) in medtool 4.1. My results revealed differences in bone 

volume fraction (BV/TV) distribution patterns, as well as overall trabecular 

parameters of the femoral head between great apes and humans. Pan and Gorilla 

showed two regions of high BV/TV in the femoral head, consistent with hip posture 

and loading during two discrete locomotor modes; knuckle-walking and climbing. 

Most Pongo specimens also displayed two regions of high BV/TV, but these regions 

were less discrete and there was more variability across the sample. In contrast, 

Homo showed only one main region of high BV/TV in the femoral head and had the 

lowest BV/TV, as well as the most anisotropic trabeculae. The Homo trabecular 

structure is consistent with stereotypical loading with a more extended hip 

compared with great apes, which is characteristic of modern human bipedalism. My 

results suggest that holistic evaluations of femoral head trabecular architecture can 

reveal previously undetected patterns linked to locomotor behaviour in extant apes 

and can provide further insight into hip joint loading in fossil hominins and other 

primates. 
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3.1. Introduction 

 

 

The morphology of the proximal femur has played a key role in the 

reconstruction of locomotion in extant and extinct primates (e.g. McHenry and 

Corruccini, 1978; Burr et al. 1982; Ruff et al. 1991; Ruff and Runestad, 1992; Ruff, 

1995; Harmon, 2007; Harmon, 2009b; Ruff and Higgins, 2013) and particularly in 

understanding the form of bipedalism used by australopiths (Stern and Susman, 

1983; Susman et al. 1984; Crompton, et al. 1998; Carey and Crompton, 2005; 

Harmon, 2009a; Lovejoy and McCollum, 2010; Raichlen et al. 2010; DeSilva et al. 

2013). External morphology provides considerable evidence of functional links 

between morphology and locomotion. However, due to possible phylogenetic lag, 

which results in traits that are no longer functionally significant being present, 

inferences about behaviour based on external traits alone have been questioned 

(e.g. Ward, 2002). Variation in internal trabecular bone structure across different 

regions of the skeleton can provide additional evidence to help reconstruct joint 

postures and to infer potential differences in locomotor behaviour in extant and 

extinct primates (e.g. Thomason 1985a,b; Ryan and Ketcham, 2002; Volpato et al. 

2008; Ryan and Shaw, 2012; Tsegai et al. 2013; Skinner et al. 2015; Stephens et al. 

2016). Indeed, the ability of trabecular bone to reflect mechanical loading was first 

noted in the human proximal femur (Ward, 1838; Wolff, 1892, 1986). It is not yet 

fully understood how mechanical or non-mechanical factors trigger and ultimately 

affect the organisation of trabeculae. For example, a range of activities, including 

high strain/low frequency loading and low strain/high frequency loading have been 

shown to elicit trabecular reorganisation (Rubin et al. 1990; Rubin et al. 2001; Judex 

et al. 2003; Wallace et al. 2014). Furthermore, differences in body mass (Scherf, 

2008; Cotter et al. 2009; Doube et al. 2011; Fajardo et al. 2013; Ryan and Shaw, 

2013), hormones (e.g. Gunness-Hey and Hock, 1984; Miyakoshi, 2004; Walsh, 2015), 

and genetic or systemic factors (Havill et al. 2010; Tsegai et al. 2018a) have been 

shown to influence aspects of trabecular structure as well. However, computational 

(e.g. Huiskes et al. 2000; Keaveny et al. 2001) and experimental studies have 
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demonstrated that modelling of trabeculae is correlated with applied loads, and 

trabecular strut reorganisation can be instigated by changes in the direction, 

magnitude and/or frequency of load (Biewener et al. 1996; Mittra et al. 2005; 

Pontzer et al. 2006; Polk et al, 2008; Barak et al. 2011). Furthermore, trabecular bone 

volume fraction (BV/TV) and trabecular strut alignment (degree of anisotropy, or DA) 

explain up to 98% of bone stiffness (i.e. Young’s modulus of elasticity) (Stauber et al. 

2006; Maquer et al. 2015; Odgaard et al. 1997). Thus, variation in the distribution of 

BV/TV and DA can provide insight into joint loading and, in turn, locomotor 

behaviours in primates.  

 

Several studies have revealed that variation in the trabecular architecture of 

the primate hip and proximal femur is associated with differences in locomotion (e.g. 

Rafferty and Ruff, 1994; MacLatchy and Muller, 2002; Volpato et al. 2008; Ryan and 

Shaw, 2012; Saers et al. 2016). For example, Volpato and colleagues (2008) 

demonstrated that the orientation of trabecular struts in the ilium and femoral neck 

is associated with joint positioning in the hip of bipedally-trained Japanese macaques 

and reflects alterations in the direction of load. Comparable changes in trabecular 

structure that reflect differences in joint orientation were also found in the distal 

femora of guinea fowls (Pontzer et al. 2006) and distal tibiae of sheep (Barak et al. 

2011). Furthermore, Scherf (2008) found that trabecular structure within the femoral 

head, neck and both trochanters of climbing primates (e.g. Alouatta seniculus) had 

more isotropic architecture, while specialised primates (e.g. Homo sapiens) in which 

the femur experienced more stereotypical loading had more anisotropic structure. 

Similar results were found in leaping primates, which in comparison to non-leaping 

primate species, had more anisotropic trabeculae in the inferior aspect of the 

femoral head (Ryan and Ketcham, 2002), and a different principal strut orientation 

(Ryan and Ketcham, 2005).  

 

More recently, Ryan and Shaw (2012) investigated the trabecular patterns of 

the femoral head in several anthropoid taxa and found that different suites of 

trabecular variables could distinguish among taxa and locomotor groups. In 

particular, modern humans were distinct in having relatively few, highly anisotropic 
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trabeculae that are thin and plate-like, Pan had relatively numerous, thick and 

isotropic trabeculae, while Pongo had relatively few and isotropic trabeculae. 

Additional studies investigating different human samples have also shown that 

femoral head trabecular structure reflects variation in mobility levels, with more 

sedentary agriculturalists having relatively low BV/TV compared with more active 

foragers (Ryan and Shaw, 2015; Saers et al. 2016; Ryan et al. 2018). Interestingly, 

more active human foragers have relatively high BV/TV that falls within the range of 

most extant hominoids apart from Pan (Ryan et al. 2018). Despite this overlap in 

BV/TV between some human samples and other hominoids, humans have 

consistently been shown to have the most anisotropic femoral head structure 

compared to other great apes (Ryan and Shaw, 2015; Ryan et al. 2018). Furthermore, 

the human trabecular pattern has been shown to develop during ontogeny when 

independent bipedalism develops and the gait matures (Ryan and Krovitz, 2006; 

Reissis and Abel, 2012; Milovanovic et al. 2017). Altogether, these studies suggest 

that the trabecular bone of the femoral head holds a strong functional signal of 

locomotor loading in primates.  

 

Conversely, other studies have failed to detect a strong locomotor signal in 

the femoral head (Ryan and Walker, 2010; Shaw and Ryan, 2012), femoral neck 

(Fajardo et al. 2007) and distal femur (Carlson et al. 2008). Carlson and colleagues 

(2008) did not detect differences in the DA of the distal femoral metaphysis between 

mice with turning locomotion and mice with non-turning locomotion. Similarly, Ryan 

and Walker (2010) did not find any significant differences in the DA and BV/TV 

patterns of the femoral head in a broad sample of platyrrhines and catarrhines. 

Furthermore, Shaw and Ryan (2012), who examined the subarticular trabecular and 

mid-diaphyseal cortical patterns in the femur and humerus of a sample of primates, 

concluded that only the mid-diaphyseal cortical bone contains a clear functional 

signal linked to the differential use of the two limbs between different locomotor 

groups. 

 

The discrepancy in the findings of previous studies may, in part, be an artefact 

of the volume-of-interest (VOI) method that was used. A VOI quantifies only a 
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subsample of trabecular structure within a given region and results can vary 

depending on its size and position (Fajardo and Müller, 2001; Kivell et al. 2011). 

Additionally, challenges arise when extracting homologous VOIs in taxa that vary in 

external morphology. Prior research has demonstrated that additional functional 

insight can be gained from investigating the trabecular architecture within an 

epiphysis as a whole (Tsegai et al. 2013; Skinner et al. 2015; Stephens et al. 2016; 

Sylvester and Terhune, 2017; Tsegai et al. 2017). Here I apply a whole-epiphysis 

approach to study the trabecular structure throughout the femoral head of 

chimpanzees (Pan troglodytes), lowland gorillas (Gorilla gorilla), orangutans (Pongo 

sp.) and humans (Homo sapiens), which vary in locomotor behaviours and are 

relevant to the reconstruction of locomotion in fossil hominins.   

 

 

3.1.1. Locomotion, hip morphology and predicted joint posture 

 

Habitual locomotor activities and associated hip joint angles vary between 

great apes and humans (Figure 3.1). Chimpanzees are predominantly 

terrestrial/arboreal quadrupedal knuckle-walkers, but also engage frequently in 

arboreal climbing and, less so, bipedalism (Hunt, 1991b; Doran, 1992, 1993a). In all 

these locomotor modes, the hindlimb plays key role in propulsion and experiences 

higher vertical force than the forelimb (Demes et al. 1994; Hannah et al. 2017). 

During terrestrial quadrupedalism in chimpanzees, the mean hip angle at foot 

touchdown is 65o and at toe-off it is 98.2o (Finestone et al. 2018). Kinematics during 

chimpanzee vertical climbing have, to my knowledge, only been studied in one 

individual and show that the flexion-extension range at the hip increases 

substantially compared with terrestrial quadrupedalism, with hip angles ranging 

from ~25o to ~105o (Nakano et al. 2006). A more comprehensive study of bonobos 

(n=4 adults), which share similar hindlimb anatomy with chimpanzees (e.g. Payne et 

al. 2006; Myatt et al. 2011), yielded hip angles ranging from 55o to 135o during 

vertical climbing (Isler, 2005). 
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Lowland gorillas are also predominantly quadrupedal knuckle-walkers 

(Remis, 1995; Crompton et al. 2010). They often engage in arboreal climbing and 

bipedalism, but less frequently than chimpanzees (Remis, 1995; Crompton et al. 

2010). During terrestrial quadrupedalism in gorillas, hip angles range from 77o at foot 

touchdown to 120.6o at toe-off (Finestone et al. 2018). During vertical climbing, hip 

angle range is similar to that of bonobos, ranging from approximately 45o to 135o 

(Isler, 2005). Gorilla climbing frequency and technique varies with sex and body size, 

with the range of hip flexion-extension being reduced in larger males compared to 

smaller females (Remis, 1995; Remis, 1999; Isler, 2005). However, gorillas show less 

intraspecific variation in climbing techniques than bonobos (Isler, 2005). 

 

Orangutans employ a complex set of locomotor behaviours, which are mostly 

torso orthograde, including vertical climbing, bridging, suspension from various 

limbs, and terrestrial quadrupedalism (Cant, 1987; Isler and Thorpe, 2003; Thorpe 

and Crompton, 2006; Thorpe et al. 2009). Their hips are more mobile than those of 

other apes, which allows them to use their hindlimbs in more varied ways (Morbeck 

and Zihlman, 1988; Tuttle and Cortright, 1988; Isler, 2005). During terrestrial 

locomotion, the orangutan hip angle is 68.3o at touchdown and 107.3o at toe-off 

(Finestone et al. 2018). During vertical climbing, orangutans are able to lift their feet 

further above their hips than African apes, such that their flexion-extension angle 

ranges from around 30o to 135o (Isler, 2005).  

 

Adult humans walk exclusively terrestrially on two legs, extending both their 

hips and knees (Alexander, 1994). During the gait cycle, hip extension reaches 160o 

at touchdown and 175o at toe-off (Abbass and Abdulrahman, 2014). Humans also 

engage in running, which alters the joint angle of the hip and the resulting load on 

the femoral head (Ounpuu, 1990; Ounpuu, 1994; van den Bogert et al. 1999; 

Giarmatzis et al. 2015). Increase in speed is linked to more flexed hip joints and a 

generally increased range of motion at the hip (Mann and Hagy, 1980; Novacheck, 

1998). At touchdown during running the hip is flexed at 30-40o, while also being 

externally rotated, and at push off it is extended and internally rotated (Slocum and 
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James, 1968). Furthermore, during running (3.5m/s), loads have been shown to 

increase to greater than double that of walking (1.5 m/s) (van den Bogert et al.1999). 

  

 

 

Figure 3.1. Comparison of hip posture during different habitual locomotor activities in 

great apes (A-B) and humans (C-D). (A) Great ape hip posture in maximum hip flexion (~55-

60 degrees) during climbing (Isler, 2005). (B) Great ape hip posture at toe-off (~110 

degrees) during terrestrial knuckle-walking (Finestone et al. 2018). (C) Human hip posture 

at toe-off (~175 degrees). (D) Human hip posture at heel-strike (~160 degrees). 

 

Great apes and humans vary in the external morphology of the hip joint. 

Chimpanzees and gorillas have a relatively small femoral head, a short femoral neck 

as well as a superoinferiorly expanded greater trochanter compared to orangutans 

(McHenry and Corruccini, 1978; Harmon, 2007). Chimpanzees have a “laterally facing 

acetabulum” (Jenkins, 1972), however comparative quantitative data of acetabulum 

anteversion do not exist for apes and humans (Hogervorst et al. 2009 and references 

therein). Furthermore, in gorillas the acetabulum is relatively deep, compared to 

other apes (Schultz, 1969), perhaps reducing capacity for mobility at the hip. In 

orangutans the greater trochanter is less superoinferiorly expanded than in the 

African apes and is positioned inferiorly to the femoral head, which may enhance 

rotational capacity at the hip joint (Aiello and Dean, 2002; Harmon 2007). Orangutans 

also have a relatively large head, long neck, and a greater trochanter that is less 

superoinferiorly expanded than that of African apes and which is positioned inferiorly 

relative to the femoral head (Aiello and Dean, 2002; Harmon, 2007). These features 

of the orangutan proximal femur, plus the absence of a subchondral ligamentum 

teres insertion at the centre of the femoral head (Crelin, 1988; Ward, 1991; Ruff, 
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2002; Harmon, 2007), enhance rotational capacity and allow greater mobility at the 

hip joint compared to other hominoids.  

 

Humans have a long femoral neck and a valgus angle at the knee, which 

compensate for the mechanical disadvantage of increased bi-acetabular distance 

(Lovejoy, 1975; McHenry and Corruccini, 1978; Rafferty, 1998; Lovejoy et al. 2002; 

Harmon, 2007) and result in adduction of the hips during the stance phase (O’Neill 

et al. 2015). The greater trochanter is less superoinferiorly expanded compared to 

other apes (Harmon, 2007). Furthermore, the human acetabulum is relatively deep 

and the femoral head is relatively large (Schultz, 1969; Jungers, 1988). This hip 

morphology is thought to help dissipate the increased load that occurs when 

supporting body mass over two, rather than four, limbs. Biomechanical studies have 

revealed that the peak contact force on the human hip during walking is directed 

posteriorly, laterally and inferiorly (Pedersen et al. 1997) and is located at the 

posterior aspect (Paul, 1976; English and Kilvington, 1979). Furthermore, pressure on 

the acetabulum is mainly located posteriorly during different activities, such as 

standing up or sitting down (Yoshida et al. 2006). Lack of congruence between the 

femoral head and the acetabulum, combined with an anterior-facing acetabulum 

result in the anterior region of the femoral head not being fully covered by the 

acetabulum during bipedal locomotion (Hogervorst et al. 2009; Bonneau et al. 2014). 

Thus, the anterior region of the femoral head and acetabulum play a smaller role in 

load transmission compared to other regions of the hip joint.  

 

Examining the potential links between internal femoral bone structure and 

extant ape locomotion will greatly facilitate attempts to reconstruct the locomotion 

of extinct hominins (e.g. Skinner et al. 2015). Here I provide this comparative context 

by analysing the trabecular architecture throughout the entire femoral head in 

extant great apes and humans that vary in their locomotor behaviours. I quantify 

BV/TV, DA, trabecular number (Tb.N), trabecular separation (Tb.Sp) and trabecular 

thickness (Tb.Th) throughout the femoral head. Based on the locomotor and 

biomechanical studies reviewed above, I make the following predictions regarding 

species variation in femoral head trabecular structure:  
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1. BV/TV distribution in the femoral head 

 

The distribution of BV/TV throughout the femoral head will reflect joint 

positioning and loading during habitual locomotion. In Pan I expect high BV/TV to 

extend from the posterior and superior aspect of the femoral head to the anterior 

region, reflecting hip angles and loading during knuckle-walking locomotion and 

vertical climbing (Finestone et al. 2018; Isler 2005). I predict that Gorilla will show a 

similar pattern of BV/TV distribution, although the region of high BV/TV is expected 

to extend over a smaller area of the femoral head compared with that of Pan, 

reflecting a reduced range of motion (Hammond, 2014) and different 

flexion/extension angles at the Gorilla hip during knuckle-walking and climbing 

(Finestone et al. 2018; Isler 2005). I predict that Pongo will show the most variable 

BV/TV distribution pattern, reflecting loading of the femoral head at different hip 

joint angles, with high BV/TV spanning the whole of the superior area of the femoral 

head. Finally, I expect a more restricted region of high BV/TV in Homo that will be 

concentrated superiorly and posteriorly on the femoral head, reflecting the 

stereotypical loading pattern of bipedal locomotion.  

 

2. Mean trabecular parameters in the femoral head 

 

I hypothesise that relative interspecific differences in mean BV/TV values will 

be consistent with those of previous trabecular studies on the femur (e.g. Georgiou 

et al. 2018; Ryan et al. 2018; Tsegai et al. 2018a) and other postcranial elements (e.g. 

Maga et al. 2006; Cotter et al. 2009; Scherf et al. 2013; Tsegai et al. 2013; Tsegai et 

al. 2017), such that Pan will have the highest BV/TV, Homo will have the lowest, and 

Gorilla and Pongo will be intermediate between these two taxa. Furthermore, mean 

DA of the entire femoral head will reflect the range of motion of the hip joint during 

habitual locomotion. Pan and Gorilla will display intermediate DA values, showing 

less anisotropic femoral heads than Homo, because they engage in both terrestrial 

and arboreal behaviours that employ an increased range of motion at the hip. Pongo 

will be the most isotropic, reflecting their highly mobile hip joint and diverse 

positioning of the proximal femur during their varied quadrumanous locomotor 
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behaviours. Homo will be the most anisotropic, consistent with more stereotypical 

loading of the hip joint during bipedal locomotion.  

 

In addition to BV/TV and DA, I quantify mean Tb.N, Tb.Sp and Tb.Th within 

the femoral head to better understand potential variation in the trabecular 

architecture across my sample and for comparison with previous studies (e.g. Ryan 

and Shaw, 2012; Ryan and Shaw, 2015; Ryan et al. 2018). In primates these 

parameters scale negatively allometrically with body size (Barak et al. 2013b; Ryan 

and Shaw, 2013) meaning results may be affected by body mass. BV/TV and DA are 

expected to better reflect functional adaptations, as DA does not to scale with body 

mass and BV/TV either shows no relationship (Doube et al. 2011; Barak et al. 2013b) 

or a weak positively allometric relationship (Ryan and Shaw, 2013) with body mass. 

 

 

3.2. Materials and Methods 

 

3.2.1. Study sample 

 

Microcomputed tomographic scans were used to analyse trabecular 

morphology in the femoral head of great apes and humans. Details of the study 

sample are provided in Table 3.1. The P. troglodytes sample (n=20) is comprised of 

two subspecies; Pan troglodytes verus (n=15) from the Taï Forest collection curated 

at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, and 

Pan troglodytes troglodytes (n=5) curated at the Smithsonian National Museum of 

Natural History in Washington, D.C., USA.  The Gorilla gorilla gorilla sample (n=14) is 

from the Powell-Cotton Museum, UK, of which 13 individuals are from Cameroon 

and one is from the Democratic Republic of the Congo. The Pongo sample (n=5 and 

all female) is from the Zoologische Staatssammlung München, Germany. Four of the 

individuals are P. pygmaeus, while one is P. abelii. The H. sapiens sample (n=12) is 

curated at the Georg-August-Universität Göttingen, Germany. Ten of the individuals 

come from a Catholic cemetery in Göttingen, which was used between 1851 and 
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1889, and two come from a cemetery in the village of Inden that was used between 

1877 and 1924. All specimens were adult based on complete epiphyseal fusion 

throughout the skeleton and none showed obvious signs of pathology.  

 

Table 3.1. Study sample taxonomic composition, voxel size range, sex, and microCT 

scanning parameters. 

Taxon Locomotor 

mode 

N Sex Voxel size 

(mm) 

Scanning 

Pan 
troglodytes 

Arboreal/ 
knuckle-
walker 

20 13 
female, 6 
male, 1 
unknown 

0.04-0.05 kV:120-130, μA: 
80-100, 0.25 or 
0.5mm brass 

Gorilla gorilla 
gorilla 

Terrestrial 
knuckle-
walker 

14 7 female, 
7 male 

0.05-0.08 kV:130-170, μA: 
110-160, 0.1-
0.5mm copper 

Pongo sp. Arboreal/ 
torso-
orthograde 
suspension 

5 5 female 0.04-0.045 kV:140, μA: 140, 
0.5mm brass 

Homo sapiens Bipedal 12 3 female, 
8 male, 1 
unknown 

0.06-0.07 kV:130-140, μA: 
100-140, 0.5mm 
brass 

 

 

The Pan, Pongo and Homo samples were scanned at the Department of 

Human Evolution in the Max Planck Institute for Evolutionary Anthropology, Leipzig, 

Germany using a BIR ACTIS 225/300 industrial microCT scanner. The Gorilla sample 

was scanned at the Cambridge Biotomography Centre in the Department of Zoology 

at the University of Cambridge, Cambridge, UK using a Nikon XT 225 ST microCT 

scanner. All specimens were scanned at the highest possible resolution based on the 

size of the bone, ranging from 0.029-0.082 mm, and were reconstructed into 16-bit 

TIFF stacks with isometric voxel sizes. Reconstructed datasets were re-oriented to 

the same anatomical position and cropped in AVIZO 6.3 ® (Visualization Sciences 

Group, SAS). All specimens, except six gorillas, were re-sampled due to 

computational limitations of medtool 4.1(www.dr-pahr.at) and resultant resolutions 
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are given in Table 3.1. Bone was segmented from air using the Ray Casting Algorithm 

(Scherf and Tilgner, 2009).  

 

 

3.2.2. Trabecular architecture analysis 

 

Patterns of trabecular bone distribution throughout the whole femoral head 

were analysed in medtool 4.1 (www.dr-pahr.at), following the protocol described by 

Gross and colleagues (2014). A series of morphological filters were applied to identify 

and remove the cortical shell, thus isolating the trabecular structure. The resulting 

isolated trabecular structure was used to calculate trabecular thickness using the 

BoneJ plug-in (version 1.4.1, Doube et al. 2010) for ImageJ (Schneider et al. 2012) to 

validate the parameters used in the morphological filters for the separation of the 

cortical shell (see Gross et al. 2014). The trabecular area and trabecular structure 

were used to create a trinary mask defining the outer air, inner air and trabecular 

bone. A 3D rectangular background grid with a size of 3.5mm was superimposed on 

the trinary mask and a sphere with a diameter of 7.5mm was used to measure BV/TV 

at each node in medtool 4.1. BV/TV was calculated as the ratio of bone to total 

volume in the sampling spheres. The isolated trabecular structure and a mesh size of 

0.6mm were used to create 3D tetrahedral meshes of all individuals, using CGAL 4.4 

(CGAL, Computational Geometry, http://www.cgal.org) and BV/TV values were then 

interpolated on the tetrahedral elements of each mesh. Distribution maps of BV/TV 

were visualised using Paraview v4.0.1 (Ahrens et al. 2005). The femoral head for each 

specimen was manually isolated in AVIZO 6.3 ® by positioning the mediolateral axis 

facing superoinferiorly and cropping at the head-neck junction to ensure homology 

across specimens. Trabecular parameters (BV/TV, DA, Tb.N, Tb.Sp, Tb.Th) for the 

femoral head were calculated using an in-house script in medtool 4.1. Mean BV/TV, 

DA, Tb.Sp and Tb.Th were quantified within the entire epiphysis and Tb.N was 

calculated from the means of Tb.Sp and Tb.Th. DA was calculated as DA= 1 – [smallest 

eigenvalue/largest eigenvalue], as they were calculated using the mean-intercept-

length method (Whitehouse, 1974; Odgaard, 1997). Tb.Sp and Tb.Th were calculated 
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based on the Hildebrand and Ruesegger (1997) method; Tb.N was then calculated as 

Tb.N=1/(Tb.Th+Tb.Sp).  

