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Abstract. Software frequently converts data from one representation
to another and vice versa. Naïvely specifying both conversion directions
separately is error prone and introduces conceptual duplication. Instead,
bidirectional programming techniques allow programs to be written which
can be interpreted in both directions. However, these techniques often
employ unfamiliar programming idioms via restricted, specialised combi-
nator libraries. Instead, we introduce a framework for composing bidirec-
tional programs monadically, enabling bidirectional programming with
familiar abstractions in functional languages such as Haskell. We demon-
strate the generality of our approach applied to parsers/printers, lenses,
and generators/predicates. We show how to leverage compositionality
and equational reasoning for the verification of round-tripping properties
for such monadic bidirectional programs.

1 Introduction

A bidirectional transformation (BX) is a pair of mutually related mappings
between source and target data objects. A well-known example solves the view-
update problem [2] from relational database design. A view is a derived database
table, computed from concrete source tables by a query. The problem is to map
an update of the view back to a corresponding update on the source tables. This
is captured by a bidirectional transformation. The bidirectional pattern is found
in a broad range of applications, including parsing [17,30], refactoring [31], code
generation [21,27], and model transformation [32] and XML transformation [25].

When programming a bidirectional transformation, one can separately con-
struct the forwards and backwards functions. However, this approach duplicates
effort, is prone to error, and causes subsequent maintenance issues. These prob-
lems can be avoided by using specialised programming languages that generate
both directions from a single definition [13,16,33], a discipline known as bidirec-
tional programming.

The most well-known language family for BX programming is lenses [13].
A lens captures transformations between sources S and views V via a pair of
functions get : S → V and put : V → S → S. The get function extracts a view

c© The Author(s) 2019
L. Caires (Ed.): ESOP 2019, LNCS 11423, pp. 147–175, 2019.
https://doi.org/10.1007/978-3-030-17184-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-17184-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-17184-1_6


148 L. Xia et al.

from a source and put takes an updated view and a source as inputs to produce
an updated source. The asymmetrical nature of get and put makes it possible
for put to recover some of the source data that is not present in the view. In
other words, get does not have to be injective to have a corresponding put.

Bidirectional transformations typically respect round-tripping laws, captur-
ing the extent to which the transformations preserve information between the
two data representations. For example, well-behaved lenses [5,13] should satisfy:

put (get s) s = s get (put v s) = v

Lens languages are typically designed to enforce these properties. This focus on
unconditional correctness inevitably leads to reduced practicality in program-
ming: lens combinators are often stylised and disconnected from established
programming idioms. In this paper, we instead focus on expressing bidirectional
programs directly, using monads as an interface for sequential composition.

Monads are a popular pattern [35] (especially in Haskell) which combinator
libraries in other domains routinely exploit. Introducing monadic composition to
BX programming significantly expands the expressiveness of BX languages and
opens up a route for programmers to explore the connection between BX pro-
gramming and mainstream uni-directional programming. Moreover, it appears
that many applications of bidirectional transformations (e.g., parsers and print-
ers [17]) do not share the lens get/put pattern, and as a result have not been
sufficiently explored. However, monadic composition is known to be an effective
way to construct at least one direction of such transformations (e.g., parsers).

Contributions. In this paper, we deliberately avoid the well-tried approach of
specialised lens languages, instead exploring a novel point in the BX design space
based on monadic programming, naturally reusing host language constructs.
We revisit lenses, and two more bidirectional patterns, demonstrating how they
can be subject to monadic programming. By being uncompromising about the
monad interface, we expose the essential ideas behind our framework whilst
maximising its utility. The trade off with our approach is that we can no longer
enforce correctness in the same way as conventional lenses: our interface does
not rule out all non-round-tripping BXs. We tackle this issue by proposing a
new compositional reasoning framework that is flexible enough to characterise a
variety of round-tripping properties, and simplifies the necessary reasoning.

Specifically, we make the following contributions:

– We describe a method to enable monadic composition for bidirectional pro-
grams (Sect. 3). Our approach is based on a construction which generates a
monadic profunctor, parameterised by two application-specific monads which
are used to generate the forward and backward directions.

– To demonstrate the flexibility of our approach, we apply the above method
to three different problem domains: parsers/printers (Sects. 3 and 4), lenses
(Sect. 5), and generators/predicates for structured data (Sect. 6). While the
first two are well-explored areas in the bidirectional programming literature,
the third one is a completely new application domain.
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– We present a scalable reasoning framework, capturing notions of composition-
ality for bidirectional properties (Sect. 4). We define classes of round-tripping
properties inherent to bidirectionalism, which can be verified by following sim-
ple criteria. These principles are demonstrated with our three examples. We
include some proofs for illustration in the paper. The supplementary mate-
rial [12] contains machine-checked Coq proofs for the main theorems.
An extended version of this manuscript [36] includes additional definitions,
proofs, and comparisons in its appendices.

– We have implemented these ideas as Haskell libraries [12], with two wrappers
around attoparsec for parsers and printers, and QuickCheck for generators and
predicates, showing the viability of our approach for real programs.

We use Haskell for concrete examples, but the programming patterns can be
easily expressed in many functional languages. We use the Haskell notation of
assigning type signatures to expressions via an infix double colon “ ::”.

1.1 Further Examples of BX

We introduced lenses briefly above. We now introduce the other two examples
used in this paper: parsers/printers and generators/predicates.

Parsing and printing. Programming language tools (such as interpreters, com-
pilers, and refactoring tools) typically require two intimately linked components:
parsers and printers, respectively mapping from source code to ASTs and back.
A simple implementation of these two functions can be given with types:

parser :: String → AST printer :: AST → String

Parsers and printers are rarely actual inverses to each other, but instead typically
exhibit a variant of round-tripping such as:

parser ◦ printer ◦ parser ≡ parser printer ◦ parser ◦ printer ≡ printer

The left equation describes the common situation that parsing discards informa-
tion about source code, such as whitespace, so that printing the resulting AST
does not recover the original source. However, printing retains enough informa-
tion such that parsing the printed output yields an AST which is equivalent to
the AST from parsing the original source. The right equation describes the dual:
printing may map different ASTs to the same string. For example, printed code
1 + 2 + 3 might be produced by left- and right-associated syntax trees.

For particular AST subsets, printing and parsing may actually be left- or
right- inverses to each other. Other characterisations are also possible, e.g., with
equivalence classes of ASTs (accounting for reassociations). Alternatively, parsers
and printers may satisfy properties about the interaction of partially-parsed
inputs with the printer and parser, e.g., if parser :: String → (AST, String):

(let (x, s’) = parser s in parser ((printer x) ++ s’)) ≡ parser s
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Thus, parsing and printing follows a pattern of inverse-like functions which does
not fit the lens paradigm. The pattern resembles lenses between a source (source
code) and view (ASTs), but with a compositional notion for the source and
partial “gets” which consume some of the source, leaving a remainder.

Writing parsers and printers by hand is often tedious due to the redundancy
implied by their inverse-like relation. Thus, various approaches have been pro-
posed for reducing the effort of writing parsers/printers by generating both from
a common definition [17,19,30].

Generating and checking. Property-based testing (e.g., QuickCheck) [10]
expresses program properties as executable predicates. For instance, the fol-
lowing property checks that an insertion function insert, given a sorted list—as
checked by the predicate isSorted :: [Int] → Bool—produces another sorted
list. The combinator =⇒ represents implication for properties.

