Citation for published version

Oprea, Paul (2017) A Novel Online Any-Angle Path Planning Algorithm. Doctor of Philosophy
(PhD) thesis, University of Kent,.

DOl

Link to record in KAR
https://kar.kent.ac.uk/71757/

Document Version
UNSPECIFIED

KAR e

Kent Academic Repository

University of Kent
School of Engineering and Digital Arts

A Novel Online Any-Angle Path
Planning Algorithm

Paul Oprea

A thesis submitted for the degree of
Doctor of Philosophy in Electronic Engineering
2017

Abstract

Any-angle path planning algorithms are a popular topic of resech in the
elds of robotics and video games with a key focus in nding tre shortest
paths. Most online grid-constrained path-planning algotihims nd sub-
optimal solutions that present as unrealistic paths, a shtmoming which
the any-angle class of algorithms attempt to address. Whildhéy do pro-
vide improvements in nding shorter paths, it generally coras in the form
of a trade-o, by sacri cing runtime performance. The lack & a robust
solution, that does not compromise on any of the desirable gperties {
online, reduced search-space, low runtime, short paths { ah any-angle

path-planning algorithm, is a prime motivator for the current research.

A novel any-angle algorithm for 2-dimensional uniform-cosoctile grids
is introduced that operates purely online and reduces the aeh-space
and runtime without sacri cing path-length. The methodolagy presents
an atypical any-angle path-planning algorithm which emplgs a best rst-
search that races individual paths towards a target with a &e-space as-
sumption. The paths exhibit bug-like properties in that the either move
towards a target or wall-follow, but are allowed to termina¢ early. Wall-
following determines points on the boundary that are candate heading
changes in the path. At each step, the path is analysed and pred in or-
der to maintain its tautness at all times. Together with a puely heuristic
cost based on the assumption of free-space between headingnges, the
algorithm drives the search towards expanding the most prdsing path
rst. Once a path has reached the goal, it checks the free-sgaassump-
tion between its heading changes and updates its cost accdogly. The
shortest-path is determined when the cost estimate of anym&ining paths

is longer than the solution path.

The proposed algorithm is shown experimentally to be compgte on a
number of performance metrics with state-of-the-art any+agle algorithms.
It also presents desirable properties that allow it to have eeduced search-

space and make it suitable for providing multiple solutions

Acknowledgements

First and foremost, | would like to express my profound gratiidde to my
supervisor, Dr Konstantinos Sirlantzis, for his continuos support though

my research degree, and for his guidance, motivation and tce.

My sincere thanks goes to Professor Farzin Deravi, and Dr Sarl Hoque,
who were also on my supervisory committee, for their encog@ament and

support.

| would like to thank Dr Michael Gilham, my colleague and advoate for

his friendship and counsel.

| am grateful to my fellow colleagues Will Wycherley, Sotiris Gatzidim-
itriadis and Yankun Yang and to the interns whom | had the pleaure of

working with over the past years.

Furthermore, | would like to thank Mr Chris Barron, School Administration
Manager, the Administrative Team, and Technical Support Tea of the

School of Engineering for their assistance and encourageme

Not least of all, | wish to thank Krisha and my parents for theirpatience,

support and fortitude in motivating me during the course of g research.

Publications

S. Chatzidimitriadis, P. Oprea, M. Gillham, and K. Sirlantzs, Evalua-
tion of 3d obstacle avoidance algorithm for smart powered \eklchairs," in
2017 Seventh International Conference on Emerging Security Technologies
(EST), pp. 157{162, Sept 2017.

V. Canoz, M. Gillham, P. Oprea, P. Chaumont, A. Bodin, P. Laux, M

Lebigre, G. Howells, and K. Sirlantzis, Embedded hardwarerfalosing the
gap between research and industry in the assistive poweretieelchair mar-
ket,” in 2016 IEEE/SICE International Symposium on System Integration
(Sl) ,pp. 108{113, Dec 2016.

This is to certify that | am responsible for the work submittel in this thesis,
that the original work is my own except as speci ed in acknowdgements
or in footnotes, and that neither the thesis nor the originaork contained

therein has been submitted to this or any other institution ér a degree.

Paul Oprea

Contents

[Abstract] i

1 Introduction | 1
(1.1 Introduction and overview 1
L2 Mofivationl. 4
(1.3 Path planning and navigation 7
(1.4 Map discretisation and notations 9
M41 Heuristick, 12

L5 Confributionl. 15
(1.6 Chapter Summary 16

[2 Path planning methodologies | 17

2.1 Infroduction 17
[2.2 Bug algorithms, 20
221 Bug-IAIGOMtAM o oo 21
[2.2.2 Bug-2 Algorithm, 22
[2.2.3 Tangent Bug Algorithm 23

- Multi-Bug Pat anning| 24

\Y

CONTENTS Vi

[2.3 Grid constrained algorithms L. 27
[2.3.1 Diykstra's algorithm 27
[2.3.2 A*algorithm 29

[2.4 Any angle algorithms 33
[2.4.1 A* with post-smoothing 38
[2.4.2 Theta* Algorithm|. 39
[2.4.3 Lazy Theta* Algorithm| 41

4.4 Anya e 42

[2.5 Additional algorithmsg 47
251 DubinsCurves 47
2.5.2 Articial Potential Fields|. 47

2.6 Chapter Summary 49

[3 Ray Path Finder. Path construction | 50

B.1 Infroduction 50

[3.2 Line of sight with Intersection 53

[3.3 Contourtracing 69

B4 Pathcorners. 81

B5 Pathdirectiod 87

[3.6 Pathpruning 90
[3.6.1 Backward pruningg 92
[3.6.2 Forward pruning 97

[3.7 Redundantpaths 101

CONTENTS Vil
[3.8 Self-intersecting paths 104
[3.9 Chapter Summary 112

4 Ray Path Finder. An Any-angle path planner [114
4.1 Introduction 114
4.2 Arecursive approagh 117
4.3 The Ray Path Finder Algorithm(. 120
4.4 Pathupdating 132
4.5 Limitations| 135
4.6 Algorithm properties 140

[4.6.1 Multiple path solutions 140
[4.6.2 Any-timenature 143
4.6.3 Unknown 2D Environments 144
4.7 Chapter Summary, 147

[EXxperimental results | 148

0.1 Interface 148
[5.1.1 Graphical user interfage 148
[5.1.2 Synchronisation 149

B2 Databask. 150

[©.3 Experimentalresults 154
6371 Infroduction 154

athlength 157
£33 Rundiime 158

[6.3.4 Node expansions 168

[.3.5 Headingchanges 173
[0.3.6 Memory footprint 174
[5.3.7 Impact of Gridmap resolution 177
...................... 185
39 Anyavs.RPF. 188
B4 DiscussiononRPF 193
6 Conclusion | 198
6.1 Summary 198
6.2 Future Worki 201
6.2.1 Optimisation$ 204
[6.2.2 Open Questions and Potential Applications 208
[6.2.3 Hybndisationn 208
[Bibliography | 212

viii

List

of Tables

[>.1 Map Database: Games & Scenarlos 154
[0.2 Average Path-length 157
(5.3 Average Run-time (ms) 158
5.4 Average Node-expansion (RQnits)|. 168
[.5 Average Heading-changes 173
5.6 Average Memory (KB) 175
[>.7 Average Path-length 177
[0.8 Average Run-time, 177
5.9 Average Node-expansion (RQnits)|. 178
[5.10 Average Heading-changes: 2X Sdale 178
[5.11 Average Time (ms)onmaps 186
[5.12 Average Memory usage (KB) 186
[0.13 Average Path Length 187
[5.14 Average Time (ms) to reach goal on rst encounter ¥8
[0.15 RPF vs. Anya: Average Memoty 189
[>.16 RPF vs. Anya. Search-space 189

[5.17 RPF vs. Anya. Average Run-time

VS. Anya. etter Run-time:

List of Figures

(1.1 Path approximations 10
1.2 Von Neumann neighbourhodd 12
1.3 Moore neighbourhood 12
(2.1 Bug-1 Algorthm 22
[2.2 Bug-2 Algorithm 23
[2.3 Tangent Bug Algorithm 24
(2.4 Multi Bug Path Planning on Spiral example 25
[2.5 Grid-constrained path L. 27
[2.6 Any-anglepath 33
[2.7 Anya: Search-Tree Expansion 44
[2.8 Anya: Scenario with no solution 46
2.9 Dubins Curves CSC Combinations 47