 

 

3.2.3. Statistical analysis 

 

Statistical analysis was performed in R v3.4.1 (R Core Team, 2017). The Kruskal-Wallis 

test was used to evaluate interspecies differences in mean trabecular parameters 

(BV/TV, DA, Tb.N, Tb.Sp, Tb.Th) of the femoral head and a Wilcoxon rank sum test 

with Bonferroni correction was used for post-hoc pairwise comparisons.  

 

 

3.3. Results 

 

3.3.1. BV/TV distribution in the femoral head 

 

In Pan, BV/TV distribution maps of the femoral head reveal concentrations of 

high BV/TV in the superior aspect of the femoral head (Figure 3.2; Supplementary 

material for the whole sample). In most Pan individuals (n=12) there are two distinct 

concentrations, one located more posteriorly and one located more anteriorly, 

whereas in some individuals one concentration spans the whole of the superior 

region of the articulation. While the posterior concentration is always present in Pan, 

the location, extent and isolation of the anterior concentration varies between 

individuals.  
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Figure 3.2. Pan BV/TV distribution in the femoral head. Five Pan specimens showing 

variation in the BV/TV distribution across the sample in (A) anterior, (B) posterior and (C) 

superior views. BV/TV is scaled to 0- 0.55. All specimens are from the right side. Specimens 

from left to right (F-female, M-male): MPITC 14996 (F), USNM 220063 (F), USNM 176228 

(M), MPITC 11781 (M), MPITC 11786 (F). 

 

The pattern of BV/TV distribution in Gorilla is similar to that found in Pan 

(Figure 3.3). Two concentrations of high BV/TV are seen in the superior aspect, one 

located anteriorly, and one located posteriorly. Unlike in Pan however, these 

concentrations are distinct from each other in all but three Gorilla individuals, in 

which a region of high BV/TV spans across the superior region of the femoral head. 

There is no apparent difference in the size of the two regions of high BV/TV.  

 

 

Figure 3.3. Gorilla BV/TV distribution in the femoral head. Five Gorilla specimens showing 

variation in the BV/TV distribution across the sample in (A) anterior, (B) posterior and (C) 

superior views. BV/TV is scaled to 0-0.55. All specimens are from the right side. Specimens 

from left to right (F-female, M-male): M96 (F), M264 (M), M372 (M), M856 (F), FC123 (M). 
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Pongo shows a slightly different BV/TV pattern compared to Pan and Gorilla 

(Figure 3.4). The P. pygmaeus individuals show the two concentrations of high BV/TV, 

one in the anterior and one in the posterior, similar to what is found in the African 

apes, however intermediate values persist over the superior portion of the femoral 

head. The extent of this concentration differs between P. pygmaeus individuals: in 

two individuals it is restricted more in the superior aspect of the head, whereas in 

the other two it is enlarged and covers the majority of the femoral head, from the 

anterior to the posterior. When the two concentrations are more well-defined, the 

posterior concentration is generally more mediolaterally expanded than the anterior 

concentration. The P. abelii individual shows lower BV/TV than the other specimens 

and does not show two distinct concentrations.  

 

 

Figure 3.4. Pongo BVTV distribution in the femoral head. Five Pongo specimens showing 

variation in the BV/TV distribution across the sample in (A) anterior, (B) posterior and (C) 

superior views. BV/TV is scaled to 0- 0.55. All specimens are from the right side. Specimens 

from left to right (All female): ZSM 1909 0801, 1907 0660, 1973 0270, 1907 0483, 1907 

0633b. 

 

Homo shows a different pattern to the great apes (Figure 3.5). All individuals 

show one region of high BV/TV located in the posterior and superior aspect of the 

femoral head. Intermediate values of BV/TV expand across the whole of the superior 

aspect of the head of Homo, but with no apparent second concentration of high 

BV/TV in the anterior region as found in great apes. Homo individuals also display 

intermediate BV/TV on the inferior aspect of the head. This expansion of 

intermediate BV/TV values along the inferior is not seen in the other apes. 
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Figure 3.5. Homo BV/TV distribution in the femoral head. Five Homo specimens showing 

variation in the BV/TV distribution across the sample in (A) anterior, (B) posterior and (C) 

superior views. BV/TV is scaled to 0-0.55. All specimens are from the right side. Specimens 

from left to right (F-female, M-male): CAMPUS 36 (F), CAMPUS 93 (M), CAMPUS 74 (F), 

CAMPUS 417 (sex unknown), CAMPUS 81 (M). 

 

 

3.3.2. Quantitative analysis of trabecular parameters in the femoral head 

 

Quantitative analysis of the mean trabecular parameters over the femoral 

head revealed several differences across taxa. Results for each parameter in the 

different taxa are presented in Table 3.2 and statistical results of species pairwise 

comparisons, after Bonferroni corrections, are presented in Table 3.3.  
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Table 3.2. Trabecular architecture results. Mean, standard deviation and coefficient of 

variation for five trabecular parameters quantified throughout the femoral head. 

 

 

Pan shows significantly higher BV/TV in the femoral head than Pongo (p=0.05) 

and Homo (p<0.001), and although its mean BV/TV value was higher than that of 

Gorilla, this difference was not statistically significant (Tables 3.2 and 3.3). Homo has 

the lowest mean BV/TV compared with all the great apes but is only significantly 

different from Pan. Homo has significantly higher DA in the femoral head than all 

other apes (Pan p< 0.001; Gorilla p<0.05; Pongo p<0.01), while Pan, Pongo and, less 

so, Gorilla are more isotropic and not significantly different from each other. With 

regards to the architectural parameters, Pan shows the most distinct trabecular 

structure with significantly higher Tb.N than all other apes (Gorilla p<0.001; Homo 

p<0.001; Pongo p<0.01) and significantly lower Tb.Sp (all p<0.001) and lower Tb.Th 

than Gorilla (p<0.001) and Homo (p<0.05). 

 

 

 

 

 

Taxon Pan CV Gorilla CV Pongo CV Homo CV 

BV/TV 0.39 (0.03) 8.6 0.35 (0.05) 14.8 0.33 (0.04) 13.4 0.30 (0.05) 16.0 

DA 0.15 (0.03) 21.6 0.18 (0.04) 21.8 0.15 (0.02) 14.7 0.23 (0.04) 17.9 

Tb.N 

(1/mm) 

1.19 (0.11) 9.4 0.83 (0.09) 10.7 0.92 (0.04) 4.4 0.87 (0.1) 11.4 

Tb.Sp (mm) 0.56 (0.06) 
 

10.0 0.81 (0.08) 9.8 0.78 (0.07) 8.4 0.84 (0.14) 16.6 

Tb.Th (mm) 0.29 (0.03) 11.8 0.40 (0.08) 19.1 0.31 (0.03) 10.9 0.32 (0.03) 
 

9.9 
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Table 3.3. Results of pairwise comparisons between taxa. Bonferroni-corrected p-values of 

each pairwise comparison for all trabecular parameters. Significant results are indicated by 

grey shading. 

 

 

Differences in mean BV/TV and DA across taxa were further evaluated using 

a bivariate plot (Figure 3.6) and a line histogram of the distribution of values in each 

taxon (Figure 3.7). The data depicted in these figures are mean values for each 

individual across the entire femoral head. In the bivariate plot Pan shows a 

combination of high BV/TV and low DA, in contrast to humans that show the opposite 

pattern. Gorilla overlaps with both of these taxa but shows higher BV/TV than 

humans. Pongo individuals overlap with the African apes, with lower DA values than 

humans, but with BV/TV values that overlap with all other taxa. 

 

 Pan-
Gorilla 

Pan - 
Pongo 

Pan - 
Homo 

Gorilla - 
Pongo 

Gorilla - 
Homo 

Pongo - 
Homo 

BV/TV 0.14 <0.05 <0.001 1 0.14 1 

DA 0.24 1 <0.001 1 <0.05 <0.01 

Tb.N <0.001 <0.01 <0.001 0.33 1 1 

Tb.Sp <0.001 <0.001 <0.001 1 1 1 

Tb.Th <0.001 1 <0.05 0.09 0.05 1 
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Figure 3.6. Bivariate plot of mean bone volume fraction (BV/TV) and mean degree of 

anisotropy (DA) for each individual and species in the sample. 

 

 

These differences are reflected in the distribution of BV/TV and DA values in 

the taxa (Figure 3.7). Pan shows the highest mean BV/TV and most individuals close 

to the mean (0.39), whereas Gorilla shows a lower mean value but most individuals 

between 0.3 and 0.4. Pongo shows a similar mean to Gorilla, however the 

distribution of values more greatly resembles that of Pan. Homo shows the lowest 

BV/TV values distributed over a wider area. The DA plot shows that Pan, Gorilla and 

Pongo present similarly low mean DA values, but Pongo differs in distribution with 

more individuals around the mean. Homo shows a different distribution with the 

highest mean DA but a wider distribution of values in the sample.  
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Figure 3.7. A histogram of mean BV/TV and DA value distributions in the studied taxa. 

 

 

3.4. Discussion 

 

My study investigated the variation in trabecular patterns of the femoral head 

in great apes and humans. Qualitative and quantitative results supported my 

hypotheses that trabecular bone would reflect differences in locomotor patterns, but 

not necessarily in the way I predicted. Pan and Gorilla displayed trabecular structures 

consistent with their terrestrial as well as arboreal quadrupedal locomotion, while 

Homo showed a distinct trabecular pattern indicative of stereotypical loading during 

bipedal locomotion. However, the African apes showed a BV/TV distribution pattern 

that was different to what was expected, and their trabecular structure did not differ 

significantly from Pongo.  

 

 

3.4.1. Distribution of BV/TV within the femoral head 

 

I predicted that African apes would display a region of high BV/TV extending 

from the posterosuperior to the anterior region of the femoral head, reflecting the 

flexed hip postures and loading incurred during knuckle-walking and vertical 

climbing. However, instead of a continuous band of high BV/TV across the femoral 

head, Pan displayed two main regions of high BV/TV, indicating two regions of high 

loading; one in the posterosuperior aspect of the femoral head and one located more 
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anteriorly. The majority of Taï chimpanzee (75% of the Pan sample) locomotion is 

terrestrial quadrupedalism (Doran, 1993a). Ground reaction forces remain high 

throughout the stance phase during terrestrial knuckle-walking (Barak et al. 2013a) 

and the hip remains flexed (Finestone et al. 2018), both of which are consistent with 

high loading of the posterosuperior region of the femoral head and the high BV/TV 

concentration that was found in this region. While Taï chimpanzees engage less 

frequently in vertical climbing (Doran, 1993a), it is possible that this results in 

similarly high loading of the femoral head, as it involves high propulsive forces from 

the hindlimbs (Hanna et al. 2017). During climbing, the hip can be flexed to a 

maximum of 25o to 55o (Isler, 2005; Nakano et al. 2006), which would result in the 

anterior aspect of the head contacting the lunate surface of the acetabulum. This is 

consistent with the second region of high BV/TV found in the anterior portion of the 

femoral head in Pan. The anterior concentration was more variable between 

individuals, but this could not be explained by subspecies differences within the 

sample. Thus, the more variable anterior BV/TV pattern may reflect interindividual 

variability in vertical climbing frequency (Doran, 1993b) or hip range of motion during 

climbing (Isler, 2005; Nakano et al. 2006). 

 

Gorilla displayed a similar pattern to Pan, with two regions of high BV/TV 

within the femoral head. The two regions, one in the posterior and one in the anterior 

aspect of the head, are, as in Pan, consistent with hip posture and loading during 

terrestrial quadrupedalism and vertical climbing, as these modes of locomotion 

comprise the majority of Gorilla locomotion (Doran, 1997; Crompton et al. 2010; 

Remis, 1995). However, unlike Pan, these regions were better defined and more 

discrete in most Gorilla individuals (11 out of 14 individuals). This more discrete 

pattern is perhaps due to their greater body mass. Greater mass is related to 

restricted range of motion in joints (Hammond, 2014), which could result in less 

variability in joint positioning during locomotion and may explain the more well-

defined concentrations in Gorilla. The two concentrations appeared closer to each 

other in Gorilla than in Pan, which is also consistent with the reduced range of motion 

at the hip joint of Gorilla (Isler, 2005; Hammond, 2014). Significant sex and body size 

related differences in joint mobility are prominent in Gorilla, with females showing a 
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larger range of motion than males and flexion-extension ranges varying between the 

sexes by up to or even more than 30o (Isler, 2005; Hammond, 2014). These 

differences were not detected in the BV/TV distribution maps and Gorilla does not 

seem to be more variable than Pan. However, this could not be tested statistically in 

the current study. 

 

I predicted that the BV/TV distribution pattern of the Pongo femoral head 

would differ from that of African apes and humans because of their more varied 

quadrumanous locomotor behaviours (Thorpe and Crompton, 2005; Thorpe and 

Crompton, 2006), more mobile hip joints (Crelin, 1988; Ward, 1991), and increased 

range of motion at the hip during vertical climbing compared to African apes (Isler, 

2005). Four of the five Pongo individuals in my sample showed the same two regions 

of high BV/TV found in African apes, however these were not as distinct and, instead, 

there was a continuous concentration of BV/TV spanning the superior aspect of the 

femoral head. This is perhaps unsurprising since Pongo uses a variety of hip postures 

while navigating their arboreal environment (Thorpe and Crompton, 2005; Thorpe 

and Crompton, 2006; Payne et al. 2006; Thorpe et al. 2009), which potentially results 

in higher loading across the whole superior surface of the femoral head. Pongo also 

vertically climbs less frequently than African apes (Thorpe and Crompton, 2006), 

which may be reflected by the less defined anterior concentration of high BV/TV in 

Pongo compared with Pan and, especially, with Gorilla. Although my sample of Pongo 

is small (n=5) and all individuals were female, there was greater variation in the 

BV/TV distributions along the anterior and posterior aspects of the femoral head 

than was found in African apes. The one P. abelii specimen in my sample differed 

from the P. pygmaeus individuals in having only one superior concentration of high 

BV/TV. Although locomotor differences have been documented between P. 

pygmaeus and P. abelii (Sugardjito and van Hooff, 1986; Cant, 1987), a larger sample 

of both species is needed to determine if this variation in the trabecular pattern is 

characteristic of each species. 

 

Homo showed a distinct trabecular pattern that is consistent with my 

predictions and similar to previous results showing the density distribution of 



 80 

trabeculae adjacent to cortical bone (Treece and Gee, 2014). All Homo individuals 

displayed one main region of high BV/TV, located posteriorly and superiorly on the 

femoral head. This concentration was positioned more medially than the posterior 

concentration seen in great apes and closer to the fovea capitis, which is consistent 

with loading of the femur at a valgus angle. Intermediate BV/TV values continued 

along the superior aspect of the femoral head in Homo. This is consistent with loading 

that occurs throughout the gait cycle over the articulating surface but suggests that 

peak loading is occurring at the posterosuperior region, which is in contact with the 

acetabulum during walking (Bonneau et al. 2012; Bonneau et al. 2014). Of course, 

humans also engage in other activities that involve more flexed hip joint postures, 

such as running, jumping, or climbing stairs, all of which impose high loads on the 

lower limb (van den Bogert et al. 1999; Giarmatzis et al. 2015) and could result in 

some trabecular reorganisation, explaining the extended area of intermediate BV/TV 

values I found across the femoral head. Unfortunately, it is not yet known exactly 

how the peak load is distributed over the femoral head during these activities. 

However, all individuals lack the anterior concentration found in apes, further 

supporting the interpretation that high BV/TV in the anterior region could be linked 

to arboreal behaviours or more specifically vertical climbing.  

 

 

3.4.2. Quantitative analysis of trabecular structure 

 

Quantitative analysis of the femoral head trabecular structure only partially 

supported my hypotheses. As expected, Homo displayed the lowest mean BV/TV in 

my sample but was only significantly different from that of Pan. My results confirm 

previous studies showing that modern humans, particularly those that are less active, 

have relatively lower BV/TV across the skeleton compared with highly mobile 

modern humans and other primates (Chirchir et al. 2015; Ryan and Shaw, 2015; Saers 

et al. 2016; Chirchir et al. 2017). Furthermore, Homo showed significantly higher DA 

than great apes, which is consistent with the more stereotypical loading of the hip 

joint during bipedal locomotion and in accordance with previous results from the 

proximal (Ryan and Shaw, 2015; Ryan et al. 2018) as well as the distal femur 
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(Georgiou et al. 2018). Homo has narrower acetabulae than other great apes, with 

expanded cranial lunate surfaces, as well as shortened dorsal surfaces, which result 

in a distinctively-shaped dorso-cranially expanded lunate surface that may restrict 

movement in the parasagittal plane (San Millán et al. 2015). Furthermore, in Homo 

the iliofemoral ligament limits extension and external rotation (Myers et al. 2011), 

the ischiofemoral ligament limits internal rotation and the pubofemoral ligament 

limits abduction (Wagner et al. 2012), all of which result in a more restrictive and 

stereotypical motion and loading of the femoral head that is reflected in the 

trabecular structure.  

 

As predicted, mean BV/TV was highest in Pan, which is consistent with 

previous studies showing relatively high BV/TV in the African ape femur (Ryan and 

Shaw, 2015; Georgiou et al. 2018; Ryan et al. 2018; Tsegai et al. 2018a) and other 

postcranial elements (e.g. Cotter et al. 2009; Scherf et al. 2013; Tsegai et al. 2017). 

BV/TV in Pan did not differ significantly from Gorilla, reflecting their generally similar 

locomotor repertoire. Overall, the quantitative analysis highlighted Pan as being 

distinct from the other taxa. Pan not only showed the highest BV/TV values, but also 

differed significantly from all taxa in Tb.N and Tb.Sp, showing consistently higher 

Tb.N and lower Tb.Sp, again resembling previous findings (Ryan and Shaw, 2015). 

Furthermore, Pan showed significantly lower Tb.Th than Gorilla and Homo. 

Additionally, mean DA was lowest in Pan, as well as Pongo, but only differed 

significantly from Homo. Less data is available on the femoral ligaments of non-

human apes however Pan and Pongo seem to have less restrictive ligaments than 

Homo (Sonntag, 1923; 1924). 

 

The trabecular structure of Gorilla and Pongo was not as distinct. Gorilla 

mean BV/TV did not differ significantly from any other taxon, and they only differed 

significantly in Tb.N, Tb.Sp and Tb.Th from Pan, as well as in DA from Homo. Gorilla 

has less variable positioning of their lower limbs during locomotion, compared to 

other non-human apes, as was shown in vertical climbing (Isler, 2005), however this 

is not displayed as clearly in their DA values as was initially predicted. The lack of 

significant differences in BV/TV and DA with Pan can perhaps be explained by the 
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similar shape of their hip joints (San Millán et al. 2015) and overall similarities in 

locomotion (Doran, 1997). None of great apes differed significantly in DA, despite 

clear differences in locomotor behaviours and hip morphology. Pongo has a cranio-

ventrally expanded lunate surface and a smaller acetabular fossa than other apes. 

They also show the largest articular surfaces and relatively shallow acetabulae 

(Schultz, 1969), which may be responsible for the increased mobility of the femoral 

head. Furthermore, Pongo has a greater capacity for abduction and external rotation 

than non-suspensory taxa (Hammond, 2014). Thus, Pongo was expected to display 

significantly lower DA values than all other taxa, which was not the case, but this 

result may also reflect my small sample size for this taxon. 

 

My results showed that Pan has relatively numerous, thinner and compactly 

organised trabeculae, while Gorilla and Homo have relatively few, thicker and more 

separated trabeculae. Pongo has relatively few, thinner and more separated 

trabeculae. These results are largely in accordance with previous analyses of femoral 

head trabeculae (Ryan and Shaw, 2012; 2015) which showed that humans have 

relatively less numerous, thin and highly anisotropic trabeculae compared to other 

anthropoids, Pan have relatively high numbers of thick, isotropic trabeculae and 

Pongo have relatively few, isotropic trabeculae. Gorilla showed the thickest 

trabeculae (Table 2), in support of previous studies suggesting that larger taxa have 

absolutely thicker trabeculae (Barak et al. 2013b; Ryan and Shaw, 2013; Tsegai et al. 

2013). However, the difference was not found to be significant, possibly due to the 

small sample sizes in my study. Allometric relationships were not tested in my study 

because my sample sizes were not large enough to test this intraspecifically, however 

previous research has shown that these trabecular parameters can vary predictably 

with body size interspecifically (Cotter et al. 2009; Doube et al. 2011; Barak et al. 

2013b; Ryan and Shaw, 2013). Across a large sample of mammals, Tb.Th and Tb.Sp 

were shown to increase with size (Doube et al. 2011). In primates, Tb.N, Tb.Th and 

Tb.Sp present negatively allometric relationships with body mass (Barak et al. 2013b; 

Ryan and Shaw, 2013), resulting in fewer, thinner and less separated trabeculae in 

larger taxa. These studies suggest that absolute trabecular parameters, and 

specifically Tb.N, Tb.Sp and Tb.Th, do not necessarily directly reflect locomotor 
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modes as they could reflect body-size related or systemic differences between taxa. 

Nevertheless, since my sample includes apes that are relatively similar in body size 

compared to the more diverse samples of previous studies (Doube et al. 2011; Barak 

et al. 2013b; Ryan and Shaw, 2013), I would expect that allometry does not have a 

significant effect on the variation observed here. 

 

The absence of a clear functional signal in the mean trabecular parameters 

may be due to methodological limitations of the whole-epiphysis approach. The 

mean value of any given trabecular parameter can obscure or homogenise any 

potential distinct variation in specific regions of the femoral head, as demonstrated 

by the BV/TV distribution maps and previous studies (Sylvester and Terhune, 2017). 

This is where the traditional VOI approach, in which the trabecular architecture of 

specific regions of an epiphysis can be quantified and compared, is potentially more 

functionally informative (e.g. Ryan and Shaw, 2012; 2015; Ryan et al. 2018). 

Additionally, the lack of a strong functional signal in these parameters could be due 

to non-mechanical factors affecting trabecular structure. Trabecular bone also 

functions as a reserve of minerals and is important in maintaining homeostasis, 

hence its structure will, to some extent, be affected by this (Rodan, 1998; Clarke, 

2008). Genes control for the rate of remodelling and bone mineral density, as well as 

the response to mechanical strain in different skeletal sites (Smith et al. 1973; 

Dequeker et al. 1987; Kelly et al. 1991; Garnero et al. 1996; Hauser et al. 1997; Judex 

et al. 2002; Judex et al. 2004). These factors, along with the fact that trabecular bone 

remodels in response to a range of magnitudes and frequencies of load (Whalen et 

al. 1988; Rubin et al. 1990; Rubin et al. 2001; Judex et al. 2003; Scherf et al. 2013), 

complicate interpretations. Age, hormones, sex and other factors (e.g. Simkin et al. 

1987; Pearson and Lieberman, 2004; Suuriniemi et al. 2004; Kivell, 2016; Wallace et 

al. 2017; Tsegai et al. 2018a) influence trabecular bone modelling, thus these factors 

should not be ignored. Nonetheless, future research will aim to use techniques that 

will allow statistical comparisons of the trabecular distribution patterns in the 

femoral head of apes, rather than mean parameters, for more accurate 

interpretation of locomotor patterns in extinct hominins. 
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3.5. Conclusion 

 

This study showed that the trabecular architecture of the femoral head in 

great apes and humans reflects habitual hip postures during locomotion. Pan and 

Gorilla showed similar BV/TV distribution patterns, with generally two distinct high 

BV/TV regions that are consistent with hip postures during knuckle-walking and 

vertical climbing. Pongo showed a BV/TV distribution pattern that is characteristic of 

their highly mobile hips and complex locomotion, however they do not differ as 

significantly as predicted from African apes. Finally, Homo showed a distinct pattern 

of BV/TV distribution, with one posterosuperior region of high BV/TV, the lowest 

overall BV/TV values and highest DA values, which is consistent with stereotypical 

loading during locomotion. Despite mean trabecular parameters not demonstrating 

locomotor differences as clearly as predicted, they largely match results from 

previous VOI studies (Ryan and Shaw, 2015; Ryan et al. 2018). My research reveals 

that there are distinct patterns of BV/TV distribution that generally distinguish the 

locomotor groups and provide a valuable comparative sample for future research on 

the evolution of gait in hominins. 
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Specimens scaled to their own range 
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Trabecular bone patterning in the hominoid distal 

femur 
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This chapter has been published in PeerJ. 

