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† University of Kent, School of Computing, Canterbury, Kent, United Kingdom

ABSTRACT

For many applications of hand gesture recognition, a delay-
free, affordable, and mobile system relying on body signals is
mandatory. Therefore, we propose an approach for hand ges-
tures classification given signals of inertial measurement units
(IMUs) that works with extremely short windows to avoid de-
lays. With a simple recurrent neural network the suitability of
the sensor modalities of an IMU (accelerometer, gyroscope,
magnetometer) are evaluated by only providing data of one
modality. For the multi-modal data a second network with
mid-level fusion is proposed. Its forked architecture allows us
to process data of each modality individually before carrying
out a joint analysis for classification. Experiments on three
databases reveal that even when relying on a single modal-
ity our proposed system outperforms state-of-the-art systems
significantly. With the forked network classification accuracy
can be further improved by over 10 % absolute compared to
the best reported system while causing a fraction of the delay.

Index Terms— Inertial measurement unit, hand gesture
recognition, recurrent neural network, multi-modal fusion

1. INTRODUCTION

In many applications such as virtual reality [1] and human
machine interaction [2] the recognition of hand gestures is
essential. The conditions these systems have to meet vary
between applications. However, in general it is desirable for
hand gesture recognition systems to be cheap and free of de-
lay. Also many applications require a system that can be re-
alised as a mobile device or an embedded system.

In many cases, especially in the medical field of prosthesis
control [3] or the control of exoskeletons [4, 5], hand move-
ments are classified on the base of surface electromyography
(sEMG) signals since the signals can be unproblematically
acquired by electrodes. Therefore, the research was mostly
focused on new approaches to analyse sEMG signals. Most
of the successful systems followed a classic pipeline. It starts
with signal acquisition followed by preprocessing and win-
dowing. Afterwards, hand crafted features are extracted for
each window [6]. The resulting features are then presented
to a standard classifier such as support vector machine or

random forest that finally determines the hand movement
[7, 8, 9]. Besides, techniques from the field of deep learn-
ing have recently evolved. For instance, recurrent neural
networks (RNNs) have been used to classify sequences of
feature vectors representing sEMG signals [10, 11]. Even
with a compact network with a small number of parameters
RNNs were shown to achieve outstanding results. In addi-
tion, with the usage of convolutional neural networks on raw
sEMG signals, feature extraction and classification are jointly
performed within one network and trained in an end-to-end
fashion [12, 13]. This allows the features to be learned rather
than being hand-crafted. These networks were shown to
achieve state-of-the-art performance. In general, all of these
approaches suffer from two main drawbacks. Firstly, in order
to achieve satisfying performance, long windows (100 ms and
longer) are required that cause an undesired delay. Secondly,
expensive electrodes are needed to acquire the signals.

In addition or even as a cheap alternative to electrodes,
accelerometers or more complex IMUs can be used. An IMU
usually has three sensor modalities: an accelerometer, a gyro-
scope, and a magnetometer. With IMUs attached to the skin
of a subject’s forearm, the movement of the arm, the defor-
mation of the skin and the change of the electromagnetic field
caused by the muscle contraction can be measured. Conse-
quently, it enables gathering information about the arm move-
ment and the finger movement indicated by the muscle move-
ment. Prior works suggest that it is possible to determine hand
movements given the signals of IMUs [14, 15] or a combi-
nation of sEMG signals and inertial measurement (IM) data
[16, 17]. However, these approaches adhere to the standard
pipeline, i.e. using long windows, relying on hand-crafted fea-
tures and more conventional classification methods, resulting
in long delays as discussed above.

The aim of this work is to develop a system for a cheap,
IMU-based hand movement detection system that is expected
to only cause minimal delay. Because RNNs have been
proven to be effective for sequence analysis on many differ-
ent temporal data types such as audio signals [18, 19] and
electroencephalography data [20, 21] as well as sEMG based
hand movement recognition, we employ them for decoding
the hand gestures from a sequence of small windows (5 ms
long) of raw data. At first, a fairly simple RNN consisting of a



single RNN cell is presented. Its performance is evaluated for
classifying hand movements given data of a single modality
as well as for the analysis of the multi-modal IM data. To
improve the efficiency in handling multi-modal data a tailored
RNN architecture, namely forked RNN, is further proposed.
At a lower level of the network, an RNN cell is designated
to each modality (i.e. accelerometer, gyroscope, or magne-
tometer) to process the modality-specific input independently
from the rest. Afterwards the outputs of the individual RNN
streams are fused and commonly analysed by an RNN cell at
a higher level of the network.