[2.10 Electric potential eld, showing some of the gradientines . 48

[3.1 Path states with possible transitions 51
[3.2 Line of Sight. Double Corners Example 53
[3.3 Line of Sight: Inner & Outer Corners Example 54

Xi

LIST OF FIGURES Xii

[3.4 Line of Sight. Valid line-of-sight Examplefl 56
[3.5 Line of Sight: Valid line-of-sight Example 56
[3.6 Example of line-of-sight intersecting obstagle 57
[3.7 Line of Sight. Intersecting inner-corner 58
[3.8 Line of Sight: Double Corner vertex with Free Cell te)

[3.9 Line of Sight. Double Corner vertex with Free Cell { Nega- |

fivesteg 59

[3.10 Line of Sight: Double Corner occupied vertex 95

[3.11 Line of Sight. Double Corner occupied vertex { Negativetép| 60

[3.12 Line of Sight. Double Corner Vertex with free cell and Gc |

cupled previous step o 60

[3.13 Line of Sight: Double corner with free vertex { diagonadtep 61

[3.14 Line of Sight. Double corner with free vertex { negative |

diagonalstep 62

[3.15 Line of Sight. Double corner vertex with occupied cell { |

diagonal step 62

[3.16 Line of Sight: Double corner vertex with occupied cell { |

negative diagonalstep 63

[3.17 Line of Sight. Corner vertex with occupied cell and taeds |

Inquadrantfour]. 64

[3.18 Expanded cells for diagonal Line of Sight 46

[3.19 Line of Sight. Through double corner free cell { no inteection 65

[3.20 Expanded cells tor horizontal Line of Sight with obsté& . . 65

[3.21 Double corner intersection (red{vertex of pre-inteection, |

purple{vertex of intersection) 66

LIST OF FIGURES Xiii

[3.22 Double corner intersection { with negative step (redfertex |

of pre-intersection, purple{vertex of intersection)) 66
[3.23 Moore-neighbourhood relative indices 70
[3.24 Moore-neighbourhood Tracing Result 72
[3.25 Contour tracingresult 73
[3.26 Left-sided contour tracing resuft q
[3.27 Scanning steps for left-sided contour-tracing 78
[3.28 Scanning steps for right-sided contour-tracing 80
3.29 Sidedness and the Cross-Product 82
[3.30 Cornervertexcases 83
[3.31 Cul-de-sac: stage/1l 85
[3.32 Cul-de-sac: stagel2 87
[3.33 Direction Matrix rotations 89
[3.34 Triangle inequahty 91
[3.35 Back-pruning scenario: stage 1. 93
[3.36 Back-pruning scenario: stageg 2. 94
[3.37 Back-pruning scenario: stageg 3. 95
[3.38 Forward-pruning scenario: Initial stage 97
[3.39 Forward-pruning scenario: Second stage 89
[3.40 Forward-pruning scenario: Final stage 00
[3.41 Redundant path example: Casg 1 103
[3.42 Self-intersecting path in \G" shaped obstacle 105

[3.43 Solution in nested G-shaped obstacles (0611

LIST OF FIGURES Xiv

[3.44 Solution in obstructed nested G-shaped obstadles 108
[3.45 Self-intersecting path in locked-in start scenafio 109
[3.46 Self-intersecting path in locked-in goal scendrio. 111
4.1 Spiral path example: Left-rightpath 122
4.2 Spiral path example: Rightpath 123
4.3 Left-bound and right-bound paths- G-shaped object 125
4.4 Minimal line of sightchecks 132
4.5 Updating pathcorners 134
4.6 Underestimated heuristic length example 63
4.7 Underestimated heuristic length example 83
4.8 Multi-path solutions found by RPH 141
4.9 Alternate multi-path solutions found by RPR 142
[.1 Graphical User Interface 149
B2 BaldursGatell. 151
[.3 Dragon Age: Origins 152
0.4 Startcraft 152
B5 Warcraft Il 153
0.6 Mazes 153
5.7 Baldur's Gate: IxScale 160
[5.8 Dragon Age Origins: 1x Scale 162
B9 Starcraft: IxScale 164

LIST OF FIGURES XV

5.11 Mazes (32W): 1x Scale 166
[5.12 Mazes (32W): Anya Expansign 167
[5.13 Search-space of Thetg* 170
[0.14 Search-space of Anya 171
[5.15 Search-space of Ray Path Finger 172
5.16 Baldur's Gate: 2x Scale 180

£.18 Starcraft: 2x Scale 182
B.19 Warcraft: 2xScale 183
[5.20 Mazes (32W): 2x Scale 184
[6.21 Anyavs. RPF-Baldurs Gatel] 190
[>.22 Anya vs. RPF- Dragon Age: Originis 190
[5.23 Anya (Harabor et al.) vs. RPF: Warcraft 191
(.24 Anya vs. RPF:. Starcraft 191
(.25 Anyavs. RPF-Mazes32W 191
[5.26 Anya (Harabor et al.) vs. RPF Sub-sample 192
[6.1 Search space comparison 199
[6.2 Screen capture of Gazebo robotic simulator 02
[6.3 Screen capture of ROS-based Theta* path 202

[6.4 Screen capture of robotic visualisation 03

List of Algorithms

[2 Line of Sight - 1D Indexed grid variant
[2 Post-Smoothing

NeLA™ e e e e e e e e e e e e e e e e e e e
4 Lazy Theta*.
[Line of Sight - Ray Path Finder|

|4 Ray Path Finder. Contourtracing.
[5 Ray Path Finder: Identity Outer-Corner Vertex
(6 Ray Path Finder. Path Back-Pruning

[/ Ray Path Finder: Path Forward-Pruning

(S] Nalve Recursive Approach
[9 Ray Path Finder

XVi

Chapter 1

Introduction

This chapter discusses the motivation of developing path-planning algo-
rithms, and the basis on which this work has been implemented - in partic-

ular, the concepts of navigation, path-planning and map discretisation.

1.1 Introduction and overview

Arti cial intelligence, in its various forms, o ers solutions for solving prob-
lems traditionally associated with human or animal cognitin, such as natu-
ral language processing, vision, playing games or bipedalliwng, to name
a few. While the impact of these advancements on society as a ol
are subject to debate, the driving forces behind them are phisg smart
technologies towards wide-spread adoption and acceptanéaldressing the
numerous challenges of having intelligent agents such ag@omous robots
and smart wheelchairs interacting and integrating seamlgly with natural
and human-made environments implies an increase in the colexity of
hardware and software technologies. To that end, scientssand engineers
take inspiration from various aspects of nature, in everythg from arti cial

neural networks [[1] and genetic algorithms [2] to using slenmould [3] as

1

1.1. Introduction and overview 2

a tool for redrawing more e cient routes around congested ties.

The interdisciplinary eld of robotics has garnered attenion due to numer-
ous technological advances over the recent decades. As tedbgy gradu-
ally permeates all aspects of human society and the relianame automation

and arti cial intelligence solutions becomes commonplacé¢he distinction

between human and machine gets blurred. A commonality of robcs is
that of producing behaviours resembling those found in nate. Fields of
study such as bio-inspired robots and soft-robotics takedsons from na-
ture and incorporate observed designs, ideas and behavieuo address
speci ¢ engineering challenges. A key interest among thesballenges is
the problem of path-planning. As an essential component of vigation in

developing autonomous agents and video games, it has reediabundant

attention.

Path-planning algorithms are generally fast. However, cotmaints imposed
by specic environments can apply restrictions to the time wailable to

reach an optimal solution. For games with a large number of agts, for
example, the number of active agents that can perform path ahning si-
multaneously is impacted and can prove too resource intemsi Performing
fast searches is important |4] for a number of reasons: theoptem of path-
planning is only one component of the navigation hierarchyhtit integrates
into a overarching system with other components competin@if resources
(e.g. high-end video games) or, for robotics applicationsharing limited

resources that impact on system performance and time-mareagent and
are dependent of portable energy sources (e.g. planetaryweo with solar

panel charging).

The current work focuses on one speci ¢ aspect of the pathgpining prob-
lem, namely online any-angle path-planning in known 2D emgnments. In

the context of path-planning, a purely online algorithm dog not require

1.1. Introduction and overview 3

any preprocessing of the search-space. In essence, themoigurther in-
formation presented to the algorithm at run-time with the exeption of
the occupancy map of the environment. Path-panning on know2D en-
vironments is applicable to both ground based robots with rge sensing
capabilities and Al gaming characters. As such, there is intest in improv-

ing on the state-of-the-art.