 

Abstract 

 

In addition to external bone shape and cortical bone thickness and 

distribution, the distribution and orientation of internal trabecular bone across 

individuals and species has yielded important functional information on how bone 

adapts in response to load. In particular, trabecular bone analysis has played a key 

role in studies of human and nonhuman primate locomotion and has shown that 

species with different locomotor repertoires display distinct trabecular architecture 

in various regions of the skeleton. In this study, I analyse trabecular structure 

throughout the distal femur of extant hominoids and test for differences due to 

locomotor loading regime. Micro-computed tomography scans of Homo sapiens 

(n=11), Pan troglodytes (n=18), Gorilla gorilla (n=14) and Pongo sp. (n=7) were used 

to investigate trabecular structure throughout the distal epiphysis of the femur. I 

predicted that bone volume fraction (BV/TV) in the medial and lateral condyles in 

Homo would be distally concentrated and more anisotropic due to a habitual 

extended knee posture at the point of peak ground reaction force during bipedal 

locomotion, whereas great apes would show more posteriorly concentrated BV/TV 

and greater isotropy due to a flexed knee posture and more variable hindlimb use 

during locomotion. Results indicate some significant differences between taxa, with 

the most prominent being higher BV/TV in the posterosuperior region of the 

condyles in Pan and higher BV/TV and anisotropy in the posteroinferior region in 

Homo. Furthermore, trabecular number, spacing and thickness differ significantly, 

mainly separating Gorilla from the other apes. The trabecular architecture of the 

distal femur holds a functional signal linked to habitual behaviour; however, there 

was more similarity across taxa and greater intraspecific variability than expected. 

Specifically, there was a large degree of overlap in trabecular structure across the 

sample, and Homo was not as distinct as predicted. Nonetheless, this study offers a 

comparative sample of trabecular structure in the hominoid distal femur and can 

contribute to future studies of locomotion in extinct taxa. 
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4.1. Introduction 

 

 

Extant great apes are often used as models to help reconstruct the origin and 

evolution of bipedality, and to help interpret the variable hindlimb morphology that 

is preserved in the hominin fossil record. The morphology of the knee in particular 

has played a central role in palaeoanthropological studies about the form of 

bipedality our ancestors adopted (Stern and Susman, 1983; Susman et al. 1984; 

Crompton, et al. 1998; Carey and Crompton, 2005; Lovejoy and McCollum, 2010; 

Raichlen et al. 2010). Some researchers propose that early hominins, such as 

australopiths, used bent-hip, bent-knee locomotion, similar to African ape bipedal 

locomotion (Stern and Susman, 1983; Susman et al. 1984), while others propose 

extended-hip and knee locomotion, similar to that of modern humans (Carey and 

Crompton, 2005; Lovejoy and McCollum, 2010; Raichlen et al. 2010). Studying the 

morphology of the knee joint and its links to locomotion in extant apes can help 

reconstruct how early hominins (e.g. australopiths, early Homo) walked bipedally, as 

well as other potential locomotor behaviours in which they may have engaged (e.g. 

arboreal climbing). However, inferences about the predominant joint posture and 

locomotion based solely on external morphology are limited by potential 

phylogenetic lag, in which some features are present but not necessarily functionally 

significant (Ward, 2002). Recent studies on trabecular bone have demonstrated that 

this tissue may be more informative for reconstructing joint posture and locomotion 

during life (e.g. Ryan and Ketcham, 2002; Ryan and Shaw, 2012; Tsegai et al. 2013; 

Skinner et al. 2015; Tsegai et al. 2017) and provides additional evidence that can 

improve our understanding of locomotor behaviour in extinct taxa. In this study, I 

investigate correlations between trabecular bone patterning and knee joint position 

during locomotion in humans and great apes.  

 

Trabecular bone is a porous structure composed of struts, located in the 

epiphyses of long bones, as well as short bones, such as carpals and tarsals (Keaveny 

et al. 2001). It functions physiologically as a mineral reserve, contributing to 



 110 

maintenance of homeostasis through resorption and deposition of bone (Rodan, 

1998; Clarke, 2008). Although the mechanical function of trabecular bone is not fully 

understood, previous studies have demonstrated that its structure transfers joint 

load from subchondral bone toward the diaphyseal cortical bone (Currey, 2002; 

Barak et al. 2008). Through a process known as bone functional adaptation (Ruff, Holt 

and Trinkaus, 2006), trabecular structure has been shown to model in relation to the 

direction and magnitude of load, resulting in changes in overall bone volume as well 

as the orientation of the trabecular struts (Biewener et al. 1996; Rodan, 1997; Mittra 

et al. 2005; Pontzer et al. 2006; Barak et al. 2011; Harrison et al. 2011). Bone volume 

fraction (ratio of bone volume to total volume, or BV/TV) and degree of anisotropy 

(DA) can together explain up to 97% of trabecular bone strength (Goulet et al. 1994; 

Maquer et al. 2015). Other trabecular parameters, such as trabecular number, 

trabecular separation and trabecular thickness help to describe potential variation in 

the architecture related to trabecular bone function. Trabecular number, separation 

and thickness are also linked to overall trabecular bone mechanical strength 

(Kleerekoper et al. 1985; McCalden et al. 1997) and to bone quality, as their decline 

is main contributor to age-related trabecular bone loss (Parfitt et al. 1983; Weinstein 

and Hutson, 1987). Furthermore, these parameters, in contrast to BV/TV and DA, 

have been shown to scale allometrically with body size (Doube et al. 2011; Ryan and 

Shaw, 2013; Barak et al. 2013b) and to differ in smaller compared to larger mammals 

(Barak et al. 2013b). 

 

Previous research has revealed a correlation between trabecular patterns 

and variation in locomotor loading in the proximal femur (Ryan and Ketcham, 2002; 

Scherf, 2008; Ryan and Shaw, 2012; Ryan et al. 2018), the hip and proximal tibia 

(Volpato et al. 2008; Mazurier et al. 2010) and the ankle of primates (Barak et al. 

2013a; Tsegai et al. 2017). Longitudinal studies of trabecular bone ontogeny in 

humans have shown an association with bone modelling and the gait changes that 

occur with the development of bipedalism (Ryan and Krovitz, 2006; Gosman and 

Ketcham, 2009; Raichlen et al. 2015; Milovanovic et al. 2017). Looking at the knee 

specifically, alterations in the orientation of joint position and resulting load were 

found to correlate with trabecular strut alignment in guinea fowls (Pontzer et al. 
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2006). Furthermore, compared to a control group, the dominant knees of Olympic 

fencing athletes were found to have greater BV/TV and trabecular number, but lower 

trabecular separation, consistent with higher loading (Chang et al. 2008). Saers et al. 

(2016) found a correlation between mobility levels and trabecular architecture 

throughout the human lower limb, including the knee, across three human 

populations. A more recent study found sex differences in subchondral trabecular 

bone spacing in the knee of humans, with males having more evenly-spaced 

trabeculae compared to females (Sylvester and Terhune, 2017).  

 

Despite the support for trabecular bone functional adaptation, some studies 

that focused on a single region of the proximal femur (Ryan and Walker, 2010; Shaw 

and Ryan, 2012) and the distal femoral metaphysis (Carlson et al. 2008; Wallace et 

al. 2013) did not detect a clear locomotor signal. These results suggest that non-

mechanical factors may affect or constrain trabecular structure and that DA may not 

necessarily be indicative of variability in locomotor mode. There are multiple other 

factors that can affect trabecular structure, such as genetic or systemic differences 

(Paternoster et al. 2013; Tsegai et al. 2018a), age, and hormone levels (Simkin et al. 

1987; Suuriniemi et al. 2004), all of which can obscure functional signals. 

Furthermore, it is not well understood what prompts modelling and how trabecular 

bone reacts when loaded (Wallace et al. 2014). However, analysing a single sub-

volume may lead to non-homologous bone being sampled across species and may 

not capture the full structural complexity of the epiphysis (Fajardo and Müller, 2001; 

Kivell et al 2011; Lazenby et al 2011). Several studies have demonstrated that 

subchondral distribution of trabecular bone can provide important insights into bone 

loading that are overlooked with a centrally-placed volume of interest; particularly 

in morphologically complex bones and joints (Tsegai et al. 2013; Skinner et al. 2015; 

Stephens et al. 2016; Sylvester and Terhune, 2017; Tsegai et al. 2017). In this study, 

I aim to investigate the trabecular structure throughout the entire distal femoral 

epiphysis of humans and great apes and how potential variation in this structure 

might reflect differences in knee joint loading during a variety of locomotor 

behaviours. 
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4.1.1. Locomotion, morphology and predicted knee posture/loading 

 

The most frequent locomotor behaviour in Pan is quadrupedal knuckle-

walking, but they also engage in several other terrestrial as well as arboreal 

behaviours, including vertical climbing, leaping, bipedalism and suspension (e.g. 

Hunt, 1992; Bauer, 1977; Doran, 1993a,b; Doran, 1997; Isler, 2005), where the knee 

is flexed to varying degrees (D’Août et al. 2004; Isler, 2005; Ankel-Simons, 2007; 

Pontzer et al. 2009; Lee et al 2012). During terrestrial knuckle-walking the knee joint 

angle ranges from ~161.4o at foot touchdown to ~ 117.4o at toe-off (Finestone et al. 

2018), and there is inter-individual variation in vertical ground reaction force (GRF). 

Some individuals show a single vertical GRF peak across the stance phase and others 

show two distinct peaks, one during early stance and one during late stance (Pontzer 

et al. 2014). During climbing and jumping they may utilise their full flexion-extension 

range at the knee (D’Août et al. 2002; Isler, 2005) (Figure 4.1).  

 

 

Figure 4.1. Comparison of knee posture during different habitual locomotor activities in 

great apes (A–B) and humans (C–D). (A) Great ape knee posture in maximum knee flexion 

(∼50°) during climbing (Isler, 2005). (B) Great ape knee posture at toe-off (∼120°) during 

terrestrial knuckle-walking (Finestone et al., 2018). (C) Human knee posture at toe-off 

(∼145°). (D) Human knee posture at heel-strike (∼160°). These were selected depending on 

when GRF is highest. In this study, all great apes are considered to show similar degrees of 

knee flexion during quadrupedal walking, as demonstrated by Finestone et al. (2018) and 

during climbing, but it should be noted that Gorilla has been shown to use a less flexed 

knee posture during vertical climbing compared with Pan (Isler, 2005). 

 



 113 

Gorilla also engages most frequently in terrestrial knuckle-walking and 

practices variable degrees of arboreality, depending on their habitat and body size 

(Tutin and Fernandez, 1985; Kuroda, 1992; Remis, 1994; Doran, 1996; Doran, 1997; 

Isler, 2005; Crompton et al. 2010; Tocheri et al. 2011). During terrestrial knuckle-

walking, knee angles vary from 163.2o at foot touchdown to ~ 126.6o at toe-off 

(Finestone et al. 2018) and adult females, as well as subadults of both sexes, climb 

with higher frequency than larger males (Isler, 2002; Isler, 2005). Additionally, 

flexion-extension range at the hip has been shown to differ more than 30o between 

sexes (Hammond, 2014), which would affect knee joint angle as well. Furthermore, 

range of motion at the knee joint differs between Gorilla and Pan during terrestrial 

locomotion and climbing with Gorilla practising slightly more extended knee 

postures (Hofstetter and Niemitz, 1998; Isler, 2005; Crompton et al. 2008; but see 

Finestone et al. 2018).  

 

Pongo is the most arboreal of the great apes. They are distinguished from 

African apes by their greater use of torso-pronograde (i.e. quadrumanus suspension) 

and orthograde suspensory locomotion, and they employ a diversity of positional 

behaviours when navigating complex arboreal canopies (Thorpe and Crompton, 

2005; Thorpe and Crompton, 2006; Thorpe et al. 2009). The frequent use of arboreal 

behaviours, where multiple limbs are used variously to achieve balance (Thorpe and 

Crompton, 2006; Payne et al 2006; Thorpe et al. 2009), alters the distribution of load 

across the upper and lower limb joints. Pongo has also been observed using 

bipedality and hindlimb suspension, which involves either suspension from both legs 

with joints extended, suspension from one leg, or suspension from one leg with 

support from a forelimb (Thorpe and Crompton 2005; Thorpe and Crompton, 2006). 

While climbing is observed in all nonhuman apes and the imposed stresses are similar 

to bipedal walking (Fleagle et al. 1981), the kinematics of isolated joints differ across 

species, with Pongo showing significantly larger ranges of motion in the hindlimb 

joints than both gorillas and bonobos (Morbeck and Zihlman, 1988; Tuttle and 

Cortright, 1988; Isler, 2005). However, the flexion-extension range at the knee during 

quadrupedal locomotion may not differ significantly to that of African apes 

(Finestone et al. 2018; mean values are 149.3o at touchdown and 113o at toe-off).  
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Humans are the only obligate bipedal ape and are unique in that both hips 

and knees remain relatively extended during the gait cycle (Alexander, 1991; 

Alexander, 2004). During the stance phase in human walking, following initial foot 

contact with the ground, body weight is rapidly transferred to the contacting limb 

and GRF reaches a maximum (Racic et al. 2009). The joint angle of the knee during 

foot touchdown ranges from 170o to 160o (Lafortune et al. 1992; Wallace et al. 2018) 

(Figure 4.1). During midstance the vertical GRF decreases, but the supporting leg 

carries all of the weight of the individual. While the opposite leg swings and weight 

is transferred forward, the heel of the supporting limb starts to rise and leads to a 

second peak of vertical GRF at toe-off (Racic et al. 2009). The joint angle of the knee 

at toe-off is approximately 140o (Lafortune et al. 1992). Humans engage in many 

other bipedal activities, such as running, jumping or squatting, in which and knee 

flexion/extension can vary considerably. Flexion angles increase during running, 

reaching 145o at touchdown, while the degree of flexion is greater and differs 

significantly to walking (Mann and Hagy, 1980). Compared with walking, there is only 

one (rather than two) peak of vertical GRF during a shorter stance phase and the 

vertical GRF are substantially higher during running (Nilsson and Thorstensson, 1989; 

Racic et al. 2009). Given that I do not know about the types of activities in which my 

human sample engaged during life, I make the assumption in this study that loading 

of the distal femur occurs primarily through walking, although recognise that these 

higher-impact activities, especially if occurring frequently, may also be reflected in 

the trabecular structure of the distal femur.  

 

In addition to differences in joint kinematics and frequency of specific types 

of locomotion, variation in hominoid knee joint morphology may influence the 

distribution of load across the condyles of the distal femur and subsequently the 

trabecular structure. In humans the knee joint is larger relative to body size (Jungers, 

1988) and the overall shape of the epiphysis is more square compared with the 

smaller and more mediolaterally-expanded epiphysis in other hominoids (Tardieu, 

1981). Furthermore, the condyles in humans are more equally-sized and the lateral 

condyle is elliptical, which increases the radius of curvature and favours extension of 



 115 

the knee (Heiple and Lovejoy 1971; Tardieu, 1981). In contrast, in Gorilla, Pan and 

Pongo, the articular surface of the medial condyle is larger than that of the lateral 

and the condyles are more circular. The disparity in relative condylar size results in 

increased mediolateral rotation in nonhuman apes at different stages of gait, 

whereas in humans mediolateral rotation is restricted to the final stage of the flexion-

extension cycle, which “locks” the knee during extension (Tardieu, 1981). The varus 

angle of the ape femur results in higher loading of the medial condyle, while the 

valgus angle in humans transfers the line of load relatively closer to the lateral 

condyle, resulting in more equal loading of the two condyles during stance 

(Preuschoft and Tardieu, 1996). 

 

 

4.1.2. Hypotheses 

 

This study will investigate potential variation in the trabecular structure of 

the human and great ape distal femur, focusing primarily on BV/TV and DA, as well 

as architectural differences in trabecular number (Tb.N), trabecular separation 

(Tb.Sp) and trabecular thickness (Tb.Th), and how this variation relates to different 

locomotor and morphological traits across hominoids. Specifically, I test the 

following hypotheses: 

 

1. BV/TV distribution will reflect knee joint positioning during habitual locomotion 

(Figure 4.1) and will differ across genera. Specifically, although Homo is predicted to 

have comparatively lower BV/TV values overall (Chirchir et al. 2015; Ryan and Shaw, 

2015; Chirchir et al. 2017), BV/TV distribution will be concentrated distally beneath 

the condylar articular surfaces, spanning from the medial and lateral grooves to the 

posteroinferior region of the condyles, to reflect the habitual use of a more extended 

knee posture during bipedalism. Thus, I expect that high BV/TV will be detected in 

the distal and posteroinferior regions of the condyles. Pan and Gorilla are predicted 

to exhibit greater BV/TV in the posteroinferior and posterosuperior regions of the 

condyles to reflect more flexed knee postures during quadrupedal knuckle-walking 

and, particularly, climbing. Vertical climbing mechanics have been studied in 
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bonobos (Isler, 2005), but have not yet been quantified in chimpanzees, thus for the 

purpose of this study both Pan species are assumed to be similar. Pongo is predicted 

to have a more homogenous distribution of BV/TV throughout the condyles and high 

BV/TV extending from the distal to the posterosuperior region of the condyles, 

reflecting more variable knee joint postures and loading during their more complex 

locomotor repertoire.  

 

2. DA distribution will reflect differences in habitual range of motion and loading of 

the knee joint in particular postures. Homo will display the highest DA in the distal 

and posteroinferior regions of the condyles, resulting from the stereotypical loading 

of these regions during bipedal locomotion and their overall less mobile knee joints 

relative to other apes (Tardieu, 1981). Pan and Gorilla will exhibit similar DA patterns, 

with lower values than Homo specifically in the posterior regions of the condyles, due 

to increased rotational movement of their knees during locomotion (Tardieu, 1981) 

and higher loading of the posterior when utilising flexed knee postures. Pongo will 

display the lowest DA within the medial and lateral condyles in all studied regions, 

due to their more mobile knee joints and varied locomotor loading regime, which 

results in varied loading of the different regions of the condyles.  

 

3. Architectural variables Tb.N, Tb.Sp and Tb.Th will reflect variation in body size, as 

demonstrated in previous studies (Doube et al.  2011; Ryan and Shaw, 2013; Barak 

et al. 2013b), and be consistent with potential variation in BV/TV across taxa. 

Specifically, Tb.N is expected to be higher in smaller-bodied Pan and Pongo and lower 

in larger-bodied Homo and Gorilla across studied regions, while Tb.Sp and Tb.Th are 

expected to present the opposite pattern. Allometric relationships were not directly 

analysed due to small and unbalanced sample sizes of each taxon, however they are 

assumed to follow the same patterns found in previous studies of the femur, and 

other long bones, across larger samples of primates (Ryan and Shaw, 2013; Barak et 

al. 2013b; Tsegai et al. 2013; Fajardo et al. 2013) and mammals (Doube et al. 2011). 
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4.2. Materials and Methods 

 

4.2.1. Sample and scanning 

 

The study sample is summarised in Table 4.1. The Pan troglodytes verus 

sample (n=18) is from the Taï Forest collection of the Max Planck Institute for 

Evolutionary Anthropology in Leipzig, Germany. The Gorilla gorilla gorilla sample 

(n=14) is from the Powell-Cotton Museum, UK of which 13 are from Cameroon and 

one is from the Democratic Republic of the Congo. The Pongo sample (n=7) is from 

the Zoologische Staatssammlung München, Germany. Five individuals are Pongo 

pygmaeus, one is Pongo abelii and the species of one individual is unknown. The 

Homo sapiens sample (n=11) is from the anthropology collection of Georg-August-

Universität Göttingen, Germany and comes from two sub-collections. One of the 

specimens is from an early 1900s population from a cemetery in Inden that was used 

between 1877 and 1924 and ten specimens are from a cemetery in Göttingen that 

was used between 1851 and 1889.  There is no additional information on the sample. 

All nonhuman apes in the study sample were wild shot, except two captive Pongo 

specimens (the only male in the sample and one female). All statistical analyses were 

repeated excluding the two captive individuals to test for potential bias (see below). 

All individuals were adult, based on epiphyseal fusion of the femur and associated 

skeletal elements, and none showed signs of pathologies. 
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Table 4.1. Taxonomic composition of the study sample, voxel size range (after resampling), 

sex distribution and microCT scanning parameters. 

Taxon Locomotor 
mode 

N Voxel size 
(mm) 

Sex Scanning 

Pan 

troglodytes 

verus 

Arboreal/ 
knuckle-
walker 

18 0.040 11 female, 
5 male, 2 
uknown 

kV:120-
150, μA: 
80-120, 
0.25 or 
0.5mm 
brass 

Gorilla 

gorilla 

gorilla 

Terrestrial 
knuckle-
walker 

14 0.048-
0.089 

7 female, 7 
male 

kV:130-
180, μA: 
100-160, 
0.1-0.5mm 
copper 

Pongo sp. Arboreal/ 
torso-
pronograde 
suspension 

7 0.035-
0.045 

6 female, 1 
male 

kV:140, μA: 
140, 
0.5mm 
brass 

Homo 

sapiens 

Bipedal 11 0.050-
0.065 

3 female, 7 
male, 1 
unknown 

kV:140, μA: 
140, 
0.5mm 
brass 

 

 

Pan, Pongo and Homo samples were scanned using a BIR ACTIS 225/300 

industrial microCT scanner housed in the Department of Human Evolution, Max 

Planck Institute for Evolutionary Anthropology. Gorilla specimens were scanned 

using a Nikon XT 225 ST microCT scanner housed in Cambridge Biotomography 

Centre, Department of Zoology, at the University of Cambridge. Scans were 

reconstructed from 1080 projections into 16-bit TIFF image stacks with isotropic 

voxel sizes. All scans were oriented to approximate anatomical position in AVIZO 6.3® 

(Visualization Sciences Group, SAS) to assist comparison. Subsequently, they were 

cropped and larger scans were re-sampled prior to segmentation to overcome 

computational limitations. The final range of resolution for each species is detailed 

in Table 4.1. The Ray Casting Algorithm (Scherf and Tilgner, 2009) was used to 

segment bone in all specimens (Figure 4.2A).  
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4.2.2. Trabecular architecture analysis 

 

A whole-epiphysis approach was used to analyse the patterns of trabecular 

bone distribution in medtool v4.1 (www.dr-pahr.at) following published protocols 

(Gross et al. 2014). Morphological filters were applied to define and separate cortical 

from trabecular bone. In regions with marked depressions (or that are c-shaped), 

separation of the cortical shell from trabecular bone can be less reliable (see Pahr 

and Zysset, 2009 for explanation). In my study this was specifically an issue within 

the intercondyloid fossa. In specimens that presented this problem, a correction 

filter was applied within a manually selected bounding box. This filter re-defines 

cortical and trabecular bone in the selected volume by applying the algorithm 

iteratively. The accuracy of the separation was evaluated using AVIZO 6.3® 

(Visualization Sciences Group, SAS). Nonetheless, the regions of interest, and 

specifically the condyles, were not affected by this issue. Following the definition of 

the different anatomical structures, the cortical bone was removed (Figure 4.2B). 

Trabecular thickness values were obtained for each specimen from the isolated 

trabecular structure using the BoneJ plug-in (version 1.4.1, Doube et al. 2010) for 

ImageJ (Schneider et al. 2012) and were used to validate the size of the sphere used 

in the morphological filters (see Gross et al. 2014).  

 

 

 

Figure 4.2. Processing steps of a Gorilla specimen, showing a parasagittal view through 

the lateral condyle. (A) Segmented microCT scan. (B) Inner trabecular area. (C) Trinary 

mask representing inner air, outer air and trabecular structure, as well as the 3D 

background grid. (D) BV/ TV distribution within this slice (scaled to its own data range). 
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A mask representing the inner air, outer air and trabecular structure (each 

with different grey values) was then produced. Both the mask representing the inner 

region (Figure 4.2B) and this trinary mask (Figure 4.2C) were used in the following 

meshing process. A 3D rectangular background grid with a grid size of 3.5mm was 

built around each segmented volume (Figure 4.2C) and a sampling sphere of 7.5mm 

in diameter was used to measure BV/TV and DA at each node using medtool v4.1. DA 

was calculated as DA= 1 – [smallest eigenvalue/largest eigenvalue], obtained using 

the mean-intercept-length method (Whitehouse, 1974; Odgaard, 1997). Three-

dimensional tetrahedral meshes of all specimens were created with CGAL 4.4 (CGAL, 

Computational Geometry, http://www.cgal.org), using the segmented trabecular 

structure and a mesh size of 0.6 mm. The values at each node were then interpolated 

to the tetrahedral elements and the resulting BV/TV (Figure 4.2D) and DA distribution 

maps were visualised using Paraview v4.0.1 (Ahrens et al. 2005).  

