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Abbreviations and glossary 
 

ABMR  antibody mediated rejection 

AR  acute rejection 

AUC  area under the ROC curve 

ATG  anti-thymocyte globuline 

ATS  American Transplantation Society 

BKVN  BK-virus nephropathy 

BTS  British Transplantation Society 

CV.AUC cross-validated AUC 

eGFR  estimated glomerular filtration rate 

ESOT  European Society of Organ Transplantation  

GLMM  generalised linear mixed-effects models 

HLA   Human Leucocyte Antigen 

IS  immunosuppression 

KTR  kidney transplant recipients 

Parsimonious The answer that makes the fewest assumptions; in this manuscript 

the smallest set of genes showing a satisfactory predictive 

performance  

PB   peripheral blood 

ROC  receiver operator characteristics curve 

RT-qPCR Real time – quantitative Polymerase Chain Reaction 

SCr  Serum Creatinine 

TCMR  T cell mediated Rejection 

TTS  The Transplantation Society 
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Research in Context 
 

Evidence Before the Study 

Patients with kidney transplants are at significant risk of transplant failure, 

risking return to renal replacement therapy or having another kidney transplant. 

Apart from HLA variants mismatches, specific genetic features that are 

responsible for kidney transplant failure have not been identified thus far.  

It remains unknown which of the large number of patients with kidney 

transplants will get worsening of their kidney function with time. Molecular 

analysis of peripheral samples from transplant recipients potentially would 

allow surveillance of immune activation enabling earlier detection and treatment 

of rejection.  

Our literature search has been primarily focused on PubMed and Scopus 

searches and through information received in and around transplantation 

meetings (BTS, ATC, ESOT and TTS) where preliminary work of ours and other 

groups has been presented and discussed. 

Previous studies in kidney transplant recipients have identified a number of 

genes in blood and urine samples which correlate with acute rejection; many of 

which are involved in cytotoxic T lymphocyte function and cell trafficking. These 

include Granzyme B, Perforin, Fas-ligand, FoxP3 and CXCL10 and interleukins. 

However, single genes have lacked the sensitivity and specificity to translate 

early acute rejection detection into clinical practice. In urine, a three-gene 

signature has been found which was also able to predict the clinical episode by 

some weeks. In blood microarray studies have identified gene-sets capable of 

distinguishing acute rejection. These, however, have not been analysed in a serial 

fashion to allow for determination of their predictive value and they do not 

examine the effects of anti-rejection therapy. In cardiac transplantation a 

commercially available 11 gene set has been shown to reduce the need to 

perform biopsies and led to greater patient satisfaction. 

Most recently, the multi-centre AART study from the US has identified a 17 gene 

set in blood with an AUC of 0.94 and show a predictive value up to 3 months 

before detection by biopsy, but further clinical validation is still awaiting.  

 

Added Value of this Study 

This is the first European study to comprehensively analyse serial blood samples 

from renal transplant recipients. We collected samples from 450 consecutive 

adult recipients at regular intervals over their first year post-transplant. This has 

allowed us to perform both cross sectional and longitudinal analysis. Patients 

selected for the discovery phase all received a similar anti-rejection protocol. 

Importantly this included induction therapy with an IL-2R blocking antibody 

(Basiliximab) rather than a lymphocyte depleting antibody, the latter being more 

common practice in the US. Given that some of the genes are lymphocyte 

expressed, the induction agent might have a significant effect on lymphocyte 

gene expression, which we have observed. In longitudinal analysis we have 

demonstrated for the first time the significant intra patient variability over time 

and a relationship to changes in anti-rejection therapy. Here we describe a 

parsimonious (the one that makes the fewest assumptions) T cell mediated 

rejection (TCMR) signature using the expression of seven genes in peripheral 

blood. 
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We have also been able to demonstrate the predictive value of our signature, 

with detection of acute rejection demonstrable up to two months before the 

clinical event. We have subsequently carried out validation in a separate cohort 

of patients. All in all the number of samples analysed throughout our study 

nearly doubles the numbers of samples used in the AART study, including 

therefore a more comprehensive longitudinal picture of the gene measurements. 

 

In order to assist the differential diagnosis with BK-virus nephropathy (BKVN), 

which has the same clinical presentation as T cell mediated rejection (TCMR), 

but requires the opposite therapy, namely immunosuppression reduction, we 

have additionally developed a six-gene signature of BKVN. Further, we have 

examined patients with alternative induction regimens. Patients treated with 

Rituximab showed similar gene-expression patterns to patients treated with 

Basiliximab, whilst patients receiving Alemtuzumab treatment showed both, 

high TCMR and high BKVN positivity. 

