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Abstract— We present in this paper an efficient convolutional neural
network (CNN) running on time-frequency image features for automatic
sleep stage classification. Opposing to deep architectures which have
been used for the task, the proposed CNN is much simpler. However,
the CNN’s convolutional layer is able to support convolutional kernels
with different sizes, and therefore, capable of learning features at
multiple temporal resolutions. In addition, the 1-max pooling strategy
is employed at the pooling layer to better capture the shift-invariance
property of EEG signals. We further propose a method to discrim-
inatively learn a frequency-domain filter bank with a deep neural
network (DNN) to preprocess the time-frequency image features. Our
experiments show that the proposed 1-max pooling CNN performs
comparably with the very deep CNNs in the literature on the Sleep-
EDF dataset. Preprocessing the time-frequency image features with
the learned filter bank before presenting them to the CNN leads to
significant improvements on the classification accuracy, setting the state-
of-the-art performance on the dataset.

I. INTRODUCTION

Inspired by the success of deep learning paradigms in numerous
domains, there is an ongoing methodology trend in dealing with
the automatic sleep stage classification task, shifting from conven-
tional techniques to modern deep learning methods. Deep networks
have recently been reported to set state-of-the-art performances
on different benchmark datasets [1], [2], [3], [4], [5], [6]. CNNs
with their great capability of automatic feature learning have been
most commonly employed for the task [1], [2], [3]. Combinations
of recurrent neural networks (RNNs) with DNNs [6] and CNNs
[5] have also been explored to leverage their sequence modelling
capability on the learned features.

We propose in this work an approach using a simple yet efficient
CNN architecture with time-frequency image features for sleep
stage classification. The proposed architecture is similar to those
used in [7], [8] for template learning and matching. Opposing to
deep architectures which have been used for the task, the proposed
CNN is much simpler, consisting of one over-time convolutional
layer, one pooling layer, and one softmax layer for classification.
However, in contrast to typical CNN architectures which have a
single fixed kernel size at a certain convolutional filter, the convo-
lutional layer of the proposed CNN supports different kernel sizes
simultaneously. Furthermore, instead of the common subsampling
pooling strategy, we exploit 1-max pooling strategy at the pooling
layer to retain a single maximum value of each feature map. While
being simple, the 1-max pooling strategy is arguably more suitable
for capturing the shift-invariance property of temporal signals than
the common subsampling pooling ones since a particular feature
could be replicated at any time in the signal rather than its local
region. This pooling scheme has been successfully applied in other
domains, such as natural language processing [9] and audio analysis
[7], [8].
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Before presenting the time-frequency image features to the CNN
for classification, preprocessing is carried out for frequency smooth-
ing and dimension reduction. We propose to learn a frequency-
domain filter bank using a DNN for this purpose. Discriminatively
learning filter banks using DNNs has been found useful for audio
analysis [10], [11]. We will show that this idea also works well for
EEG signals. The proposed DNN has its first hidden layer tailored to
enforce various constraints to be able to learn a filter bank which has
the characteristics of a normal filter bank, i.e. being non-negative,
band-limited and ordered by frequency. We demonstrate significant
performance improvements on the Sleep-EDF dataset when using
the DNN-learned filter bank for preprocessing rather than a standard
filter bank.

II. THE PROPOSED APPROACH

An overview of the proposed approach is shown in Fig. 1. A
raw 30-second EEG epoch is firstly transformed into log-power
spectrum. A frequency-domain filter bank, e.g. the triangular filter
bank or the one learned by a DNN, is then applied on the spectrum
for frequency smoothing and dimension reduction. The resulted
time-frequency image is finally classified by the proposed 1-max
pooling CNN.

A. Time-Frequency Image Representation

The 30-second EEG epoch, sampled at 100 Hz, is transformed
into a power spectrum using short-time Fourier transform (STFT)
with a window size of two seconds and 50% overlap. Hamming
window and 256-point Fast Fourier Transform (FFT) are used. The
spectrum is then converted to logarithm scale to produce the log-
power spectrum. As a result, we obtain a log-power spectrum image
of size F × T , where F = 129 and T = 19.

For frequency smoothing and dimension reduction, the spectrum
is filtered by a filter bank in frequency direction. We study both
a linear-frequency triangular filter bank and a DNN-learned filter
bank, as illustrated in Fig. 4 (a) and (c), respectively, for this
purpose. The former consists of M = 20 filters linearly spaced with
50% overlap in the frequency range of [0, 50] Hz. The later also
consists of M = 20 filters, however, their coefficients are learned
automatically by a DNN (cf. Section II-C). Finally, we obtain a
time-frequency image X ∈ RM×T which serves as input to the
1-max pooling CNN.