To test this property, a testing framework generates random inputs for val and
list. The implementation of =⇒ applied here first checks whether list is
sorted, and if it is, checks that insert val list is sorted as well. This process
is repeated with further random inputs until either a counterexample is found
or a predetermined number of test cases pass.

However, this naïve method is inefficient: many properties such as propInsert
have preconditions which are satisfied by an extremely small fraction of inputs. In
this case, the ratio of sorted lists among lists of length n is inversely proportional
to n!, so most generated inputs will be discarded for not satisfying the isSorted
precondition. Such tests give no information about the validity of the predicate
being tested and thus are prohibitively inefficient.

When too many inputs are being discarded, the user must instead supply
the framework with custom generators of values satisfying the precondition:
genSorted :: Gen [Int].

One can expect two complementary properties of such a generator. A genera-
tor is sound with respect to the predicate isSorted if it generates only values sat-
isfying isSorted; soundness means that no tests are discarded, hence the tested
property is better exercised. A generator is complete with respect to isSorted
if it can generate all satisfying values; completeness ensures the correctness of
testing a property with isSorted as a precondition, in the sense that if there
is a counterexample, it will be eventually generated. In this setting of testing,
completeness, which affects the potential adequacy of testing, is arguably more
important than soundness, which affects only efficiency.

It is clear that generators and predicates are closely related, forming a pat-
tern similar to that of bidirectional transformations. Given that good generators
are usually difficult to construct, the ability to extract both from a common
specification with bidirectional programming is a very attractive alternative.

Roadmap. We begin by outlining a concrete example of our monadic approach
via parsers and printers (Sect. 2), before explaining the general approach of using
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monadic profunctors to structure bidirectional programs (Sect. 3). Section 4 then
presents a compositional reasoning framework for monadic bidirectional pro-
grams, with varying degrees of strength adapted to different round-tripping
properties. We then replay the developments of the earlier sections to define
lenses as well as generators and predicates in Sects. 5 and 6.

2 Monadic Bidirectional Programming

A bidirectional parser, or biparser, combines both a parsing direction and print-
ing direction. Our first novelty here is to express biparsers monadically.

In code samples, we use the Haskell pun of naming variables after their types,
e.g., a variable of some abstract type v will also be called v. Similarly, for some
type constructor m, a variable of type m v will be called mv. A function u → m v
(a Kleisli arrow for a monad m) will be called kv.

Monadic parsers. The following data type provides the standard way to describe
parsers of values of type v which may consume only part of the input string:

data Parser v = Parser { parse :: String → (v, String) }

It is well-known that such parsers are monadic [35], i.e., they have a notion of
monadic sequential composition embodied by the interface:

instance Monad Parser where
(>>=) :: Parser v → (v → Parser w) → Parser w
return :: v → Parser v

The sequential composition operator (>>=), called bind, describes the scheme
of constructing a parser by sequentially composing two sub-parsers where the
second depends on the output of the first; a parser of w values is made up of a
parser of v and a parser of w that depends on the previously parsed v. Indeed,
this is the implementation given to the monadic interface:

pv >>= kw = Parser (λs → let (v, s’) = parse pv s in parse (kw v) s’)
return v = Parser (λs → (v, s))

Bind first runs the parser pv on an input string s, resulting in a value v which is
used to create the parser kw v, which is in turn run on the remaining input s’
to produce parsed values of type w. The return operation creates a trivial parser
for any value v which does not consume any input but simply produces v.

In practice, parsers composed with (>>=) often have a relationship between
the output types of the two operands: usually that the former “contains” the
latter in some sense. For example, we might parse an expression and compose
this with a parser for statements, where statements contain expressions. This
relationship will be useful later when we consider printers.

As a shorthand, we can discard the remaining unparsed string of a parser
using projection, giving a helper function parser :: Parser v → (String → v).
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Monadic printers. Our goal is to augment parsers with their inverse printer,
such that we have a monadic type Biparser which provides two complementary
(bi-directional) transformations:

parser :: Biparser v → (String → v)
printer :: Biparser v → (v → String)

However, this type of printer v → String (shown also in Sect. 1.1) cannot form
a monad because it is contravariant in its type parameter v. Concretely, we
cannot implement the bind (>>=) operator for values with types of this form:

We are stuck trying to fill the hole (??) as there is no way to get a value of type v
to pass as an argument to pv (first printer) and kw (second printer which depends
on a v). Subsequently, we cannot construct a monadic biparser by simply taking
a product of the parser monad and v → String and leveraging the result that
the product of two monads is a monad.

But what if the type variables of bind were related by containment, such that
v is contained within w and thus we have a projection w → v? We could use this
projection to fill the hole in the failed attempt above, defining a bind-like operator:

bind’ :: (w → v) → (v → String) → (v → (w → String)) → (w → String)
bind’ from pv kw = λw → let v = from w in pv v ++ kw v w

This is closer to the monadic form, where from :: w → v resolves the difficulty
of contravariance by “contextualizing” the printers. Thus, the first printer is no
longer just “a printer of v”, but “a printer of v extracted from w”. In the context
of constructing a bidirectional parser, having such a function to hand is not an
unrealistic expectation: recall that when we compose two parsers, typically the
values of the first parser for v are contained within the values returned by the
second parser for w, thus a notion of projection can be defined and used here to
recover a v in order to build the corresponding printer compositionally.

Of course, this is still not a monad. However, it suggests a way to generate a
monadic form by putting the printer and the contextualizing projection together,
(w → v, v → String) and fusing them into (w → (v, String)). This has
the advantage of removing the contravariant occurence of v, yielding a data type:

data Printer w v = Printer { print :: w → (v, String) }

If we fix the first parameter type w, then the type Printer w of printers for w
values is indeed monadic, combining a reader monad (for some global read-only
parameter of type w) and a writer monad (for strings), with implementation:
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The printer return v ignores its input and prints nothing. For bind, an input w
is shared by both printers and the resulting strings are concatenated.

We can adapt the contextualisation of a printer by the following operation
which amounts to pre-composition, witnessing the fact that Printer is a con-
travariant functor in its first parameter:

comap :: (w → w’) → Printer w’ v → Printer w v
comap from (Printer f) = Printer (f ◦ from)

2.1 Monadic Biparsers

So far so good: we now have a monadic notion of printers. However, our goal is
to combine parsers and printers in a single type. Since we have two monads, we
use the standard result that a product of monads is a monad, defining biparsers:

By pairing parsers and printers we have to unify their covariant parameters.
When both the type parameters of Biparser are the same it is easy to interpret
this type: a biparser Biparser v v is a parser from strings to v values and
printer from v values to strings. We refer to biparsers of this type as aligned
biparsers. What about when the type parameters differ? A biparser of type
Biparser u v provides a parser from strings to v values and a printer from u
values to strings, but where the printers can compute v values from u values,
i.e., u is some common broader representation which contains relevant v-typed
subcomponents. A biparser Biparser u v can be thought of as printing a certain
subtree v from the broader representation of a syntax tree u.

The corresponding monad for Biparser is the product of the previous two
monad definitions for Parser and Printer, allowing both to be composed sequen-
tially at the same time. To avoid duplication we elide the definition here which
is shown in full in Appendix A of the extended version [36]

We can also lift the previous notion of comap from printers to biparsers, which
gives us a way to contextualize a printer:

comap :: (u → u’) → Biparser u’ v → Biparser u v
comap f (Biparser parse print) = Biparser parse (print ◦ f)

upon :: Biparser u’ v → (u → u’) → Biparser u v
upon = flip comap

In the rest of this section, we use the alias “upon” for comap with flipped
parameters where we read p ‘upon‘ subpart as applying the printer of
p :: Biparser u’ v on a subpart of an input of type u calculated by
subpart :: u → u’, thus yielding a biparser of type Biparser u v.