 

Implications of all the available evidence 

Information from gene expression in peripheral blood samples from transplant 

recipients could provide valuable information to clinicians for more personalised 

management and finally provide some information on the recipient’s immune 

status.  

Potential benefits include earlier detection and treatment of acute rejection as 

well as separation from other causes of graft dysfunction, something which the 

presently used non-invasive monitoring tool, namely serum creatinine is unable 

to do. It may also allow reduction of anti-rejection therapy in other patients, 

minimising side effects, that may further allow personalised precision medicine. 

A trial of these biomarkers for evaluation in clinical practice is now needed. 

We believe the potential of the analysis strategy we applied could be used in 

other biomarker signatures where longitudinal evaluation is critical and this 

warrants the scrutiny by the wider readership. 
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Abstract 
 

Background 

Acute T-cell mediated rejection (TCMR) is usually indicated by alteration in 

serum-creatinine measurements when considerable transplant damage has 

already occurred. There is, therefore, a need for non-invasive early detection of 

immune signals that would precede the onset of rejection, prior to transplant 

damage. 

 

Methods  

We examined the RT-qPCR expression of 22 literature-based genes in peripheral 

blood samples from 248 patients in the Kidney Allograft Immune Biomarkers of 

Rejection Episodes (KALIBRE) study. To account for post-transplantation 

changes unrelated to rejection, we generated time-adjusted gene-expression 

residuals from linear mixed-effects models in stable patients. To select genes, we 

used penalised logistic regression based on 27 stable patients and 27 rejectors 

with biopsy-proven T-cell-mediated rejection, fulfilling strict inclusion/exclusion 

criteria. We validated this signature in i) an independent group of stable patients 

and patients with concomitant T-cell and antibody-mediated-rejection, ii) 

patients from an independent study, iii) cross-sectional pre-biopsy samples from 

non-rejectors and iv) longitudinal follow-up samples covering the first post-

transplant year from rejectors, non-rejectors and stable patients. 

 

Findings 

A parsimonious TCMR-signature (IFNG, IP-10, ITGA4, MARCH8, RORc, SEMA7A, 

WDR40A) showed cross-validated area-under-ROC curve 0·84 (0·77-0·88) 

(median, 2·5th-97·5th centile of fifty cross-validation cycles), sensitivity 0·67 

(0·59-0·74) and specificity 0·85 (0·75-0·89). The estimated probability of TCMR 

increased seven weeks prior to the diagnostic biopsy and decreased after 

treatment. Gene expression in all patients showed pronounced variability, with 

up to 24% of the longitudinal samples in stable patients being TCMR-signature 

positive. In patients with borderline changes, up to 40% of pre-biopsy samples 

were TCMR-signature positive. 

 

Interpretation 

Molecular marker alterations in blood emerge well ahead of the time of clinically 

overt TCMR. Monitoring a TCMR-signature in peripheral blood could unravel T-

cell-related pro-inflammatory activity and hidden immunological processes. This 

additional information could support clinical management decisions in cases of 

patients with stable but poor kidney function or with inconclusive biopsy results. 

 

Funding: 

EU: FP7-HEALTH-2012-INNOVATION-1 (project-305147: BIO-DrIM) and FP7 

grant agreement no HEALTH-F5–2010–260687. 

Medical Research Council: G0600698, MR/J006742/1; G0802068; 

MR/K002996/1 and G0801537/ID: 88245. 

NIHR Biomedical Research Centre at Guy’s and St Thomas’ and King’s College 

London.  

  



Christakoudi and Runglall, et al 

 

6 

 

Introduction 
Kidney transplantation remains the optimal treatment for patients with end-

stage kidney disease but requires life-long anti-rejection therapy, which is a 

major contributor to morbidity and mortality in kidney transplant recipients 

(KTRs). Balancing the level of immune suppression in each recipient remains a 

major challenge, and occurs in a reactive fashion in response to clinical events. 

Monitoring of allograft function presently relies on serum creatinine (SCr) 

values. SCr is not a sensitive marker, as it often changes only after a considerable 

graft damage, and is not a specific marker either, as it can be affected by several 

factors other than rejection and patients further require a percutaneous biopsy 

to diagnose the cause of transplant dysfunction. A biopsy, however, is an invasive 

procedure carrying risks and, being prone to sampling error, could potentially 

fail to adequately uncover the cause of transplant dysfunction, with many cases 

reported as “borderline suspicious for acute cellular rejection”.1 Further, a 

biopsy is usually carried out only when there is clear evidence of transplant 

dysfunction, at which point irreversible tissue damage may already have 

occurred. Studies from centres carrying out routine biopsies at defined time-

intervals have also demonstrated a significant amount (10-30%) of rejection in 

the presence of unchanged renal function. 