To show the effectiveness of the proposed approach,
experiments were conducted on three databases. Results in-
dicate that even when using just a single sensor modality,
we can achieve a new state-of-the-art performance for all
databases. With the forked RNN and the multi-modal IM
data, the current state-of-the-art systems using IM data and
sEMG signals are outperformed by more then 10 % absolute.
Furthermore, as the proposed systems use 5 ms long win-
dows, the induced delay is only a fraction of that caused by
the other systems.

2. JOINT ANALYSIS OF MULTI-MODAL IM DATA

In contrast to the commonly used strategies for determining
hand movements based on sEMG as well as IM data, the
proposed systems do not rely on hand-crafted features. In-
stead, raw IM data are given to the network and features are
learned automatically in a data-driven way within the net-
work. The analysis of a single short window prevents the full
exploration of the sequential nature of the IM data. There-
fore, sequences of consecutive windows are analysed using
an RNN-based approach. The used network architecture is il-
lustrated in Fig. 1. The RNN allows us to process the data at
the current time step with respect to the inputs of the preced-
ing time steps. The used networks consist of a single RNN
cell that receives all data collected by all IMUs at each time
step. We chose the long-short term memory (LSTM) cell
[22] as the RNN cell. Its hidden layer can be described as
(ht,Ct) = H(xt,ht−1,Ct−1) with xt being the current in-
put, ht−1 representing the output of the previous time step,
and Ct−1 denoting the cell state also of the previous time
step. The update of the cell state is given by

Ct = ft ∗Ct−1 + it ∗ C̃t (1)

with ∗ being the Hadamard product, the gates ft and it de-
fined as

ft = sigm(Wf (ht−1 ⊕ xt) + bf ), (2)

it = sigm(Wi(ht−1 ⊕ xt) + bi), (3)

and

C̃t = tanh(WC(ht−1 ⊕ xt) + bC) (4)
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Fig. 1. Illustration of the RNN architecture for early fusion.

with W being weight matrices, b denoting biases, and⊕ rep-
resenting vector concatenation. The output of the LSTM cell
is then given by

ht = ot ∗ tanh(Ct) (5)

where ot is the output gate defined as

ot = sigm(Wo(ht−1 ⊕ xt) + bo). (6)

It is obvious that this kind of network produces an out-
put for each input. Every output is classified by a tied fully
connected layer that is defined as

y = Wx + b (7)

with x the input vector, W and b being a trainable weight
matrix and a bias vector, respectively. Since the aim is a clas-
sification of hand movements, the softmax function is used as
nonlinear activation function.

3. PARTIALLY INDIVIDUAL ANALYSIS OF
MULTI-MODAL IM DATA

Because the three sensor types of an IMU are acquiring very
different signals, it is reasonable to have an individual pre-
processing or feature extraction for each modality. Therefore
we propose an approach where a preprocessor is dedicated
to each modality. Mid-level fusion of different preprocessed
data streams is then carried out, followed by joint analysis and
classification.

Obviously the short windows used in this work cannot
cover all distinctive temporal patterns that vary in length.
To detect these long patterns the feature extraction should
incorporate the temporal context of the windows. Using
RNN cells as preprocessors allows us to incorporate in-
formation of previous windows within the feature extrac-
tion for the current window. The network architecture is
illustrated in Fig. 2. Let xt denote all data of all IMUs
corresponding to the current time step t. The input xt is
now split into three vectors xacc

t , xgyro
t , and xmagn

t con-
taining all data corresponding to accelerometer, gyroscope,
and magnetometer, respectively. Each input vector is pre-
sented to its corresponding RNN cell. Consequently we have
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Fig. 2. Illustration of the forked network architecture for
multi-modal fusion.

Hacc(xacc
t ,hacc

t−1,C
acc
t−1), Hgyro(xgyro

t ,hgyro
t−1 ,C

gyro
t−1 ), and

Hmagn(xmagn
t ,hmagn

t−1 ,Cmagn
t−1 ). The upper index indicates

that a different set of weights and biases is learned for each
RNN cell.