An example biparser. Let us write
a biparser, string :: Biparser String String, for strings which are prefixed
by their length and a space. For example, the following unit tests should be
true:
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We start by defining a primitive biparser of single characters as:

A character is parsed by deconstructing the source string into its head and tail.
For brevity, we do not handle the failure associated with an empty string. A
character c is printed as its single-letter string (a singleton list) paired with c.

Next, we define a biparser int for an integer followed by a single space. An
auxiliary biparser digits (on the right) parses an integer one digit at a time into
a string. Note that in Haskell, the do-notation statement
desugars to “char ‘upon’ head >>= λ d → . . . ” which uses (>>=) and a func-
tion binding d in the scope of the rest of the desugared block.

On the right, digits extracts a String consisting of digits followed by a single
space. As a parser, it parses a character (char ‘upon‘ head); if it is a digit
then it continues parsing recursively (digits ‘upon‘ tail) appending the first
character to the result (d : igits). Otherwise, if the parsed character is a space
the parser returns . As a printer, digits expects a non-empty string of the
same format; ‘upon‘ head extracts the first character of the input, then char
prints it and returns it back as d; if it is a digit, then ‘upon‘ tail extracts
the rest of the input to print recursively. If the character is a space, the printer
returns a space and terminates; otherwise (not digit or space) the printer throws
an error.

On the left, the biparser int uses read to convert an input string of digits
(parsed by digits) into an integer, and printedInt to convert an integer to an
output string printed by digits. A safer implementation could return the Maybe
type when parsing but we keep things simple here for now.

After parsing an integer n, we can parse the string following it by iterating n
times the biparser char. This is captured by the replicateBiparser combinator
below, defined recursively like digits but with the termination condition given
by an external parameter. To iterate n times a biparser pv: if , there is
nothing to do and we return the empty list; otherwise for n > 0, we run pv once
to get the head v, and recursively iterate n-1 times to get the tail vs.

Note that although not reflected in its type, replicateBiparser n pv
expects, as a printer, a list l of length n: if , there is nothing to print; if
n > 0, ‘upon‘ head extracts the head of l to print it with pv, and ‘upon‘ tail
extracts its tail, of length n-1, to print it recursively.
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(akin to replicateM from Haskell’s standard library). We can now fulfil our task:

string :: Biparser String String
string = int ‘upon‘ length >>= λn → replicateBiparser n char

Interestingly, if we erase applications of upon, i.e., we substitute every expression
of the form py ‘upon‘ f with py and ignore the second parameter of the types,
we obtain what is essentially the definition of a parser in an idiomatic style for
monadic parsing. This is because ‘upon‘ f is the identity on the parser compo-
nent of Biparser. Thus the biparser code closely resembles standard, idiomatic
monadic parser code but with “annotations” via upon expressing how to apply
the backwards direction of printing to subparts of the parsed string.

Despite its simplicity, the syntax of length-prefixed strings is notably context-
sensitive. Thus the example makes crucial use of the monadic interface for bidi-
rectional programming: a value (the length) must first be extracted to dynam-
ically delimit the string that is parsed next. Context-sensitivity is standard for
parser combinators in contrast with parser generators, e.g., Yacc, and applicative
parsers, which are mostly restricted to context-free languages. By our monadic
BX approach, we can now bring this power to bear on bidirectional parsing.

3 A Unifying Structure: Monadic Profunctors

The biparser examples of the previous section were enabled by both the monadic
structure of Biparser and the comap operation (also called upon, with flipped
arguments). We describe a type as being a monadic profunctor when it has both
a monadic structure and a comap operation (subject to some equations). The
notion of a monadic profunctor is general, but it characterises a key class of
structures for bidirectional programs, which we explain here. Furthermore, we
show a construction of monadic profunctors from pairs of monads which elicits
the necessary structure for monadic bidirectional programming in the style of
the previous section.

Profunctors. In Sect. 2.1, biparsers were defined by a data type with two
type parameters (Biparser u v) which is functorial and monadic in the sec-
ond parameter and contravariantly functorial in the first parameter (provided
by the comap operation). In standard terminology, a two-parameter type p which
is functorial in both its type parameters is called a bifunctor. In Haskell, the term
profunctor has come to mean any bifunctor which is contravariant in the first
type parameter and covariant in the second.1 This differs slightly from the stan-
dard category theory terminology where a profunctor is a bifunctor F : Dop×C →
1 http://hackage.haskell.org//profunctors/docs/Data-Profunctor.html.

http://hackage.haskell.org/ /profunctors/docs/Data-Profunctor.html
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Set. This corresponds to the Haskell community’s use of the term “profunctor”
if we treat Haskell in an idealised way as the category of sets.

We adopt this programming-oriented terminology, capturing the comap opera-
tion via a class Profunctor. In the preceding section, some uses of comap involved
a partial function, e.g., comap head. We make the possibility of partiality explicit
via the Maybe type, yielding the following definition.

Definition 1. A binary data type is a profunctor if it is a contravariant functor
in its first parameter and covariant functor in its second, with the operation:

class ForallF Functor p ⇒ Profunctor p where
comap :: (u → Maybe u’) → p u’ v → p u v

which should obey two laws:

comap Just = id comap (f >=> g) = comap f ◦ comap g

where (>=>) :: (a → Maybe b) → (b → Maybe c) → (a → Maybe c) com-
poses partial functions (left-to-right), captured by Kleisli arrows of the Maybe
monad.

The constraint ForallF Functor p captures a universally quantified con-
straint [6]: for all types u then p u has an instance of the Functor class.2

The requirement for comap to take partial functions is in response to
the frequent need to restrict the domain of bidirectional transformations. In
combinator-based approaches, combinators typically constrain bidirectional pro-
grams to be bijections, enforcing domain restrictions by construction. Our more
flexible approach requires a way to include such restrictions explicitly, hence
comap.

Since the contravariant part of the bifunctor applies to functions of type
u → Maybe u’, the categorical analogy here is more precisely a profunctor F :
CT

op×C → Set where CT is the Kleisli category of the partiality (Maybe) monad.

Definition 2. A monadic profunctor is a profunctor p (in the sense of
Definition 1) such that p u is a monad for all u. In terms of type class con-
straints, this means there is an instance Profunctor p and for all u there is a
Monad (p u) instance. Thus, we represent monadic profunctors by the following
empty class (which inherits all its methods from its superclasses):

class (Profunctor p, ForallF Monad p) ⇒ Profmonad p

Monadic profunctors must obey the following laws about the interaction between
profunctor and monad operations:

comap f (return y) = return y
comap f (py >>= kz) = comap f py >>= (λ y → comap f (kz y))

2 As of GHC 8.6, the QuantifiedConstraints extension allows universal quantification
in constraints, written as forall u. Functor (p u), but for simplicity we use the
constraint constructor ForallF from the constraints package: http://hackage.haskell.
org/package/constraints.

http://hackage.haskell.org/package/constraints
http://hackage.haskell.org/package/constraints
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(for all f :: u → Maybe v, py :: p v y, kz :: y → p v z). These laws are
equivalent to saying that comap lifts (partial) functions into monad morphisms.
In Haskell, these laws are obtained for free by parametricity [34]. This means
that every contravariant functor and monad is in fact a monadic profunctor,
thus the following universal instance is lawful:

instance (Profunctor p, ForallF Monad p) ⇒ Profmonad p

Corollary 1. Biparsers form a monadic profunctor as there is an instance of
Monad (P u) and Profunctor p satisfying the requisite laws.

