Citation for published version

DOI

Link to record in KAR

https://kar.kent.ac.uk/73080/

Document Version

Presentation
Insurance Risk Pooling, Loss Coverage and Social Welfare

When is adverse selection not adverse?

Pradip Tapadar

University of Kent

March, 2019
Background

Adverse selection:

If insurers cannot charge risk-differentiated premiums, then:

- higher risks buy more insurance, lower risks buy less insurance,
- raising the pooled price of insurance,
- lowering the demand for insurance,

usually portrayed as a bad outcome, both for insurers and for society.

In practice:

Policymakers often see merit in restricting insurance risk classification

- EU ban on using gender in insurance underwriting.
- Moratoria on the use of genetic test results in underwriting.

Question:

How can we reconcile theory with practice?
Motivation: Two risk-groups $\mu_L = 0.01$ and $\mu_H = 0.04$

Scenario 1: No adverse selection: Risk-differentiated premiums: $\pi_L = 0.01$ and $\pi_H = 0.04$

<table>
<thead>
<tr>
<th>Low risks →</th>
<th>Low risks →</th>
<th>High risks →</th>
<th>High risks →</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
</tbody>
</table>

Loss coverage: 66.7%

Scenario 2: Some adverse selection: Pooled premiums: $\pi_L = \pi_H = 0.028$

<table>
<thead>
<tr>
<th>Low risks →</th>
<th>Low risks →</th>
<th>High risks →</th>
<th>High risks →</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td> </td>
<td> </td>
<td> </td>
</tr>
</tbody>
</table>

Loss coverage: 77.8%
Introduction

Agenda

We ask:

- **Why** do people buy insurance?
- **What** drives demand for insurance?
- **How much** of population losses is compensated by insurance?
- **Which** regime is most beneficial to society?

Definition (Loss coverage)

Expected population losses compensated by insurance.
Contents

- Introduction
- Why do people buy insurance?
- What drives demand for insurance?
- How much of population losses is compensated by insurance?
- Which regime is most beneficial to society?
- Conclusions
Why do people buy insurance?

Assumptions

Consider an individual with

- an initial wealth W,
- exposed to the risk of loss L,
- with probability μ,
- utility of wealth $U(w)$, with $U'(w) > 0$ and $U'''(w) < 0$,
- an opportunity to insure at premium rate π.
Utility of wealth

Utility of wealth as a function of wealth. The utility function $U(W)$ increases with wealth W, indicating a positive relationship between wealth and utility. The utility function $U(W-L)$ also increases with $W-L$, reflecting the utility of wealth minus a loss L. This suggests that individuals value their wealth more when they have a higher wealth level, even after accounting for potential losses.
Why do people buy insurance?

Expected utility: Without insurance

Wealth
Utility

Expected utility without insurance

$$(1 - \mu)U(W) + \mu U(W - L)$$
Expected utility: Insured at fair actuarial premium

Utility

Expected utility with insurance $U(W - \mu L)$

Fair premium μL

Wealth

$U(W)$

$U(W - L)$

$W - L$

$W - \mu L$

W
Maximum premium tolerated: π_c

Utility

$U(W)$
$U(W - \mu L)$
$U(W - \pi_c L)$
$U(W - L)$

Wealth

$W - L$
$W - \pi_c L$
$W - \mu L$
W

$(1 - \mu)U(W) + \mu U(W - L)$

$\pi_c L$

Maximum premium tolerated

μL

Fair premium

π_c

Maximum premium tolerated

Why do people buy insurance? Maximum premium tolerated
Contents

- Introduction
- Why do people buy insurance?
- What drives demand for insurance?
- How much of population losses is compensated by insurance?
- Which regime is most beneficial to society?
- Conclusions
Modelling demand for insurance

Simplest model:

If everybody has exactly the same W, L, μ and $U(\cdot)$, then:

- All will buy insurance if $\pi < \pi_c$.
- None will buy insurance if $\pi > \pi_c$.

Reality: Not all will buy insurance even at fair premium. Why?

Heterogeneity:

- Even if individuals are **homogeneous** in terms of underlying risk,
- they can still be **heterogeneous** in terms of **risk-aversion**.