B. 1-Max Pooling CNN

The architecture of the proposed 1-max pooling CNN is illus-
trated in Fig. 2. Actually, this CNN acts as a template learning and
matching algorithm. A convolutional filter can be interpreted as a
time-frequency template that is learned by the CNN. During testing,
template matching is carried out by convolving the learned filter
through time, resulting in a feature map which indicates how well
the template is matched to different parts of the input EEG signal.
In turn, the 1-max pooling operator retains a single maximum
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Fig. 1: Overview of the proposed approach.
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Fig. 2: Illustration of the proposed 1-max pooling CNN architecture.
The convolution layer of the CNN consists of two filter sets with
temporal widths w = 3 and w = 5. Each filter set has two
individual filters.

matching score as the final feature. Such features derived from all
feature maps are concatenated and presented into the softmax layer
for classification, as illustrated in Fig. 2. Since the CNN is trained
to maximize the classification accuracy on the training set, it is
supposed to learn useful templates from the EEG signals for the
classification task.

1) Convolutional Layer: Let w ∈ RM×w be the impulse
response of a 2-dimensional linear filter where w denotes the filter’s
temporal width. Let X[i : j] further denote the adjacent image slices
from i to j. Convolving a filter w with the image X in the time
direction results in an output vector O = (o1, . . . , oT−w+1) where:

oi = (X ∗w)i =
∑
k,l

(X[i : i+ w − 1]�w)k,l. (1)

Here, ∗ indicates the convolution operation and � denotes elemen-
wise multiplication.

Afterwards, Rectified Linear Units (ReLU) [12], given in
(3), is applied to the output vector to yield the feature map
A = (a1, . . . , aT−w+1):

ai = h(oi + b), (2)

h = max(0, x), (3)

where b ∈ R denotes a bias term.
The CNN is designed to have Q different filters of the same

temporal width concurrently so that it is able to learn multiple
complementary features. Furthermore, in order to capture features
at multiple temporal resolutions, R such filter sets with different
temporal widths are included into the CNN. Hence, the network
consists of Q×R different filters in total.

2) 1-Max Pooling Layer: The feature map obtained by convolv-
ing a filter over an time-frequency image indicates how well the
template is matched to different parts of the EEG signal. We then
apply 1-max pooling function [9], [7] on a feature map to reduce
it into a single most dominant feature which corresponds to the
maximum matching score:

a∗ = max
i∈{1,...,T−w+1}

ai. (4)

By reducing its feature map to a single most dominant feature,
each filter in the convolutional layer is expected to be optimized to
a useful pattern that could occur at any time in the signal. Pooling
all feature maps pf Q×R filters results in a feature vector of size
Q×R.

3) Softmax Layer: Classification is accomplished by a standard
softmax layer. The network is trained to minimize the cross-entropy
error over N training samples:

E(θ) = − 1

N

N∑
i=1

yi log(ŷi(θ)) +
λ

2
‖θ‖22. (5)

In (5), θ, ŷ, and y denote the network parameters, the predicted
posterior distribution, and the one-hot encoded groundtruth distri-
bution, respectively. λ denotes the hyper-parameter that trades off
the error terms and the `2-norm regularization term. For further
regularization, dropout [13] is also employed. The network training
is performed using the Adam optimizer [14].

C. DNN for Filter-Bank Learning

In Section II-A, using the fixed triangular filterbank to preprocess
the time-frequency images, we have considered different frequency
subbands equally. However, it is reasonable to somehow emphasize
the subbands that are more important for the task and attenuate
those less important. Towards this goal, the filter bank can be
learned in a discriminative fashion with a DNN. The proposed DNN
architecture for filter-bank learning is illustrated in Fig. 3, consisting
of one filter-bank layer, three fully-connected (FC) layers, and one
softmax layer. The FC layers are typical nonlinear ones with ReLU
activation. The filter bank layer is tailored similarly to that in [11]
for filter-bank learning.