Lastly, we introduce a useful piece of terminology (mentioned in the previous
section on biparsers) for describing values of a profunctor of a particular form:

Definition 3. A value p :: P u v of a profunctor P is called aligned if u = v.

3.1 Constructing Monadic Profunctors

Our examples (parsers/printers, lenses, and generators/predicates) share
monadic profunctors as an abstraction, making it possible to write different
kinds of bidirectional transformations monadically. Underlying these definitions
of monadic profunctors is a common structure, which we explain here using
biparsers, and which will be replayed in Sect. 5 for lenses and Sect. 6 for bigen-
erators.

There are two simple ways in which a covariant functor m (resp. a monad)
gives rise to a profunctor (resp. a monadic profunctor). The first is by con-
structing a profunctor in which the contravariant parameter is discarded, i.e.,
p u v = m v; the second is as a function type from the contravariant parameter u
to m v, i.e., p u v = u → m v. These are standard mathematical constructions,
and the latter appears in the Haskell profunctors package with the name Star.
Our core construction is based on these two ways of creating a profunctor, which
we call Fwd and Bwd respectively:

The naming reflects the idea that these two constructions will together capture
a bidirectional transformation and are related by domain-specific round-tripping
properties in our framework. Both Fwd and Bwd map any functor into a profunctor
by the following type class instances:

instance Functor m ⇒ Functor (Fwd m u) where
fmap f (Fwd x) = Fwd (fmap f x)

instance Functor m ⇒ Profunctor (Fwd m) where
comap f (Fwd x) = Fwd x

instance Functor m ⇒ Functor (Bwd m u) where
fmap f (Bwd x) = Bwd ((fmap f) ◦ x)

instance (Monad m, MonadPartial m) ⇒ Profunctor (Bwd m) where
comap f (Bwd x) = Bwd ((toFailure ◦ f) >=> x)
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There is an additional constraint here for Bwd, enforcing that the monad m is a
member of the MonadPartial class which we define as:

class MonadPartial m where toFailure :: Maybe a → m a

This provides an interface for monads which can internalise a notion of failure,
as captured at the top-level by Maybe in comap.

Furthermore, Fwd and Bwd both map any monad into a monadic profunctor:
instance Monad m

⇒ Monad (Fwd m u) where
return x = Fwd (return x)
Fwd py >>= kz =

Fwd (py >>= unFwd ◦ kz)

instance Monad m
⇒ Monad (Bwd m u) where

return x = Bwd (λ_ → return x)
Bwd my >>= kz = Bwd

(λu → my u >>= (λy → unBwd (kz y) u))

The product of two monadic profunctors is also a monadic profunctor. This
follows from the fact that the product of two monads is a monad and the product
of two contravariant functors is a contravariant functor.

data (:*:) p q u v = (:*:) { pfst :: p u v, psnd :: q u v }

instance (Monad (p u), Monad (q u)) ⇒ Monad ((p :*: q) u) where
return y = return y :*: return y
py :*: qy >>= kz = (py >>= pfst ◦ kz) :*: (qy >>= psnd ◦ kz)

instance (ForallF Functor (p :*: q), Profunctor p, Profunctor q)
⇒ Profunctor (p :*: q) where

comap f (py :*: qy) = comap f py :*: comap f qy

3.2 Deriving Biparsers as Monadic Profunctor Pairs

We can redefine biparsers in terms of the above data types, their instances, and
two standard monads, the state and writer monads:

type State s a = s → (a, s)
type WriterT w m a = m (a, w)
type Biparser = Fwd (State String) :*: Bwd (WriterT Maybe String)

The backward direction composes the writer monad with the Maybe monad using
WriterT (the writer monad transformer, equivalent to composing two monads
with a distributive law). Thus the backwards component of Biparser corresponds
to printers (which may fail) and the forwards component to parsers:

Bwd (WriterT Maybe String) u v ∼= u → Maybe (v, String)
Fwd (State String) u v ∼= String → (v, String)

For the above code to work in Haskell, the State and WriterT types need to be
defined via either a data type or newtype in order to allow type class instances on
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partially applied type constructors. We abuse the notation here for simplicity but
define smart constructors and deconstructors for the actual implementation:3

parse :: Biparser u v → (String → (v, String))
print :: Biparser u v → (u → Maybe (v, String))
mkBP :: (String → (v, String)) → (u → Maybe (v, String)) → Biparser u v

The monadic profunctor definition for biparsers now comes for free from the
constructions in Sect. 3.1 along with the following instance of MonadPartial for
the writer monad transformer with the Maybe monad:

instance Monoid w ⇒ MonadPartial (WriterT w Maybe) where
toFailure Nothing = WriterT Nothing
toFailure (Just a) = WriterT (Just (a, mempty))

In a similar manner, we will use this monadic profunctor construction to
define monadic bidirectional transformations for lenses (Sect. 5) and bigener-
ators (Sect. 6).

The example biparsers from Sect. 2.1 can be easily redefined using the struc-
ture here. For example, the primitive biparser char becomes:

char :: Biparser Char Char
char = mkBP (λ (c : s) → (c, s)) (λ c → Just (c, [c]))

Codec library. The codec library [8] provides a general type for bidirectional
programming isomorphic to our composite type Fwd r :*: Bwd w:

data Codec r w c a = Codec { codecIn :: r a, codecOut :: c → w a }

Though the original codec library was developed independently, its current form
is a result of this work. In particular, we contributed to the package by general-
ising its original type (codecOut :: c → w ()) to the one above, and provided
Monad and Profunctor instances to support monadic bidirectional programming
with codecs.

4 Reasoning about Bidirectionality

So far we have seen how the monadic profunctor structure provides a way to
define biparsers using familiar operations and syntax: monads and do-notation.
This structuring allows both the forwards and backwards components of a
biparser to be defined simultaneously in a single compact definition.

This section studies the interaction of monadic profunctors with the round-
tripping laws that relate the two components of a bidirectional program. For
every bidirectional transformation we can define dual properties: backward round
tripping (going backwards-then-forwards) and forward round tripping (going
forwards-then-backwards). In each BX domain, such properties also capture
3 Smart constructors (and dually smart deconstructors) are just functions that hide

boilerplate code for constructing and deconstructing data types.
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additional domain-specific information flow inherent to the transformations. We
use biparsers as the running example. We then apply the same principles to our
other examples in Sects. 5 and 6. For brevity, we use Bp as an alias for Biparser.

Definition 4. A biparser p :: Bp u u is backward round tripping if for all x :: u
and s, s’ :: String then (recalling that print p :: u → Maybe (v, String)):

fmap snd (print p x) = Just s =⇒ parse p (s ++ s’) = (x, s’).

That is, if a biparser p when used as a printer (going backwards) on an input
value x produces a string s, then using p as a parser on a string with prefix s
and suffix s’ yields the original input value x and the remaining input s’.