As molecular events precede the development of the immune response, they 

provide an ideal opportunity to detect host responses before significant damage 

to the transplant has occurred. While such changes can be detected in tissue 

from biopsies, the ability to detect a signal in non-invasive samples such as 

peripheral blood and urine has the added practical advantage of allowing 

collection of serial samples. Monitoring of gene-expression signatures in 

peripheral blood and urine samples offers the opportunity for surveillance of the 

recipient immune system and earlier detection of acute rejection (AR), of diverse 

aetiology. 

In fact, previous studies have identified in both, blood and urine, a number of 

mRNAs associated with AR.7 These have included molecules associated with 

cytotoxic lymphocyte function, such as Perforin, Granzyme B, Fas-ligand and 

FoxP3. Single genes, however, lack the sensitivity and specificity to translate into 

clinical practice, and could hardly capture the complexity of the rejection 

process.  Technological advances now allow reliable and cost-effective analysis 

of multiple genes in a single sample. In urine, a three-gene signature of AR has 

been described with an area under the curve (AUC) of 0.85 (sensitivity 79%, 

specificity 78%) and an increase in gene expression detected up to 20 days 

before a clinically-evident AR.2 In cardiac transplantation, the use of an 11-gene 

panel has been studied and compared against the standard approach of routine 

biopsies. Use of the panel resulted in fewer performed biopsies and greater 

patient satisfaction.3 

A critical differential diagnosis of AR is polyoma BK-virus nephropathy (BKVN).4 

This is manifested, similarly to AR, with graft dysfunction and mononuclear 

infiltrates in biopsy samples but, unlike AR, is the result of immunosuppression 

(IS) that maybe excessive for the requirements of the individual. Importantly, the 

treatment of BKVN (reduction of IS medication) is opposite to that of AR and the 

definitive diagnosis relies on a specialised immunohistochemistry staining of a 

biopsy sample.5 While a reasonable inter-laboratory agreement in detection of 

BKVN was found in a Banff quality assurance initiative,6 focal lesions may 
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become responsible for a false-negative biopsy. Taking all evidence into account, 

there is still a need for an alternative non-invasive biomarker of clinically-

relevant BKVN. 

In this study we have performed a comprehensive analysis in serial peripheral 

blood samples from KTRs of a set of 22 candidate genes with reported 

association with T-cell-mediated rejection (TCMR) in the literature 

(Supplementary Table S1). We have identified a robust gene-expression 

signature for TCMR and have examined longitudinally gene expression and the 

effect of different anti-rejection therapies. We subsequently tested the 

performance of our signature in a validation set of patients and an independent 

cohort.  

This information could finally provide clinicians with some insight into the status 

of a recipient’s immune system and be used as part of the complex clinical 

management process, when deciding whether or not to perform a biopsy and in 

evaluating the level of anti-rejection therapy required by a particular individual.  

 

 

Methods 
 

Patients 
Blood samples were collected serially from 455 consecutive KTRs, transplanted 

at a single regional transplant centre (Guy’s Hospital) in the Kidney Allograft 

Immunological Biomarkers of Rejection (KALIBRE) study. Patients were 

followed up at three independent Renal units (Guy’s, King’s College, and Kent & 

Canterbury Hospitals). Samples were collected at 26 time-points during clinic 

visits over the first post-transplant year. A total of 1464 samples from 248 

patients were used in the study, including 66 patients with an episode of 

rejection (Supplementary Figure S1). Patient flow-chart is shown in Figure 1. 

All patients contributing to the signature-development training dataset 

(inclusion/exclusion criteria listed in Table 1) had received treatment according 

to an anti-rejection protocol including Basiliximab induction followed by 

maintenance therapy with Tacrolimus or Cyclosporine, Mycophenolate Mofetil 

and Prednisolone. Histological criteria followed the Banff ’09 classification,8 as 

this was the most updated version at the beginning of recruitment and it was 

maintained for consistency throughout the study. Patients were categorised as 

Stable (when their SCr levels were within 20% of baseline), antibody-mediated 

rejection (category 2, ABMR); T-cell-mediated rejection (category 4, TCMR); 

mixed rejection (histological features of both, ABMR and TCMR) (mixed); and BK 

virus nephropathy (BKNV). Patient demographics are summarised in Table 2a 

and their immunological risk stratification in Table 2b. External validation KTRs 

(nine rejectors, 15 non-rejectors, one BKVN) were provided by patients from 

Guy’s Hospital (UK) participating in the EMPIRIKAL trial9 (EUdraCT: 2011-

000958-30). We also included healthy controls (n=14), previously recruited as 

part of the GAMBIT study.10  

 

Ethics statement 

Approval from research ethics committees was obtained for all included studies: 

KALIBRE - Research Ethics No: 09/H0711/58; GAMBIT - Research Ethics No: 
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09/H0713/12; EMPIRIKAL - Research Ethics No: 12/LO/1334. Written informed 

consent was obtained from all patients participating in each of those studies. 