After this first stage the resulting outputs hacc
t , hgyro

t ,
hmagn
t are fused to

xfused
t = hacc

t ⊕ hgyro
t ⊕ hmagn

t (8)

for the comprehensive analysis over all modalities. For this
purpose another RNN cell Hfused(xfused

t ,hfused
t−1 ,Cfused

t−1 ) is
employed. Finally, in analogy to the network described in
the previous section its output hfused

t is presented to a fully-
connected layer with softmax activation for classification.

4. TRAINING AND EVALUATION OF NETWORKS

For all presented networks the training and testing procedure
are the same. During training, sequences of fixed length (1 s)
are extracted from the training examples. The sequences are
presented to the network that classifies each window of a se-
quence. The network’s error is estimated using only the clas-
sification ŷT of final window T of the presented sequence.
As loss function for the optimization of the network, we use
the cross-entropy

E (Θ|X,yT ) = −yT log (ŷT (Θ|X)) (9)

where X denotes the input sequence and yT the ground truth
corresponding to the final time step T represented as one-hot
encoded vector. The network’s parameters are denoted by Θ.

In contrast to training, for testing each test example is rep-
resented as a single sequence. Consequently, the lengths of
the sequences vary. However, the sequences are presented to
the network that assigns a class label to each window of ev-
ery sequence. The performance of the network is evaluated
by comparing the estimated class for every window of all se-
quences with its corresponding ground truth and calculating
the accuracy.

5. EXPERIMENTS

5.1. Database

We conducted experiments on three publicly available data-
bases: DB2, DB3, and DB7 published along the Ninapro
project [7, 16]. Their general aim is to provide data for the
determination of hand gestures on the base of biosignals.

The acquisition of all three databases followed mainly
the same protocol. For the experiments the subjects were
equipped (if possible) with 12 electrodes with integrated ac-
celerometers or IMUs. The subjects were asked to perform a
number of different hand movements of which each one was
repeated six times.

In DB2 and DB3, Delsys R© TrignoTMWireless sensors
were used to acquire the data. Besides the sEMG signal, each
sensor provides the data of a tri-axial accelerometer sampled
at 148 Hz. This data are upsampled to 2 kHz to match the
sampling frequency of the sEMG signal. In both databases,
DB2 and DB3, the subjects performed 50 different hand ges-
tures. However, DB2 and DB3 differ in their subjects. While
DB2 contains experiments of 40 able-bodied persons, DB3
includes experiments of 11 amputees.

For DB7, sensors of Delsys R© TrignoTMIM Wireless Sys-
tem were used. The sensors were used to collect both the
sEMG data at a sampling frequency of 2 kHz and the raw
signals of an IMU with 9-degree-of-freedom (tri-axial ac-
celerometer, gyroscope, magnetometer) sampled at 128 Hz.
The IM data were upsampled to 2 kHz. During the experi-
ments for DB7, the subjects performed a subset of 40 ges-
tures instead of all gestures as in DB2 and DB3. The seventh
database contains the data of 20 able-bodied persons and 2
amputees.

In this work DB7 was used to evaluate the suitability of
IM data for determining hand gestures. DB2 and DB3 were
included to investigate whether the hand gesture recognition
works for different sensors and for different subjects like am-
putees.

5.2. Preprocessing

The data was split into training and test data according to the
original suggestions for the database. In order to prepare the
signals for the analysis by the networks, the signals of each
axis of each sensor were normalized individually by subtract-
ing the mean and dividing by standard deviation. The nec-
essary statistics were calculated only on the train data. For
classification the signals were split into consecutive 5 ms long
windows.

5.3. Results

The accuracies reported in the following are average accu-
racies calculated across the subjects of the corresponding
database.



Table 1. Results on DB7 obtained by the RNN-based on a
LSTM with 256 state size using Accelerometer (Acc.), Gyro-
scope (Gyro.), and Magnetometer (Magn.) data.

Group Acc. Gyro. Magn.