 

To statistically test for regional differences in trabecular structure, three 

subregions of each condyle were isolated (distal, posteroinferior and 

posterosuperior) in a subsample of 10 individuals from each species (all seven Pongo 

were included). Condyles were defined based on the extent of the articular surface 

and the patello-femoral articulation was excluded (Figure 4.3A). Each condyle was 

divided into equal quarters using an automated script in medtool v4.1 (Figure 4.3B). 

The anterosuperior quarter of both condyles was excluded from the analysis, as it 

was not adjacent to the articular surface. Analyses of BV/TV and DA for the sub-

regions were repeated as above and Tb.Th and Tb.Sp were calculated for these 

regions with an in-house script using the Hildebrand and Ruesegger (1997) method, 

similar to what is used in BoneJ. Tb.N was calculated as Tb.N=1/(Tb.Th+Tb.Sp).  
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Figure 4.3. Partitioning of the lateral condyle into sub-regions in a Pan specimen. 

(A) Selection of condyle. (B) Separation into quarters, including the distal (bottom, right), 

posteroinferior (bottom, left) and posterosuperior (top, left). The anterosuperior quadrant 

(top, right) was not analysed. The medial condyle was partitioned in the same way. 

 

4.2.3. Statistical analysis 

 

All statistical analyses were done in R v3.4.1 (R Core Team, 2017). The Kruskal-

Wallis test was used to examine regional differences in all parameters (BV/TV, DA, 

Tb.N, Tb.Sp, Tb.Th) among taxa, with Wilcoxon rank sum test post-hoc analysis for 

pairwise comparisons. To further compare regional differences in BV/TV and DA, I 

calculated an “inferior ratio” comparing the distal and posteroinferior regions, as 

well as a “posterior ratio” comparing the posteroinferior and posterosuperior 

regions. These ratios were selected to examine species-specific patterns in BV/TV 

and DA distribution that may not be revealed when the isolated regions are directly 

compared between species. Furthermore, all tests were repeated excluding the 

captive Pongo specimens to test for impact of these specimens on the results. A 

principal components (PC) analysis was conducted to detect which trabecular 

parameters contribute most to inter-specific differences. DA, Tb.Sp and Tb.Th of all 

tested regions were included in the PC analysis. I excluded BV/TV and Tb.N from the 

PC analysis because multivariate regression revealed that both variables were 

significantly correlated with Tb.Sp and Tb.Th. This was not surprising as Tb.N was 

calculated using the Tb.Th and Tb.Sp values obtained directly from the specimens 

and BV/TV is defined by all these parameters.  
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4.3. Results 

 

4.3.1. Quantitative and qualitative analysis of trabecular parameters 

 

Quantitative and qualitative analysis of the trabecular architecture in the 

distal femur reveal differences across taxa. Figures 4.4-4.7 present BV/TV distribution 

in five individuals of each taxon and the Supplementary Online Material contains 

images for each specimen in the study sample. Quantitative results are shown in 

Figures 4.8-4.9 and are detailed in Table 4.2 and Supplementary Table 4.1. Analyses 

were repeated excluding the two Pongo captive specimens and since in most cases 

the results did not change, the specimens were included in the analysis (when 

differences were found, they are reported below).  

 

Qualitative comparison reveals the variability in distribution patterns across 

taxa, while quantitative comparison reveals differences in BV/TV values in specific 

regions. Pan shows high BV/TV extending deep to the articular surface of the 

condyles, from the medial and lateral grooves to the posterorsuperior margin of both 

condyles (Figure 4.4). This is consistent in all the specimens and is most pronounced 

on the medial condyle.  

 



Table 4.2. Trabecular architecture results by condyle and region. 
 

Taxon Parameter Lateral distal CV Lateral 
posteroinferior 

CV Lateral 
posterosuperior 

CV Medial distal CV Medial 
posteroinferior 

CV Medial 
posterosuperior 

CV 

Pan BV/TV 0.29 (0.04) 13.1 0.34 (0.03) 9.8 0.33 (0.02) 6.5 0.27 (0.03) 9.3 0.32 (0.03) 10.1 0.31 (0.02) 6.3 

 DA 0.31 (0.04) 4.0 0.37 (0.04) 11.7 0.33 (0.03) 9.7 0.39 (0.06) 15.2 0.43 (0.06) 13.7 0.43 (0.04) 9.8 

 Tb.N (1/mm) 1.14 (0.14) 12.3 1.22 (0.12) 9.7 1.20 (0.09) 7.8 1.07 (0.12) 11.4 1.22 (0.12) 9.8 1.18 (0.10) 8.2 

 Tb.Sp (mm) 0.65 (0.08) 12.7 0.57 (0.06) 10.1 0.59 (0.05) 8.8 0.70 (0.09) 12.9 0.59 (0.07) 11.3 0.61 (0.05) 8.8 

 Tb.Th (mm) 0.25 (0.04) 14.4 0.25 (0.03) 13.1 0.25 (0.02) 9.1 0.24 (0.02) 9.2 0.24 (0.02) 8.4 0.24 (0.02) 7.3 

Gorilla BV/TV 0.27 (0.03) 10.6 0.33 (0.05) 13.6 0.29 (0.04) 12.4 0.23 (0.02) 9.6 0.29 (0.03) 9.4 0.27 (0.02) 8.5 

 DA 0.35 (0.05) 4.5 0.35 (0.04) 10.5 0.34 (0.03) 10.0 0.39 (0.02) 5.8 0.41 (0.04) 10.4 0.40 (0.03) 7.6 

 Tb.N (1/mm) 0.78 (0.07) 9.5 0.90 (0.10) 10.6 0.87 (0.08) 8.6 0.74 (0.08) 11.0 0.86 (0.08) 9.4 0.78 (0.08) 10.6 

 Tb.Sp (mm) 0.95 (0.08) 8.4 0.78 (0.08) 9.8 0.83 (0.08) 9.5 1.06 (0.11) 10.4 0.86 (0.07) 8.4 0.95 (0.10) 10.8 

 Tb.Th (mm) 0.34 (0.04) 12.6 0.34 (0.05) 15.8 0.32 (0.04) 12.0 0.32 (0.04) 13.5 0.32 (0.05) 14.7 0.34 (0.04) 12.3 

Pongo BV/TV 0.27 (0.04) 13.2 0.32 (0.06) 17.7 0.31 (0.05) 17.6 0.23 (0.03) 13.6 0.28 (0.06) 20.7 0.29 (0.06) 19.8 

 DA 0.32 (0.06) 5.8 0.36 (0.05) 14.5 0.32 (0.05) 15.6 0.36 (0.07) 18.1 0.39 (0.06) 15.0 0.37 (0.06) 16.2 

 Tb.N (1/mm) 1.07 (0.09) 8.1 1.17 (0.11) 9.8 1.05 (0.09) 8.9 0.97 (0.06) 6.0 1.09 (0.10) 9.2 1.01 (0.08) 7.6 

 Tb.Sp (mm) 0.70 (0.06) 8.5 0.61 (0.07) 10.6 0.69 (0.07) 10.2 0.79 (0.06) 8.1 0.69 (0.08) 11.1 0.73 (0.07) 9.6 

 Tb.Th (mm) 0.24 (0.04) 17.1 0.25 (0.05) 4.6 0.27 (0.05) 16.5 0.24 (0.03) 12.9 0.24 (0.05) 18.7 0.27 (0.04) 16.3 

Homo BV/TV 0.29 (0.04) 14.2 0.31 (0.04) 11.3 0.27 (0.03) 12.2 0.26 (0.04) 14.8 0.30 (0.03) 11.2 0.26 (0.03) 11.4 

 DA 0.37 (0.01) 1.3 0.45 (0.02) 5.1 0.41 (0.03) 6.0 0.37 (0.04) 10.4 0.47 (0.03) 7.1 0.43 (0.02) 4.7 

 Tb.N (1/mm) 0.93 (0.09) 9.6 1.12 (0.11) 9.6 0.93 (0.11) 12.3 0.83 (0.08) 9.8 1.05 (0.10) 9.5 0.91 (0.12) 12.8 

 Tb.Sp (mm) 0.78 (0.09) 12.1 0.63 (0.07) 10.9 0.80 (0.12) 15.4 0.91 (0.12) 12.8 0.69 (0.09) 12.3 0.82 (0.13) 15.4 

 Tb.Th (mm) 0.31 (0.03) 9.8 0.27 (0.03) 12.0 0.30 (0.03) 11.5 0.30 (0.03) 9.9 0.27 (0.02) 8.0 0.30 (0.03) 11.1 



 

 
Figure 4.4. Pan BV/TV distribution. (A-E) Specimen MPITC 11781. (A) Anterior view. (B) 

Inferior view. (C) Posterior view. (D) Lateral condyle. (E) Medial condyle. (F-J) Specimen 

MPITC 15001. (F) Anterior view. (G) Inferior view. (H) Posterior view. (I) Lateral condyle. (J) 

Medial condyle. (K-O) Specimen MPITC 11786. (K) Anterior view. (L) Inferior view. (M) 

Posterior view. (N) Lateral condyle. (O) Medial condyle. (P-T) Specimen MPITC 11793. (P) 

Anterior view. (Q) Inferior view. (R) Posterior view. (S) Lateral condyle. (T) Medial condyle. 

(U-Y) Specimen MPITC 11778. (U) Anterior view. (V) Inferior view. (W) Posterior view. (X) 

Lateral condyle. (Y) Medial condyle. All specimens are from the right side. In anterior and 

inferior views the medial condyle is on the right. In the posterior view the medial condyle is 

on the left. The location of the parasagittal slice through each condyle is indicated above 

and the main areas of interest are outlined. Individuals are scaled to the same data range. 

 

Gorilla and Pongo present a similar pattern to that of Pan with regions of high 

BV/TV that extend from the inferior margin of the patellar articulation to the 

posterior region of both condyles (Figure 4.5 and 4.6). However, in Gorilla this high 
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concentration does not extend as posterosuperiorly as in Pan. Also, in the medial 

condyle high BV/TV does not extend as anteriorly as it does in Pan. In Gorilla, the 

distribution of BV/TV along the lateral condyle is more variable across individuals.  

 

 

 
Figure 4.5. Gorilla BV/TV distribution. (A–E) Specimen M95. (A) Anterior view. (B) Inferior 

view. (C) Posterior view. (D) Lateral condyle. (E) Medial condyle. (F–J) Specimen M300. (F) 

Anterior view. (G) Inferior view. (H) Posterior view. (I) Lateral condyle. (J) Medial condyle. 

(K–O) Specimen M372. (K) Anterior view. (L) Inferior view. (M) Posterior view. (N) Lateral 

condyle. (O) Medial condyle. (P-T) Specimen M798. (P) Anterior view. (Q) Inferior view. (R) 

Posterior view. (S) Lateral condyle. (T) Medial condyle. (U–Y) Specimen M856. (U) Anterior 

view. (V) Inferior view. (W) Posterior view. (X) Lateral condyle. (Y) Medial condyle. All 

specimens are from the right side. In anterior and inferior views the medial condyle is on 

the right. In the posterior view the medial condyle is on the left. The location of the 

parasagittal slice through each condyle is indicated above and the main areas of interest 

are outlined. Individuals are scaled to the same data range. 



 126 

 
Figure 4.6. Pongo BV/TV distribution. (A–E) Specimen ZSM 1909 0801. (A) Anterior view. 

(B) Inferior view. (C) Posterior view. (D) Lateral condyle. (E) Medial condyle. (F–J) Specimen 

ZSM 1907 0660. (F) Anterior view. (G) Inferior view. (H) Posterior view. (I) Lateral condyle. 

(J) Medial condyle. (K–O) Specimen ZSM 1973 0270. (K) Anterior view. (L) Inferior view. (M) 

Posterior view. (N) Lateral condyle. (O) Medial condyle. (P–T) Specimen ZSM 1907 0483. (P) 

Anterior view. (Q) Inferior view. (R) Posterior view. (S) Lateral condyle. (T) Medial condyle. 

(U–Y) Specimen ZSM 1907 0633B. (U) Anterior view. (V) Inferior view. (W) Posterior view. 

(X) Lateral condyle. (Y) Medial condyle. All specimens are from the right side. In anterior 

and inferior views the medial condyle is on the right. In the posterior view the medial 

condyle is on the left. The location of the parasagittal slice through each condyle is 

indicated above and the main areas of interest are outlined. Individuals are scaled to the 

same data range. Captive specimens are not included in the figure but can be found in the 

Supplemental Files. 
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Homo show a greater range of BV/TV values, indicated by their higher CV 

(coefficient of variation) (Table 4.2), and their range overlaps with the other species. 

Humans generally show high BV/TV in the posteroinferior region of the condyles, 

which in some individuals extends further posterosuperiorly (Figure 4.7). In the 

lateral condyle they also show high BV/TV in the distal region. Generally, the apes 

appear to have lower BV/TV in the distal region of both condyles compared to 

humans (Figure 4.8). No differences in BV/TV are found between species in the 

inferior regions, but significant differences are found in the posterosuperior region 

in both condyles. Pan shows significantly higher BV/TV in this region than both Gorilla 

(lateral p<0.05; medial p<0.01) and Homo (lateral p<0.001; medial p<0.05), but the 

Pan range overlaps with that of Pongo. In the posterior regions of both condyles, 

Pongo have the highest CV values, indicating that they have the most variable 

trabecular structure. Qualitative analysis shows that in Pongo, there is a consistent 

distribution of high BV/TV values over the posterosuperior margin of both condyles, 

where the gastrocnemius heads originate (Diogo et al. 2013a); this concentration is 

occasionally found in African apes.  
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Figure 4.7. Homo BV/TV distribution. (A–E) Specimen Campus 66. (A) Anterior view. (B) 

Inferior view. (C) Posterior view. (D) Lateral condyle. (E) Medial condyle. (F–J) Specimen 

Campus 36. (F) Anterior view. (G) Inferior view. (H) Posterior view. (I) Lateral condyle. (J) 

Medial condyle. (K–O) Specimen Campus 72. (K) Anterior view. (L) Inferior view. (M) 

Posterior view. (N) Lateral condyle. (O) Medial condyle. (P–T) Specimen Campus 86. (P) 

Anterior view. (Q) Inferior view. (R) Posterior view. (S) Lateral condyle. (T) Medial condyle. 

(U–Y) Specimen Campus 81. (U) Anterior view. (V) Inferior view. (W) Posterior view. (X) 

Lateral condyle. (Y) Medial condyle. All specimens are from the right side. In anterior and 

inferior views the medial condyle is on the right. In the posterior view the medial condyle is 

on the left. The location of the parasagittal slice through each condyle is indicated above 

and the main areas of interest are outlined. In Homo the slice is angled as it follows the 

orientation of the condyles and runs through the centre of each condyle. Individuals are 

scaled to the same data range. 
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The qualitative data (Figures 4.4-4.7) reveal differences deep to the patellar 

articular surface, that were not tested for significant differences in the quantitative 

comparison. Pan shows high BV/TV concentrations centrally and inferiorly, 

suggesting loading of this surface during knee flexion. Farther from the articular 

surfaces and within the shaft, BV/TV values decrease. In Gorilla high values are 

distributed evenly across the surface, but there is not a consistent pattern of 

distribution across all individuals. In Pongo the pattern of distribution is variable, with 

some specimens showing high BV/TV values over the superior margin of the 

articulation while in others the highest BV/TV is more central and inferior. Lastly in 

Homo, some individuals show high BV/TV on the lateral patellar articular surface, in 

agreement with valgus knee loading, however this is not consistent across 

specimens. 

 

Quantitative results also show significant between-species differences in DA 

(Figure 4.8). In the lateral condyle, Homo have significantly higher DA in the distal 

region than Pan (p<0.001), but not the other taxa. In the posterior regions of this 

condyle, Homo differ significantly from all other apes (all p<0.001, except the 

posteroinferior region with Gorilla and Pongo p<0.01), showing consistently higher 

DA values than the other taxa. In the medial condyle, significant differences are only 

found in the posteroinferior region. Homo shows significantly higher DA in this region 

than both Gorilla (p<0.05) and Pongo (p<0.05), but not Pan. No significant difference 

is found between the nonhuman apes. Pongo shows the most variability in DA values 

across regions and consistently have the highest CV values, contrary to Homo which 

are the least variable. However, when the captive specimens are removed, the 

difference between Homo and Pongo is no longer significant. Variation in the DA 

distribution can be seen in central parasagittal slices through the condyles, provided 

for the whole sample in the Supplementary Material. 
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Figure 4.8. Bone volume fraction (BV/TV) and degree of anisotropy (DA) results for each 

region and taxon. (A) BV/TV in the lateral condyle. (B) BV/TV in the medial condyle. (C) DA 

in the lateral condyle. (D) DA in the medial condyle. Regions (outlined) and taxa are 

displayed below. 

 

Interspecific differences are also detected in Tb.N, Tb.Sp and Tb.Th (Figure 

4.9). Sexual dimorphism in some of the taxa may have a considerable effect on these 

trabecular parameters however unfortunately in the present study this could not be 

tested due to small and unbalanced samples. 

 

 In both condyles, Tb.N shows a decreasing trend from Pan to Pongo to Homo 

and to Gorilla, which is consistent with increases in body mass. In the lateral condyle, 

Gorilla has significantly lower Tb.N than all other apes in all regions (Pan p<0.001, 

Pongo p<0.01 in the inferior regions and p<0.05 in the posterosuperior, Homo 

p<0.05), except Homo in the posterosuperior region. Homo do not show significant 
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differences with Pongo in any region, but when the captive specimens are removed 

there is a weak but significant result (p=0.05) in the distal and posterosuperior 

regions. Homo also displays significantly lower Tb.N than Pan in the distal (p<0.05) 

and posterosuperior (p<0.001) regions of the lateral condyle. However, Tb.N in the 

posteroinferior region in Homo is higher than the other regions, overlapping with 

other taxa. Furthermore, Pongo has significantly lower Tb.N than Pan (p<0.05) only 

in the posterosuperior region of the lateral condyle. In the medial condyle, Gorilla 

similarly show significantly lower Tb.N than Pongo and Pan in all regions (p<0.01, and 

p<0.001 respectively), but lower Tb.N than Homo only in the posteroinferior region 

(p<0.01). Pan and Pongo again only differ in the posterosuperior region (p<0.01), 

with Pongo having a lower Tb.N. Pongo has significantly higher Tb.N than Homo in 

the distal region (p<0.05) and Pan shows significantly higher values than Homo in the 

distal (p<0.05) and posterosuperior (p<0.001) regions.  
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Figure 4.9. Trabecular number (Tb.N), separation (Tb.Sp) and thickness (Tb.Th) results for 

each region and taxon. (A) Tb.N in the lateral condyle. (B) Tb.N in the medial condyle. (C) 

Tb.Sp in the lateral condyle. (D) TB.Sp in the medial condyle. (E) Tb.Th in the lateral 

condyle. (F) Tb.Th in the medial condyle. Regions (outlined) and taxa are displayed below. 

Taxa are presented in order of body mass (Pan the smallest; Gorilla the largest) to better 

visualise any patterns potentially associated with body size. 
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In the lateral condyle, Tb.Sp is significantly higher in Gorilla than in Pan and 

Pongo in all regions (p<0.001 and p<0.01 respectively; posterosuperior with Pongo 

p<0.05). Moreover, Tb.Sp is higher than in Homo in the inferior regions (p<0.01). Pan 

and Homo only differ in the posterosuperior region (p<0.001), where Pan shows 

significantly lower Tb.Sp. No differences are found between Pongo and Pan, or Pongo 

and Homo. In the medial condyle, Gorilla again show significantly higher Tb.Sp in all 

regions than Pan and Pongo (p<0.001 and p<0.01 respectively), but only higher Tb.Sp 

in the posteroinferior region than Homo (p<0.01). Pongo shows significantly higher 

Tb.Sp than Pan in the posterosuperior region (p<0.05), but no significant differences 

to Homo, whereas Homo shows significantly higher Tb.Sp than Pan in the distal 

(p<0.01) and posterosuperior (p<0.001) regions. CV values show that in both 

condyles Pan is the most variable in the distal region, all species show similar 

variation in the posteroinferior region and Homo shows the greatest variation in the 

posteriosuperior region. 

 

In regards to Tb.Th, in the lateral condyle, Gorilla shows significantly higher 

values than Pan in all regions (p<0.01 and p<0.001 in the posterosuperior). 

Furthermore, Gorilla has significantly higher Tb.Th than Pongo in the inferior regions 

(p<0.05) and, when the captive specimens are removed, a significant difference is 

also detected in the posterosuperior region (p<0.01). The only difference detected 

between Gorilla and Homo is in the posteroinferior region (p<0.05), where Gorilla 

has higher Tb.Th. Pan shows significantly lower Tb.Th than Homo in the distal and 

posterosuperior regions (p<0.05), whereas Pongo shows significantly lower Tb.Th 

than Homo only in the distal region of this condyle (p<0.05). No significant 

differences are detected between Pongo and Pan. In the medial condyle, Pan displays 

significantly lower Tb.Th than Gorilla and Homo in all regions (Gorilla p<0.001 and 

p<0.01 in the distal; Homo p<0.001 in distal, p<0.05 in posteroinferior, p<0.01 in 

posterosuperior), but no differences with Pongo. Moreover, Gorilla shows 

significantly higher Tb.Th than Pongo in the distal and posterosuperior regions 

(p<0.05), and when the captive specimens are removed this is extended to the 

posteroinferior region (p<0.01).  No differences are found between Gorilla and Homo 

in any region. Similarly to the lateral condyle, Pongo and Homo only differ in the distal 
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region (p<0.01), with the former having lower thickness than the latter. When the 

captive specimens are not included, a significant result is also found in the 

posteroinferior region (p<0.05). Pongo is consistently the most variable taxon across 

all regions of both condyles. 

 

The PC analysis of three trabecular variables (Tb.Th, Tb.Sp and DA) from all 

regions of both condyles reveals good separation among the different taxa (Figure 

4.10). Together, PC1 and PC2 explain 88% of the total variation (see Supplementary 

Table 4.2 for loadings). The first PC separates Gorilla, with relatively high Tb.Sp, 

particularly in the medial condyle, from Pan, with relatively low Tb.Sp, while Homo 

and Pongo fall out as intermediate. The second PC primarily separates Homo with 

relatively high DA in both condyles from all other apes. 

 

 

 
Figure 4.10. Results of principal components analysis of three trabecular variables (Tb.N, 

Tb.Sp. and DA) in all analysed regions. PC1 is mainly driven by variation in trabecular 

separation, while PC2 is driven primarily by degree of anisotropy (also see Table S2 for 

loadings). 
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4.3.2. Trabecular architecture and between-species regional relationships 

 

Between-species variation is investigated further through two ratios that 

represent regional relationships in BV/TV and DA. The “inferior index” compares the 

distribution across the inferior regions of each condyle, where values >1 indicate 

higher BV/TV or DA in the distal versus the posteroinferior region.  The “posterior 

index” compares distribution across posterior regions, where values >1 indicate 

higher BV/TV or DA in the posteroinferior versus the posterosuperior region. Results 

are displayed in Figures 4.11-4.12 and detailed in Table 4.3 and Supplementary Table 

4.3. The BV/TV inferior index is <1 in all taxa and in both condyles, indicating that the 

posteroinferior region has consistently higher BV/TV than the distal region. However, 

in the lateral condyle, the Homo inferior index approaches 1 indicating that BV/TV is 

fairly equal across the inferior regions and it differs significantly from that of Pan 

(p<0.05) and Gorilla (p<0.01), but not Pongo. Thus, there is a greater disparity in 

BV/TV distribution between the inferior regions of the lateral condyle in African apes 

compared to humans. In the medial condyle no significant differences are found in 

the inferior index, indicating that the studied taxa have more similar relative 

distribution in BV/TV.  

 

 
Figure 4.11. Inferior index for BV/TV and DA. (A) BV/TV. (B) DA. Index >1 indicates higher 

BV/TV or DA in the distal region, whereas index <1 indicates higher values in the 

posteroinferior region. 
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Table 4.3. Indices results for lateral and medial condyle. 