Note that backward round tripping is defined for aligned biparsers (of type
Bp u u) since the same value x is used as both the input of the printer (typed by
the first type parameter of Bp) and as the expected output of the parser (typed
by the second type parameter of Bp).

The dual property is forward round tripping: a source string s is parsed (going
forwards) into some value x which when printed produces the initial source s:

Definition 5. A biparser p :: Bp u u is forward round tripping if for every
x :: u and s :: String we have that:

Proposition 1. The biparser char :: Bp Char Char (Sect. 3.2) is both back-
ward and forward round tripping. Proof by expanding definitions and algebraic
reasoning.

Note, in some applications, forward round tripping is too strong. Here it
requires that every printed value corresponds to at most one source string. This
is often not the case as ASTs typically discard formatting and comments so that
pretty-printed code is lexically different to the original source. However, different
notions of equality enable more reasonable forward round-tripping properties.

Although one can check round-tripping properties of biparsers by expand-
ing their definitions and the underlying monadic profunctor operations, a more
scalable approach is provided if a round-tripping property is compositional with
respect to the monadic profunctor operations, i.e., if these operations preserve
the property. Compositional properties are easier to enforce and check since only
the individual atomic components need round-tripping proofs. Such properties
are then guaranteed “by construction” for programs built from those components.

4.1 Compositional Properties of Monadic Bidirectional
Programming

Let us first formalize compositionality as follows. A property R over a monadic
profunctor P is a family of subsets Ru

v of P u v indexed by types u and v.
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Definition 6. A property R over a monadic profunctor P is compositional if the
monadic profunctor operations are closed over R, i.e., the following conditions
hold for all types u, v, w:

1. For all x :: v, (return x) ∈ Ru
v (comp-return)

2. For all p :: P u v and k :: v → P u w,
(
p ∈ Ru

v
) ∧ (∀v. (k v) ∈ Ru

w
)

=⇒ (p >>= k) ∈ Ru
w (comp-bind)

3. For all p :: P u’ v and f :: u → Maybe u’,

p ∈ Ru’
v =⇒ (comap f p) ∈ Ru

v (comp-comap)

Unfortunately for biparsers, forward and backward round tripping as defined
above are not compositional: return is not backward round tripping and >>=
does not preserve forward round tripping. Furthermore, these two properties are
restricted to biparsers of type Bp u u (i.e., aligned biparsers) but composition-
ality requires that the two type parameters of the monadic profunctor can differ
in the case of comap and (>>=). This suggests that we need to look for more
general properties that capture the full gamut of possible biparsers.

We first focus on backward round tripping. Informally, backward round trip-
ping states that if you print (going backwards) and parse the resulting out-
put (going forwards) then you get back the initial value. However, in a general
biparser p :: Bp u v, the input type of the printer u differs from the output type
of the parser v, so we cannot compare them. But our intent for printers is that
what we actually print is a fragment of u, a fragment which is given as the output
of the printer. By thus comparing the outputs of both the parser and printer,
we obtain the following variant of backward round tripping:

Definition 7. A biparser p :: Bp u v is weak backward round tripping if for all
x :: u, y :: v, and s, s’ :: String then:

print p x = Just (y, s) =⇒ parse p (s ++ s’) = (y, s’)

Removing backward round tripping’s restriction to aligned biparsers and using
the result y :: v of the printer gives us a property that is compositional:

Proposition 2. Weak backward round tripping of biparsers is compositional.

Proposition 3. The primitive biparser char is weak backward round tripping.

Corollary 2. Propositions 2 & 3 imply string is weak backward round trip-
ping.

This property is “weak” as it does not constrain the relationship between the
input u of the printer and its output v. In fact, there is no hope for a compo-
sitional property to do so: the monadic profunctor combinators do not enforce
a relationship between them. However, we can regain compositionality for the
stronger backward round-tripping property by combining the weak composi-
tional property with an additional non-compositional property on the relation-
ship between the printer’s input and output. This relationship is represented
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by the function that results from ignoring the printed string, which amounts to
removing the main effect of the printer. Thus we call this operation a purifica-
tion:

purify :: forall u v. Bp u v → u → Maybe v
purify p u = fmap fst (print p u)

Ultimately, when a biparser is aligned (p :: Bp u u) we want an input to the
printer to be returned in its output, i.e, purify p should equal λx → Just x.
If this is the case, we recover the original backward round tripping property:

Theorem 1. If p :: P u u is weak backward round tripping, and for all x :: u.
purify p x = Just x, then p is backward round tripping.

Thus, for any biparser p, we can get backward round tripping by proving that
its atomic subcomponents are weak backward round tripping, and proving that
purify p x = Just x. The interesting aspect of the purification condition here
is that it renders irrelevant the domain-specific effects of the biparser, i.e., those
related to manipulating source strings. This considerably simplifies any proof.
Furthermore, the definition of purify is a monadic profunctor homomorphism
which provides a set of equations that can be used to expedite the reasoning.

Definition 8. A monadic profunctor homomorphism between monadic profunc-
tors P and Q is a polymorphic function proj :: P u v → Q u v such that:

proj (comapP f p) ≡ comapQ f (proj p)

proj (p >>=P k) ≡ (proj p) >>=Q (λx → proj (k x))

proj (returnP x) ≡ returnQ x

Proposition 4. The purify :: Bp u v → u → Maybe v operation for
biparsers (above) is a monadic profunctor homomorphism between Bp and the
monadic profunctor PartialFun u v = u → Maybe v.

Corollary 3. (of Theorem 1 with Corollary 2 and Proposition 4) The biparser
string is backward round tripping.

Proof First prove (in Appendix B [36]) the following properties of biparsers
char, int, and replicatedBp :: Int → Bp u v → Bp [u] [v] (writing proj
for purify):

proj char n ≡ Just n (4.1)
proj int n ≡ Just n (4.2)

proj (replicateBp (length xs) p) xs ≡ mapM (proj p) xs (4.3)



Composing Bidirectional Programs Monadically 163

From these and the homomorphism properties we can prove
proj string = Just:

proj string xs

≡ proj (comap length int >>= λn → replicateBp n char) xs

Prop.4 ≡ (comap length (proj int) >>= λn → proj (replicateBp n char)) xs

(4.2) ≡ (comap length Just >>= λn → proj (replicateBp n char)) xs

Def.2 ≡ proj (replicateBp (length xs) char) xs

(4.3) ≡ mapM (proj char) xs

(4.1) ≡ mapM Just xs

{monad} ≡ Just xs

Combining proj string = Just with Corollary 2 (string is weak backward
round tripping) enables Theorem 1, proving that string is backward round
tripping.

The other two core examples in this paper also permit a definition of purify.
We capture the general pattern as follows:

Definition 9. A purifiable monadic profunctor is a monadic profunctor P with
a homomorphism proj from P to the monadic profunctor of partial functions
- → Maybe -. We say that proj p is the pure projection of p.

Definition 10. A pure projection proj p :: u → Maybe v is called the identity
projection when proj p x = Just x for all x :: u.

Here and in Sects. 5 and 6, identity projections enable compositional round-
tripping properties to be derived from more general non-compositional proper-
ties, as seen above for backward round tripping of biparsers.

We have neglected forward round tripping, which is not compositional, not
even in a weakened form. However, we can generalise compositionality with con-
ditions related to injectivity, enabling a generalisation of forward round tripping.
We call the generalised meta-property quasicompositionality.