 

Gene-expression analysis 

Peripheral blood was collected into Tempus™ Blood RNA Tubes (Life-

Technologies) and stored at -20oC. RNA isolation, cDNA synthesis and RT-qPCR 

conditions have been previously described in detail.10 We analysed 22 genes 

(Supplementary Table S2a-b). Relative gene expression values were calculated 

with the –∆∆∆∆Ct method, detecting the difference with hypoxanthine-

phosphoribosyltransferase (HPRT) as a house-keeping gene. An in-house quality 

control (QC) sample was included in every analytical batch, which showed very 

low between-run variability (coefficients of variation between 0·19% and 

1·09%, median 0·48%). Missing data was minimal (below 0·5%). 

 

Sample size 

Sample size for signature development was determined by patient availability. 

We included all recipients with T-cell-mediated rejection (TCMR) (n=27) and 

BKVN (n=7) fulfilling the inclusion/exclusion criteria (Table 1) and the same 

number of stable patients (n=27), matched to rejectors in age, sex, and donor 

type, with no biopsy performed and <20% SCr change after achieving baseline. 

Power calculation (using an exponential approximation to estimate AUC 

variance),11, showed that with 27 patients in each group, we could estimate a 

95% confidence interval with half-width 0·103 for an expected AUC of 0·85 and 

with better precision for higher AUC. 

 

Statistical analysis 

Statistical analysis was performed in R version 3.2.2.12 Non-parametric 

Wilcoxon-Mann-Whitney test was used for univariate class comparisons. 

Association between continuous variables was evaluated with Spearman 

correlation coefficient (r). Outliers were recoded to the next highest or lowest 

value for multivariable analysis. Missing gene-expression data were imputed 

with K-nearest neighbour for microarrays (impute package).13 Missing values 

were first imputed in a 22-gene matrix of longitudinal samples, including 

samples collected from day 4 to rejection in training rejectors (n=201) and 

between days 4 and 400 post-transplantation from stable patients (n=335, 

Supplementary Fig. S2). The complete training matrix was then used to impute 

missing gene-expression for test samples, one at a time and based only on the 

genes included in the examined model. 

To account for the dependency of samples from the same patient, serial samples 

were analysed with generalised linear-mixed effects models (GLMM) with a 

linear, quadratic and cubic term for the fixed and random effects of time.  

To account for dependency of gene-expression on time post-transplantation we 

generated time-adjusted gene-expression values, individually for each gene, as 

the residuals of cubic GLMM linear regression models with the –∆Ct values, 

based on serial samples from training stable patients (residuals for all other 

patients were generated using these training models). 

To develop a TCMR signature, we compared samples from TCMR rejectors (a 

single pre-rejection sample per patient, zero to nine, median: three days pre-
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biopsy) and stable patients (serial samples of ten to 20, median: 12 per patient; 

total: 335, summarised with the median time-adjusted expression for each gene 

per patient). To develop a gene-expression signature of BKVN, we compared 

BKVN-positive patients (a single sample per patient, within seven (median zero) 

days of a diagnostic biopsy) with the combined group of TCMR rejectors and 

stable patients, to secure simultaneous discrimination from non-BKVN KTRs. 

 

To select a parsimonious gene-expression signature, i.e. the smallest set of genes 

showing a satisfactory predictive performance, we used penalised logistic 

regression with an elastic net penalty14 (glmnet package12). Elastic net enables 

gene selection by shrinking the regression coefficients of genes statistically non-

informative for discrimination and, hence, retaining only genes, which are 

statistically-important based on the data used in the model. For the penalty 

parameters, we selected the alpha (tested in increments of 0·1), which enabled 

retaining a satisfactory  model performance with the minimum number of strong 

predictors (i.e. those gene remaining without shrinkage at high values of alpha). 

The penalty parameter lambda was optimised as the median of 200 seven-fold 

cross-validation repeats of the cv.glmnet function. The final signature models 

were based on imputation, time-adjustment and elastic net regression 

performed in the complete signature-development dataset. 