Source of Randomness:

An individual’s utility function: $U_\gamma(w)$, where parameter γ is drawn from random variable Γ with distribution function $F_\Gamma(\gamma)$.
Insurance demand

Standardisation

As certainty equivalent is invariant to positive affine transformations, we assume $U_\gamma(W) = 1$ and $U_\gamma(W - L) = 0$ for all γ.

Condition for buying insurance:

Given a premium π, an individual will buy insurance if:

$$U_\gamma(W - \pi L) > (1 - \mu) U_\gamma(W) + \mu U_\gamma(W - L) = (1 - \mu).$$

Demand as a function of premium:

Given a premium π, insurance demand, $d(\pi)$, is:

$$d(\pi) = P[U_\Gamma(W - \pi L) > 1 - \mu].$$
Insurance demand and heterogeneity in risk-aversion

Utility

\[U(W) = (1 - \mu)U(W) + \mu U(W - L) \]

\[U(W - L) \]

\[W - L \]

\[W \]

\[W - \pi L \]

Density

\[d(\pi) \]
Iso-elastic demand

Constant demand elasticity

If demand for insurance can be modelled as\(^1\):

\[
d(\pi) = \tau \left(\frac{\mu}{\pi} \right)^\lambda,
\]

then elasticity of demand is a constant:

\[
\varepsilon(\pi) = \left| \frac{\partial d(\pi)}{\partial \pi} \right| = \lambda.
\]

\(^1\) Assumptions: \(W = L = 1\), \(U_\gamma(w) = w^\gamma\) and \(\Gamma\) has the following distribution function:

\[
F_{\Gamma}(\gamma) = P[\Gamma \leq \gamma] = \begin{cases}
0 & \text{if } \gamma < 0 \\
\tau \gamma^\lambda & \text{if } 0 \leq \gamma \leq (1/\tau)^{1/\lambda} \\
1 & \text{if } \gamma > (1/\tau)^{1/\lambda}.
\end{cases}
\]
Iso-elastic demand

Iso-elastic demand for insurance

\[\lambda = 1 \quad \lambda = 2 \]

Fair-premium demand

Demand

Premium

\[\mu \]

\[\tau \]
Contents

- Introduction
- Why do people buy insurance?
- What drives demand for insurance?
- How much of population losses is compensated by insurance?
- Which regime is most beneficial to society?
- Conclusions
Risk classification

Suppose a population can be divided into 2 risk-groups where:

- risk of losses: $\mu_1 < \mu_2$;
- population proportions: p_1, p_2;
- premiums offered: π_1, π_2;
- iso-elastic demand:

$$d_i(\pi) = \tau_i \left(\frac{\mu_i}{\pi}\right)^\lambda, \quad i = 1, 2;$$

- fair-premium demand: $\tau_i = d_i(\mu_i)$ for $i = 1, 2$.

Assume $W = L = 1$ and constant demand elasticity λ for all risk-groups.

Note: The framework can be generalised for $n > 2$ risk-groups.
Market equilibrium and loss coverage

For a randomly chosen individual, define:

\[Q = I \] [Individual is insured];
\[X = I \] [Individual incurs a loss];
\[\Pi = \text{Premium offered to the individual}. \]

Expected premium, claim and market equilibrium

Expected premium:

\[E[Q\Pi] = p_1 d_1(\pi_1) \pi_1 + p_2 d_1(\pi_2) \pi_2. \]

Expected claim:

\[E[QX] = p_1 d_1(\pi_1) \mu_1 + p_2 d_1(\pi_2) \mu_2. \]

Market equilibrium:

\[E[Q\Pi] = E[QX]. \]

Loss coverage (Population losses compensated by insurance)

Loss coverage: \(E[QX] \).
Scenario 1: Risk-differentiated premium

Market equilibrium

If risk-differentiated premiums are allowed,

- Equilibrium is achieved when $\pi_1 = \mu_1$ and $\pi_2 = \mu_2$.
- No losses for insurers.
- No (actuarial/economic) adverse selection.