The algorithms presented perform single source path-plaimg on 2D uni-
form cost octile grids and operates on a number of assumptgmamely
that the treating the search agent as a point object with no Honomic

constrains, meaning that it can travel in any direction, unestricted.

The thesis introduces a novel best- rst search algorithm fonding any-
angle paths on grid-constrained graphs. The proposed algbm is shown
experimentally to be competitive on a number of performanceetrics with
current state-of-the-art any-angle algorithms. It also pesents desirable
properties that allow it to have a reduced search-space andake it suitable

for providing any-time solutions and multiple paths.

For the purpose of this research, certain assumptions canip@de regarding

the hypothetical agent solving the path- nding problem in gwestion:

it is treated as a point object with zero width and no kinemat

constraints

it can observe its immediate environment

it is perfectly holonomic, being able to move in any directio
it only requires freedom of movement in a 2D plane

it can orient itself in the direction of a desired goal and mavin said

direction

has perfect knowledge of the map topology and/or perfect memy

of the environment it has previously explored

1.2. Motivation 4

it can transverse the environment only when no obstacle bl its

direction of travel.

1.2 Motivation

Let us consider two simple, everyday path-planning scenas that a person
would face under the umbrella of real-world navigation prdbms. The rst

problem implies the trivial task of moving inside the home,.g. going from
living-room to kitchen. For the second problem we considerrigling from

one city to another. Conceptually, both of these tasks implgolving a path-
planning problem. In practice, however, getting from Pariso London by
car or train is, in essence, a di erent challenge than walkgrfrom the living-
room sofa to a cupboard in the kitchen, for example. To solvén¢ former
problem, one can adopt a simple level of abstraction, as theahsport
infrastructure con nes the movement of a vehicle through té pre-existing
road network (e.g. restriction to lanes, direction of roadstc.). As such,
the road system may be interpreted as a graph, having a city asvertex
(i.,e. node) and roads as edges connecting cities together. réal-world
GPS-based driving assistant application (e.g. SatNav, GolegMaps) would
require higher level information to adequately represenhe road network
as a weighted, directed graph. Such a representation is nesay to re ect
the direction of travel (e.g. dual-carriage vs. one-way roa), or trac

conditions and restrictions (e.g. number of lanes, road wks, accidents

and/or congestion, speed restrictions, toll charge).

A graph can be used to abstract the indoor environment in theatter
scenario as well, for example, with a room represented by artex and
a door representing an edge in the graph. For such a problemndain,

the level of abstraction is too great as it looses informatmoregarding the

1.2. Motivation 5

free-space within a room.

Two very well established approaches to path- nding are theletermin-
istic solution (graph search with heuristics) and the reacte one, based
on environment sensor sampling. Deterministic approacheser the opti-
mum solution but are penalised by map scalability, while theeactive ones
are scale independent but do not guarantee a minimum cost paj5], [6].
However, the two aforementioned approaches generally opteran di erent
problem domains, i.e. deterministic solutions require cqutete information
about the search-space before converging to the optimal wobn, while re-
active algorithms generally have little or no prior knowlede about their
environment. The problems are referred to in the literatur@s path- nding
in known environments (deterministic) vs. unknown enviroments (reac-

tive).

Generally, with the possible exception of some bug algoritis (e.g. Tangent-
Bug), the behaviours of path- nding algorithms do not reseile behaviours
that a human would adopt. Humans are highly capable of searcly and
solving the shortest path problems given an accurate meanfscalculating a
desired metric (e.g. distance, time, energy expendituregading changes).
It is trivially obvious that a human would also use a heuristt estimation if
given incomplete information, or when relying on egocentriexternal cues

(e.g. biological clock, time of day, tiredness).

Some voices in the Al community argue that the emphasis on shest
path solutions may be misguided, as one would likely desire tntroduce
(or account for) some level of noise and ine ciency when emaiing the
real-world. Following a discussion on the power of inadmibte heuristics,

Christer Ericson's Al blog article make the point as quoted:

\...much too much e ort is spent in games in nding the shortest paths!

[...] In our everyday lives we rarely, if ever, take a shortepath. Instead,

1.2. Motivation 6

we often optimize for search e ort, taking a path we're famiar with (which
we've chunked or otherwise memorized so as to require no skar Well,

the same applies to games and the A* algorithm["[7]

Human navigation is the concept in which humans visualise rtes in their
head to get from start to destination, using a variety of na\gational strate-
gies. The simplest of this form would be to identify a referee point, and
adjust route path as the landmark gets closer or further awathrough sen-
sory feedback. This has been considered to be an approxinoati due to
human error { the inability to accurately generate a cognitte map. There
are several parameters which humans take into account - suab shortest

distance, least time, rst noticed route as explored by [8].

Research from the Imagery Lab at the Harvard Medical School axines
human navigation [9]. Generally, people use measures oftdige or time

of travel and absolute directional terms, i.e. cardinal pats, in order to

visualize the best route when navigating. These strategi@se considered
part of an allocentric navigation strategy, which is charaerised by an
object-to-object representational system. Information laout the location

of an object or its parts is encoded with respect to other obges. Comple-
mentary to this strategy, in an egocentric navigation straégy an individual

relies on more local landmarks and personal directions @leight) to visu-

alize a route when navigating.

A complete layout for a cognitive engine based on human or amal spa-
tial cognition remains an open question. Nonetheless, somktle ideas
presented in this work attempt to crystallize, in part, someof the prin-
ciples that could underline the strategies for reasoning aie geometric
representations of spatial layouts. Inspiration can be dven from an in-
trospective look on spatial reasoning and navigation behiaurs, as well as

other path-planning methodologies available in the litetaire. In order to

1.3. Path planning and navigation 7

set the foundations for an any-angle path-planning algohin, we consider
a number of thought experiments aimed at identifying reasamg strategies
of a human-like agent navigating towards a destination. Ldang at the

problem through the prism of human behaviour, a number of gqs&ons
arise. Most notably, we wish to ask: How does a human attempt &olve a
shortest path problem in a realistic environment? If a cogtive plan can be
identi ed from such thought experiments, what insights cold be used to
outline a path-planning methodology? How well would such angorithm

fare against existing algorithms?

1.3 Path planning and navigation

The problem of searching for shortest paths nds applicatitzs in diverse
areas [[10], such as package routing in data networks (e.g. PR4 Routing
Information Protocol, OSPF - Open Shortest Path First), roue planning
and guidance (e.g. Google Maps), tra c congestion managemi video
games, to name a few. While conceptually broad, the focus ofishwork
is on nding shortest paths in 2-dimensional environmentsas it applies to

the eld of robotic navigation.

Navigation is the process of ascertaining one's position,goining a route
and following the route towards a desired destination. Loakg brie y at

navigation in animals, natural selection has provided biogical agents with
diverse solutions to tackle various challenges of navigati. Throughout the
evolutionary process within the animal kingdom, the probia of navigation
has been of paramount importance for the purposes of survivan the vital

challenges of nding food and water, avoiding predators, te@rning to a

nest.

An abundant variety of sensing organs has evolved in the aniindngdom

1.3. Path planning and navigation 8

that tackle these trials, in forms such as olfaction for dettion of chemical
markers (e.g. recognition of siblings, detection of poteial mates, territo-
rial boundary marking, insect chemical trails), echolocatn (e.g. dolphins,
bats), detection of electric elds (e.g. sharks, platypus)magneto-reception
for detecting the Earth's magnetic eld (e.g. homing pigeos), infra-red
sensing (e.g. shakes, vampire bats), as well as presentingetse means
of locomotion to seek out sources of energy or avoid predatiand other
harmful environments, and proprioception for perceiving wwvement and
spatial orientation within the body. Human navigation has had its own
revolution, as we moved away from relying solely on our sessand found
solutions within technological elds, from compasses andas maps, to

radar navigation and GPS systems in modern times.

In the elds of robotics and video game development, navigiaig has also
presented a challenge. For the purpose of robotic navigatiothe prob-
lem can be broken down into several sub-problems: localigat (knowing

where one is), obstacle avoidance (detecting and avoidingjects in the
immediate environment), mapping (storing information in nemory about
the environment), path planning (constructing a plan from ae's current
location to a destination) and exploration (discovering o&'s environment).
Among the key aspects from this list, this work will focus on té problem
of path-planning, which has garnered attention due to a widset of chal-
lenges and a complex problem domain. Generally speakingipalanning

consists of nding a path between a given start location and given goal
location if such a path exists. This task implies a level of lawledge about
one's relative or absolute location. For an intelligent age navigating an

environment, decision-making rules would seek to minimiske energy ex-

penditure required in planning and navigation.