 

To evaluate model performance, we used the AUC (95% De Long confidence 

interval) and calculated sensitivity and specificity for a cut-off that optimised 

both for TCMR and specificity only for BKVN, but retaining sensitivity above 0·70 

(pROC package).15  

To compare the pre- and post-rejection trajectories of the probability of TCMR in 

rejectors and non-rejectors, we used GLMM linear regression with an interaction 

term for group and time. We used as outcome the predicted log-odds of rejection, 

which, unlike probability, has an unrestricted continuous scale. As a reference 

time-point in rejectors we used the day of the diagnostic biopsy. In non-rejectors, 

after demonstrating the time-independence of the predicted probability of 

TCMR, we assigned a time with respect to the reference point at random. This 

ensured that the distribution of samples from non-rejectors matched the pattern 

of rejectors with respect to time post-transplantation (Supplementary Fig. S3). 

Samples contributing to signature development, i.e. the 27 pre-biopsy samples 

for patients with TCMR and the 335 samples from the training stable patients, 

were excluded from the longitudinal analysis. Although the remaining pre-

rejection samples from the 27 training rejectors were included in the imputation 

matrix, they did not contribute to elastic net regression (i.e. gene selection and 

regression coefficients) and, with a missingness below 0·5%, they would not 

have materially influenced signature development. 

 

Validation strategy 

It should primarily be noted, that obtaining the 22 initial genes from literature 

reports and not from a statistical analysis of microarrays performed in our own 

dataset meant that our study provided a validation dataset for already published 

findings.  

Further, to evaluate the performance of the selected parsimonious gene-

expression signature with unseen data, we used the following approaches:  
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First, we used cross-validation within the signature-development dataset. In the 

cross-validation cycles all steps of signature development (including the linear 

regression models generating time-adjusted residuals,  the imputation of missing 

data and the elastic net regression models performing the inherent to them gene 

selection (starting from the complete list of 22 genes for each model) and the 

required optimisation of the lambda parameter), were performed with the 

training subset. The left-out test subset was used solely for model validation (see 

Note 1 in Supplementary Discussion for further details). A cross-validation AUC 

(CV.AUC) was determined for each of 50 repeats of seven-fold cross-validation 

cycles, along with sensitivity and specificity at the fixed cut-off determined as 

optimal for the final signature model. Model performance measures obtained in 

the 50 cross-validation cycles were summarised with median (2·5th – 97·5th 

centile). 

Second, we performed cross-sectional validation in unseen test patients, using 

mixed-type rejectors (with histological features of both, TCMR and antibody-

mediated rejection (ABMR)) and new (test) stable patients. We further examined 

samples collected prior to non-rejection biopsies with different histological 

categories, pre-rejection samples from patients with ABMR and from rejectors 

treated with alternative immunosuppression induction agents (Alemtuzumab 

and Rituximab), near-biopsy samples from patients with BKVN, and samples 

from healthy controls. 

Third, we performed validation in longitudinal samples. To test signature 

specificity we used the individual longitudinal samples from the new test stable 

patients and also from other unseen test non-rejectors with more compromised 

renal function (with or without a for-cause biopsy during the first post-

transplant year) and from non-rejectors with alternative immunosuppression 

induction (the median sample per patient participated in the cross-sectional 

validation). Specificity of the TCMR signature was further examined in 

longitudinal samples from BKVN patients. In addition, we compared serial 

samples from rejectors with the combined group of the non-rejectors and the 

new stable patients. Rejectors included independent test rejectors (with TCMR 

and mixed-type rejection) and only the pre and post rejection samples from the 

27 training rejectors with TCMR, which were unseen in the elastic net regression 

defining the signature model. 

Fourth, we performed external validation with samples from independent 

rejectors with TCMR features and non-rejectors from the EMPIRIKAL trial (a pre-

rejection sample for rejectors and longitudinal samples for non-rejectors). 

 

Data sharing 

 Research data will be made available through application to the Biobank 

"Transplantation, Immunology and Nephrology Tissue and Information Nexus" 

(TIN-TIN) based at King’s College London, London UK. Provisional Ethics Ref: 

17/LO/0220. 

 

Role of the funding sources 

The study sponsors had no involvement in the study design, the collection, 

analysis, and interpretation of data, in the writing of the report, and in the 

decision to submit the paper for publication. 
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Results 

Examining gene expression in longitudinal samples of training stable patients 

demonstrated high within-patient variability and systematic trajectory changes 

over the first four months post-transplantation (Fig. 2a-b). The expression of 19 

of the 22 studied genes was significantly associated with time (Supplementary 

Table S3). After accounting for prednisolone dose, which is systematically 

reduced during the first post-transplant months (Supplementary Fig. S4), the 

association of gene-expression and time was retained, independently of 

prednisolone, for 10 of the 22 genes (Supplementary Table S3), whilst eight 

genes showed an association with prednisolone, independent of time. 