Formally, let x ∈ RF be the input vector, the output of the filter-
bank layer is computed as:

h1 = xWfb, (6)

where Wfb ∈ RF×M in (6) plays the role of the filter-bank weight
matrix and M denote the number of filters. Note that M is also
the number of hidden units of the filter-bank layer. For the learned
filter bank to have the characteristics of a normal filter bank, i.e.
non-negative, band limited and ordered by frequency, it is necessary
to enforce constraints and re-write Wfb as

Wfb = f+(W)� S, (7)

where W ∈ RF×M , S ∈ RF×M
+ . W is now the weight matrix that

will practically be learned by the DNN. The non-negative function
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Fig. 3: Illustration of the DNN architecture for filter bank learning.

f+ is applied on W to make the elements of the filter bank non-
negative. S is the constant non-negative matrix to enforce the filters
to have limited band, regulated shape and ordered by frequency.
We employ sigmoid for the function f+(x) = 1

1+exp(−x)
and a

linear-frequency triangular filter bank matrix for S, as illustrated in
Fig. 4 (b).

Different from the 1-max pooling CNN which works on entire
time-frequency images of 30-second EEG epochs, the DNN oper-
ates on feature vectors of two-second EEG frames, i.e. the spectral
columns of the log-power spectrum described in Section II-A. The
DNN is trained to minimize the cross-entropy given in (5) (without
`-2 norm regularization) over the training set. For training purpose,
a two-second EEG frame is labelled by the label of the 30-second
epoch from which it is stemmed. Dropout is also applied to weight
matrices for regularization purpose, except for those of the filter
bank layer. Fig. 4 (c) shows one of the filter banks learned in the
experiments (cf. Section III for further details).

III. EXPERIMENTS

A. Sleep-EDF Expanded Dataset

We evaluated the proposed approach on the Sleep-EDF Expanded
dataset [15] available from PhysioNet [16]. There are 20 subjects
in total. PSG recordings, sampled at 100 Hz, of two subsequent
day-night periods are available for each subject, except for subject
13. Each 30-second epoch of the recordings was manually labelled
by sleep experts according to the R&K standard [17] into one
of eight categories {W, N1, N2, N3, N4, REM, MOVEMENT,
UNKNOWN}. Similar to previous works [3], [4], [5], N3 and
N4 stages were merged into a single stage N3. MOVEMENT and
UNKNOWN were also excluded. We used the single-channel Fpz-
Cz in the experiments. It is worth mentioning that there exist two
different experimental settings on this dataset: (1) only the in-bed
parts of the recordings are included [3], [4] and (2) 30-minute
periods before and after in-bed periods are additionally included.
For convenience, we will identify them as Setting 1 and 2. We
experimented the proposed approach with both settings to make a
proper comparison with the previous works.

B. Experimental Setup

We conducted leave-one-subject-out cross validation. At each
time, one subject was left out for testing while the remaining
19 subjects were used to train the CNN and DNN networks.
Particularly for the CNN training, 4 out of 19 training subjects
were further left out for validation. The classification performance
over 20 folds will be reported in terms of overall accuracy, macro
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Fig. 4: (a) A linear-frequency triangular filterbank with M = 20
filters, (b) the corresponding shape matrix S, (c) a DNN-learned
filter bank with M = 20 filters.

F1-score (MF1), and kappa index (κ). Per-class F1-score will also
be presented.

C. Parameters

The parameters associated with the 1-max pooling CNN are
given in Table I (a) while those of the filter-bank-learning DNN are
shown in Table I (b). The implementation was based on Tensorflow
framework. Both the networks were trained for 200 epochs with a
batch size of 200. The learning rate was commonly set to 10−4 for
the Adam optimizer. During training, we always randomly generated
a data batch to have an equal number of samples for all sleep
stages to mitigate the imbalance issue of the dataset. Particularly
for the CNN, which network yielding the best overall accuracy on
the validation subjects was retained for evaluation.

D. Experimental Results

Table II shows the classification performances obtained by the
proposed CNN in comparison with previous deep-learning works
on the Sleep-EDF dataset [3], [4], [5]. In the table, 1-Max-CNN 1
and 1-Max-CNN 2 represent the proposed CNN with the regular
triangular filtel bank and the DNN-learned filter bank, respectively.
The best performance on Setting 1 was reported in [3] which
employed auto-encoders combined with a handful of hand-crafted
features. Note that the authors in [1] reported better accuracy with
a deep CNN similar to that in [4]. However, they experimented on
multi-channel (EEG and EOG) setup and fine tuning for personal-
ization, and therefore, the reported results are not comparable with
those in Table II. On Setting 2, the best results were reported by

TABLE I: Parameters of the proposed networks: (a) 1-max pooling
CNN, (b) filter-bank-learning DNN.