Taxon Parameter Inferior 
lateral 
index 

Posterior 
lateral 
index 

Inferior 
medial 
index 

Posterior 
medial 
index 

Pan BV/TV 0.84 (0.05) 1.03 (0.08) 0.84 (0.05) 1.03 (0.08) 
 DA 0.86 (0.05) 1.13 (0.09) 0.90 (0.04) 1.02 (0.07) 
Gorilla BV/TV 0.86 (0.06) 1.15 (0.11) 0.81 (0.08) 1.06 (0.07) 
 DA 1.00 (0.07) 1.04 (0.06) 0.94 (0.07) 1.01 (0.04) 
Pongo BV/TV 0.85 (0.06) 1.03 (0.02) 0.84 (0.11) 0.97 (0.08) 
 DA 0.90 (0.08) 1.12 (0.10) 0.91 (0.09) 1.08 (0.06) 
Homo BV/TV 0.95 (0.08) 1.16 (0.11) 0.86 (0.05) 1.15 (0.10) 
 DA 0.83 (0.03) 1.10 (0.04) 0.78 (0.07) 1.11 (0.05) 

 

 

The inferior index also reveals interspecific differences in DA regional 

relationships. In the lateral condyle, Homo demonstrates the lowest ratio, indicating 

greater disparity in DA between the two inferior regions, with higher DA found in the 

posteroinferior region. In contrast, Gorilla has an inferior index approaching 1, 

indicating more equal DA across inferior regions. In the lateral condyle, the inferior 

index differs significantly between Gorilla and Homo (p<0.001), as well as Gorilla and 

Pan (p<0.01). In the medial condyle, all taxa show a mean inferior index <1, indicating 

that the posteroinferior has relatively greater DA than the distal region. However, 

one Pongo specimen and two Gorilla specimens are >1. Homo displays the greatest 

disparity in DA between the two regions, with a significantly lower index than Pan 

(p<0.01) and Gorilla (p<0.001). All nonhuman apes are not significantly different from 

each other. 
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Figure 4.12. Posterior index for BV/TV and DA. (A) BV/TV. (B) DA. Index >1 indicates higher 

BV/TV or DA values in the posteroinferior region, whereas index <1 indicates higher values 

in the posterosuperior region. 

 

For the BV/TV posterior index in the lateral condyle, Pan and Pongo have a 

value close to 1 indicating a relatively equal distribution of BV/TV between the 

posteroinferior and posterosuperior regions. In contrast, both Homo and Gorilla 

show an index >1, indicating relatively higher BV/TV in the posteroinferior region. In 

the medial condyle, Homo shows the highest posterior index >1, indicating relatively 

higher BV/TV in the posteroinferior region, while the nonhuman apes show lower 

indices. Pan and Pongo show relatively equal values across the two regions with 

indices close to 1. The posterior index is significantly higher in Homo compared to 

Pongo in both condyles (lateral p<0.05; medial p<0.01) and compared to Pan in the 

medial condyle (p<0.05) only. There are no significant differences between 

nonhuman apes. 

 

For the DA posterior index in the lateral condyle, Pan, Pongo and Homo have 

indices >1, indicating relatively higher DA in the posteroinferior region compared 

with the posterosuperior.  The Gorilla posterior index is closer to 1, indicated that DA 

is similar across the posterior regions of the lateral condyle. However, there are no 

significant differences in the DA indices across the taxa. In the medial condyle, Pongo 

and Homo show greater DA in the posteroinferior than the posterosuperior region, 

whereas Gorilla and Pan have indices closer to 1 indicating a relatively equal DA 
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across these regions in African apes. Between-species comparisons of the index 

reveal that Homo has a significantly higher index than Pan (p<0.05) and Gorilla 

(p<0.001).  

 

 

4.4. Discussion 

 

This study investigated trabecular variation in the distal femur of great apes 

and humans. I expected variation to reflect differences in locomotion and predicted 

differences in habitual joint posture, as well as habitual range of motion at the knee 

joint. I found general support for my predictions, although variation in BV/TV 

distribution did not clearly distinguish taxa despite (presumably) distinct differences 

in knee posture and loading during locomotion. I first discuss intraspecific variation, 

followed by interspecific differences. 

 

 

4.4.1. Within-species trabecular patterns 

 

The Pan distal femur had particularly high BV/TV in the posterosuperior and 

posteroinferior regions of both condyles, and comparatively low BV/TV in the distal 

region. Higher BV/TV values extended from the subchondral surface relatively far 

into the epiphysis of both condyles, particularly in the medial condyle (Figure 4.4). 

Quantification of the trabecular architectural variables revealed that the high BV/TV 

in Pan was characterised by numerous, thin trabeculae with narrow separation.  

Furthermore, DA was highest in the posteroinferior region in the lateral condyle, but 

equally low in the two other regions. In the medial condyle DA is more equal across 

posterior regions, but low in the distal region. Together, these results are consistent 

with higher and more uniaxial loading of the distal femur in a flexed-knee posture, 

which is used during both quadrupedal knuckle-walking and, especially, vertical 

climbing (D’Août et al. 2002; D’Août et al. 2004; Isler, 2005). The more isotropic 

posterosuperior region may reflect the more variable loading that would occur 
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during climbing, as this region is (presumably) in contact with the proximal tibia only 

when the knee is strongly flexed (Isler, 2005; Figure 4.1). 

 

Gorilla showed high BV/TV in the posteroinferior region, which did not always 

extend posterosuperiorly. The disparity between BV/TV in the posterior regions was 

more obvious in the lateral condyle, where the BV/TV of the posteroinferior region 

was visibly higher. In the medial condyle, BV/TV values were similar across the 

posterior regions. In both condyles BV/TV was lowest in the distal region, where 

trabecular separation was highest, perhaps consistent with decreased loading of this 

region. The BV/TV concentration did not extend far within the epiphysis. In both 

condyles, there was a similar degree of anisotropy across the three studied regions; 

however, DA in the medial condyle was generally higher than that of the lateral 

condyle, perhaps due to the greater loading experienced by this condyle (Preuschoft 

and Tardieu, 1996). Moreover, Gorilla displayed fewer but thicker and more widely-

separated trabeculae than the other taxa in all of the analysed regions, suggesting 

that increasing the thickness of trabeculae is important in mitigating load.  

 

The trabecular structure of the Pongo distal femur was the most variable 

across the sample. In general, BV/TV was lowest in the distal region of both condyles. 

In the lateral condyle BV/TV was highest in the posteroinferior region. However, in 

the medial condyle some individuals showed higher BV/TV values in the 

posterosuperior region while other showed fairly equal values across both posterior 

regions. The great range of values in all studied regions revealed high intraspecific 

variation in the distribution of BV/TV within the condyles. The high BV/TV was 

characterised by numerous trabeculae that were relatively thin and closely packed 

in all regions. Pongo showed relatively low DA values across all regions of the 

epiphysis, particularly in the medial condyle. Together, these results are consistent 

with the highly mobile knee joint (Morbeck and Zihlman, 1988; Tuttle and Cortright, 

1988) that facilitates more variable loading of the distal femur during a diverse 

arboreal locomotor repertoire (Cant, 1987; Thorpe and Crompton, 2006; Thorpe et 

al. 2007; Thorpe et al. 2009). Notably, most Pongo specimens had a concentration of 

high BV/TV at the posterior shaft just superior to the femoral condyles. This region 
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underlies the insertion site for the heads of the gastrocnemious muscle (Prejzner-

Morawska and Urbanowicz, 1981; Diogo et al. 2010; Diogo et al. 2013a; Diogo et al. 

2013b). This could be the result of the gastrocnemius muscle being strongly recruited 

during suspension by the hindlimbs, which is more frequently practiced in Pongo 

than in African apes (Thorpe and Crompton, 2006). However, the gastrocnemius is 

recruited during bipedal walking and running in humans (Neptunea et al. 2001; 

Ishikawa et al. 2006; Lichtwark et al. 2007) and is presumably also important during 

knuckle-walking and climbing in African apes. 

 

The comparatively high degree of variability within Pongo is not necessarily 

surprising. Distal femur posture and loading during locomotion can vary between 

species (Mackinnon, 1974; Manduell et al. 2012) and between individuals due to 

differences in sex and/or body size (Sugardjito and van Hooff, 1986; Cant, 1987; 

Thorpe and Crompton, 2005). Pongo was the only sample in my study to comprise 

two species (P. abelii and P. pygmaeus), although there were no consistent 

differences in trabecular structure found between these species in my small sample. 

Furthermore, my sample also included two captive specimens; one female (Pongo 

sp.) and the other being the only male (P. pygmaeus) in the sample. These individuals 

regularly fell out as outliers in the Pongo sample for BV/TV, DA and Tb.Th, even 

though interspecific differences were not largely affected. Both showed higher 

BV/TV and Tb.Th than the other Pongo specimens in most regions, which is perhaps 

explained by their altered locomotion in captivity. Isler and Thorpe (2003) found that 

captive Pongo used shorter gait cycles and faster speed then wild individuals, likely 

because the captive environment was more predictable. Furthermore, the captive 

male Pongo specimen consistently showed the highest DA values in the sample, 

coupled with the lowest trabecular number in most regions, while the female 

displayed the lowest DA values. The trabecular architecture of the male is in line with 

less climbing behaviour and reflects an altered response to load in larger-sized 

individuals, whereas that of the female may be a result of more variable and arboreal 

behaviours resulting in more isotropic trabecular structure. Nonetheless, Tb.N and 

Tb.Sp mostly fall within the range of wild shot Pongo individuals. Given the limited 

number of Pongo specimens available in osteological collections, a fruitful avenue of 
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future research would be to systematically compare trabecular structure between 

wild and captive specimens, particularly if general activity patterns are known in the 

latter. 

 

Homo showed highest BV/TV in the posteroinferior region. The 

posterosuperior region showed consistently lower values but as BV/TV in the distal 

region was more variable, patterns between the condyles differed. In the lateral 

condyle values in the distal region were generally high compared to those of the 

medial condyle and were higher than the values in the posterosuperior region; a 

pattern opposite to what is found in the medial condyle. The DA values were greatest 

in the posteroinferior region and lowest in the distal region of both condyles. High 

BV/TV in the posteroinferior region of both condyles was characterised by more 

numerous trabeculae that were more closely packed but less thick compared with 

the other regions of the Homo distal femur. This trabecular pattern is consistent with 

the region of highest loading when ground reaction forces (Racic et al. 2009) and 

joint reaction forces (Nordin and Frankel, 2001) are highest during the gait cycle, right 

before toe-off. The absence of high bone concentration in the posterosuperior region 

of both condyles is consistent with the relative infrequency of using a highly-flexed 

knee posture during habitual activities. However, the relatively high intraspecific 

variation in BV/TV distribution within the Homo sample, indicated by generally higher 

CV values than African apes, was somewhat surprising. Despite humans loading their 

knees in stereotypical ways compared with other apes, this could be the result of 

frequent use of behaviours not considered in the predictions of this study, including 

climbing stairs, sitting, squatting or running, all of which result in different flexion 

angles (Hardt 1978; Baltzopoulos, 1995; Simpson and Pettit, 1997; Zheng et al. 1998; 

Anderson and Pandy, 2001; Kellis, 2001: Nagura et al. 2002; Taylor et al. 2004). 

Changes in knee angle have been shown to affect joint reaction force and contact 

area. For example, more flexed knee postures result in higher forces on the articular 

surface (Taylor et al. 2004; Kutzner et al. 2010) and a larger contact area at the 

posterior end of the condyles (von Eisenhart-Rothe et al. 2004). In contrast, more 

extended knee postures result in a smaller contact area that is more centrally located 

on the condyles. Unfortunately, the lack of additional life-history information on the 
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human sample deems this speculative. Alternatively, this could be due to a lack of a 

clear functional signal in the trabecular structure of the human distal femur.  

 

 

4.4.2. Between-species trabecular differences 

 

My results revealed several interspecific differences in the trabecular 

structure of the distal femur across hominoids, although these differences were less 

pronounced than I predicted. I predicted that Homo would have absolutely lower 

BV/TV values compared with great apes and that the BV/TV distribution would be 

distally concentrated in the condyles reflecting a habitually extended knee posture. 

This prediction was not fully supported. Homo did not have significantly lower BV/TV 

in the studied regions compared to great apes, which is in contrast to recent findings 

that more sedentary recent humans have systemically lower BV/TV throughout 

various regions of the skeleton (Chirchir et al. 2015; Ryan and Shaw, 2015; Saers et 

al. 2016; Chirchir et al. 2017). However, my results are in line with recent findings 

that humans do not consistently display significantly lower BV/TV than Pan across 

skeletal sites (Tsegai et al. 2018a). Unfortunately, as I do not have information on the 

activity levels or professions of the human population in this study, it is difficult to 

interpret this result. Nonetheless, the high BV/TV values of the inferior regions and 

the lack of this BV/TV concentration posterosuperiorly is consistent with extended-

knee locomotion. 

 

I predicted that Pan and Gorilla would show similar, high BV/TV 

concentrations posterosuperiorly, reflecting the use of more flexed positions. This 

prediction was supported by the greater BV/TV in the posteroinferior compared to 

the distal region in both taxa and the high BV/TV in the posterosuperior region in Pan 

consistent with loading of the condyles in more flexed postures. Pan showed greater 

BV/TV concentration in the posterior regions than Homo, supporting my prediction, 

but differed from the pattern found in Gorilla. The lack of the posterosuperior 

concentration in Gorilla is consistent with their more extended-knee posture during 

terrestrial locomotion (Hofstetter and Niemitz, 1998; Isler, 2005; Crompton et al. 
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2008; but see Finestone et al. 2018), less flexion at the knee during climbing (Isler 

2002, 2005) and a locomotor repertoire that includes more frequent knuckle-walking 

and less climbing compared with Pan (Tuttle and Watts, 1985; Crompton et al. 2010). 

 

I also predicted that Pongo would show homogenous BV/TV distribution 

across all analysed regions of the distal femur, reflecting more variable knee joint 

loading. My results suggest that the distribution is not homogenous in Pongo and the 

pattern does not differ significantly to that of Pan. Pan and Pongo showed high BV/TV 

values across the posterior regions, consistent with the frequent adoption of both 

flexed and hyperflexed joint positions consistent with quadrupedal terrestrial 

locomotion and vertical climbing, respectively. The high degree of intraspecific 

variability found in Pongo is consistent with previous comparative trabecular studies 

on other skeletal elements (Schilling et al. 2014; Tsegai et al.  2013) and thus further 

investigation into the factors, including genetic, development, hormonal or 

biomechanical factors, influencing this intraspecific variability is needed. 

 

Furthermore, I predicted that within my sample, Homo would show the 

highest DA throughout the distal femur reflecting the stereotypical loading that 

occurs during habitual bipedalism, while Pan and Gorilla would show similar 

intermediate levels of DA, and that Pongo would show the lowest DA values. My 

predictions were generally supported. Homo had comparatively higher DA in all 

regions of the distal femur compared with other great apes and the overall pattern 

was distinctly different from what was found in African apes and Pongo. These 

differences could be explained by variation in mediolateral motion between taxa and 

less variability in joint forces during locomotion in Homo (Preuschoft and Tardieu, 

1996). Femoral movement within the tibio-femoral joint is the result of both hard 

and soft tissue morphology (e.g. Reynolds et al. 2017). Both cruciate ligaments 

prevent tibial displacement (Butler et al. 1980), whereas the collateral ligaments stop 

valgus or varus rotation (Shoemaker and Markolf, 1985; Gollehon et al. 1987). The 

quadriceps, gastrocnemius and hamstrings also assist with knee stability (Shelburne 

et al. 2006). “Independent rotation” is dictated by the fit with the tibia, which varies 

across hominoids. In Homo, the width of the intercondyloid notch is similar to that 
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of the tibial interspinal distance (Tardieu, 1981), resulting in more constriction of 

movement and limited independent rotation of the two elements. In the rest of the 

great apes this trait varies with body size (Tardieu, 1981). Pan has the greatest 

disparity in fit, followed by Pongo and then Gorilla, displaying differences in knee 

rotational capacity. Furthermore, the larger articular surface of the medial condyle 

than that of the lateral in nonhuman apes (Tardieu, 1981) assists in “combined 

rotation”, where rotation and flexion-extension happen simultaneously. This 

external rotation during extension is evident in Pongo and Pan (Lovejoy, 2007). 

Greater rotation in these taxa suggests that resulting forces are multi-axial, loading 

the knee in several directions and therefore producing less anisotropic trabecular 

structure within the condyles. In contrast, the Homo knee is more restricted and, 

even when flexing, there is a lack of significant mediolateral rotation. This results in 

more uniform loading and, consequently, a higher degree of trabecular anisotropy. 

 

Lastly, I predicted that trabecular architectural variables would reflect 

differences in body size consistent with previous studies (e.g. Doube et al. 2011; Ryan 

and Shaw, 2013; Barak et al. 2013b). Specifically, I predicted that smaller-bodied Pan 

and Pongo would show higher Tb.N but lower Tb.Sp and Tb.Th, while larger-bodied 

Homo and Gorilla would show the opposite pattern. Although I did not directly test 

allometry due to the small and unbalanced sex samples within each taxon, I found 

some support that trabeculae of the distal femur show a similar relationship with 

body size as found in previous studies. The smaller-sized taxa Pongo and Pan 

generally showed greater Tb.N and lower Tb.Sp and Tb.Th than the other hominoids. 

Conversely, the larger-sized Gorilla generally showed greater Tb.Th and Tb.Sp, but 

lower Tb.N than the other taxa. These results perhaps reveal a link between certain 

trabecular parameters and body size that could stem from differences during the 

modelling process. However, further investigation of potential allometric influence 

on trabecular structure within each taxon is needed on larger and more balanced-

sex samples. 

 

Although I found some clear differences in trabecular structure that are 

consistent with my predictions based on the knee joint range of motion and loading 
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during habitual locomotion, the trabecular patterns revealed here are not necessarily 

straightforward. There was much greater overlap between Homo and other great 

apes than expected given their dramatic differences in knee joint posture and 

loading. Biomechanical inferences from trabecular structure are complex because it 

is not clear what triggers modelling or how trabecular and cortical bone respond to 

strain (Wallace et al. 2014); for example, research suggests that bone responds to 

high frequency, low intensity loading and low frequency, high intensity loading, as 

well as a range of loads that fall between the two extremes (Whalen et al. 1988; 

Rubin et al. 1990; Rubin et al. 2001; Judex et al. 2003; Scherf et al. 2013). Additionally, 

I do not know if this differs between specialist and generalist species. Furthermore, 

it is difficult to control for factors such as genetics, age, hormones, demands for 

maintaining bone homeostasis and other systemic factors that could influence the 

organisation of trabecular bone (e.g. Simkin et al. 1987; Lee et al. 2003; Pearson and 

Lieberman, 2004; Suuriniemi et al. 2004; Kivell, 2016; Wallace et al. 2017; Tsegai et 

al. 2018a). It has been shown that bone mineral density, as well as bone turnover are 

to a great extent hereditary (Smith et al. 1973; Dequeker et al. 1987; Kelly et al. 1991; 

Garnero et al. 1996; Harris et al. 1998). Additionally, trabecular architecture across 

the skeleton is regulated by different genes (Judex et al. 2009), which adds to the 

complexity and extrapolating from one skeletal site to another may introduce error. 

Genotypic variations may also influence the response to mechanical strain (Judex et 

al. 2002), complicating functional interpretations even further. Thus, variation in 

bone’s response to different types of loading across skeletal sites, between sexes or 

pathological states (Goldstein, 1987; Keaveny et al. 2001; Yeni et al 2011), as well as 

the influence of non-mechanical factors suggest that the study of this tissue is 

complex. Hence, there is a need to understand in greater depth how the knee joint 

functions and how load is distributed in the different regions of the condyles across 

hominoids so that we can better link variation in trabecular structure to mechanical 

loading, particularly in extinct taxa. 
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4.5. Conclusion 

 

This study provided the first holistic study of trabecular bone within the 

hominoid distal femur. I showed that humans, despite not being as distinct as initially 

predicted, are characterised by higher DA than of all other hominoids and more 

distally concentrated BV/TV compared with Pan and Pongo, which is consistent with 

more stereotypical loading in an extended-knee posture during bipedalism. Pan and 

Pongo showed more posteriorly-concentrated BV/TV and all apes show lower DA 

than humans; traits that are generally consistent with more variable loading in a 

flexed-knee posture that is used during knuckle-walking and climbing. Variation 

found in this study and specifically in Pongo, was consistent with the limited 

biomechanical studies of knee posture and loading, but substantial overlap in 

different trabecular parameters across taxa suggest caution is needed when making 

inferences about behaviour in fossil taxa. 
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Supplementary Table 4.1. Results (p-value) for between taxa differences in the 
examined regions. Captive Pongo are included. 

 
 

Taxa Parameter Lateral 
distal 

Lateral 
posteroinferior 

Lateral 
posterosuperior 

Medial 
distal 

Medial 
posteroinferior 

Medial 
posterosuperior 

Pan-
Pongo 

BV/TV N/A N/A N/A N/A N/A N/A 

 DA N/A N/A N/A N/A N/A N/A 

 Tb.N 
(1/mm) 

N/A N/A 0.02777 N/A N/A 0.00430 

 Tb.Sp (mm) N/A N/A N/A N/A N/A 0.01172 

 Tb.Th (mm) N/A N/A N/A N/A N/A N/A 

Pan-
Gorilla 

BV/TV N/A N/A 0.03118 N/A N/A 0.00900 

 DA N/A N/A N/A N/A N/A N/A 

 Tb.N 
(1/mm) 

0.00013 0.00013 0.00013 0.00026 0.00007 0.00007 

 Tb.Sp (mm) 0.00007 0.00013 0.00007 0.00026 0.00007 0.00007 

 Tb.Th (mm) 0.00120 0.00190 0.00078 0.00195 0.00078 0.00007 

Pan-
Homo 

BV/TV N/A  N/A 0.00026 N/A N/A 0.01700 

 DA 0.00078 0.00013 0.00013 N/A N/A N/A 

 Tb.N 
(1/mm) 

0.01254 N/A 0.00078 0.00195 0.09000 0.00007 

 Tb.Sp (mm) N/A N/A 0.00013 0.00195 N/A 0.00013 

 Tb.Th (mm) 0.01250 N/A 0.03118 0.00078 0.04105 0.00630 

Gorilla-
Pongo 

BV/TV N/A N/A N/A N/A N/A N/A 

 DA N/A N/A N/A N/A N/A N/A 

 Tb.N 
(1/mm) 

0.00123 0.00432 0.01851 0.00247 0.00120 0.00120 

 Tb.Sp (mm) 0.00250 0.00432 0.01851 0.00432 0.00430 0.00432 

 Tb.Th (mm) 0.01170 0.01850 N/A 0.01172 N/A 0.04070 

Gorilla-
Homo 

BV/TV N/A N/A N/A N/A N/A N/A 

 DA N/A 0.00007 0.00195 N/A 0.01300 N/A 

 Tb.N 
(1/mm) 

0.00435 0.00435 N/A N/A 0.00440 N/A 

 Tb.Sp (mm) 0.00290 0.00195 N/A N/A 0.00630 N/A 

 Tb.Th (mm) N/A 0.04100 N/A N/A N/A N/A 

Pongo-
Homo 

BV/TV N/A N/A N/A N/A N/A N/A 

 DA N/A 0.00062 0.00432 N/A 0.02800 N/A 

 Tb.N 
(1/mm) 

N/A N/A N/A 0.01851 N/A N/A 

 Tb.Sp (mm) N/A N/A N/A N/A N/A N/A 

 Tb.Th (mm) 0.04070 N/A N/A 0.00740 N/A N/A 
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Supplementary Table 4.2. Loadings of parameters at each region to PC1 and PC2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Parameter, region PC1 PC2 

Tb_Sp, lateral distal 16.359 0.877 
Tb_Sp, lateral posteroinferior 8.388 1.494 

Tb_Sp, lateral posterosuperior 12.032 1.449 
Tb_Sp, medial distal 22.391 0.068 

Tb_Sp, medial posteroinferior 11.886 1.996 
Tb_Sp, medial posterosuperior 20.288 0.028 

Tb_Th, lateral distal 1.525 0.236 

Tb_Th, lateral posteroinferior 1.380 1.232 
Tb_Th, lateral posterosuperior 0.956 0.089 

Tb_Th, medial distal 1.022 0.558 
Tb_Th, medial posteroinferior 1.018 0.271 

Tb_Th, medial posterosuperior 1.421 0.201 
DA, lateral distal 0.571 8.930 

DA, lateral posteroinferior 0.152 24.728 

DA, lateral posterosuperior 0.347 15.028 
DA, medial distal 0.071 6.610 

DA, medial posteroinferior 0.148 24.134 
DA, medial posterosuperior 0.045 12.070 
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Supplementary table 4.3. Results (p-value) for between taxa differences in the 
indices. 