Consequently, we generated time-adjusted gene-expression levels (Fig. 2c-d) and 

used these in signature development. This ensured that differences between 

stable patients and rejectors were accounted for by rejection and not by time-

related post-transplantation changes. 

Using penalised logistic regression with elastic net penalty, we developed a 

parsimonious signature of TCMR, retaining seven genes with non-zero 

regression coefficients and, hence, referred to as a “seven-gene” signature 

(Supplementary Fig. S5/S6a/S7, Tables S4/S5), which showed improved 

predictive performance in cross-validation (CV.AUC 0·84 (0·77-0·88)) compared 

to the 22-gene model (Table 3, Fig. 3a). This suggests that many of the 22 

original genes contribute more variability and noise to the 22-gene model than 

information facilitation the discrimination and, therefore, they could not be 

validated in our dataset (Supplementary Figure S5). It should also be noted that 

a comparison with eGFR as a diagnostic parker is not appropriate, as SCr has 

been used as a selection criterion (see Note 2 in Supplementary Discussion). 

The TCMR signature showed excellent discrimination between mixed-type 

rejectors and new stable patients in cross-sectional validation samples that had 

similar distribution of immunological risk pre-transplant stratification (Table 2b, 

Fig. 3b) (AUC 0·90 (0·70 – 1·00)). In the external validation dataset from the 

EMPIRIKAL trial, seven out of the nine rejectors (78%) were TCMR-positive near 

the diagnostic biopsy (Fig. 3c). EMPIRIKAL non-rejectors had distinctly worse 

kidney function compared to KALIBRE stable patients (Fig. 3f-g vs 3h), with eight 

out of 15 patients requiring dialysis in the first two weeks post-transplantation. 

Nevertheless, a discrimination could be achieved from TCMR (AUC 0·77 (0·53 – 

1.00)). No discrimination could be achieved between TCMR and stable patients 

pre-transplantation (Fig. 3d) (AUC 0·57 (0·38 – 0·76)).  

Whilst BKVN patients had low eGFR, similar to that of rejectors (Fig. 3k), they 

were TCMR-negative or only weakly positive (Fig. 3e). Five out of ten mixed-type 

rejectors treated with a different induction agent were TCMR-positive near the 

diagnostic biopsy (Fig. 3e). Three of the five patients with features only of ABMR 

in the first biopsy diagnostic of AR were TCMR-positive, but the one with the 

highest probability of TCMR showed features of mixed-type rejection in a 

subsequent biopsy, performed eight days after the collection of the sample 

shown in Fig. 3e. 

Preceding a for-cause biopsy without features of AR, seven out of eight KTRs with 

normal histology were TCMR-negative, but more than 30% of the patients with 

histological features of borderline changes, chronic rejection or other non-
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rejection alterations were TCMR-positive (Fig. 4a) and the predicted probability 

of TCMR was negatively correlated with eGFR (r=−0·40, p<0·0001)(Fig. 4c). Half 

of the 14 healthy controls were TCMR-positive.  

In longitudinal samples from the stable patients used for signature development, 

the average predicted probability of TCMR remained constant with time post-

transplantation, below the cut-off, and was not influenced by adjustment for 

prednisolone dose (Supplementary Fig. S8a). The probability of TCMR also 

remained below the cut-off for validation stable patients and non-rejectors 

(Supplementary Fig. S8b). Further, over the first post-transplant year, the TCMR 

signature demonstrated very good specificity (above 70%) in stable patients, 

non-rejectors, and BKVN patients (Table 4). Rituximab induction showed 

similarity to Basiliximab induction (Fig. 4b), but TCMR-signature positivity was 

higher following Alemtuzumab induction (71%), despite the comparable eGFR in 

alternative induction groups (Fig. 4d). Similarly, in non-rejectors of the 

EMPIRIKAL trial a larger proportion of the longitudinal samples were TCMR-

positive (44%), with ten out of the 14 samples from the first post-transplant 

week being TCMR-positive. 