(a)

Parameter Value
Filter width w {3, 5, 7}
Number of filters Q 1000
Dropout 0.2
λ for regularization 10−4

(b)

Layer Size Dropout
FC 1 512 0.2
FC 2 256 0.2
FC 3 512 0.2



TABLE II: Performances obtained by different approaches on the
Sleep-EDF dataset.

Overall metrics Per-class F1-score

Acc MF1 κ W N1 N2 N3 REM

Se
tti

ng
1 Deep CNN [3] 74.8 69.8 − 65.4 43.7 80.6 84.9 74.5

Auto-encoder [4] 78.9 73.7 − 71.6 47.0 84.6 84.0 81.4

1-Max-CNN 1 78.3 70.3 0.69 75.3 32.4 85.4 81.9 76.7

1-Max-CNN 2 79.8 72.0 0.72 77.0 33.3 86.8 86.3 76.4

Se
tti

ng
2 DeepSleepNet 1 [5] 79.8 73.1 0.72 88.1 37.0 82.7 77.3 80.3

DeepSleepNet 2 [5] 82.0 76.9 0.76 84.7 46.6 85.9 84.8 82.4

1-Max-CNN 1 76.7 68.1 0.68 87.0 32.9 81.0 69.4 70.2

1-Max-CNN 2 82.6 74.2 0.76 89.8 33.2 86.7 86.0 75.4

TABLE III: Confusion matrices of 1-Max-CNN 2 on two experi-
mental settings of the EDF-Sleep dataset.

Prediction

W N1 N2 N3 REM

Se
tti

ng
1

G
ro

un
dt

ru
th W 3482 458 132 72 365

N1 463 860 563 13 863
N2 227 515 14967 795 1073
N3 77 6 571 4922 15

REM 283 562 665 8 6193

Se
tti

ng
2

G
ro

un
dt

ru
th W 11338 444 136 97 503

N1 505 832 571 16 855
N2 407 424 14995 782 991
N3 87 3 605 4920 14

REM 408 529 677 5 6092

DeepSleepNet [5], in which recurrent layers were stacked on top
of convolutional layers to leverage both their sequential modelling
capability (i.e. the recurrent layers) and feature learning power
(i.e. the convolutional layers). We included the results obtained by
this network on both channels Pz-Oz and Fpz-Cz for comparison,
indicated as DeepSleepNet 1 and 2 in Table II.

Overall, 1-Max-CNN 1 produces relatively good performances,
especially on Setting 1. On this setting, even though its performance
is marginally lower than the best one reported by Auto-encoder
[4], it works better than the deep CNN proposed in [3]. However,
using the DNN-learned filter banks to preprocess the time-frequency
image features appears to facilitate the template learning process of
the CNN, leading to significant improvement on the classification
performance. Absolute gains of 1.5%, 1.7%, and 0.03 on overall
accuracy, MF1, and κ, respectively, achieved by 1-Max-CNN 2
over 1-Max-CNN 1 can be seen on Setting 1. The respective
improvements on Setting 2 are even better, reaching 5.9%, 6.1%,
and 0.08. We show the confusion matrices of 1-Max-CNN 2 on the
two experimental settings in Table III.

Moreover, 1-Max-CNN 2 sets state-of-the-art performance on
overall accuracy on both Setting 1 and 2, improving 1.1% and
0.6% absolute over Auto-encoder [4] and DeepSleepNet 2 [5],
respectively. Significant improvements on per-class F1-scores of W,
N2, and N3 can also be seen. However, the proposed approach is
inefficient to recognize N1 which has been proven challenging to
be correctly classified [4], [5], due to similarities with other stages
and generally infrequent. The inferior F1-score on this stage average
down the overall F1-score of the proposed approach.

IV. CONCLUSIONS

In this paper, we present an efficient approach for automatic sleep
stage classification using 1-max pooling CNN and time-frequency
image features. The CNN has a simple architecture compared to

those have been proposed for the task. However, it is capable
of learning features at multiple temporal resolutions and arguably
better at capturing time shift-invariance property of EEG signals,
thanks to its 1-max pooling layer. For further improvement, a DNN
architecture is proposed for learning frequency-domain filter bank to
preprocess the time-frequency image inputs. Several constraints are
enforced to the first hidden layer so that a filter bank can be learned
properly, i.e. it has the characteristics of a normal filter bank. The
1-max pooling CNN combined with a preprocessing step using the
DNN-learned filter bank demonstrates state-of-the-art performance
in terms of overall accuracy and outperforms other deep-network
approaches on the Sleep-EDF dataset. However, there is still room
for improvement on recognizing the N1 stage.
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