4.2 Quasicompositionality for Monadic Profunctors

An injective function f : A → B is a function for which there exists a left inverse
f−1 : B → A, i.e., where f−1 ◦ f = id. We can see this pair of functions as
a simple kind of bidirectional program, with a forward round-tripping property
(assuming f is the forwards direction). We can lift the notion of injectivity to
the monadic profunctor setting and capture forward round-tripping properties
that are preserved by the monadic profunctor operations, given some additional
injectivity-like restriction. We first formalise the notion of an injective arrow.

Informally, an injective arrow k :: v → m w produces an output from which
the input can be recalculated:
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Definition 11. Let m be a monad. A function k :: v → m w is an injective
arrow if there exists k’ :: w → v (the left arrow inverse of k) such that for all
x :: v:

k x >>= λy → return (x, y) ≡ k x >>= λy → return (k’ y, y)

Next, we define quasicompositionality which extends the compositionality
meta-property with the requirement for >>= to be applied to injective arrows:

Definition 12. Let P be a monadic profunctor. A property Ru
v ⊆ P u v indexed

by types u and v is quasicompositional if the following holds

1. For all x :: v, (return x) ∈ Ru
v (qcomp-return)

2. For all p :: P u v, k :: v → P u w, if k is an injective arrow,
(
p ∈ Ru

v
) ∧ (∀v. (k v) ∈ Ru

w
)

=⇒ (p >>= k) ∈ Ru
w (qcomp-bind)

3. For all p :: P u’ v, f :: u → Maybe u’,

p ∈ Ru’
v ∧ =⇒ (comap f p) ∈ Ru

w (qcomp-comap)

We now formulate a weakening of forward round tripping. As with weak back-
ward round tripping, we rely on the idea that the printer outputs both a string
and the value that was printed, so that we need to compare the outputs of both
the parser and the printer, as opposed to comparing the output of the parser
with the input of the printer as in (strong) forward round tripping. If running the
parser component of a biparser on a string s01 yields a value y and a remaining
string s1, and the printer outputs that same value y along with a string s0, then
s0 is the prefix of s01 that was consumed by the parser, i.e., s01 = s0 ++ s1.

Definition 13. A biparser p : Bp u v is weak forward round tripping if for all
x :: u, y :: v, and s0, s1, s01 :: String then:

parse p s01 = (y, s1) ∧ print p x = Just (y, s0) =⇒ s01 = s0 ++ s1

Proposition 5. Weak forward round tripping is quasicompositional.

Proof. We sketch the qcomp-bind case, where p = (m >>= k) for some m and k
that are weak forward roundtripping. From parse (m >>= k) s01 = (y, s1),
it follows that there
exists z, s such that parse m s01 = (z, s) and parse (k z) s = (y, s1). Sim-
ilarly print (m >>= k) x = Just (y, s0) implies there exists z’, s0’ such that
print m x = Just (z’, s0’) and print (k z’) x = Just (y, s1’) and s0 =
s0’ ++ s1’. Because k is an injective arrow, we have z = z’ (see appendix).
We then use the assumption that m and k are weak forward roundtripping on
m and on k a, and deduce that s01 = s0’ ++ s and s = s1’ ++ s1 therefore
s01 = s0 ++ s1.

Proposition 6. The char biparser is weak forward round tripping.
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Corollary 4. Propositions 5 and 6 imply that string is weak forward round
tripping if we restrict the parser to inputs whose digits do not contain redundant
leading zeros.

Proof. All of the right operands of >>= in the definition of string are injective
arrows, apart from λds → return (read ds) at the end of the auxiliary int
biparser. Indeed, the read function is not injective since multiple strings may
parse to the same integer: . But the pre-condition to the
proposition (no redundant leading zero digits) restricts the input strings so that
read is injective. The rest of the proof is a corollary of Propositions 5 and 6.

Thus, quasicompositionality gives us scalable reasoning for weak forward
round tripping, which is by construction for biparsers: we just need to prove this
property for individual atomic biparsers. Similarly to backward round tripping,
we can prove forward round tripping by combining weak forward round tripping
with the identity projection property:

Theorem 2. If p :: P u u is weak forward round-tripping, and for all x :: u,
purify p x = Just x, then p is forward round tripping.

Corollary 5. The biparser string is forward round tripping by the above theo-
rem (with identity projection shown in the proof of Corollary 3) and Corollary 4.

In summary, for any BX we can consider two round-tripping properties: forwards-
then-backwards and backwards-then-forwards, called just forward and backward
here respectively. Whilst combinator-based approaches can guarantee round-
tripping by construction, we have made a trade-off to get greater expressivity in
the monadic approach. However, we regain the ability to reason about bidirec-
tional transformations in a manageable, scalable way if round-tripping properties
are compositional. Unfortunately, due to the monadic profunctor structuring,
this tends not to be the case. Instead, weakened round-tripping properties can
be compositional or quasicompositional (adding injectivity). In such cases, we
recover the stronger property by proving a simple property on aligned transfor-
mations: that the backwards direction faithfully reproduces its input as its out-
put (identity projection). Appendix C in our extended manuscript [36] compares
this reasoning approach to a proof of backwards round tripping for separately
implemented parsers and printers (not using our combined monadic approach).

5 Monadic Bidirectional Programming for Lenses

Lenses are a common object of study in bidirectional programming, comprising
a pair of functions (get : S → V, put : V → S → S) satisfying well-behaved
lens laws shown in Sect. 1. Previously, when considering the monadic structure
of parsers and printers, the starting point was that parsers already have a well-
known monadic structure. The challenge came in finding a reasonable monadic
characterisation for printers that was compatible with the parser monad. In the
end, this construction was expressed by a product of two monadic profunctors
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Fwd m and Bwd n for monads m and n. For lenses we are in the same position: the
forwards direction (get) is already a monad—the reader monad. The backwards
direction put is not a monad since it is contravariant in its parameter; the same
situation as printers. We can apply the same approach of “monadisation” used
for parsers and printers, giving the following new data type for lenses:

data L s u v = L { get :: s → v, put :: u → s → (v, s) }

The result of put is paired with a covariant parameter v (the result type of get)
in the same way as monadic printers. Instead of mapping a view and a source
to a source, put now maps values of a different type u, which we call a pre-view,
along with a source s into a pair of a view v and source s. This definition can be
structured as a monadic profunctor via a pair of Fwd and Bwd constructions:

type L s = (Fwd (Reader s)) :*: (Bwd (State s))

Thus by the results of Sect. 3, we now have a monadic profunctor characterisation
of lenses that allows us to compose lenses via the monadic interface.

Ideally, get and put should be total, but this is impossible without a way
to restrict the domains. In particular, there is the known problem of “duplica-
tion” [23], where source data may appear more than once in the view, and a
necessary condition for put to be well-behaved is that the duplicates remain
equal amid view updates. This problem is inherent to all bidirectional transfor-
mations, and bidirectional languages have to rule out inconsistent updates of
duplicates either statically [13] or dynamically [23]. To remedy this, we capture
both partiality of get and a predicate on sources in put for additional dynamic
checking. This is provided by the following Fwd and Bwd monadic profunctors:

Going forwards, getting a view v from a source s may fail if there is no view for
the current source. Going backwards, putting a pre-view u updates some source s
(via the state transformer StateT s), but with some further structure returned,
provided by WriterT (s → Bool) Maybe (similar to the writer transformer used
for biparsers, Sect. 3.2). The Maybe here captures the possibility that put can
fail. The WriterT (s → Bool) structure provides a predicate which detects the
“duplication” issue mentioned earlier. Informally, the predicate can be used to
check that previously modified locations in the source are not modified again.
For example, if a lens has a source made up of a bit vector, and a put sets bit i
to 1, then the returned predicate will return True for all bit vectors where bit i is
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1, and False otherwise. This predicate can then be used to test whether further
put operations on the source have modified bit i.