1.4. Map discretisation and notations 9

1.4 Map discretisation and notations

An intelligent agent (robotic platform) operates in a contiuous environ-
ment, typically a Cartesian plane as is represented byy) 2 R®. We
assume a holonomic ground robot in a 2-dimensional at endnment.
The set of valid poses the robot can nd itself in is known as stfree space.
Invalid states correspond to obstacles or poses the robotncet occupy.
This allows partitioning robot con guration into two classes: free space -
Ciee and occupied spacelR? Ciee . Given this con guration, the prob-
lem of path-planning can be described as identifying the sef valid states
belonging to Csee that get the agent from one con guration to another.
An intelligent robot would also require a means of perceptiofi.e. sensors)
to sample the environment. With local measurements d@se , it would
require the ability to localise (determine where it is in theenvironment),
and constructing a representation oCs..e - mapping, based on sensor in-
puts. Performing simultaneous localisation and mapping.6. SLAM [11]
[12], [13], [[14]) implies determining its pose anGse. Without knowing ei-
ther, by sampling the environment. For the path planning tak, however,
the existence of a map is assumed implicitly. Given a known mnuous
environment, an e ective discrete representation is reqred for storing, ma-
nipulating and querying the free space. This involves mapgsiiretisation, or
spatial decomposition, by which the continuous environmems discretely
sampled to represent space itself, rather than having to d@isminate or

identify individual obstacles [15].

Discretising a path allows a continuous path to be realised &a 2-D graph-
ical format. Grid paths are created from simple iterated gewetric shapes.
Within a two-dimensional representation the three most popar types of
grid paths are square, triangular and hexagonal. The most onon being

the square type. They are considered the easier grid shapeuse for two

1.4. Map discretisation and notations 10

GOAL GOAL GOAL

/

START START START

A Tile Path A Hex Path An Octile Path

Figure 1.1: Path approximations on grid geometries { true shitest path
(thick line) vs grid-constrained path (thin line with heading change)([15]

reasons, one being the ability to map coordinates into a Casian format,
and the axes of the of which will hence be orthogonal. Hexagdnmaths
present a decreased path-length distortion in comparisom tsquare grids
but are not as simple to manipulate. The path-length distolibn for paths
on a square grid is increased in comparison with a continuopsth { the
shortest path on the graph is not the shortest patti[4]. Figurg.] shows ap-
proximated paths using square tiles, hex tiles, and octallés in comparison

to actual optimal path (i.e. linear distance).

A structure G = (V;E) describes a graph that comprises of vertices or
nodes, belonging to a se¥, and of edges that belong to seE, such that
an element oft is de ned by an arcfvy;v,g E, with the two component
verticesv; 2 V and v, 2 V. The graph structureG = (V; E) is comprised
of discrete samples of the continuous environmel®® such that the totality

of free regions inG bound by edges inE describeCsee (the free space),
while the non-free regions irG bound by edges inE describelR? Ciree
(the occupied space). A graph can be traversed by travellifgpm node to

node along edges.

Many types of graphs can be adopted. For example, a directedagh is

1.4. Map discretisation and notations 11

one that limits the direction of travel along an edge. If no sth restrictions
apply, the graph is considered undirected. In a weighted goh, values
are associated with edges. The \weights" re ect the cost ofaversing the

graph through the respective edge.

A grid induces a graph where each node corresponds to a celtlam edge
connects nodes of cells that neighbour each other. Four-pbconnectivity
will only have edges to the north, south, east, and west, wheas eight-
point connectivity will have edges to all cells surroundinghe current cell.
For our purposes, the implementations presented in this worassume an

undirected, un-weighted 8-connectivity grid graph (FiguréL.3).

The algorithms presented in this work operate on an un-weitgd 8-connectivity
grid graph G(V; E) with vertices indexed as a 1-dimensional array, and de-

scribed by the relationships:

X=1i modW (1.2)
y= bv'v—c (1.3)
i=W y+X (1.4)

where,s; 2 V, x and y represent the Cartesian coordinates of the node
and W represents the discrete width of the map (number of tiles peow

for a square-grid tessellation).

1.4. Map discretisation and notations 12

Figure 1.2: Von Neumann neighbourhood (4-connectivity)

Figure 1.3: Moore neighbourhood (8-connectivity)

1.4.1 Heuristics

Generally, path-planning algorithms require a means of estating the dis-
tance between two locations. For this purpose, one employsuristic esti-
mations based on knowledge and/or assumptions about the émnment.
For addressing the shortest path problem two properties ofelristic func-

tions are considered.

1.4. Map discretisation and notations 13

Admissible heuristics

An admissible heuristic cannot overestimate the cost of reasiag a goal.

For a heuristic h(s) to be admissible it must respect the inequality:

h(s) h(s); 82V (1.5)

whereh(s) is the estimated cost of travelling froms to the goal andh (s)

is the actual cost of travel.

Consistent heuristics

A heuristic function is said to be consistent, if its estima is always less
than or equal to the estimated distance from any neighbourinnode to the
goal, plus the step cost of reaching that neighbour. A congsit heuristic
is also considered admissible, meaning that it never ovetiesates the cost
of reaching the goal. Formally, for every nods and each successa® of s,
the estimated cost of reaching the goal froma is no greater than the step

cost of getting to s? plus the estimated cost of reaching the goal frorsf:

h(s) g(s;sH)+ h(sY (1.6)

whereh(sgoa) = 0, h is the heuristic function, s is a node in the graph,s°
is any descendant o§ (parent(s9 = s), g(s; s is the cost of reaching node

s from s, and syoq is the goal node.

Distance metrics

The choice of heuristic is also dependent of the freedom ofvement [17] on

the graph: For square grids that allow 4 directions of moveme(e.g. sliding

1.4. Map discretisation and notations 14

puzzle games) with neighbours belonging to the Von Neumannigkbour-

hood illustrated in Figure[1.2, the Manhattan distance is sucient:

Dwmanhattan (P1:P2) = jX2 Xaj + Y2 Vij (1.7)

On an octile square grid that allows 8 directions of movemeie.g. chess)
with neighbours belonging to the Moore neighbourhood illtrmted in Fig-
ure [1.3, the heuristic of choice is the Chebyshev distancer (Biagonal

distance):

D Chebyshev(P1; P2) == Mmax(jXz Xij;Jy2 Yai) (1.8)

A special case of the Chebyshev distance is the Octile distan For square
grids that allows 8 directions of movement and have a diagonstep cost
of D, = P 2 and an orthogonal step cost oD = 1 the Octile distance is

used instead:
Dociile (P1; P2) := D max(jx2 Xij;jy2 y1j)+(D2 D)min(jXz Xij;jy2 Yij)
(2.9)

The consistent heuristic for square grids which allow any mhiction of move-

ment (e.g. any-angle paths) is the Euclidean distance:

p
Deudlidian (P15 P2) == (Xstart ~ Xend)? + (Ystart ~ Yend)? (1.10)

On Euclidean graphs the straight-line Euclidean distances both admissi-

ble and consistent([4].

1.5. Contribution 15

1.5 Contribution

The contribution presented in this work addresses the proén of online

any-angle path-planning on 2D octile grids with uniform cds

The methodology presents an atypical any-angle path-plamyg algorithm
which uses a best rst-search strategy to race individual plas towards a
target with a free-space assumption. The paths exhibit bulike properties
in that they either move towards a target or wall-follow, butare allowed
to terminate early. The algorithm operates purely online vih no pre-
processing of the map, and is competitive with state-of-thart alternative

algorithms.

Wall-following determines points on the obstacle's boundg that are can-
didate heading changes in the path. The path is analysed andypred in
order to maintain its tautness at each step. Together with ayrely heuris-
tic cost based on the assumption of free-space between hagdchanges,
the algorithm drives the search towards expanding the most@mising path
rst. Once a path has reached the goal, it checks the free-spaassumption
between its heading changes and updates its cost accordingihe short-
est path is determined when the cost estimate of any remaimgrpaths is

greater than the solution path.