 

  

Taxa Parameter Inferior 
lateral 
index 

Posterior 
lateral 
index 

Inferior 
medial 
index 

Posterior 
medial 
index 

Pan-Pongo BV/TV N/A N/A N/A N/A 
 DA N/A N/A N/A N/A 
Pan-Gorilla BV/TV N/A N/A N/A N/A 
 DA 0.00292 N/A N/A N/A 
Pan-Homo BV/TV 0.0173 N/A N/A 0.0173 
 DA N/A N/A 0.00903 0.01728 
Gorilla-
Pongo 

BV/TV N/A N/A N/A N/A 

 DA N/A N/A N/A N/A 
Gorilla-
Homo 

BV/TV 0.0063 N/A N/A N/A 

 DA 0.00045 N/A 0.00078 0.00078 
Pongo-
Homo 

BV/TV N/A 0.012 N/A 0.0074 

 DA N/A N/A N/A N/A 
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Locomotor diversity in South African fossil 

hominins during the Early Pleistocene 
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Abstract 

 

Bipedalism is a defining trait of the hominin lineage, associated with a 

transition from a more arboreal to a more terrestrial environment. While there is 

debate about when mechanically modern human-like bipedalism first appeared in 

hominins, all South African hominins show clear morphological adaptations to 

bipedalism and it is generally accepted that bipedalism was their dominant mode of 

locomotion. Here I present evidence from the internal bone structure of the femur 

that two different patterns of locomotion are represented by hominins at 

Sterkfontein. The internal trabecular structure of a proximal femur (StW 522) 

confidently attributed to Australopithecus africanus exhibits a derived, modern 

human-like bipedal loading pattern, suggesting bipedalism in this individual was as 

frequent and biomechanically similar to that of recent humans. In contrast, a 

geologically younger hominin femoral specimen (StW 311) possibly attributed to 

early Homo or Paranthropus robustus, shows a trabecular pattern that is more similar 

to non-human apes, indicating that both bipedalism and climbing were a dominant 

component of their locomotor repertoire. My results demonstrate locomotor 

diversity in South African hominins, suggesting an adaptive shift to climbing in 

younger hominins, and contribute to additional evidence from southern and eastern 

Africa of multiple, co-occuring forms of bipedalism among Plio-Pleistocene hominins.   
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5.1. Introduction 

 

 

Bipedalism is one of the defining traits of the hominin lineage and skeletal 

adaptations for bipedal locomotion date back to at least six million years ago (e.g. 

Senut et al. 2001; Pickford et al. 2002; Crompton et al 2008; Almecija et al. 2013). 

These bipedal adaptations are found throughout the skeleton, but those of the hip 

and knee are particularly important as these joints are central in determining how 

load is transferred through the lower limb. In modern humans, femoral adaptations 

for bipedalism include a relatively large femoral head and long neck proximally 

(McHenry and Corruccini, 1978; Lovejoy et al. 2002; Harmon, 2007), as well as flat, 

ellipsoid condyles and an elevated patellar lip distally (Heiple and Lovejoy, 1971; 

Tardieu, 1981). Conversely, in African apes the femoral head is relatively small and 

the neck short (McHenry and Corruccini, 1978; Harmon, 2007), while the distal 

condyles are relatively circular (Heiple and Lovejoy, 1971; Tardieu, 1981). Identifying 

bipedal adaptations in fossils helps place them on the hominin lineage, however 

these adaptations in the earliest fossil hominins (e.g. Orrorin, Ardipithecus) are 

controversial (White et al. 1994; Pickford et al. 2002; Wolpoff et al. 2002; Zollikofer 

et al. 2005; Crompton et al 2008; Lovejoy et al. 2009a,b; Ohman et al. 2005; Almecija 

et al. 2013). More clear evidence for obligate bipedalism is found in later hominins, 

such as the australopiths (e.g. Ward et al. 1999; Ward et al. 2001; Lovejoy et al. 2002). 

Australopithecus afarensis presents a long femoral neck and human-like femoral 

muscular organisation in the proximal femur (Lovejoy, 2005a) as well as a raised 

patellar lip, ellipsoid condyles and a deep patellar groove in the distal femur (Lovejoy 

and Heiple, 1970; Tardieu, 1981) suggesting that they frequently adopted bipedality. 

Similar distal femoral traits are found in Australopithecus africanus. Furthermore, 

evidence for committed terrestrial bipedality is found in the foot of A. afarensis that 

suggests the presence of transverse and longitudinal arches similar to modern 

humans (Ward et al. 2011). Other South African fossils, including Australopithecus 

sediba MH1 and MH2 (Berger et al. 2010; Zipfel et al. 2011; DeSilva et al. 2013) and 

Australopithecus sp. StW 573 (Clarke and Tobias, 1995) further strengthen this notion 
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that australopiths were habitual bipeds. However, the different mosaics of human- 

and ape-like external traits in these australopiths has led to debate over the form of 

bipedalism (e.g. Stern and Susman, 1983; Susman et al. 1984; Berge, 1994; Carey and 

Crompton, 2005; Lovejoy and McCollum, 2010; Raichlen et al. 2010), as well as the 

levels of arboreality in these taxa (e.g. Ward, 2002). Although Homo erectus and most 

later Homo species are generally recognised as mechanically modern human-like, 

obligate bipeds (e.g. Day, 1971; Trinkaus, 1983; Aiello and Dean, 2002; Ruff and 

Walker, 1993; Lorenzo et al. 1999; Ruff, 2008, 2009; Hatala et al. 2016), the timing of 

the appearance of obligate bipedalism is debated (Susman and Stern, 1982; Berillon, 

1999; Wood and Collard, 1999; Bramble and Lieberman, 2004; Harcourt-Smith and 

Aiello, 2004). 

 

Most studies of fossil hominin bipedalism have focused on external 

morphological traits (e.g. Stern and Susman, 1983; Lovejoy and Heiple, 1970; 

Tardieu, 1981; Senut et al. 2001; Lovejoy, 2005a,b,2007; Harmon, 2009a; Lovejoy et 

al. 2009a,b). However, external morphology can be subject to evolutionary stasis in 

which features that are not functionally useful are retained, obscuring behavioural 

signals (Ward, 2002). Functional divergence of the upper and lower limbs may 

promote increased mobility in the upper limbs for climbing in contrast to increased 

stability in lower limb for terrestrial bipedalism (Sylvester, 2006), further 

complicating behaviour reconstructions based on isolated skeletal elements. 

Furthermore, the discovery of A. sediba (Berger et al. 2010), Homo floresiensis 

(Brown et al. 2004) and Homo naledi (Berger et al. 2015), reveal unexpected 

combinations of ape-like and human-like morphologies in the hominin fossil record. 

To better understand actual, rather than potential, behaviour in the past, 

morphological analyses should focus on traits that are influenced by function during 

development. Trabecular architecture has proven integral in reconstructing past 

behaviours (Macchiarelli et al. 1999; DeSilva and Devlin, 2012; Barak et al. 2013a; 

Tsegai et al. 2013; Skinner et al. 2015; Stephens et al. 2016; Ryan et al. 2018), as it 

informs about habitually acquired postures throughout the life of an individual. 

Trabecular bone responds to load via modelling and remodelling, mainly altering the 

orientation of its struts and the distribution and volume of bone across epiphyses 
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(e.g. Pontzer et al. 2006; Barak et al. 2011). Analysis of trabecular architecture has 

revealed behavioural signals in the femoral head (e.g. Ryan and Ketcham, 2002; Ryan 

and Shaw, 2012; Ryan et al. 2018; Georgiou et al. 2019) and less so in the distal femur 

(Georgiou et al. 2018) of primates. My previous work has shown that within the 

femoral head, trabecular bone distribution differs between humans, African apes 

and orangutans (Georgiou et al. 2019) and correlates with predicted loading from 

habitual postures. Furthermore, within the femoral head, modern humans have low 

bone volume (expressed as low bone volume fraction, or BV/TV), highly aligned struts 

(expressed as high degree of anisotropy, or DA) and distinct strut orientation 

compared to other apes (Ryan et al. 2018); all traits that are consistent with obligate 

bipedalism. Trabecular studies in the femoral head (Ryan et al. 2018) and distal tibia 

(Barak et al. 2013a) of A. africanus have shown that the trabeculae are highly aligned 

and oriented in a similar manner to humans and distinct from chimpanzees. 

However, these studies focused on sub-volumes of trabeculae and since trabecular 

structure is not homogeneously distributed across epiphyses (Sylvester and Terhune, 

2017), analysing isolated volumes may obscure or limit our functional 

interpretations.  

 

Here I conduct a comparative analysis of the 3D trabecular bone distribution 

beneath the subchondral layer of the proximal femoral head and distal femoral 

condyles, where trabecular bone strength is generally found to be highest (Harada et 

al. 1988), in humans, other great apes and three fossil hominin specimens from 

Sterkfontein, South Africa (proximal femora StW 311, StW 522 and distal femur TM 

1513) using a novel, geometric morphometric, whole-epiphysis approach. The site of 

Sterkfontein is located in the Cradle of Humankind, alongside other hominin fossil 

sites, including Swartkrans, Malapa and Rising Star (e.g. Brain and Sillent, 1988; 

Berger et al. 2010; Berger et al. 2015). The complex stratigraphy of Sterkfontein has 

been divided into six different Members (Kuman and Clarke, 2000) and I analysed 

specimens from two of these: Members 4 and 5. Within Member 4, a large sample 

of craniodental and postcranial fossils attributed to A. africanus and a proposed 

second Australopithecus species (e.g. Clarke, 1988; Clarke, 2013) have been found, 

however no associated artefacts were recovered. The hominin remains include the 
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proximal femur StW 522and distal femur TM 1513 analysed here, both of which have 

been attributed to A. africanus (Reed et al. 2013) based on the stratigraphic layer 

they were found in and associated remains. Furthermore, the body mass of StW 522 

was estimated at 29.5 kg (Ruff, 2010). Dating of Member 4 has yielded various dates 

(Vrba, 1980; Delson, 1988; McKee, 1993; Schwarcz et al. 1994; Partridge, 2005; 

Pickering and Kramers, 2010), with the most recent analysis suggesting that the 

stratigraphic layers of this member range from 2.8 to 2.0 Ma (Herries and Shaw, 

2011). Paleoenvironmental reconstructions suggest that over the time of formation 

of Member 4, habitats included closed forest and more open grassland in proximity 

(Vrba, 1974, 1975, 1980; Bamford, 1999; Avery, 2001; Sponheimer et al. 2005a,b). 

 

Member 5 is more complex, comprising three infills that all bear hominin 

remains: The Member 5 StW 53 infill dated to 1.8-1.5 Ma (Herries and Shaw, 2011) 

includes a hominin cranium (StW 53) and juvenile maxilla (StW 75), as well as a 

potentially hominin ulna (StW 571) (Reynolds and Kibii, 2011). The taxonomic affinity 

of the cranium has been debated, with some suggesting it is Homo habilis (Hughes 

and Tobias, 1977; Prat, 2005; Curnoe and Tobias, 2006) while others consider it to be 

Australopithecus (Clarke 1985, 1998, 2008; Braga, 1998; Thackeray et al. 2000; 

Kuman and Clarke 2000). The Member 5 East infill, dated to 1.4-1.2 Ma (Herries and 

Shaw, 2011), includes of Paranthropus dental remains as well as Oldowan and Early 

Acheulean tools (Kuman, 1994a,b; Kuman and Clarke, 2000). The Oldowan breccia is 

located in the deeper layers of Member 5 East where the Paranthropus robustus 

specimens are found, while the Early Acheulean tools appear in subsequent layers 

(Kuman and Clarke, 2000). The Member 5 West infill, dated to 1.3-1.1 Ma (Herries 

and Shaw, 2011), includes H. erectus craniodental remains and Early Acheulean tools 

(Reynolds and Kibii, 2011) consistent with being the youngest of the three infills. The 

StW 311 proximal femur specimen analysed has been attributed to A. africanus in 

several studies (e.g. Green et al. 2007; Harmon, 2009a). However, based on Kuman 

and Clarke’s (2000) revision of Sterkfontein’s stratigraphy, StW 311 derives from the 

younger Member 5 East infill and thus could be attributed to P. robustus or early 

Homo. The body mass of this specimen was estimated at 41.6 kg (Ruff, 2010). 

Unfortunately, this specimen does not preserve enough of the proximal epiphysis to 
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be taxonomically diagnostic and thus is attribution depends on the dating of Member 

5 East and the other finds within this stratigraphic layer. All three Member 5 infills 

were comprised of largely open environments and differed to each other. 

Specifically, the StW 53 infill had dry, grassland conditions (Kuman and Clarke, 2000), 

the Member 5 East infill had dry, open environments but with significant tree 

coverage (Bishop et al. 1999; Pickering, 1999), and the Member 5 West infill had 

open, and/or wooded grassland (Vrba, 1975; McKee, 1991; Reed, 1997; Kuman and 

Clarke, 2000; Luyt and Lee-Thorp, 2003). 

 

To investigate the potential locomotor signals within the trabecular structure 

of the Sterkfontein hominin femoral specimens, I combine geometric morphometrics 

with trabecular analysis of the whole epiphysis to quantify and compare BV/TV 

values at homologous locations between extant and fossil taxa (Supplementary 

Figure 5.1A). First, I investigate behavioural signals in the femoral head of extant non-

human apes based on hindlimb postures and peak loading predictions during 

habitual locomotor behaviours, including terrestrial knuckle-walking and arboreal 

climbing in African apes (Pan troglodytes verus n=11, Pan troglodytes troglodytes 

n=5, Gorilla gorilla gorilla n=11) (Isler, 2005; Finestone et al. 2018) and diverse 

orthograde arboreal behaviours in orangutans (Pongo sp. n=5) (Isler, 2005; Thorpe 

and Crompton, 2006; Thorpe et al. 2009; Finestone, 2018). Second, I investigate the 

trabecular pattern in recent Homo sapiens (n=11) based on the extended hip and 

knee postures and peak loading predictions during bipedalism (Paul, 1976; English 

and Kilvington, 1979; Alexander, 1994; Yoshida et al. 2006; Abbass and Abdulrahman, 

2014). I also examine the trabecular distribution in the femoral head of a fossil H. 

sapiens (Ohalo II H2) and two Neanderthals (Homo neanderthalensis) (Krapina 213 

and Kapina 214) as obligate bipedal hominins with similar locomotion to that of 

modern humans. Third, I assess the trabecular bone distribution in the femoral heads 

of two fossil hominin specimens (StW 311, StW 522) from Sterkfontein, South Africa, 

to determine whether they show functional signals in the femur for ape-like, human-

like or unique modes of locomotion, which external traits have failed to reconcile 

(See Supplementary Figure 5.2A for comparative femoral measurements). The 

external morphology and preserved trabecular structure of these fossils can be seen 
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in Supplementary Figure 5.3. Several fossil specimens were excluded from my 

analysis because of difficulties in obtaining an accurate representation of the 

trabecular structure or limited preservation that excluded homologous landmarking 

(Supplementary Figure 5.4). D322 15, D322 16, SK 82 and SK 97 did not preserve 

enough of the trabecular structure for meaningful comparisons with the extant 

sample, while SK 3121 and SKW 19 (when segmented) showed preferential 

thickening of the trabeculae toward the centre of the femoral head which obscured 

the patterns. Finally, I applied the same methodology to investigate trabecular 

distribution patterns beneath the articular surface of the distal femur in the same 

sample of extant apes and humans, and a distal hominin femur from Sterkfontein 

(TM 1513) (Supplementary Figure 5.5 for method (A) and results (B-C)). However, TM 

1513 is missing part of the lateral portion of the patellar articulation, which 

confounds the selection of homologous landmarks between this fossil and the extant 

sample. Thus, these results are not discussed in detail and functional interpretations 

are approached with caution. 

 

 

5.2. Materials and Methods 

 

5.2.1. Sample, segmentation and trabecular architecture analysis 

 

In this study I used micro-computed tomographic scans to analyse trabecular 

architecture in the femoral head and distal femur of five extant ape taxa (Pan 

troglodytes verus n=11, Pan troglodytes troglodytes n=5, Pongo sp. n=5, Gorilla 

gorilla n=11 and H. sapiens n=11) and six fossil specimens (StW 311, StW 522, Ohalo 

II H2, Krapina 213, Krapina 214 and TM 1513), detailed in Supplementary Table 5.1. 

Proximal and distal epiphyses for each individual of the extant sample were from the 

same femur, all were adult and showed no signs of pathologies. Prior to analysis, all 

specimens were re-oriented to approximate anatomical positions, as well as cropped 

and re-sampled when necessary using AVIZO 6.3 ® (Visualization Sciences Group, 

SAS).  
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Segmentation of bone from air was performed using the Ray Casting 

Algorithm (Scherf and Tilgner, 2009) for the extant sample and Neanderthals and the 

MIA-clustering algorithm (Dunmore et al. 2018) for the rest of the fossil sample. The 

latter was used for fossils as it allows more accurate separation of trabecular bone 

from surrounding inclusions. Trabecular architecture was analysed in medtool 4.1 

(www.dr-pahr.at), following previously described protocol (Gross et al. 2014). Three-

dimensional tetrahedral meshes with a 1mm mesh size were created using CGAL 4.4 

(CGAL, Computational Geometry, http://www.cgal.org) and BV/TV values, which 

were obtained using a 7.5mm sampling sphere on a 3.5mm background grid, were 

interpolated onto the elements creating BV/TV distribution maps. Internal BV/TV 

distribution was visualised in Paraview above selected percentiles which were 

calculated for each femoral head using the quantile function in R v3.4.1 (R Core Team, 

2017). The visualisation shows where the 15%-25% highest BV/TV values lie within 

the head (Supplementary Figures 5.6-5.7). This method was chosen to ensure that 

the selected thresholds were not affected by outliers and that isolated patterns were 

comparable between specimens.  

 

The surface of the resulting 3D models was extracted and smoothed using 

Screened Poisson surface reconstruction in MeshLab (Cignoni et al. 2008) in 

preparation for landmarking.  

 

5.2.2. Landmarking and BV/TV values extraction 

 

Initially, fixed landmarks were selected for the proximal and distal femur. 

Intra-observer error for the fixed landmarks was tested by placing the landmarks on 

3 specimens of the same taxon at 10 different occasions. Five fixed landmarks were 

identified on the femoral head; one on each direction at the head-neck border and 

one on the surface of the femoral head, at the midpoint of the four corner landmarks 

(Supplementary Figure 5.1A). Four curves were defined between the fixed 

landmarks, along the femoral head-neck boundary. Description of the landmarks is 

given in Supplementary Table 5.2. Subsequently, two hundred and eight 



 183 

semilandmarks were defined on the surface of the femoral head. These were evenly 

spaced landmarks extending across the whole femoral articular surface. Fossil 

specimens, specifically Neanderthals (Krapina 213 and Krapina 214), that were 

broken were not landmarked, to avoid sampling non-homologous regions between 

taxa. 

 

In the distal femur, nine fixed landmarks were defined around the articular 

surface of the distal epiphysis, following Gould (2014) and described in 

Supplementary Table 5.2 (Supplementary Figure 5.5A). Eight curves were then 

defined between the fixed landmarks, at the articular surface boundary. Since 

TM1513 lacks the lateral border of the patellofemoral surface, the curve extending 

across that lateral border was not landmarked. Two hundred and one surface 

semilandmarks were then defined across the articular surface of the distal femur, 

extending over the articulation for the patella, as well as the surface of the lateral 

and medial condyles.  

 

In both epiphyses, the fixed and curve landmarks were manually defined on 

all specimens, while the surface semilandmarks were defined on one specimen and 

then projected on all other specimens using the Morpho package (Schlager, 2017) in 

R v3.4.1 (R Core Team, 2017). After manual inspection of the projected landmarks on 

each specimen the landmarks were relaxed on the surface reducing bending energy. 

Subsequently, the Morpho package was used to slide the surface and curve 

landmarks reducing Procrustes distance. A medtool 4.1 custom script was used to 

match the landmark coordinates to the closest neighbouring tetrahedron in the 

BV/TV distribution maps of each specimen and obtain the BV/TV values for each 

landmark. Relative BV/TV (RBV/TV) values were calculated for each landmark by 

dividing landmark BV/TV values by the average BV/TV of each individual. Relative 

values were used for the statistical analysis to ensure interspecific comparisons 

focused on differences in the distribution rather than systemic species differences. 
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5.2.3. Statistical analysis 

 

Statistical analysis was performed in R v3.4.1 (R Core Team, 2017). A principal 

components (PC) analysis was used to visualise interspecific differences in RBV/TV 

distributions. Bonferroni-corrected pairwise permutational MANOVA tests of the 

first three principal components were used to test whether observed differences 

between the taxa in the PCA are significant. The three first components were chosen 

as they explained high percentages of the variation and together amounted to more 

than ~50%. Additionally, permutational Hotelling’s T2 tests with Bonferroni 

corrections were performed to evaluate differences between the distributions of 

each fossil specimen to the distributions of the extant taxa. The tests couldn’t be 

performed for Pan troglodytes troglodytes and Pongo sp. due to their small sample 

sizes. 

 

5.3. Results 

 

5.3.1. Behavioural signals in the femur of non-human apes 

 

Variation in the distribution of BV/TV within the subchondral trabecular bone 

of the femoral head in non-human great apes (Figure 5.1; Table 5.1; for average 

distribution maps for each taxon, see Supplementary Figure 5.1B) was consistent 

with my predictions.  

 

 

Table 5.1. Intertaxon pairwise permutational MANOVA tests of the first three principal 

components. Bonferroni corrected p-values are given for each comparison in the femoral 

head and the distal femur. 
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Extant non-human apes show two concentrations of high BV/TV across the 

femoral head (Figure 5.1B; Georgiou et al. 2019 see Figure 5.2 for contrast with 

Homo) that extend internally as two “pillars” or inverted cones (Supplementary 

Figure 5.6). Average BV/TV distributions in the subchondral BV/TV reveal significant 

variation between taxa (Supplementary Figure 5.1B). Gorilla has the most well-

separated regions of high BV/TV, followed by the Pan subspecies which only differ 

slightly, while Pongo has the least separated concentrations. Gorilla is clearly 

separated from the other apes in the PCA (Figure 5.3). The presence of the anterior 

concentration in all non-human apes is consistent with loading during vertical 

climbing when hips are highly flexed (Isler, 2005; Nakano et al. 2006), while the 

posterior concentration is consistent with the more extended hip posture used 

during terrestrial locomotion (Figure 5.1A). Pan and Pongo have a more extensive 

concentration of high BV/TV along the superior aspect of the head indicating more 

frequent and/or higher magnitude loading of this region than in Gorilla, which is 

consistent with their more frequent arboreality and the need to navigate complex 

forest canopies using a variety of locomotor behaviours (Hunt, 1991a,b; Doran, 

1993b; Thorpe and Crompton, 2006; Thorpe et al. 2009). The distinct high BV/TV 

concentrations in Gorilla, suggests a more dichotomous loading pattern from less 

variable hip postures, perhaps associated with reduced arboreality and/or larger 

body size (Remis, 1995, 1999; Doran, 1997; Isler, 2005). 

 

Element Taxon P.t. verus P.t. 
troglodytes 

G. gorilla Pongo sp. 

Proximal P.t. verus - - 0.001 - 
P.t. 
troglodytes 

0.253 - 0.997 - 

Pongo sp. 0.034  1 0.012  - 
H. sapiens 0.001 0.002  0.001 0.01 

Distal P.t. verus - - 0.001 - 
P.t. 
troglodytes 

0.464 - 0.038  - 

Pongo sp. 0.029  0.78 0.002 - 
H. sapiens 0.001 0.004  0.002  0.001 
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Figure 5.1. Non-human great ape hip flexion angles during terrestrial quadrupedalism 

and vertical climbing, and BV/TV distribution in the femoral head. (A) Great ape hip 

posture at toe-off (~110o) during terrestrial knuckle-walking (Finestone et al. 2018), as well 

as joint posture in maximum flexion (~55o-60o) during climbing (Isler, 2005). (B) BV/TV 

distribution in the femoral head of Pongo, Gorilla and Pan. Brackets indicate regions of 

predicted peak pressure during vertical climbing (red) and terrestrial locomotion (blue). 