In longitudinal samples from rejectors, the probability of TCMR increased well 

ahead of rejection and decreased after treatment (Fig. 5a) following kidney 

function and not immunosuppression changes. There was a very clear difference 

between rejectors and non-rejectors at the time of rejection (p<0·0001 for the 

group term in GLMM) and a clear difference between the average trajectories of 

the two groups (Supplementary Fig. S9). Discrimination between rejectors and 

non-rejectors was possible for at least five weeks before and four weeks after 

rejection. AUC remained near or above 0·80 for the five weeks preceding 

rejection and above 0.70 for weeks six and seven (Fig. 5b). It is not a common 

practice in the UK to use anti-thymocyte globuline (ATG) as an induction agent, 

but 11 of the rejectors had received it as a treatment for rejection. The 

probability of TCMR increased before the biopsy and remained above 0.70 

within two weeks after administration of ATG and in some of the patients for 

considerably longer (Supplementary Fig. S10). 

Given the histological similarities between BKVN and TCMR and the fact that 

they both represent some form of inflammation, it was important to explore 

whether the genes in the TCMR signature reflect BKVN activity. To assist 

differential diagnosis, we additionally developed a parsimonious six-gene 

signature of BKVN (Supplementary Fig. S11/S6b/S12, Tables S4/S5), showing 

(like the TCMR signature) an improved performance at cross-validation (CV.AUC 

0·73 (0·66-0·80)) compared to the full 22-gene model (Table 3). Only MARCH8 

and WDR40A genes were shared between the two signatures. These genes were 

strongly positively correlated (r=0·96, p<0·0001 in the joint signature-

development group of rejectors, BKVN, and stable patients), but were lower in 

TCMR compared to BKVN (Supplementary Fig. S7) and were selected by the 

statistical algorithm as informative in both signatures because the signature for 

BKVN was trained to discriminate BKVN from TCMR, as well as from stable 

patients. Correspondingly, the signatures of BKVN and TCMR were negatively 

correlated (r=−0·45, p<0·0001). Notably, the majority of TCMR and mixed-type 

rejectors were BKVN-negative pre-biopsy (Fig. 6a-c). The specificity of the BKVN 

signature in longitudinal samples from stable patients and non-rejectors was 

close or above 70% (Table 4), similarly in Basiliximab and Rituximab-induced 
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patients (Fig. 6g), with virtually no double-positives for TCMR and BKVN (Table 

4). On the contrary, 67% of the samples from Alemtuzumab-induced non-

rejectors were BKVN-positive and, as high as 44%, were double-positive, with 

only a few samples being double-negative (Table 4). KTRs pre-transplantation 

(Fig. 6d), as well as healthy controls, were strongly BKVN-negative. 

 

 

 

 

Discussion 
We present out the most comprehensive analysis of potential non-invasive 

biomarkers of AR following kidney transplantation to date. Notably, we have 

conducted longitudinal, as well as cross sectional analysis, considering changes 

in gene expression over time post-transplantation. We have also examined the 

effect of immunosuppressive agents (type of induction agent and prednisolone 

reduction) and have shown separation from BKVN, a different form of allograft 

inflammation. We accept, however, that a limitation of our study is the relatively 

small number of independent validation patients with TCMR, the lack of 

diagnostically difficult patients and the very limited number of BKVN patients. It 

should also be noted that AR is not a simplified present/absent condition and has 

various degrees of severity, so the clinical value of AUCs and other performance 

measures for binary outcomes should be evaluated with caution. Further, the 

number of patients with features only of ABMR in the first biopsy diagnostic of 

AR was limited, so we could not reliably evaluate whether our six-gene signature 

could discriminate TCMR from ABMR, or whether it would have the same 

predictive value for ABMR. However, we believe that our signature is relevant to 

TCMR because it includes genes that have been associated with TCMR in 

completely different datasets and the statistical algorithm was trained to 

discriminate TCMR from non-rejection. 

 

Two previous similarly-sized studies have identified gene panels in non-invasive 

samples to detect AR. The assessment of AR in renal transplantation (AART 

study) involved 436 adult renal transplant recipients from eight transplant 

centres in the United States (US), Spain and Mexico and used the 17 gene panel 

kidney solid organ response test (kSORT) to detect patients at high risk of AR.16 

However, this study collected only cross-sectional samples with lower number of 

samples analysed, from a heterogeneous population of both, adult and paediatric 

recipients, from different countries and without a standard immunosuppression 

regimen. Given that the majority of the centres were in the US, it is likely they 

received depleting antibody induction therapy. This might explain why the 

statistical selection of genes for their signature did not favour any of the 

literature-based genes selected by the statistical algorithm in our signature, 

when it is highly likely that the microarrays informing gene selection in the 

AART study would have contained these genes. As some of the genes involved 

are derived from lymphocytes, which are killed by depleting induction therapy, it 

is not surprising that we have found an effect of this therapy on our biomarker 

performance. Potentially, differences in the statistical approaches for selection 

may have also contributed to the lack of overlap. The CTOT-04 study collected 

serial urine samples from 485 recipients from multiple centres across the US, 
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and identified a three-gene signature predictive of AR.2 However, the study 

highlighted the difficulty of QC of urine samples. Analysis of urine is not possible 

in many patients with delayed graft function and anuria. This signature was also 

positive in BKVN.  