Paths propagate towards the goal through free space in a sight line using
a novel adaptation of Breshenman's line algorithm for 1D-gexed grids.
The algorithm performs a line-of-sight search between twoomts and, if
an obstacle is encountered, returns the intersections ptsrsituated on the
boards of the obstacle. These points are then fed to the wédilowing

algorithm.

For the purpose of emulating a wall-following behaviour on2 octile grids,

we introduce a novel and elegant contour tracing algorithm, lch is used

1.6. Chapter Summary 16

by paths to explore the free-space around an object.

The algorithm presents some desirable properties that alloit to have a
reduced search-space, and as a best- rst search algorithinallows for any-
time solutions. It can also be adapted to provide multiple dotions with

an increase in run-time.

1.6 Chapter Summary

The chapter introduces the eld of path-planning within the broader con-
cept of navigation. We describe the problem domain and the mwation
for having undertaken the current research, and present anerview of map

discretisation for 2-dimensional ground-planes into ocpancy grids.

Common heuristic functions used in path-planning on occupay grids
are introduced. They allow informed path-search algorithsito judge the
preferable course of action when searching for a connectedite through

the free-space between a start point to a destination point.

Finally, we introduce our contribution in the form of a best-rst search
algorithm that propagates individual bug-like paths towads a goal with
a free-space assumption and optimises the paths that have deait to the

target.

Chapter 2

Path planning methodologies

This chapter introduces path- nding methodologies from the
literature that are relevant to the research presented in this
work. Three classes of path- nding solutions are of interest,
namely, bug algorithms, grid-constrained algorithms and any-

angle algorithms.

2.1 Introduction

The current chapter introduces some path- nding methodolgies from the
literature that are relevant to the research presented in tls work. The
focus is on three classes of algorithms: bug algorithms, gddnstrained

path- nding algorithms and any-angle path- nding algorithms.

A number of existing methodologies for path-planning are lsad on varia-
tions of the A* algorithm. Because of the success of A*, it has be widely
adopted by developers in the elds of robotics and video gamme When
applied to path planning on grid maps, however, the solutiogan result

in unrealistic looking paths, with paths being restricted ® orthogonal or

17

2.1. Introduction 18

45 orientations. Additionally, shortest path solutions only fave heading
changes at the corners of obstacles, but A* can have arbitrafyeading
changes other than those at the corners of obstacles. The Agatithm is
based on Dijkstra's algorithm for graph transversal, but beause A* was
originally designed for weighted graph transversal, and arguably one of
the most popular general-purpose graph search algorithm$an there's a
way to estimate the distance to the goal[18]. The majority gbath- nding

algorithms are variations on Dijkstra's graph search algghm and A* (e.qg.

HPA [19], DHPA* & SHPA* [20], Best- rst search [21], D* |22], IDA* [23]).

Generally, path-planning algorithms use heuristic cost fictions to deter-
mine the order in which the algorithm visits nodes in the seah-space. A*
uses a knowledge-plus-heuristics cost function composeairi the sum of
a past path-cost function (distance from the starting noded the current

node) and a future path-cost function (a heuristic estimatef the distance
from the current node to the goal). These solutions fall undethe cat-

egory of grid-constrained algorithms and thus have shortoongs such as

unnecessary heading changes resulting in unrealistic lawk paths.
A good path-planning algorithm aims to have a number of propges:

Correctness - if a solution is found, there exists a path 2 Cyee that

connects the start and goal nodes.

Completeness - the algorithm can correctly answer whether or not a

solution exists.

Optimality - if a solution is found, the identi ed path is the shortest pah

from start to goal, given the constrains of the algorithm;

2.1. Introduction 19

Until recently, the existence of an on-line, optimal, any-agle path nding
algorithm was an open-ended question. Courtesy of Harabor at the
a rmative answer came in the form of Anya, an online, optimal,any-angle
algorithm [24], [25]. Anya does not require any pre-procesgi of the map
and performs searches an order of magnitude faster relatieA* on grid-
maps. A generalised version of Anya, called Polyanya [26],temds the

original functionality of Anya to navigation meshes.

The main focus of our work is on purely-online algorithms wbih does
not require any pre-processing of the topology prior to a se&. While
algorithms that perform o -line pre-processing of the map bforehand have
good on-line performance [([27]/128], 129]), they have ca&n undesired
properties which limits their uses and e ectiveness. Beferany search,
the search graph must be pre-computed during an o -line prprocessing
step. Another limitation is that, if the search space changest any point,
the search graph is invalidated and must be reconstructed dine, which
can be prohibitively resource intensive. For example, Suh-an any-angle
variant of Subgoal Graphs (2-level), while dominating putg online any-
angle algorithms (e.g. Theta* family, Field A*, Block A*), can require up

to 35 seconds of preprocessing tinme [29].

Using graph algorithms on uniform grids may not scale very welwhen
map topologies contain relatively few obstacles and a largenount of free
space. Some, like Jump-Point-Search, have attempted to adds these

problems [30].

With the exception of Anya [24] and Polyanyal[26], to the authds knowl-
edge, no other online, optimal, any-angle algorithms exssiat the time of

this writing.

2.2. Bug algorithms 20

2.2 Bug algorithms

Bug algorithms are a class of path- nding methodologies famavigating
unknown environments ([31],[132]/133],_[34], [35[, 13684, [37], [33],139],
[4Q], [6], 141], [142]). Generally, bug algorithms are empted by robotic
agents, making them dependent on the hardware setup of thebat [43].
Bugs are a class of reactive simple automata that perform daseeking be-
haviours in the presence of non-drivable areas. These algjuns operate
by alternating between two behaviours: wall-following (tacing the bound-
ary of an obstacle until a condition is met) and motion-to-gal (travelling
towards a target until it is reached or the bug encounters anbstacle) [44].
Bug algorithms are among the earliest and simplest planneasid have the

bene t of having provable guarantees.

Sensors are a quintessential component of a robot running agoalgorithm.
Sensors such as tactile, range, imaging cameras are usecdtdétect its im-
mediate environment[[45]. Odometry information or other exernal signals
(e.g. RFID, GPS, landmarks) are also required to establish ¢hdirection
of travel, and/or estimate the distance to a goal. The robot lao requires
the capacity for memory (or possibly marking its position vth a token),
in order to determine if a location had been previously visid [46]. These
agents can be susceptible to errors because of imperfectssennformation,
cumulative errors in odometry due to wheel slippage or slovath rates etc.
Bug algorithms in general operate under the assumption of gect infor-

mation and error-free sensor data.

Operating without a map, fundamentally limits a robot's befaviour, as it
cannot see the \big picture" and therefore takes paths thatre locally but

not globally optimal [44].

The following sections summarise some of the more populargoalgorithms

2.2. Bug algorithms 21

that present relevant parallels (Chaptef B) to some behawiws of the novel

methodology introduced in this work.

2.2.1 Bug-1 Algorithm

Developed by Lumelsky and Stepanov, the Bug-1 algorithm [Binvolves
a mobile robot navigation strategy in unknown environmentsThe robot's
behaviour relies of tactile sensors to detect obstacles. Axaenple scenario
is provided by Figure[2.1. It starts from a given start positio and moves
towards a goal, unless it encounters an obstacle. The poirftintersection is
memorised and labelled, after which it proceeds to trace tludstacle on the
left-hand side. During the wall-following procedure it degrmines and labels
the leave point by calculating the distances between the cuamt position
and that of the target. The leave point is the point on the obsicle's
boundary that is closest to the goal. When the robot revisitshe point of
intersection, it tests if the target can be reached by cheaky if the robot
can move towards the target at the memorised leave point. lhis check
fails, the target is unreachable. Otherwise, the robot chses the wall-
following direction of minimal distance between the inteection and leave
points. After reaching the leave point a second time, it reves back to
moving towards the target. This cycle repeats until a solutin is found or

the algorithm determines that the target is unreachable.

In essence, Bug-1 searches each obstacle's boundary for iatpdosest to
the goal. If the robot determines that the target is reachalel, it can infer
that by leaving at the memorised leave point, it will never reencounter the

obstacle.