 

The use of vertical climbing is also reflected in the trabecular patterns of the 

distal femur of Pan and Pongo (Supplementary Figure 5.5B). These taxa are 

characterised by high BV/TV in the posterosuperior region of the lateral condyle and 

the inferior region of the articulation for the patella, both of which are consistent 

with loading during flexed knee postures (Hefzy et al. 1991; Isler, 2005). In the PCA 

plot they cluster together and are clearly separated from the other apes (Figure 5.4). 

In contrast, Gorilla shows high BV/TV across the entire articulation for the patella and 

has low BV/TV in the posterosuperior region of the lateral condyle. These traits 
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reflect both the use of a more extended knee during locomotion (Isler, 2005; 

Crompton et al. 2008; but see Finestone et al. 2018), where the patella is pushed 

against the articulation, while the posterosuperior region of the lateral condyle is not 

highly loaded (von Eisenhart-Rothe et al. 2004; Lovejoy, 2007) and separate Gorilla 

in the PCA plot (Figure 5.4). None of the apes show high BV/TV values in the 

posterosuperior region of the medial condyle, perhaps due to its greater surface area 

allowing wider load distribution. 

 

 

5.3.2. Behavioural signals in obligate bipedal taxa 

 

The pattern found in the femoral head of recent and fossil H. sapiens is 

distinct from that of other great apes and consistent with previous studies (Lubovsky 

et al. 2011; Wright et al. 2011; Treece and Gee, 2014; Georgiou et al. 2019), showing 

one superior region of high BV/TV, located posteriorly and medially on the femoral 

head (Figure 5.2; Supplementary Figure 5.1B). Recent H. sapiens and Ohalo II H2, 

cluster together and away from non-human apes in the PCA (Figure 5.3). The region 

of high BV/TV corresponds to the region of highest pressure during a bipedal gait 

(Paul, 1976; English and Kilvington, 1979; Yoshida et al. 2006). In the average 

distribution (Supplementary Figure 5.1B), intermediate BV/TV values continue along 

the inferior aspect of the femoral head, reflecting contact between this region and 

the acetabulum while the femur is at a valgus angle. Furthermore, the extended 

range of intermediate values across the head is also consistent with hip loading from 

positions of moderate flexion towards moderate extension (van den Bogert et al. 

1999; Giarmatzis et al. 2015). H. sapiens shows the distinct feature of a single pillar 

of high BV/TV extending beneath the posterior-superior concentration towards the 

femoral neck (Supplementary Figure 5.6). In the distal femur (Supplementary Figure 

5.5B-C) H. sapiens has lower BV/TV in the posterosuperior region of the lateral 

condyle than Pan and Pongo, reflecting the less frequent use of highly flexed knee 

postures. Furthermore, H. sapiens is differentiated from other apes by an extended 

area of high BV/TV across the medial condyle and a lack of high BV/TV in the distal 

region of the lateral condyle (Figure 5.4). This reflects differences in relative condyle 
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size across apes, in which H. sapiens have similarly-sized condyles with reduced 

medial and enlarged lateral condyles relative to other apes (Tardieu, 1981). 

 

 
Figure 5.2. Human hip flexion angles during bipedal locomotion and BV/TV distribution in 

the femoral head of Homo. (A) Modern human hip posture during bipedal walking at toe-

off (~175o) and heel-strike (~160o), when ground reaction force is highest (Lafortune et al. 

1992). (B) BV/TV distribution in the femoral head of H. neanderthalensis, fossil H. sapiens 

and a representative extant H. sapiens specimen. Blue brackets indicate regions of peak 

pressure during bipedal walking. 

  

The single BV/TV concentration, extending through the femoral head, is also 

present in the Neandertal individuals (Krapina 213 and 214) (Figure 5.5; 

Supplementary Figure 5.7). In Neanderthals (and less so in Ohalo II H2) this BV/TV 

concentration is anterioposteriorly broader, perhaps suggesting higher, more 

variable loading of the hip joint than in recent humans, which is not unexpected for 

hunter-gatherers. Nonetheless, both trabecular structure and external femoral 

morphology of Neandertals, which is generally similar to modern H. sapiens 
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(Trinkaus, 1976; Hershkovitz et al. 1995; Trinkaus and Jelínek, 1997; De Groote, 

2011), suggest that they used a modern human-like bipedal gait. 

 

Table 5.2. Permutational Hotelling’s T2results. Bonferroni corrected p-values are given for 

each comparison of the fossils and the extant taxa. 

 

 

5.3.3. Trabecular distribution patterns and locomotion of hominins at 

Sterkfontein 

 

The femoral head of StW 522 attributed to A. africanus presents a similar 

trabecular distribution pattern to that of H. sapiens (Figure 5.3; Table 5.2; 

Supplementary Figure 5.1C). StW 522 shows one high BV/TV concentration along the 

superior aspect of the femoral head that extends internally as a single pillar, as well 

as intermediate values which continue inferiorly (Figure 5.5). The high superior 

values are located medially, close to the fovea capitis, resembling H. sapiens, but are 

slightly more anterior. Although in the PCA analysis StW 522 falls just outside the 

range of variation in modern humans and mean femoral head trabecular parameters 

(e.g., DA, trabecular number and thickness) are within the extant ape range 

(Supplementary Figure 5.2B), the trabecular distribution of StW 522 is distinctly 

human-like and lacks the anterior concentration found in other apes. Therefore, I 

suggest that A. africanus used a more extended hip joint posture during bipedalism 

similar to that of humans.  

 

 

 

 

Fossil P.t. verus G. gorilla H. sapiens 

Ohalo II H2 0.01 0.0155 0.871 

StW 311 0.013 0.022 0.3945 

StW 522 0.013 0.033 0.502 

TM 1513 0.028 0.033 0.094 
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Figure 5.3. PCA of the relative BV/TV distribution in the femoral head. 2D 

stereoplots show in red the landmarks that have the highest loading on each axis. BV/TV 

values in landmarks on the inferior aspect of the head have the highest positive loading on 

PC1, (separating Homo from the non-human apes through its high BV/TV in this region) and 

BV/TV values in landmarks on two regions across the superior aspect of the head have the 

highest negative loading (separating Gorilla from the other apes through its two distinct 

high BV/TV concentrations). Furthermore, BV/TV values in landmarks along the anterior 

aspect of the head have the highest positive loading on PC2, while BV/TV values in 

landmarks along the posterior aspect of the head have the highest negative loading. The H. 

neanderthalensis specimens (Krapina 213 and Krapina 214) were not included in the PC 

analysis as gaps in their subchondral trabecular structure prohibited the selection of 

homologous landmarks for interspecies comparisons. 

 

This functional interpretation is further supported by the BV/TV distribution 

pattern in the TM 1513 distal femur. This specimen lacks the high BV/TV in the 

posterosuperior border of the lateral condyle found in Pan and Pongo 

(Supplementary Figure 5.5C), suggesting use of highly flexed knee postures that are 
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required during climbing were infrequent in this individual. Furthermore, TM 1513 

shows high BV/TV in the lateral aspect of the patellofemoral articulation, similar to 

humans. Combined with preserved external morphology of this specimen indicating 

a high bicondylar angle and elevated patellar lip, both of which are associated with 

modern human extended-knee bipedalism (Heiple and Lovejoy, 1971; Tardieu, 

1981), this concentration reveals frequent loading from the patella during extended 

knee postures. Although in the PCA this specimen falls out as intermediate between 

Pan and H. sapiens (Figure 5.4), its BV/TV distribution pattern does not significantly 

differ to H. sapiens (Table 5.2). Nonetheless, although preservation of TM 1513 

prevents a confident assessment of its complete trabecular structure, the 

morphology that is well-preserved in combination with the distinctly human-like 

trabecular pattern of StW 522, suggests that A. africanus was a habitual biped whose 

locomotion did not include habitual climbing. 

 

 
Figure 5.4. PCA of the relative BV/TV distribution in the distal femur. Femoral models 

show in red the landmarks that have the highest loading on each axis. BV/TV values in 

landmarks on the articulation for the patella have the highest positive loading on PC1 

(separating Gorilla from the other non-human apes through its high BV/TV in this region) 
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and BV/TV values in landmarks on the posterosuperior regions of both condyles have the 

highest negative loading (separating Pan and Pongo). Homo overlaps with both Gorilla and 

Pan/Pongo along PC1. Furthermore, BV/TV values in landmarks along the posterior aspect 

of medial condyle have the highest positive loading (separating Homo from the non-human 

apes), while BV/TV values in landmarks in the distal region of the lateral condyle have the 

highest negative loading on PC2. 

 

In contrast to StW 522 and TM 1513, the geologically younger proximal femur 

StW 311 shows a more ape-like trabecular pattern. This individual has two high 

BV/TV concentrations along the superior aspect of the femoral head that extend 

internally towards the neck, a trait distinct to non-human apes (Figure 5.5). The ape-

like anterior concentration suggests that, in addition to bipedalism, there was high 

loading during frequent, marked flexion of the hip, such that which occurs during 

climbing. Furthermore, in contrast to previous finds (Ryan et al. 2018), mean femoral 

head trabecular parameters fall consistently within the Pan range (Supplementary 

Figure 5.2B). For example, there is low anisotropy and high bone volume, compared 

to the typical pattern in H. sapiens (Chirchir et al. 2017; Ryan et al. 2018). 

Furthermore, StW 311 perhaps had distinct hip kinematics during climbing, as it does 

not fall within the distribution of any of the non-human apes but is between apes 

and H. sapiens (Figure 5.3). It appears closer to H. sapiens as a result of its similarity 

to one particular human specimen with an extended range of high BV/TV along the 

anterior aspect of the head and its distribution does not differ significantly to H. 

sapiens (Table 5.2).  
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Figure 5.5. BV/TV distribution in the subchondral layer of the femoral head (A) and within 

the femoral head (B) in the fossil taxa. Internal concentrations are visualised for BV/TV 

above the 80th percentile. This threshold was chosen to visualise the regions where the 

highest BV/TV is found within each specimen. Specimens are scaled to their own data 

range. 

 

 

5.4. Discussion 

 

In this study, I demonstrate distinct patterns within the trabecular bone distribution 

of the femoral head that clearly distinguish extended-hip bipedal humans from more 

flexed-hip quadrupedal climbing great apes. In non-human great apes, body size 

influences the frequency of behaviours (e.g. larger individuals climb less frequently), 

as well as joint kinematics (e.g. larger individuals climb more cautiously) (Doran, 

1993b; Isler, 2005), but apes primarily load their hindlimbs during terrestrial 

locomotion and vertical climbing, their most frequent activities (Doran, 1993a,b; 

Thorpe and Crompton, 2006). This is demonstrated very clearly in the trabecular 

bone distribution of their femoral head in the two distinct regions of high BV/TV. 

Modern humans on the other hand are different and display a single region of high 

BV/TV on the femoral head which corresponds to the region most loaded during 

bipedal locomotion (Paul, 1976; English and Kilvington, 1979; Yoshida et al. 2006). 

These behavioural signals are less clear in the distal femur, however there is evidence 

for the use of a more flexed knee in the extant apes. Pan and Pongo show high BV/TV 



 194 

values along the posterosuperior region of the condyles, as well as along the inferior 

portion of the articulation for the patella, traits which consistent with the use of 

flexed knee positions during locomotion. These are missing from the distributions of 

Gorilla and H. sapiens, consistent with the use of more extended knee postures 

during locomotion.  

 

To date, research on external morphology has failed to resolve the debate 

about the mode and evolution of hominin bipedalism (e.g. Stern and Susman, 1983; 

Susman et al. 1984; Ward, 2002; Carey and Crompton, 2005; Ohman et al. 2005; 

Lovejoy et al. 2009a,b; Lovejoy and McCollum, 2010; Raichlen et al. 2010). Here I 

show that trabecular bone can provide novel insight into reconstructing past 

behaviours. My findings suggest that the locomotion of South African hominins in 

the early Pleistocene was diverse. The trabecular bone distribution of StW 522 and 

TM 1513 reveals that these A. africanus individuals were obligate bipeds, in 

accordance to prior literature (Ward et al. 1999; Ward et al. 2001; Lovejoy et al. 

2002). However, my study provides evidence for the lack of frequent and/or high 

loading of flexed hip in these individuals, suggesting that climbing was not a 

significant component of the locomotor repertoire. This interpretation is consistent 

with the more human-like morphology of the pelvis and knee of A. africanus (Napier, 

1964; Lovejoy and Heiple, 1970; Tardieu, 1981; Häusler and Berger, 2001; Haeusler, 

2002), and suggests that the more ape-like features, such as the limb-size 

proportions (Richmond et al. 2002; Green et al. 2007) and highly mobile big toe 

(Clarke and Tobias, 1995) are evolutionary retentions. 

 

Furthermore, I present evidence that a younger hominin at Sterkfontein 

frequently engaged in climbing. The larger femoral size and estimated body mass of 

StW 311 (41.6 kg) compared to StW 522 (29.5 kg) are consistent with it belonging to 

younger taxon, however it is not clear if body size had any influence on this 

individual’s locomotion. The evidence for climbing is consistent with 

paleoenvironmental reconstructions showing significant tree coverage (Reynolds 

and Kibii, 2011) and cycles of wet as well as dry phases (Pickering et al. 2018) at 

Sterkfontein during the Early Pleistocene, however is inconsistent with results from 
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the trabecular analysis of a distal tibia specimen from the Member 5 East infill (StW 

567). Barak and colleagues (2013a) found that this individual had human-like 

trabecular orientation that differs to chimpanzees reflecting the use of less 

dorsiflexed ankles. However, mean trabecular parameters were not clearly human-

like. BV/TV in the two studied VOIs of StW 567 was higher than H. sapiens as well as 

P. troglodytes, whereas Tb.N, Tb.Sp and ConnD were between the H. sapiens and P. 

troglodytes values. Additionally, Tb.Th was more similar to H. sapiens, while DA was 

more similar to P. troglodytes. The lack of certainty on the taxonomic affinity of StW 

567 introduces difficulties in the interpretation of these results, as we do not know 

it belongs to the same taxon as StW 311 and the Member 5 East infill contains 

Paranthropus robustus fossils as well as early Homo. Nonetheless, I present here 

strong evidence in the femoral head trabecular distribution of StW 311 for frequent 

vertical climbing. My results imply that Sterkfontein hosted hominins with a diversity 

of locomotor types at the various times of occupation and provide morphological 

evidence that A. africanus was a non-climbing obligate biped while later hominins 

were frequently engaging in vertical climbing. 
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Supplementary material 
 

 
Supplementary Figure 5.1. Landmarking and results for the femoral head. (A) Landmarks used for 
the analysis femoral head trabecular structure. Fixed landmarks are indicated in red, curve 
landmarks are indicated in blue and surface semilandmarks are indicated in green. (B) Average 
relative BV/TV distributions over the femoral head in the extant taxa. (C) Relative BV/TV 
distributions over the femoral head in the fossils. 
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Supplementary Figure 5.2. Comparative femoral measurements for extant and extinct taxa (A) and 
trabecular parameters for the sample (B). (A) Columns represent mean values for each femoral 
measurement and error bars represent the standard deviation. Comparative femoral measurements 
were taken from Harmon, 2009, except for A. sediba which were taken from DeSilva et al. 2013 
SOM, H. naledi and H. erectus which were taken from Marchi et al. 2016 and Ohalo II H2 which were 
taken from Hershkovitz et al. 1995. (B) Trabecular parameters quantified over the entire femoral 
head for the extant taxa and the fossils. 
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Supplementary Figure 5.3. External (A) and internal (B) morphology of StW 311, StW 522 and TM 
1513. (A) Three-dimensional models showing the superior (top) and posterior (bottom) views of StW 
311and StW 522, as well as the anterior (top) and posterior (bottom) views of TM 1513. (B) 
Preserved trabecular structure (top), segmented bone (middle) and trinary mask showing isolated 
trabecular structure (bottom). 
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Supplementary Figure 5.4. Fossil which were not used in the analysis but were processed. (A) 
Original scan. (B) Trinary mask. 
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Supplementary Figure 5.5. Landmarking and results for the distal femur. (A) Landmarks used for the 
analysis of the distal femoral articular surface trabecular structure. Fixed landmarks are indicated in 
red, curve landmarks are indicated in blue and surface semilandmarks are indicated in green. (B) 
Average relative BV/TV distributions over the distal articular surface in the extant taxa. (C) Relative 
BV/TV distributions over the distal articular surface in TM 1513. 
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Supplementary Figure 5.6. BV/TV distribution in the subchondral layer of the femoral head (A) and 
within the femoral head (B-D) in the extant taxa. Internal high BV/TV is shown above the 85th (B), 
80th (C) and 75th (D) percentile in each individual. Specimens are scaled to their own range. 
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Supplementary Figure 5.7. BV/TV distribution in the subchondral layer of the femoral head (A) and 
within the femoral head (B-D) in the fossil taxa. Internal high BV/TV is shown above the 85th (B), 
80th (C) and 75th (D) percentile in each individual. Specimens are scaled to their own range. 
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Supplementary Table 5.1. Study sample composition, sex and resampled voxel size 
range in both epiphyses. 

Taxon N Sex Proximal voxel 

size (mm) 

Distal voxel 

size (mm) 

Collection or Site, 

Institution 

Pan troglodytes 
verus 

11 7 female, 
4 male 

0.04-0.05 0.04 
 

Taï Forest collection, 
Max Planck Institute 
for Evolutionary 
Anthropology, 
Leipzig, Germany. 

Pan troglodytes 
troglodytes 

5 3 female, 
2 male 

0.05 
 

0.04 Smithsonian 
National Museum of 
Natural History in 
Washington, DC, 
USA. 

Gorilla gorilla 
gorilla 

11 6 female, 
5 male 

0.05-0.08 0.045-0.09 Powell-Cotton 
Museum, UK. 

Pongo sp. 5 5 female 0.04-0.045 0.035 Zoologische 
Staatssammlung 
München, Germany. 

H. sapiens 11 3 female, 
7 male, 1 
N/A 

0.06-0.07 0.05-0.06 Georg-August-
Universität 
Göttingen, Germany. 

H. sapiens: Ohalo 
II H2 

1 N/A 0.06 - Tel Aviv University, 
Israel. 

H. 
neanderthalensis: 
Krapina 213 & 
214 

2 N/A 0.055-0.06 - Croatian Natural 
History Museum 

Unknown: StW 
311 

1 N/A 0.035 - Sterkfontein, 
University of the 
Witwatersrand, 
South Africa. 

Australopithecus 
africanus: StW 
522 

1 N/A 0.04 - Sterkfontein, 
University of the 
Witwatersrand, 
South Africa. 

Australopithecus 
africanus: TM 
1513 

1 N/A - 0.045 Sterkfontein, Ditsong 
National Museum of 
Natural History, 
South Africa.  
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Supplementary Table 5.2. Description of landmarks. 

Epiphysis Landmark  Description Type 

Proximal 

1 Medial point on head-neck border at neck 
midline 

III 

2 Lateral point on head-neck border at neck 
midline 

III 

3 Posterior point on head-neck border at neck 
midline 

III 

4 Anterior point on head-neck border at neck 
midline 

III 

5 Superior point at midpoint of the head III 
6-12 Curve between fixed landmarks 1 and 3 IV 
13-19 Curve between fixed landmarks 3 and 2 IV 
20-26 Curve between fixed landmarks 2 and 4 IV 
27-33 Curve between fixed landmarks 4 and 1 IV 
34-242 Surface semilandmarks Semilandmarks 

    

Distal 

1 Point where superior border meets medial 
edge of patellar groove 

III 

2 Point where medial border of patellar groove 
meets medial border of medial condyle 

II 

3 Medialmost point of superior border of medial 
condyle 

III 

4 Lateralmost point of superior border of medial 
condyle 

III 

5 Deepest point of intercondylar notch II 
6 Medialmost point of superior border of lateral 

condyle 
III 

7 Lateralmost point of superior border of lateral 
condyle 

III 

8 Point where lateral border of patellar groove 
meets lateral border of lateral condyle 

II 

9 Point where superior border meets lateral 
edge of patellar groove 

III 

10-14 Curve between fixed landmarks 1 and 2 IV 
15-23 Curve between fixed landmarks 2 and 3 IV 
24-26 Curve between fixed landmarks 3 and 4 IV 
27-34 Curve between fixed landmarks 4 and 5 IV 
35-41 Curve between fixed landmarks 5 and 6 IV 
42-43 Curve between fixed landmarks 6 and 7 IV 
44-49 Curve between fixed landmarks 7 and 8 IV 
50-52 Curve between fixed landmarks 9 and 1 IV 
53-253 Surface semilandmarks Semilandmarks 
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Chapter 6 

 

General Discussion, Conclusion, Limitations and 

Future Directions 
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6.1. General Discussion 

 

The aim of this thesis was to investigate the trabecular bone architecture in 

the femur of extant hominids and its links to locomotion, with the ultimate goal to 

infer locomotion in extinct hominins. Trabecular bone analysis can provide additional 

evidence to external morphology and inform about actual behaviour in extinct taxa 

as it remodels throughout life in response to load (e.g. Pontzer et al. 2006; Volpato 

et al. 2008; Barak et al. 2011). Therefore, analysing the trabecular bone patterns in 

extant apes and establishing connections to locomotor behaviour is vital for 

understanding the behaviours of extinct hominin taxa. Extant great apes are arguably 

the best analogues we have for understanding extinct hominins, as they are 

genetically our closest living relatives (e.g. Prüfer et al. 2012) and use a variety of 

terrestrial and arboreal locomotor modes, including bipedalism (e.g. Tuttle, 1969; 

Doran, 1996, 1997; Videan and McGrew, 2001; Isler, 2005; Thorpe and Crompton, 

2005, 2006). 

 

In this dissertation, novel analytical tools were used to examine trabecular 

architecture in the femoral head and distal femoral epiphysis in a holistic way. The 

aim of this thesis was achieved in three chapters: 

 

o First, the trabecular architecture of the femoral head in extant apes was 

analysed to identify locomotor-related patterns in the hip.  

 

o Second, the trabecular architecture of the distal femoral epiphysis in extant 

apes was analysed to identify locomotor-related patterns in the knee.  

 

o Third, the trabecular patterns of the femoral head and distal femur in the 

extant apes were used to infer locomotion in extinct South African hominins 

from Sterkfontein. Geometric morphometrics were combined with holistic 

trabecular analysis to statistically analyse trabecular bone distribution 

patterns beneath the subchondral layer. This allowed a more comprehensive 
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evaluation of the trabecular architecture and provided the first statistical 

comparison of the three-dimensional trabecular patterns beneath both 

articulations of the femur in these extant and extinct hominids.  

 

Below I review and discuss the key findings from these chapters and how they 

together inform our broader understanding of the evolution of hominin bipedalism.  
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6.1.1. Does the femoral trabecular architecture of extant non-human apes 

hold locomotor signals? 

 

Chapters 3 and 4 of this dissertation showed that trabecular patterns of the 

femur in non-human apes generally reflect their most frequent activities, although 

differences between taxa were not always as pronounced as predicted. Pan 

troglodytes individuals mostly use quadrupedal knuckle-walking when locomoting 

terrestrially, though they also frequently climb and engage in several arboreal 

behaviours (Hunt, 1991b; Doran, 1992, 1993a). The trabecular bone distribution of 

the femoral head reflects locomotion. There are two distinct regions of high BV/TV 

across the femoral head, one anterior and one posterior. High BV/TV at these regions 

correlates to high load at highly flexed hip angles during vertical climbing (Isler, 2005; 

Nakano et al. 2006) and less flexed angles during terrestrial knuckle-walking 

(Finestone et al. 2018). A strip of slightly less dense bone that was found between 

the two concentrations is correlated with intermediate hip flexion angles used during 

the various other activities of Pan. In the distal femur, Pan has particularly high BV/TV 

in the posterosuperior region of the condyles and high BV/TV in the inferior region 

of the patellofemoral articulation reflecting the frequent use of highly flexed knee 

postures. Within both epiphyses, the trabeculae of Pan are relatively isotropic, 

consistent with the variable hip and knee joint positioning during chimpanzee 

locomotion. Individuals have numerous, thin and closely packed trabeculae, traits 

that may reflect body size-related mechanisms for adjusting BV/TV (e.g. Barak et al. 