Similarly to biparsers, a pre-view u can be understood as containing the view
v that is to be merged with the source, and which is returned with the updated
source. Ultimately, we wish to form lenses of matching input and output types
(i.e. L s v v) satisfying the standard lens well-behavedness laws, modulo explicit
management of partiality via Maybe and testing for conflicts via the predicate:

put l x s = Just ((_, s’), p’) ∧ p’ s’ =⇒ get l s’ = Just x (L-PutGet)
get l s = Just x =⇒ put l x s = Just ((_, s), _) (L-GetPut)

L-PutGet and L-GetPut are backward and forward round tripping respectively.
Some lenses, such as the later example, are not defined for all views. In that case
we may say that the lens is backward/forward round tripping in some subset
P ⊆ u when the above properties only hold when x is an element of P.

For every source type s, the lens type L s is automatically a monadic profunc-
tor by its definition as the pairing of Fwd and Bwd (Sect. 3.1), and the following
instance of MonadPartial for handling failure and instance of Monoid to satisfy
the requirements of the writer monad:

instance MonadPartial (StateT s (WriterT (s → Bool) Maybe)) where
toFailure Nothing = StateT (λ_ → WriterT Nothing)
toFailure (Just x) = StateT (λs → WriterT (Just ((x , s), mempty)))

instance Monoid (s → Bool) where
mempty = λ_ → True
mappend h j = λs0 → h s0 && j s0

A simple lens example operates on key-value maps. For keys of type Key and
values of type Value, we have the following source type and a simple lens:

The get component of the atKey lens does a lookup of the key k in a map,
producing Maybe of a Value. The put component inserts a value for key k. When
the key already exists, put overwrites its associated value.

Due to our approach, multiple calls to atKey can be composed monadically,
giving a lens that gets/sets multiple key-value pairs at once. The list of keys and
the list of values are passed separately, and are expected to be the same length.
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We refer interested readers to our implementation [12] for more examples, includ-
ing further examples involving trees.

Round tripping. We apply the reasoning framework of Sect. 4, taking the stan-
dard lens laws as the starting point (neither of which are compositional).

We first weaken backward round tripping to be compositional. Informally,
the property expresses the idea, that if we put some value x in a source s,
resulting in a source s’, then what we get from s’ is x. However two important
changes are needed to adapt to our generalised type of lenses and to ensure
compositionality. First, the value x that was put is now to be found in the output
of put, whereas there is no way to constrain the input of put because its type
v is abstract. Second, by sequentially composing lenses such as in l >>= k, the
output source s’ of put l will be further modified by put (k x), so this round-
tripping property must constrain all potential modifications of s’. In fact, the
predicate p ensures exactly that the view get l has not changed and is still x. It
is not even necessary to refer to s’, which is just one source for which we expect
p to be True.

Definition 14. A lens l :: L s u v is weak backward round tripping if for all
x :: u, y :: v, for all sources s, s’, and for all p :: s → Bool, we have:

put l x s = Just ((y, _), p) ∧ p s’ =⇒ get l s’ = Just y

Theorem 3. Weak backward round tripping is a compositional property.

Again, we complement this weakened version of round tripping with the
notion of purification.

Proposition 7. Our lens type L is a purifiable monadic profunctor (Defini-
tion 9), with a family of pure projections proj s indexed by a source s, defined:

proj :: s → L s u v → (u → Maybe v)
proj s = λl u → fmap (fst ◦ fst) (put l u s)

Theorem 4. If a lens l :: L s u u is weak backward round tripping and has
identity projections on some subset P ⊆ u (i.e., for all s, x then x ∈ P ⇒
proj s l x = Just x) then l is also backward round tripping on all x ∈ P.

To demonstrate, we apply this result to atKeys :: [Key] → L Src [Value] [Value].

Proposition 8. The lens atKey k is weak backward round tripping.

Proposition 9. The lens atKey k has identity projection: proj z (atKey k)=Just.

Our lens atKeys ks is therefore weak backward round tripping by construc-
tion. We now interpret/purify atKeys ks as a partial function, which is actually
the identity function when restricted to lists of the same length as ks.
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Proposition 10. For all vs :: [Value] such that length vs = length ks, and
for all s :: Src then proj s (atKeys ks) vs = Just vs.

Corollary 6. By the above results, atKeys ks :: L Src [Value] [Value] for
all ks is backward round tripping on lists of length length ks.

The other direction, forward round tripping, follows a similar story. We first
restate it as a quasicompositional property.

Definition 15. A lens l :: L s u v is weak forward round tripping if for all
x :: u, y :: v, for all sources s, s’, and for all p :: s → Bool, we have:

get l s = Just y ∧ put l x s = Just ((y, s’), _) =⇒ s = s’

Theorem 5. Weak forward round tripping is a quasicompositional property.

Along with identity projection, this gives the original forward L-GetPut
property.

Theorem 6 If a lens l is weak forward round tripping and has identity projec-
tions on some subset P (i.e., for all s, x then x ∈ P ⇒ proj s l x = Just x)
then l is also forward round tripping on P.

We can thus apply this result to our example (details omitted).

Proposition 11. For all ks, the lens atKeys ks :: L Src [Value] [Value] is
forward round tripping on lists of length length ks.

6 Monadic Bidirectional Programming for Generators

Lastly, we capture the novel notion of bidirectional generators (bigenera-
tors) extending random generators in property-based testing frameworks like
QuickCheck [10] to a bidirectional setting. The forwards direction generates val-
ues conforming to a specification; the backwards direction checks whether values
conform to a predicate. We capture the two together via our monadic profunctor
pair as:

The forwards direction of a bigenerator is a generator, while the backwards
direction is a partial function u → Maybe v. A value G u v represents a subset
of v, where generate is a generator of values in that subset and check maps
pre-views u to members of the generated subset. In the backwards direction,
check g defines a predicate on u, which is true if and only if check g u is Just of
some value. The function toPredicate extracts this predicate from the backward
direction:
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toPredicate :: G u v → u → Bool
toPredicate g x = case check g x of Just _ → True; Nothing → False

The bigenerator type G is automatically a monadic profunctor due to our con-
struction (Sect. 3). Thus, monad and profunctor instances come for free, modulo
(un)wrapping of constructors and given a trivial instance of MonadPartial:

instance MonadPartial Maybe where toFailure = id

Due to space limitations, we refer readers to Appendix E [36] for an example of
a compositionally-defined bigenerator that produces binary search trees.

Round tripping. A random generator can be interpreted as the set of values it
may generate, while a predicate represents the set of values satisfying it. For a
bigenerator g, we write x ∈ generate g when x is a possible output of the genera-
tor. The generator of a bigenerator g should match its predicate toPredicate g.
This requirement equates to round-tripping properties: a bigenerator is sound if
every value which it can generate satisfies the predicate (forward round tripping);
a bigenerator is complete if every value which satisfies the predicate can be gen-
erated (backward round tripping). Completeness is often more important than
soundness in testing because unsound tests can be filtered out by the predicate,
but completeness determines the potential adequacy of testing.