2.2. Bug algorithms 22

Figure 2.1: Bug-1 Algorithm [47]

2.2.2 Bug-2 Algorithm

Lumelsky and Stepanov present a second, less conservatiug falgorithm
in the form of Bug-2. As an augmentation to Bug-1, the Bug-2 atgithm

[31] is a greedy algorithm that can leave an obstacle's boumg earlier
than Bugl. It does so by making use of the M-line, an imaginatine that

connects the start and target points. A mobile robot runninghe Bug-2
algorithm initiates a move towards the goal, following the Mine, until

it either reaches the target, in which case it terminates, @it encounters
an obstacle. If the latter happens, the point of intersectio is memorised
and labelled, after which it proceeds to trace the obstaclendhe left-hand
side. Wall following continues until it nds the initial M-I ine again. Oth-
erwise, if the robot makes it back around to the intersectiopoint without

encountering the M-line, it infers that the target is unreahable. If the
point identi ed on the M-line, however, is closer to the targt than any
other point (i.e. current distance to target is less then prgous shortest
distance - initially d = Distance (Pintersection ; Prarget)) and the robot is able
to move towards the target, the position is labelled as a leavwoint and
memorised, after which it cycles back and resumes followirlge M-line.

Otherwise, if the robot cannot move towards the target, it cotinues the

2.2. Bug algorithms 23

wall-following procedure andd is updated to re ect the new shortest dis-
tance: d = Distance(Pcurrent ; Ptarget).

..
_-" goal

Figure 2.2: Bug-2 Algorithm [47]

Bug-2 is a greedy algorithm that performs better on topologs with simple
obstacles. In contrast, Bug-1 performs an exhaustive selayalways tracing
the full contour of an obstacle before deciding on the leaveipt Both Bug-

1 and Bug-2 can outperform each other depending on the topgipof the

environment [15].

2.2.3 Tangent Bug Algorithm

An alternative approach to Bug-2 was proposed by Kamon, Riviiand
Rimon. Their algorithm, TangentBug [36] uses 360 degree tiiace sensors
to build a local tangent graph of a robot's immediate surroutings and uses
it to minimize the path length by movement towards a \locally optimal
direction”. The local minimum is de ned as the smallest vala within a
set of points, which may or may not be a global minimum. In thease of
the Tangent Bug, this would be a obstacle in the path, as detesd by the

Sensors.

The underlying concept of the TangentBug algorithm (Figur¢ 3) is de-

scribed as follows: A "motion{to{goal' behavioural patten is followed as

2.2. Bug algorithms 24

long as the path, unless an obstacle is detected by the serssolf a local
minimum (obstacle) is detected by the sensors, the algoritihh would then
switch to a line following behaviour. During this period, tle minimal dis-
tance between current position at the sensed boundary, an@a node is
calculated repeatedly. Once this value is less than the distce between any
further obstacles (or distance to goal if no further obstaek), the algorithm

would return to the motion{to{goal behaviour.

S\, -

sm

\ . \'
N “-". \ th ‘. ‘
{ \ /,/’7‘\ % g

i IR,
I \ /

b, H/ /'

e D

Figure 2.3: Tangent Bug Algorithm [36]

2.2.4 MBPP - Multi-Bug Path Planning

A 2016 paper([48] presents a multi-bug path planning algohin reminis-
cent of ABUG [6]. The \Multi Bug Path Planning” (MBPP) algorith m
presented in [[48] operates under a free-space assumptioithvan initial

bug moving from a start node towards the goal node. If the bugheounters
an obstacle, it generates a new bug, and they proceed along tbbstacle
walls in opposite directions. The same bug generation is eloyped for any
new obstacle encountered, until the target node is reacheg all live bugs.
MBPP thus evaluates the resulting paths and chooses the beastute. Each
bug follows the wall of the obstacle until it encounters the Mine (imag-
inary line between the start and goal nodes). It then leaveé obstacle
edge and reverts to moving towards the goal. During the walbllowing

procedure a line-of-sight check is continuously being perfmed between

2.2. Bug algorithms 25

the current position on the wall and the last state in the path A visual
representation of MBPP solving a spiral scenario can be seén Figure
2.4. The experimental results presented by Bhanu Chander et. [4€]
show an improvement in comparison to paths generated by A* WwitPost-
Smoothing. To the author's knowledge, no large-scale expaental results
have been presented as of this writing (such as maps from theolding Al

Lab database).

Figure 2.4: Multi Bug Path Planning on Spiral example[[48]

The paper describes MBPP as an o ine bug algorithm for known mviron-
ments. The principle of operation of MBPP along with other ajorithms
(e.g. TangentBug [[36], Theta* []4], HCTNav [|5]) share some silarities
with the methodology presented in the current work, which a discussed
in detail in Chapter[4. Our proposed methodology races pattiswards the
goal (in a motion-to-goal behaviour similar to that of TangatBug), split-
ting them when an obstacle is encountered, which is reminest of the bugs
generated by MBPP and the path-splitting behaviour of HCTNav. Both
MBPP and Theta* perform continuous line-of-sight checks wilke exploring
the search space. However, our methodology di ers from theakgorithms
in that it only performs line-of-sight sparingly, in two mamers: when op-

timizing a path that has already reached the goal or when mowntowards

2.2. Bug algorithms 26

the goal through free space. In addition, unlike MBPP, our glorithm does

not require for all paths to terminate before the solution iseached.

2.3. Grid constrained algorithms 27

2.3 Grid constrained algorithms

For 8-connected regular grids, a grid-constrained path issequence of cell
corners where consecutive pairs of cell corners must beldaghe same grid
cell. Formally, given a nodes; 2 G(V; E) belonging to a grid-constrained
path, the node belongs to the Moore neighbourhood of the patenode:
si 2 M (parent(s;j)). For example, grid-constrained A* with an consistent
heuristic nds the shortest path composed of edges bound tbe grid, but
not a true-shortest path, such as would be identi ed by A* on \gibility

graphs.

B Ss%rt
A

. Blocked cell ® Vertex

Figure 2.5: Grid-constrained path found by A*: heading changeccurs at
Ba4; fSstart ; Ba; Cs; Ssiopd is Not taut around D4 obstacle

The grid-constrained algorithms described in this work opate on 8-neighbour

grids.

2.3.1 Dijkstra's algorithm

Dijkstra's algorithm, published in 1959 and named after it€reator, Dutch
computer scientist Edsger Dijkstra, can be applied on a wdited graph

[49]. Dijkstra's algorithm nds a shortest path tree from a #gle source

2.3. Grid constrained algorithms 28

node, by building a set of nodes that have minimum distancedm the

source.

Most grid-constrained path-planning algorithms are varitons on Dijk-
stra's algorithm. The algorithm maintains two structures: {a closed list,
in essence, a set which contains all the nodes that have beemanded
(Cexplored’) { an open list, which is a set that contains the ades of the

search space that are not in the closed list (‘unexplored’).

For each node in the search space, Dijkstra's algorithm maains two val-
ues: ag score which represents the length of the shortest path fronme
start node to the currently expanded nodes, and a reference to the parent
of nodes, parent(s), so that the start node can be traced back after the
end node has been reached. The parents of amy® S form a search tree
that root at the start node. The cost function of each node isimply the

distance travelled from the start node:

X
g(s) = g(parent(s)) + D(parent(s);s) = D(si; parent(s))) (2.1)

i= start

where g represents the cost of reaching a speci c node represents the

index of nodes and D represents the distance between two nodes.

Dijkstra's algorithm works by visiting nodes in the graph sarting with the
starting node sg,¢ - Similar to a ripple in a pond, it propagates from the
starting node and expands each node until it reaches the goah visited
node is only ever expanded once. The algorithm repeatedlyagnines the
closest node not yet examined, adding its vertices to the set vertices to
be examined. It expands outwards from the starting point url it reaches
the goal. Dijkstra's algorithm is guaranteed to nd a shortest path from

the starting point to the goal, for any graph with non-negatve step costs.

For a nite search space, Dijkstra's algorithm terminatesn one of two

2.3. Grid constrained algorithms 29

cases. It either detects that the end node has been reachedwhich case
it reconstructs the path by following the parents of each naalfrom sy, to
Sstart » OF it exhaustively expands all connected nodes in the sehrspace
until the open list becomes empty. The only requirement fornie algorithm
to be correct, complete and optimal is that the lengths of akdges in the
graph are non-negative, and thus it can be used to search anydiidean

graph.