 

Our study is the only one to date to demonstrate and display the pronounced 

within-patient gene-expression variability, systematic changes post-

transplantation and association with prednisolone dose. It also uniquely 

examines individual patient trajectories. Our QC samples demonstrated very low 

between-batch variability, indicating that the high within-person variability is 

driven by biological, rather than analytical factors. TCMR-positivity in non-

rejectors with poorer kidney function was similar to that in stable KTRs with 

good kidney function (Table 4), illustrating that our TCMR signature provides 

information on the underlying immunological response, independent of kidney 

function. Further, half of the samples from healthy controls, expected to show 

vigilant immunological response to everyday environmental triggers, were 

TCMR-positive, indicating an association of our TCMR signature with active host-

defence mechanisms.  

Evidence that the TCMR signature genes reflect pro-inflammatory 

immunological pathways stems from the fact that IFNG and IP10, both coding 

cytokines generated after Th1-cell activation,17 were up-regulated in TCMR 

(Supplementary Fig. S5). Further, SEMA7A gene, included in the Allomap 

signature of cardiac AR18 and strongly negatively associated with heart 

function,19 showed the highest positive regression coefficient, equivalent to the 

largest fold-increase in TCMR (Supplementary Fig. S5). Its product Sema7A, a 

membrane bound semaphorine, is a potent pro-inflammatory monocyte20 and 

macrophage stimulator.21 

 

Our signature emerges four weeks earlier than that shown by a three-gene urine-

based signature of TCMR,2 which shares with our signature IP10 up-regulation. 

Similarly Perforin, GranzymeB, CXCR3 and TGFB were statistically excluded as not 

relevant to TCMR discrimination (Supplementary Fig. S5). A criticism of the 

three-gene signature has been the lack of discrimination from BKVN.22 We, 

however, additionally provide a six-gene BKVN signature, negatively associated 

with the predicted probability of TCMR, to complement the differential diagnosis 

(Supplementary Fig. S11). Only in the case of Alemtuzumab induction there was 

high positivity for both, TCMR and BKVN (Table4), the latter likely stemming 

from the vigorous immunosuppression. All healthy controls and KTRs pre-

transplantation (Fig. 6d) were strongly BKVN-negative, further supporting that 

our BKVN signature reflects BKV activation kept tightly under control in 

individuals without immunosuppression. 

In support of a mechanistic involvement of BKVN signature-genes 

(Supplementary Fig. S11) in the immune response to viral pathogens, TGFB gene 

expression in peripheral blood mononuclear cells and transplants has been 

found positively associated with BKV viremia and BKVN in KTRs.23-25 Further, 

IL15 gene, the product of which is instrumental to NK-cell activation in response 

to viral infections26 and is implicated in the expansion of BKV-specific T-cells,27 

has been reported as downregulated in human endothelial cells infected with 

BKV.28 In addition, MARCH8, has been identified as an antiviral factor involved in 
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reduction of viral infectivity, with high expression in monocyte-derived 

macrophages.29 Nevertheless, our BKVN signature would need further validation 

in a larger BKVN dataset. 

 

While not able to replace the present biopsies as a gold standard to confirm AR, 

our panel may have a role in serial monitoring, providing the clinician with 

valuable extra information on immune system status to help manage KTRs. Serial 

monitoring with biopsies remains a high-risk, costly and impractical strategy. 

Clinical decision-making post-transplantation is complex and utilises a number 

of factors to determine a particular course of action, and this should remain the 

case. Potential clinical applications of our test  could refine better the patients 

that may need a biopsy, it could include earlier detection and treatment of AR 

through earlier biopsy, help in interpretation of cases where the biopsy is 

reported as “borderline”, detection of sub-clinical rejection in a biopsy where 

there is no evidence of graft dysfunction based on SCr and separation of other 

causes of graft dysfunction such as BKVN. The panel could also be used to detect 

patients at low risk of rejection, thereby allowing reduction of 

immunosuppression, thus minimising side effects. Further prospective analysis 

is now required to determine whether or not the use of such a test can improve 

clinical outcomes.  
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