Loss coverage (Population losses compensated by insurance)

\[
E[QX] = p_1 d_1(\mu_1) \mu_1 + p_2 d_1(\mu_2) \mu_2,
\]
\[
= p_1 \tau_1 \mu_1 + p_2 \tau_2 \mu_2.
\]
Scenario 2: Pooled premium

Market equilibrium
If risk-classification is banned, under iso-elastic demand pooled premium is:

\[\pi_0 = \frac{p_1 \tau_1 \mu_1^{\lambda+1} + p_2 \tau_2 \mu_2^{\lambda+1}}{p_1 \tau_1 \mu_1^\lambda + p_2 \tau_2 \mu_2^\lambda}. \]

No losses for insurers! ⇒ No (actuarial) adverse selection.

Loss coverage (Population losses compensated by insurance)

\[E[QX] = p_1 d_1(\pi_0) \mu_1 + p_2 d_1(\pi_0) \mu_2. \]
How much of population losses is compensated by insurance?

Pooled premium

Adverse selection under pooled premium

Pooled equilibrium premium

\[\mu_2 \]

\[\pi_0 \]

\[\alpha_1 \mu_1 + \alpha_2 \mu_2 \]

\[\lambda \text{ (Demand elasticity)} \]

Pooled equilibrium is greater than average premium charged under full risk classification: \(\pi_0 > \alpha_1 \mu_1 + \alpha_2 \mu_2 \Rightarrow \text{(Economic) adverse selection.} \)
Adverse selection under pooled premium

Aggregate demand (cover) is lower than under full risk classification \Rightarrow (Economic) adverse selection.
How much of population losses is compensated by insurance?

Loss coverage ratio

\[
C = \frac{\text{Loss coverage under pooled premium}}{\text{Loss coverage under risk-differentiated premium}},
\]

\[
= \frac{p_1 d_1(\pi_0) \mu_1 + p_2 d_1(\pi_0) \mu_2}{p_1 \tau_1 \mu_1 + p_2 \tau_2 \mu_2}.
\]

Comparison of risk-classification regimes

- \(C > 1 \Rightarrow \) Risk pooling is *better* than full risk classification.
- \(C < 1 \Rightarrow \) Risk pooling is *worse* than full risk classification.
How much of population losses is compensated by insurance?

Loss coverage ratio

λ (Demand elasticity)

- $\lambda < 1 \iff C > 1 \Rightarrow$ Risk pooling is *better* than full risk classification.
- $\lambda > 1 \iff C < 1 \Rightarrow$ Risk pooling is *worse* than full risk classification.
- **Empirical evidence suggests** $\lambda < 1$ *in many insurance markets.*
Which regime is most beneficial to society?
Which regime is most beneficial to society?

Social welfare

Definition (Social welfare)

Social welfare, S, is the expected utility for the whole population:

$$S = E\left[Q U_\Gamma(W - \Pi L) + (1 - Q) \left[(1 - X) U_\Gamma(W) + X U_\Gamma(W - L) \right] \right] .$$

Linking social welfare to loss coverage under iso-elastic demand

$$S = \frac{1}{\lambda + 1} \text{ Loss coverage + Constant}.$$

Result

- Maximising loss coverage maximises social welfare.
- $\lambda < 1 \Rightarrow$ Risk pooling is better than full risk classification.
Motivation: Two risk-groups $\mu_L = 0.01$ and $\mu_H = 0.04$

Scenario 1: No adverse selection: Risk-differentiated premiums: $\pi_L = 0.01$ and $\pi_H = 0.04$

Low risks →

Low risks →

High risks →

High risks →

Loss coverage: 66.7%

Utility increase: 66.2×10^{-4}

Scenario 2: Some adverse selection: Pooled premiums: $\pi_L = \pi_H = 0.028$

Low risks →

Low risks →

High risks →

High risks →

Loss coverage: 77.8%

Utility increase: 71.2×10^{-4}
Contents

- Introduction
- Why do people buy insurance?
- What drives demand for insurance?
- How much of population losses is compensated by insurance?
- Which regime is most beneficial to society?
- Conclusions
Adverse selection need not always be adverse.

Restricting risk classification increases loss coverage if $\lambda < 1$.

Maximising loss coverage maximises social welfare.

Restricting risk classification increases social welfare if $\lambda < 1$.
Reference: Loss coverage blog

https://blogs.kent.ac.uk/loss-coverage/