2.3.2 A* algorithm

Developed by Peter Hart, Nils Nilsson and Bertram Raphael, tha algo-
rithm [18] is the result of pioneering research on \Shakey érobot" de-
veloped at the Stanford Research Institute. Designed as danmed search
variation on Dijkstra % algorithm, A reduces the search runtime with-
out impacting the length of the resulting path. It does this ly employing
a focused search so that the goal can be found with a shorterntime
and generally with fewer node expansions. In order to accohgh this,
the algorithm makes use of a knowledge-plus-heuristics t@snction that
records a score for each node that it explores. This score @mprised of
two components: the cost of travel (known) and an estimationf the cost
of reaching the goal (heuristic cost). The cost functiof associated with

a nodes 2 G(V; E) is computed by:

f(s) = g(s) + h(s) (2.2)

where g represents the cost of travel from the start node tg, and h rep-
resents an estimate of distance frora to the goal node. The value ofy is
described by Equation 2.1. In contrast toA , Dijkstra % algorithm only
preserves information about the cost of travelling from thetart node to s,

that is to say, a node'sg value, makingDijkstra % algorithm an uniformed

2.3. Grid constrained algorithms 30

search-algorithm.

The choice of selecting a heuristic function fok can impact the behaviour
of the algorithm [17]. When considering the heuristic funabin in Equation
2.2, the algorithm's behaviour can be altered if théa score function is set
to 0. As such, only theg is taken into consideration, and in essencé,
denatures intoDijkstra % algorithm, which is still guaranteed to nd the
shortest grid-constrained path. On the other hand, ih is always lower
or equal to the cost of moving frons to the goal, which implied having a
consistent heuristic,A is guaranteed to nd a shortest path. The lower the
h score, however, the more node need to be expanded, in turnreesing the
runtime of the algorithm. A can also be made to run faster by providing
a non-admissible heuristic (i.e. one that violates 1.5). ne relaxes theh
score so that it sometimes overestimates the cost of movingrh the current
node to the goal A is no longer guaranteed to nd a shortest path, but this
can prove a reasonable trade-o as it can reduce the algorittis runtime.
In special cases, ii(s) is exactly equal to the cost of moving frons to the
goal, then A will only follow the best path and never deviate, making it
very fast. The choice of heuristic can be a useful tool in tramy run-time

performance for longer paths.

The only requirement forA to be complete, correct and optimal is that the
lengths of all the edges in the graph are non-negative and tithe h-values
are admissible. On Euclidean graphs the straight-line Eudkean distance,
is both admissible and consistent [50]. In our implementain, A is imple-
mented with the completeness, correctness and optimalityrqgperties and

uses the Manhattan distance heuristic.

The pseudo-code for theA algorithm is presented in Algorithm 1. The
methodology employed by theA algorithm is similar to that of Dijkstra,

except that the cost function that it computes during the expnsion process

2.3. Grid constrained algorithms 31

is dierent: Dijkstra % algorithm, chooses the next node based on the

smallestg score, whileA chooses the node with the smallest score.

Algorithm 1 A*

2: g(sstart) 0

3 opem ;

4: opeminsernt (Sstart ; I(Sstart) + N(Sstart))
5: closed ;

6: while opené ; do

7 s openPop()

8: if S= Sgoa then

9: return \path found"

10: closed closed| s

11: foreach s°2 nghbrs(s) do
12: if s Z closedthen

13: if s2openthen

14: parent(s%® NULL
15: 9(s9 1

16: UpdateVertex (s;s9
17: return \no path found"

18:

19: function UpdateVertex (s; <9
20: Goa 9(9

21: ComputeCost (s;s)

22: if g(sY) <goq then

23: if s°2 open then

24; openRemove (s9

25: openinsert (s%g(s%) + h(s?)
26:

27: function ComputeCost (s;s?)
28: if g(s)+ c(s;s%) <g(sY then
29: parent(s®) s

30: a(s) g(s)+ c(s;S)

The A algorithm is arguably one of the most popular online path-phning
and graph traversal solutions, due in part to its simplicitybut also because

of its optimality guaranty.

As long as the h-values provide accurate estimates of the I¢ing of shortest
paths from a vertex to the goal vertex, the expansion equatiocomputed

by A is more informed than the one computed byijkstra % algorithm.

2.3. Grid constrained algorithms 32

Thus, an A search is able to avoid examining a larger number of paths
in the graph than a Dijkstra search, which often results in sbrter run-
times. As A is a essentially a graph algorithm, it can run on any graph
representation. When run on visibility graphsA indeed nds true shortest
paths, as true shortest paths have heading changes only atetltorners
of blocked grid cells. HoweverA on visibility graphs can be slow, as
shown experimentally by [50]. Runningd on visibility graphs requires pre-
computing of a map's visibility graph, a procedure that can b exceedingly
expensive and which is done o -line, in a preprocessing s&ags50]. On
octile graphs, however, the paths found byA are arti cially constrained
to be formed by edges of the octile graph. Paths found b% on octile
graphs are not true shortest paths and are unrealistic loaky since they
either deviate substantially from the true shortest paths phave excessive

heading changes, which provides the motivation for smootig them.

Because of its simplicity and versatility along with its opimality guaran-
tee, the A algorithm has garnered widespread adoption. A number of
existing methodologies for path-planning are based on vations of the A

algorithm.

When applied to path planning on grid maps (octile graphs), heever, the
solutions found can result in unrealistic looking paths du® unnecessary
heading changes. For evaluation purposes, th variant operating on
octile graphs has been chosen. Optimizations to th& algorithm have
attempted to addressA 's limitations. In terms of performance, a notable
mention, the Jump-Point-Search algorithm [51] works by redting symme-
tries in the in the search space. It accomplishes this by meaf graph
pruning, thus being able to \jJump over" nodes in a straight Ine without
expanding them. Although it can potentially reduce the runmg time by

an order of magnitude, it still produces unrealistic lookig paths. Theta*

2.4. Any angle algorithms 33

and Light-Theta* are two any-angle algorithms that build ontop of the
A algorithm in an attempt to improve on the issue of unrealist looking
paths. The algorithms accomplish this by propagating infanation along
grid edges. The most relevant of the above mentioned algdnihs are de-

scribed in more detail in the following sections.

2.4 Any angle algorithms

Any-angle path-planning algorithms are a class of path- naig algorithms
that search for paths between two nodes in the free-space bsopagating
information along graph edges, similar to grid-constraimealgorithms, but
without restricting the paths to be formed by graph edges. Aansequence
is that a given node can have as a parent any other node as lorsthere is a
line-of-sight between them:8s 2 G(V; E) and 8s°2 G(V;E) : parent(s) =
sPif LineOfSight (s; <) is true. Two vertices are de ned as having line-of-
sight if the segment connecting them does not pass throughetlinterior of
any occupied grid cells nor between any orthogonally or diagally adjacent
pair of occupied grid cells (i.e. any pair of occupied celladt share one or

two vertices).

E
D ®
'S'sop
00
C .-
*
“"

. Blocked cell ® Vertex

Figure 2.6: Any-angle path: heading change occurs only &t

2.4. Any angle algorithms 34

Generally, any-angle solutions place vertices at the comseof the grid cells,

rather than their centres.

Line-of-sight

Performing line-of-sight checks between nodes in a gridaggh enables any-
angle algorithms to partially uncouple the path's topologyrom that of the
grid-constrained exploration of the free-space. The patB partially uncou-
pled because the vertices forming an any-angle solution as#l bound to
the graph. Performing a line-of-sight on a 2D regular grid isquivalent to
drawing a line plot on a raster display. For this purpose, anxéremely pop-
ular line drawing algorithm is introduced, which has been sl extensively

in computer graphics.

Bresenham's line algorithm [52], developed at IBM in 1962 hjack Elton
Bresenham, is an incremental error algorithm and one of theadiest al-
gorithms developed in the eld of computer graphics. It can & used to
determine the points of a raster which most closely approxiate a straight
line between two given points. The e ectiveness of Bresenimgs algorithm,
is that it can be implemented using cheap operations [53] fonodern ar-
chitectures: integer addition, subtraction and bit shiftng. The line-of-
sight algorithm (Algorithm 2) is used by a number of algorithns such as

A with post smoothing and the Theta family.

The line-of-sight algorithm presented in Algorithm 2 is a funtionally equiv-
alent re-factored variant of Bresenham's line algorithm msented by Nash
et al. in [4]. The main distinction is that the implementation of Algorithm
2 operates on a grid-map with vertices indexed on a 1-dimeasal array (as
described by Equation 1.1), and it restricts a path from crasng between

diagonally adjacent occupied cells for all path-planninglgorithms.