Able-bodied 89.0 % 86.6 % 86.5 %
Amputated 83.9 % 81.6 % 82.6 %

Table 2. Accuracy comparison of accelerometer and sEMG.
The reported results for accelerometer were obtained by a net-
work based on a single LSTM cell with a state of size 256.
The results were achieved on 100 ms long windows that were
represented by a feature vector and classified by an RNN.

Database Accelerometer (LSTM (256)) sEMG [11]

DB2 80.4 % 78.0 %
DB3 67.7 % 55.3 %

5.3.1. Individual Sensors

Firstly, we evaluated the possibility of recognising hand
movements based on a single modality. Therefore, a network
described in Section 2 with an LSTM cell and a state size of
256 was used. The results on DB7 of this network for the dif-
ferent kinds of input data are shown in Table 1. These results
suggest that, on each of the three modalities, the RNN out-
performs the state-of-the-art results reported in [16], where
256 ms long windows and a standard classification scheme
were used. Considering the accelerometer data, our obtained
results surpass those in [16] by more than 15 % absolute for
able-bodied subjects and by about 25 % absolute for the am-
putees. The difference is even more striking for the gyroscope
data where the approach in [16] achieved less then 10 % ac-
curacy for both groups of subjects. For the magnetometer the
difference is not that drastic but our RNN still outperforms
the reported results by far. Even when considering the best
results in [16] (82.7 % and 77.8 % accuracy for able-bodied
and amputated subjects) obtained by using all sEMG and IM
data and windows of length 256 ms our results are still better.
Thus, the RNN-based approach appears to be efficient for the
problem.

To show that hand gestures can be determined well we
tested our system on DB2 and DB3, too. In Table 2 the results
are presented and compared with, to the best of our knowl-
edge, the best reported results on those datasets [11]. These
results were obtained with an RNN on sEMG data that were
segmented into 100 ms windows and then represented by a
feature vector. As can be seen, even with significantly shorter
windows, our proposed system outperforms the state-of-the-
art sEMG-based hand movement classification system.

Consequently, RNN-based networks seem to be efficient
for analysing IM data especially in the context of hand ges-

Table 3. Comparison of different fusion approaches on DB7.
For the network described in Section 2 a LSTM cell with a
state of size 256 was used. In the forked RNN (see Section 3)
LSTM cells with a state size of 256 were used.

Method able-bodied amputated

[16] 81.7 % 77.7 %
LSTM (256) 92.1 % 89.7 %
Forked RNN 93.4 % 89.3 %

ture classification. RNNs allow us to use very small signal
windows and are able to extract information from the gyro-
scope where other methods are struggling.

5.3.2. Sensor Fusion

In a final experiment, we examined whether it is possible to
gain performance by the joint analysis of the multi-modal
data of IMUs. The RNNs described in Section 2 with state
sizes of 256 were used for the joint analysis of all IM data.
Furthermore, a forked RNN network proposed in Section 3
utilising LSTM cells with a state size of 256 was also eval-
uated. The results obtained for DB7 are shown in Table 3.
As can be seen, both of our proposed systems outperform the
prior work in [11] by more than 10 % for both amputees and
healthy subjects. This fact emphasizes that RNNs can anal-
yse IM data with outstanding accuracy while providing a fast
reaction time due to the possibility of using small windows.

Moreover, the forked RNN achieves better performance
compared to the single RNN cell for healthy subjects. This
result does not hold for the amputees but since only two am-
putees are included in the database the results on this group
are not too reliable. Overall, the proposed mid-fusion ap-
proach within an end-to-end trained network seems to be
favourable. Intuitively it seems to be suitable for the data to
have an individual preprocessing unit for each modality.

6. CONCLUSIONS

We have shown that it is possible to decode over 50 hand
gestures from raw IM data. Compared with state-of-the-art
systems using often at least 100 ms long windows the pro-
posed networks allow for a quick response to hand gestures
and a minimal delay due to the usage of 5 ms long windows.
The experimental results revealed that our proposed systems
outperform the state-of-the-art systems on each individual
modality. Furthermore, the proposed forked RNN was shown
to be beneficial for multi-modal data analysis since the sig-
nals of each modality can be preprocessed in individual RNN
cells within an end-to-end trained network. An accuracy gain
of 10 % absolute over the state-of-the-art performance can be
achieved by the forked RNN.
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