Definition 16. A bigenerator g :: G u u is complete (backward round tripping)
when toPredicate g x = True implies x ∈ generate g.

Definition 17. A bigenerator g :: G u u is sound (forward round tripping) if
for all x :: u, x ∈ generate g implies that toPredicate g x = True.

Similarly to backward round tripping of biparsers and lenses, completeness can
be split into a compositional weak completeness and a purifiable property.

As before, the compositional weakening of completeness relates the forward
and backward components by their outputs, which have the same type.

Definition 18. A bigenerator g :: G u v is weak-complete when

check g x = Just y =⇒ y ∈ generate g.

Theorem 7. Weak completeness is compositional.

In a separate step, we connect the input of the backward direction, i.e., the
checker, by reasoning directly about its pure projection (via a more general
form of identity projection) which is defined to be the checker itself:

Theorem 8. A bigenerator g :: G u u is complete if it is weak-complete and its
checker satisfies a pure projection property: check g x = Just x’ ⇒ x = x’

Thus to prove completeness of a bigenerator g :: G u u, we first have weak-
completeness by construction, and we can then show that check g is a restriction
of the identity function, interpreting all bigenerators simply as partial functions.
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Considering the other direction, soundness, there is unfortunately no decom-
position into a quasicompositional property and a property on pure projections.
To see why, let bool be a random uniform bigenerator of booleans, then con-
sider for example, comap isTrue bool and comap isTrue (return True), where
isTrue True = Just True and isTrue False = Nothing. Both satisfy any qua-
sicompositional property satisfied by bool, and both have the same pure pro-
jection isTrue, and yet the former is unsound—it can generate False, which is
rejected by isTrue—while the latter is sound. This is not a problem in practice,
as unsoundness, especially in small scale, is inconsequential in testing. But it
does raise an intellectual challenge and an interesting point in the design space,
where ease of reasoning has been traded for greater expressivity in the monadic
approach.

7 Discussion and Related Work

Bidirectional transformations are a widely applicable technique used in many
domains [11]. Among language-based solutions, the lens framework is most influ-
ential [3,4,13,14,24,29]. Broadly speaking, combinators are used as program-
ming constructs with which complex lenses are created by combining simpler
ones. The combinators preserve round tripping, and therefore the resulting pro-
grams are correct by construction. A problem with lens languages is that they
tend to be disconnected from more general programming. Lenses can only be con-
structed by very specialised combinators and are not subject to existing abstrac-
tion mechanisms. Our approach allows bidirectional transformations to be built
using standard components of functional programming, and gives a reasoning
framework for studying compositionality of round-tripping properties.

The framework of applicative lenses [18] uses a function representation of
lenses to lift the point-free restriction of the combinator-based languages, and
enables bidirectional programming with explicit recursion and pattern matching.
Note that the use of “applicative” in applicative lenses refers to the transitional
sense of programming with λ-abstractions and functional applications, which is
not directly related to applicative functors. In a subsequent work, the authors
developed a language known as HOBiT [20], which went further in featuring
proper binding of variables. Despite the success in supporting λ-abstractions and
function applications in programming bidirectional transformations, none of the
languages have explored advanced patterns such as monadic programming.

The work on monadic lenses [1] investigates lenses with effects. For instance,
a “put” could require additional input to resolve conflicts. Representing effects
with monads helps reformulate the laws of round-tripping. In contrast, we made
the type of lenses itself a monad, and showed how they can be composed monad-
ically. Our method is applicable to monadic lenses, yielding what one might call
monadic monadic lenses: monadically composable lenses with monadic effects.
We conjecture that laws for monadic lenses can be adapted to this setting with
similar compositionality properties, reusing our reasoning framework.

Other work leverages profunctors for bidirectionality. Notably, a Profunc-
tor optic [26] between a source type s and a view type v is a function of type
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p v v → p s s, for an abstract profunctor p. Profunctor optics and our monadic
profunctors offer orthogonal composition patterns: profunctor optics can be
composed “vertically” using function composition, whereas monadic profunctor
composition is “horizontal” providing sequential composition. In both cases, com-
position in the other direction can only be obtained by breaking the abstraction.

It is folklore in the Haskell community that profunctors can be combined
with applicative functors [22]. The pattern is sometimes called a monoidal pro-
functor. The codec library [8] mentioned in Sect. 3 prominently features two
applications of this applicative programming style: binary serialisation (a form
of parsing/printing) and conversion to and from JSON structures (analogous
to lenses above). Opaleye [28], an EDSL of SQL queries for Postgres databases,
uses an interface of monoidal profunctors to implement generic operations such as
transformations between Haskell datatypes and database queries and responses.

Our framework adapts gracefully to applicative programming, a restricted
form of monadic programming. By separating the input type from the output
type, we can reuse the existing interface of applicative functors without modifi-
cation. Besides our generalisation to monads, purification and verifying round-
tripping properties via (quasi)compositionality are novel in our framework.

Rendel and Ostermann proposed an interface for programming parsers and
printers together [30], but they were unable to reuse the existing structure of
Functor, Applicative and Alternative classes (because of the need to han-
dle types that are both covariant and contravariant), and had to reproduce the
entire hierarchy separately. In contrast, our approach reuses the standard type
class hierarchy, further extending the expressive power of bidirectional program-
ming in Haskell. FliPpr [17,19] is an invertible language that generates a parser
from a definition of a pretty printer. In this paper, our biparser definitions are
more similar to those of parsers than printers. This makes sense as it has been
established that many parsers are monadic. Similar to the case of HOBiT, there
is no discussion of monadic programming in the FliPpr work.

Previous approaches to unifying random generators and predicates mostly
focused on deriving generators from predicates. One general technique evaluates
predicates lazily to drive generation (random or enumerative) [7,9], but one loses
control over the resulting distribution of generated values. Luck [15] is a domain-
specific language blending narrowing and constraint solving to specify generators
as predicates with user-provided annotations to control the probability distribu-
tion. In contrast, our programs can be viewed as generators annotated with left
inverses with which to derive predicates. This reversed perspective comes with
trade-offs: high-level properties would be more naturally expressed in a declara-
tive language of predicates, whereas it is a priori more convenient to implement
complex generation strategies in a specialised framework for random generators.

Conclusions. This paper advances the expressive power of bidirectional program-
ming; we showed that the classic bidirectional patterns of parsers/printers and
lenses can be restructured in terms of monadic profunctors to provide sequential
composition, with associated reasoning techniques. This opens up a new area
in the design of embedded domain-specific languages for BX programming, that
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does not restrict programmers to stylised interfaces. Our example of bigenera-
tors broadened the scope of BX programming from transformations (converting
between two data representations) to non-transformational applications.

To demonstrate the applicability of our approach to real code, we have devel-
oped two bidirectional libraries [12], one extending the attoparsec monadic parser
combinator library to biparsers and one extending QuickCheck to bigenerators.
One area for further work is studying biparsers with lookahead. Currently looka-
head can be expressed in our extended attoparsec, but understanding its inter-
action with (quasi)compositional round-tripping is further work.

However, this is not the final word on sequentially composable BX programs.
In all three applications, round-tripping properties are similarly split into weak
round tripping, which is weaker than the original property but compositional,
and purifiable, which is equationally friendly. An open question is whether an
underlying structure can be formalised, perhaps based on an adjunction model,
that captures bidirectionality even more concretely than monadic profunctors.
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