2013b) or species-specific systemic patterns (e.g. Tsegai et al. 2018a), therefore 

these properties (i.e. Tb.N, Tb.Sp and Tb.Th) are not as informative as the other 

parameters about mechanical loading.  

 

Gorilla was expected to have very similar trabecular architecture to Pan, as 

their locomotor repertoire largely consists of the same behaviours (Remis, 1995; 

Crompton et al. 2010). They are also terrestrial, quadrupedal knuckle-walkers and 

frequent climbers; however, their trabecular architecture shows some differences to 

Pan. In the femoral head Gorilla has two high BV/TV concentrations, similar to Pan, 



 209 

though these are more well-separated. The lack of slightly lower BV/TV values 

between the two main regions of high BV/TV suggests that Gorilla individuals do not 

frequently load their hips at intermediate flexion angles like Pan individuals do. 

Furthermore, in the distal femur Gorilla lacks the high BV/TV in the posterosuperior 

region of the condyles found in Pan and shows high BV/TV across the patellofemoral 

articulation. While the trabecular bone distribution in the femoral head of Gorilla 

reflects loading during hip postures associated with terrestrial knuckle-walking 

(Finestone et al. 2018) and vertical climbing (Isler, 2005), the trabecular bone 

distribution in the distal femur does not reflect loading at highly flexed knee 

postures. The pattern of the distal femur is perhaps indicative of different knee 

kinematics during vertical climbing in Gorilla compared to Pan, which involves a 

relatively more extended knee (Isler, 2005). Despite differences in the BV/TV 

distribution patterns of Pan and Gorilla, these taxa are close in DA values in both 

epiphyses, which is perhaps indicative of a similar level of variation in their joint 

positioning during locomotion. However, these taxa differ in other trabecular 

parameters. Contrary to Pan individuals, Gorilla individuals generally have relatively 

few, thick and widely spaced trabeculae in both femoral epiphyses, which again could 

reflect non-mechanical factors or body size-related mechanisms that affect 

trabecular structure.  

 

Pongo is the most arboreal of the hominids and that is generally reflected in 

their femoral trabecular architecture. In the femoral head they also show two main 

concentrations of high BV/TV, however these are the least well-separated amongst 

the apes. Similar to what is found in Pan, a strip of less dense bone connects these 

two areas. While the two separate regions of high BV/TV are consistent with peak 

loading during vertical climbing and terrestrial locomotion, the extended region of 

dense bone across the superior reflects the variable hip joint positioning in Pongo 

individuals during locomotion (Cant, 1987; Isler and Thorpe, 2003; Thorpe and 

Crompton, 2006; Thorpe et al. 2009). This is further supported by the high variability 

of trabecular parameters across the Pongo sample. In the distal femur Pongo 

resembles Pan in distribution, with individuals having high BV/TV at the inferior 

aspect of the patellofemoral articulation as well as the posterosuperior region of the 
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condyles, though the latter is not as extended as in the Pan individuals. Contrary to 

the prediction that Pongo would be the most isotropic, this taxon shows a similar 

degree of isotropy to that of African apes in both epiphyses. This implies that their 

highly variable joint positioning is not clearly reflected in the degree of trabecular 

strut orientation. Additionally, similarly to Pan, they have relatively numerous, thin 

and closely packed trabeculae in both epiphyses perhaps reflecting the similar body 

size range of the Pan and Pongo individuals in this dissertation.  

 

Together these findings suggest that the trabecular bone of the femoral head 

of non-human apes holds a strong functional signal which can be linked to habitual 

locomotor behaviours, but also that of the distal femur shows a less clear functional 

signal. Of course, it is important to consider variation in cortical structure when 

interpreting trabecular results. Cross-sectional dimensions possibly influence 

trabecular patterns, as cross-sectional properties (e.g. Rafferty, 1998; Ruff, 2002; 

Carlson, 2005) and the relative size of articulations to diaphyseal proportions (e.g. 

Ruff, 2002) in apes vary with locomotor mode. Even though in the femur the two 

tissues adapt differently in response to load (Shaw and Ryan, 2012), both contribute 

to overall mechanical efficiency. The lack of a strong signal in the distal femur could 

be the result of increased cortical response, either in the form of diaphyseal cross-

sectional geometry or epiphyseal size. Unfortunately, as femoral cross-sectional 

geometry was outside the scope of this dissertation it cannot be discussed in further 

detail. 

 

This dissertation is the first to describe these 3D trabecular patterns in both 

the proximal and distal femur of great apes and identify locomotor-related traits in 

BV/TV distribution. Prior research has analysed the trabecular structure within 

isolated volume in the femoral head, but not the distal femoral epiphysis of apes. My 

findings for the femoral head are generally consistent with previous studies (e.g. 

Ryan and Shaw, 2015; Georgiou et al. 2018; Ryan et al. 2018; Tsegai et al. 2018a). 

Pan’s trabecular architecture is the most distinct, showing the highest BV/TV and 

Tb.N, as well as the lowest Tb.Sp and Tb.Th, similar to what was found by Ryan and 

Shaw (2015). However, my results suggest that mean femoral head trabecular 
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parameters are not good predictors of locomotor behaviour, as they do not 

distinguish between Gorilla and Pongo, and analysis should focus on the three-

dimensional distribution of trabecular parameters.  

 

 

6.1.2. Is Homo sapiens femoral trabecular pattern unique? 

 

Homo sapiens is the only obligate bipedal extant ape and many of the femoral 

trabecular traits of H. sapiens individuals reflect this locomotion. Perhaps the most 

characteristic human trait is their highly aligned trabeculae in both the proximal and 

distal epiphyses, reflecting the stereotypical loading of both the hip and the knee 

during bipedal locomotion. This is consistent with previous research showing that 

taxa with specialised locomotion have more highly aligned and organised trabecular 

struts than taxa with more variable locomotion (Ryan and Ketcham, 2002; Scherf, 

2008). Furthermore, in the femoral head H. sapiens has a unique pattern of 

trabecular bone distribution with one (instead of two) high BV/TV concentration on 

the posterosuperior aspect of the femoral head. This concentration coincides with 

the region most frequently loaded during bipedalism (Paul, 1976; English and 

Kilvington, 1979; Yoshida et al. 2006). The human femoral head pattern also lacks the 

anterior high bone volume concentration found in African apes and Pongo, which is 

consistent with loading of a flexed hip during vertical climbing, though this is not 

surprising as most H. sapiens individuals do not habitually climb. Furthermore, BV/TV 

in the human femoral head is lower than other apes, consistent with previous 

findings (Maga et al. 2006; Cotter et al. 2009; Scherf et al. 2013; Tsegai et al. 2013; 

Tsegai et al. 2017; Tsegai et al. 2018a). It is interesting that the walking signal is very 

clear in the H. sapiens femoral head distribution despite the diversity of human 

activities that involve various hip flexion angles and loads, including running which 

involves greater hip flexion and hip loading (e.g. Van der Bogert et al. 1999; Yoshida 

et al. 2006; Giarmatzis et al. 2015). Therefore, my findings indicate that the femoral 

head trabecular network is important in transmitting load particularly during walking 

in humans. This is perhaps because other activities which result in higher loading of 

the hip (e.g. running) (van den Bogert et al.1999) are not frequent enough to elicit 
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trabecular reorganisations or the cost of those activities is not high enough to 

overcome the benefit of having a trabecular network adapted to the most frequent 

activity. 

 

In the distal femur, the trabecular pattern is not as distinct in H. sapiens 

compared to other apes. The most noteworthy feature is the lack of high BV/TV in 

the posterosuperior region of the condyles, which is consistent with the use of more 

extended knee postures throughout gait. However, Gorilla also lacks this 

concentration therefore it is not a distinctly human trait. Some of the differences in 

trabecular traits between humans and other apes can be explained by shape 

variation in the condyles. The lateral condyle of H. sapiens is relatively enlarged 

compared to other apes (Tardieu, 1981), resulting in a greater area for load 

distribution. This perhaps explains why, beneath the subchondral layer, BV/TV in this 

condyle is relatively lower in humans than other apes. The opposite is true for the 

medial condyle. This condyle is relatively reduced in H. sapiens compared to other 

apes (Tardieu, 1981) and BV/TV is relatively greater beneath its subchondral layer. 

However, in this epiphysis the mean BV/TV of different regions is not markedly lower 

in H. sapiens than other apes, which is perhaps surprising given prior findings (e.g. 

Maga et al. 2006; Cotter et al. 2009; Scherf et al. 2013; Tsegai et al. 2013; Tsegai et 

al. 2017; Tsegai et al. 2018a). This may be partially explained by the 

microarchitecture. In this epiphysis, trabecular thickness in H. sapiens is comparable 

to that of Gorilla and is higher than Pan and Pongo, while in the femoral head it is 

more comparable to that of Pan and Pongo and is lower than Gorilla. Therefore, the 

lack of significantly lower BV/TV in the distal femur of H. sapiens compared to other 

apes is perhaps explained by the relatively thick trabeculae of the distal femoral 

epiphysis. In both epiphyses, trabeculae are relatively few and widely spaced, 

therefore Tb.N and Tb.Sp probably do not contribute as much to this as Tb.Th does. 

 

Nonetheless, generally results suggest that humans have distinct trabecular 

architecture and that their trabecular bone distribution, especially in the femoral 

head, is linked to obligate bipedalism.  
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6.1.3. Can the trabecular patterns of the femur be used to infer locomotion in 

extinct hominins? 

 

In this dissertation I have shown that the trabecular bone of the femur in 

extant apes holds a functional signal that is linked to habitual locomotion. Findings 

presented here indicate that H. sapiens is distinct in its femoral head trabecular 

pattern, showing traits clearly linked to obligate bipedalism, while African apes and 

Pongo are more similar to each other and show traits linked to both vertical climbing 

as well as terrestrial quadrupedalism. The distinctive human pattern with a single 

high BV/TV concentration in the femoral head differs to the non-human ape pattern 

that has an additional anterior high BV/TV concentration, owing to the use of highly 

flexed hip postures. These patterns provide strong evidence for a locomotor signal in 

the trabecular structure of the femoral head in hominids. On the contrary, if there is 

a functional signal in the distal femur that separates humans from other extant apes, 

it is more difficult to decipher. The extant apes do not show vast differences and, 

even though results generally follow predictions, H. sapiens is not as distinct as would 

be expected based on their different form of locomotion. Knee kinematics are not 

well understood, especially in non-human apes, therefore trabecular results are 

difficult to interpret. The close resemblance between the distributions of the taxa 

may be due to similar kinematics in the knee joint across apes or the result of less 

responsive trabecular bone to applied load in this joint, however this cannot be said 

with certainty. Adding to that the structural complexity of this joint makes trabecular 

patterns of the knee difficult to explain and therefore less useful in inferences of 

behaviour in extinct hominins. Since the trabecular patterns of the distal femur 

appear to be less functionally informative in hominids than those of the femoral 

head, the latter can be used to more accurately predict locomotion in extinct human 

relatives. This can provide insight into the evolution of bipedalism in the hominin 

lineage, which has been of great interest in paleoanthropological research (e.g. Stern 

and Susman, 1983; Susman et al. 1984; White et al. 1994; Crompton, et al. 1998; 

Ward et al. 1999; Senut et al. 2001; Ward et al. 2001; Lovejoy et al. 2002; Pickford et 

al. 2002; Wolpoff et al. 2002; Zollikofer et al. 2005; Crompton et al 2008; Carey and 
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Crompton, 2005; Ohman et al. 2005; Harmon, 2009a,b; Lovejoy et al. 2009a,b; 

Lovejoy and McCollum, 2010; Raichlen et al. 2010; Ward et al. 2011; Almecija et al. 

2013; DeSilva et al. 2013).  

 

 

6.1.4. How do the trabecular patterns of the extinct hominins compare to 

those of the extant taxa? 

 

In Chapter 5, I analysed trabecular patterns in the femur of extinct hominins, 

with a particular focus on three femoral specimens from Sterkfontein, South Africa. 

The main goal of this chapter was to examine the trabecular structure in comparison 

to that of extant apes and humans and ultimately make inferences about the 

locomotion of these hominin individuals. Subchondral trabecular bone in both 

articulations was analysed statistically using holistic trabecular analysis and 

geometric morphometrics. Additionally, the internal distribution of high bone 

volume was examined within the femoral head of both the extant and extinct taxa, 

to gain insight into the three-dimensional distribution of trabecular bone. This 

chapter focused more on the trabecular distribution patterns of the femoral head, as 

this was shown in previous chapters to preserve a stronger functional signal than the 

distal femoral epiphysis. 

 

The trabecular patterns in the femoral head of one fossil H. sapiens (Ohalo II 

H2) and two H. neanderthalensis specimens (Krapina 213 and Krapina 214) were 

initially examined for comparison with modern humans. These specimens, as 

expected, presented a similar trabecular distribution pattern to modern H. sapiens, 

validating that this pattern is linked to obligate bipedal locomotion. These specimens, 

along with the modern H. sapiens, showed a single pillar of high BV/TV within the 

femoral head, a trait which is linked to stereotypical loading during specialised 

bipedal locomotion and is unique to the Homo specimens. Findings from this chapter, 

as well as the previous ones, support that the femoral head trabecular pattern of 

obligate bipedal taxa is unique amongst apes.  
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Among the Sterkfontein fossils, different trabecular patterns were found 

suggesting variation in locomotor behaviour among these individuals. StW 522, a 

specimen from Member 4 attributed to A. africanus, showed the single subchondral 

concentration in the posterosuperior aspect of the femoral head as found in H. 

sapiens, which continued internally forming a single pillar of high bone volume. This 

distribution pattern suggests that this individual, and potentially A. africanus, was 

frequently bipedal. Despite some variation between the H. sapiens and A. africanus 

pattern, the findings presented here reveal that this individual did not engage 

frequently in a strongly flexed hip posture that is found during great ape climbing. 

The distribution pattern clearly lacks an anterior high bone volume concentration, 

which in extant apes was shown to correlate to hip postures used during vertical 

climbing. The distal femoral epiphysis of A. africanus (TM 1513) that came from the 

same member at Sterkfontein as StW 522 also revealed some H. sapiens-like 

trabecular distribution traits. This specimen lacks the high BV/TV found in the 

posterosuperior region of the condyles of Pan, suggesting they did not frequently use 

highly flexed knee postures. However, this specimen is missing part of the patellar 

articulation which complicates the selection of homologous landmarks and it 

decreases the confidence in the statistical analysis of its trabecular distribution.  In 

contrast to StW 522 and TM 1513, the StW 311 proximal femoral specimen from 

Member 5 presented a different pattern to that of H. sapiens, despite being a 

geologically younger specimen. The trabecular distribution pattern both beneath the 

subchondral layer and within the femoral head most closely resembled that of extant 

apes, showing two high bone volume concentrations on the femoral head that 

continued internally forming two separate pillars. This trabecular distribution pattern 

suggests that this individual frequently engaged in both locomotion that involves 

relatively extended hip postures, as well as locomotor behaviours, such as climbing, 

that involve strongly flexed hip postures.  

 

If both StW 522 and TM 1513 are indeed accurately attributed to A. africanus 

then the findings here are perhaps unsurprising, as previous research has suggested 

that australopiths had human-like bipedal locomotion (e.g. Lovejoy and Heiple, 1970; 
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Tardieu, 1981; Ward et al. 1999; Ward et al. 2001; Lovejoy et al. 2002; Lovejoy, 

2005a; Ward et al. 2011; Ryan et al. 2018). My findings suggest that the habitual hip 

postures used by A. africanus and H. sapiens were not remarkably different, as 

evident by the closeness in the location of the single high BV/TV concentration on 

the femoral head of the two taxa. Results do not support the use of a bent-hip in A. 

africanus locomotion, contributing to the longstanding debate over the form of 

bipedal locomotion used by australopiths (Stern and Susman, 1983; Susman et al. 

1984; Ward, 2002; Carey and Crompton, 2005; Lovejoy and McCollum, 2010; 

Raichlen et al. 2010). Furthermore, the BV/TV distributions of StW 522 and TM 1513 

clearly demonstrate a lack of strongly flexed hip and knee postures in A. africanus 

locomotion and therefore that climbing was potentially absent from their locomotor 

repertoire. No prior study has provided such strong evidence for the lack of climbing 

in australopith locomotion (Ward, 2002a).  

 

Results from the Sterkfontein individuals confirm that hominins with different 

types of locomotion existed in the Pleistocene. However, interpretation of the StW 

311 result in an evolutionary context is challenging as the taxonomy of this specimen 

is not clear. Member 5 East has yielded hominin fossils attributed to Paranthropus 

robustus and potentially early Homo, as well as Oldowan and Early Acheulean tools 

industries (Reynolds and Kibii, 2011; Barak et al. 2013a). If StW 311 is P. robustus it 

means that this taxon had different locomotion to A. africanus and engaged in 

frequent climbing. Perhaps this suggests that the Paranthropus genus was generally 

more arboreal than Australopithecus, since recent findings also suggest that P. boisei 

may have engaged in suspensory behaviours based on its the scapular anatomy 

(Green et al. 2018). Alternatively, if StW 311 is early Homo it means that climbing was 

used frequently in the genus Homo after obligate bipedalism had evolved in 

Australopithecus. Understanding the stratigraphy of Sterkfontein in greater depth is 

integral in determining this individual’s taxonomy and subsequently the evolutionary 

meaning of my result. This will potentially have important implications on the 

evolution of locomotion in the genus Paranthropus or Homo and will help understand 

the evolution of locomotion in the hominin clade. 
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This thesis outlines the importance of analysing trabecular architecture 

across an entire epiphysis. Previous research has focused on the trabecular structure 

within isolated sub-volumes (e.g. Ryan and Ketcham, 2002; Scherf, 2008; Ryan and 

Shaw, 2002; Ryan et al. 2018) and specifically within the femoral head a few studied 

failed to find distinct locomotor signals (e.g. Ryan and Walker, 2010; Shaw and Ryan, 

2012). However, this dissertation is an example for how much additional information 

you can gain from looking at the distribution of trabecular parameters across an 

epiphysis. Specifically in Chapter 6, when the whole femoral head is treated as one 

VOI the mean femoral head parameters of StW 522 and StW 311 cannot definitively 

appoint the fossils to one locomotor group. Furthermore, their mean values are not 

necessarily comparable to the taxa with which they share a similar trabecular 

distribution pattern and presumably locomotor mode. This thesis therefore makes a 

compelling argument for holistic analysis of trabecular structure, where analysis 

focuses on the distribution of trabecular parameters rather than mean values within 

a VOI, as previous research has demonstrated (Skinner et al. 2015; Tsegai et al. 2013; 

Tsegai et al. 2017; Tsegai et al. 2018a,b), and presents new evidence for locomotor 

signals in the femoral architecture of extant and extinct hominids. 

 

 

6.2. Conclusion 

 

 

This dissertation found clear locomotor signals in the trabecular bone of the 

femoral head of extant hominids, and less so in that of the distal femoral epiphysis. 

In the femoral head trabecular bone distribution patterns correlate to habitual hip 

postures in extant apes, which in non-human apes include those of terrestrial 

locomotion and vertical climbing while in humans include those of bipedal 

locomotion. Correlations are also found in the distal femoral epiphysis, however the 

patterns in this epiphysis are more complex and links are not as obvious. 

Furthermore, findings of this dissertation suggest that South African hominins used 

a variety of locomotor modes. The Australopithecus africanus trabecular pattern is 
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most similar to modern humans indicating they were obligate bipeds. Though the 

slight variation between the patterns of modern taxa and A. africanus suggests that 

their joint kinematics may have differed. Furthermore, the trabecular architecture of 

a younger specimen from Sterkfontein suggests that this individual was frequently 

climbing indicating that the locomotion of this taxon was different to A. africanus. 

This dissertation provides insight into the locomotion of extinct human relatives, with 

particular implications on the evolution of South African hominins, and represents 

yet another example of fruitful holistic trabecular analysis.  

 

 

6.3. Limitations and future directions 

 

In this dissertation the samples were relatively small, even for the extant taxa. 

Specifically, the Pongo sample consisted of 7 individuals, 5 of which were wildshot 

and 2 were captive. The captive individuals were only included in the analysis of the 

distal femoral trabecular architecture, as they did not significantly affect statistical 

comparisons, however even then the 2 specimens complicated interpretations. 

Understanding the Pongo pattern was difficult, and this was partially due to the high 

intraspecific variability in the Pongo patterns, but that could have been improved 

with a larger sample. Additionally, larger and balanced samples of the extant apes 

would have allowed intraspecific comparisons between the sexes. While the Gorilla 

sample was comprised of the same number of males and females, the Pongo 

wildshot individuals were all female and the Pan sample included more females than 

males, therefore limiting comparisons between the sexes. Since locomotor 

behaviour, joint positioning and body size differ between male and female gorillas 

(e.g. Isler, 2005), as well as male and female chimpanzees (e.g. Doran, 1993b), more 

information would have been potentially gleaned from the patterns if they could 

have been compared between the sexes. Furthermore, the statistical power of my 

analysis would have increased with larger samples. In the human sample the biggest 

limitation was the lack of information on the individuals, as no data was available 

about their professions or lifestyles. This limitation would have been overcome if the 
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additional human specimens I had processed did not present issues. The collection 

curated at the University of Kent possesses information on the individuals that could 

have provided further understanding of their locomotor behaviour and therefore 

would have perhaps been useful when interpreting the human femoral pattern. 

Another limitation of all trabecular studies is that, to this point, there has not been a 

published method for statistically comparing the three-dimensional trabecular 

structure between specimens. In my thesis, this restricts interpretations to the 

observations made from the distribution of BV/TV (and DA), and mean parameters 

over specific region. However, this is not as robust as statistically comparing the 

spatial distribution of trabecular parameters. Finally, the extant and fossil samples 

were scanned using different scanners and parameters which could potentially have 

an effect on the representation of the trabecular structure.  

 

Future research will focus on analysing the three-dimensional femoral 

trabecular structure of larger and more varied samples, using more statistically 

robust methods. Comparisons between sexes in non-human apes, as well as between 

ages, will provide a more comprehensive picture of the locomotor signals identified 

in this study. Furthermore, comparing femoral trabecular structure between species 

of Pan (e.g. bonobos vs. chimpanzees), subspecies of Gorilla (e.g. western lowland 

gorillas vs. mountain gorillas) or between human populations that exploit different 

habitats will further our understanding of trabecular functional signals in the femur.   
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Allometry 

 
Intraspecific allometric relationships 
 
Table S1. P-values and R-squared values - in parentheses- for regressions of log-
transformed trabecular parameters with femoral head height (FHH) within each 
taxon. 

Taxon Variable Slope Intercept R2 p-value Allometric 

relationship 

Pan BV/TV -0.7912 -0.8022 0.2886 0.01459 - 
 DA 0.1046 -0.7712 0.0007873 0.9065 NA 
 Tb.N -0.32789 -0.08886 0.04102 0.3918 NA 
 Tb.Sp 0.57782 0.03091 0.1139 0.1456 NA 
 Tb.Th -0.1589 -0.6194 0.007024 0.7254 NA 
Gorilla BV/TV 0.938 -0.1404 0.5082 0.004214 + 
 DA 0.2615 -0.6562 0.02062 0.6243 NA 
 Tb.N -0.65253 -0.30224 0.4759 0.006327 - 
 Tb.Sp 0.276508 0.002378 0.1076 0.2522 NA 
 Tb.Th 1.41944 0.07332 0.6871 0.0002476 + 
Homo BV/TV -0.8879 -0.8425 0.1243 0.261 NA 
 DA -0.7229 -0.9011 0.07672 0.3835 NA 
 Tb.N -1.0539 -0.4342 0.3522 0.04194 - 
 Tb.Sp 1.3275 0.3868 0.3285 0.05139 NA 
 Tb.Th 0.2613 -0.3997 0.03298 0.5721 NA 
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Interspecific allometric relationships 
 
 
Table S2. P-values and R-squared values for regressions of log-transformed 
trabecular parameters with femoral head height (FHH) including all taxa. 

Variable Slope Intercept R2 p-value Allometric 

relationship 

BV/TV -0.3711 -0.6084 0.171 0.004281 - 
DA 0.66452 -0.48089 0.2293 0.0007614 + 
Tb.N -0.9274 -0.38878 0.7792 4.996e-16 - 
Tb.Sp 1.017 0.2566 0.7325 3.503e-14 = 
Tb.Th 0.70736 -0.198 0.4903 6.07e-08 - 
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