2.4. Any angle algorithms 35

In order to control for potential variations in performancemetrics due to
di erent implementations of the line-of-sight algorithm in the literature,
all path-planning algorithms presented in this work which equire line-of-
sight checks make use of the same implementation presentadiigorithm
(2). The one exception is the novel path-planning methodaly presented
in Chapter 3, which requires a more complex variant of the lerof-sight
algorithm, but which is directly derived from Algorithm (2). This varia-
tion of Bresenham's line algorithm is described and discuess separately
in more detail in Section 3.2. The line-of-sight is led by a diing axis
going from Sgart t0 Ssiep. The driving axis always advances bgtepmajor
determined based on the maxim displacement between the peofions of
the two nodes on the orthogonal axes. No displacement on onetlod axes
implies orthogonal movement which routes execution onto é\if" branch
at Line 19. The \else" branch at Line 26 handles non-orthog@h move-
ments, by accumulating the error in slope. The line advances ¢he minor
axis (non-driving axis) if the error exceeds the slope, andhé error is re-
set. Sometimes, moving on the minor axis results in no errokife 32).
This occurs in situations where the path passes through thertex exactly,
without a ecting neighbouring cells, thus, the vertex need to be checked
to verify it is not a double corner (Line 34). The main while lop termi-
nates early for any grid-cells that would block the line-o$ight, otherwise
the algorithm returns true, in which case nodesg,: and sgo, have a direct

line-of-sight with each other.

2.4. Any angle algorithms 36

Algorithm 2 Line of Sight - 1D indexed grid variant

1: function LineOfSight (Sstart ; Sstop)
2: x (Sstop MOAW) (Sstart modW) . W - map width
3 y (Sstop=W) (Sstart =W)
4. step, (x<03 DA x 03 1)
5 stegy (y<0 3 wW)r(y 0= W) . horizontal
o set for quadrants | and IV relative to Sgop

sted (x<0 3 Dr(« 0= 0) . vertical o set for
quadrants | and Il relative to Seiqp
7 step{j (y<03 W)~(y 0= 0
8: Snext Sstat - current node with o set in line of sight expansion
9 Spext Snext + Stefd) + step
10: x | X
11: y 1l . driving axis always increments
12: StePmajor (x y =) step)™(x< y =) step)

. secondary axis increments with slope progression

13 StePmner (x y 3) step)A (x< , =) step)

o

14: max maxf ; g
15: min minf ; g
16: error O . secondary axis increments with slope progression
17: while Spex 6 Ssiop dO
18: is_ free isFree (s%,,)
19: if min =0 then . only moving horizontally or vertically
20: if isDoubleCorner (s%,,) then
21: return false
22: if : is_free then
. can't pass between 2 blocked cell tiles
23: nbr 0. StePminor
24: if : isFree (nbr) _: isFree (s, St€pmajor) then
previous cell not free, and neighbour not free
25: return false
26: else . non-orthogonal line of sight expansion
27: error error + qin
28: if error max then . moving on minor axis
29: if :is_free then
30: return false
31 error error max
32: if error =0 then . moving diagonally
33: Sdiagonal Sgext + (Stepminor + StePmajor + W +1)=2

. vertex de ned by diagonally adjacent cells (see Equation B3)

2.4. Any angle algorithms

37

Line of Sight - 1D indexed grid variant: Continued

34:
35:
36:
37:
38:
39:

40:
41:
42:

43:
44

45:

if isDoubleCorner
return false

Shext Shext T Stepminor

SEl)ext Sgext + Step’ninor
if error =0 then

is_ free isFree (s2.)
if error 6 0 then
if . is_free then
return false
Shext Snext T St('7."I:)f'r1ajor
S2ext S(riext + Step”najor

return true

(Sdiagonal) then

. on driving axis

. moving on driving axis

. S st @nd Sgop have line of sight

2.4. Any angle algorithms 38

2.4.1 A* with post-smoothing

To mitigate the shortcomings of the grid-constrained algorithm, Thorpe
et al. [54] introduce a smoothing technique to reduce the ndrar of nodes

and shorten the path solution.

Grid-constrained algorithms have some shortcomings wheeasching on
octile grids. The drawback ofA is that it can only ever move either in
straight lines or at 45 degree angles and a node's parent can only be an
immediate neighbour. This means that a node can only belong tts par-
ent's Moore neighbourhood 1.3, meaning that any node is odgonally or
diagonally adjacent to its parent. This behaviour oA produces unrealistic
looking paths. In the context of gaming, it can diminish the ger experi-
ence and in the context of robotics, it would increase energpnsumption
because of following longer paths or preventing consenati of momen-
tum. A simple way to address this issue is by path smoothingdA can be
transformed into an any-angle path- nding algorithm by appying a post-
smoothing procedure after the grid-constrained, shortegiath solution has
been reached byA . Algorithm 2 describes how the post-processing step
can be applied to a path returned by theA algorithm to \smooth" and
therefore shorten the path. The post-smoothing procedur@violves per-
forming a a line-of-sight check (e.g. using the Bresenhamméi algorithm
2) between pairs of nodes in the path. If two nodes in the pathake a
line-of-sight, the nodes that connect them can be pruned frothe path.

In other words, for a pathP, the parent of a nodes; 2 P can be any node

s 2 P with j<i 1 aslong adineOfSight (s;;s;) is true.

2.4. Any angle algorithms 39

Algorithm 2 A* Post-Smoothing [4]

1. function PostSmoothPath ([So;:::;Sn]) .S0 Sstart;Sn Sgoal
2: k O

3: [So

4: foreach i 2 1;:::;n 1do

5: if : LineOfSight (tx, si+1) then

6: k k+1

7. [Si

8: k k+1

9: [Sh

10: return [to;:::;t]

2.4.2 Theta* Algorithm

The Basic Theta algorithm is an any-angle path-planning variation oA
that produces near-optimal solutions [55] with a running the comparable
to that of A on 8-directional grids. However, one disadvantage is that it
can often nd non-taut paths that make unnecessary turns, lalso operates
slower that other algorithms because it performs line-ofght checks on-top

of a full A search.

Theta [56] operates in a similar fashion t&A which it interleaves with
path smoothing. When expanding a vertex, it checks for a suas®r with a
direct line-of-sight to the parent of the vertex. If such ishe case, it bypasses
the vertex, and instead connects the successor to the pareatd, similar
to A, assigns a cost score (distance travelled), to the node aatiogly.
The main di erence betweenA and Theta* algorithms is the change in
the cost computing function. The implementation of the Thea* variant of
the cost function is presented in Algorithm 3. Theta*, given anodes and
it's immediate neighbours® whens® has line-of-sight to the parent of node
s, the parent becomes a direct parent for nodg’ (see Line 4 in Algorithm

3).

2.4. Any angle algorithms 40

Algorithm 3 Theta* [4]

1: function ComputeCost (s;s?)

2: if LineOfSight (parent(s), s9 then

if g(parent(s)) + c(parent(s);s%) < g(s) then
parent(s® parent(s)
g(s® g(parent(s)) + c(parent(s);s?

else

if g(s)+ c(s;s) <g(s) then
parent(s®) s

9(sh g(s)+ c(s;)

BasicT heta is not optimal, meaning that it is not guaranteed to nd true
shortest paths. As explained in [4], this is due to the fact thahe parent

of a vertex, s, has to be either a visible neighbour or the parent of a visibl
neighbour ofs. BasicTheta can also have unnecessary heading changes
that do not correspond to the corners of blocked cells, a pregy that holds

true for all shortest paths.

In a variation of the algorithm, namedStrictT heta [57], Shunhao Oh et al.
demonstrate that by restricting the search space of Theta*ot taut paths,
the algorithm can, in most cases, nd shorter paths. They acenplish
this by introducing a tautness check between a vertex, its pant and its
grandparent. Non-taut paths incur an additional penalty in heir cost. A
second variation ofStrictT heta , RecursiveStrictT heta [57], extends the
tautness check beyond the grandparent, recursively cheegifor tautness
until the rst ancestor with a line-of-sight to the exploredto the vertex. The
two StrictT heta variants show a good improvement over Theta* in nding
taut paths, that are closer to optimal. As mentioned in their vark, Shunhao
Oh et al. [57] make an argument for online path-planning algéhms: \In
practice, slight sub-optimalities in the found path is ofte not an issue, but
non-taut paths would contribute to the perceived irrationdity of the agent,

as the agent takes paths with clearly better alternatives. ood grid-based

2.4. Any angle algorithms 41

any-angle path- nding algorithm is fast, can compute near4atimal paths,

and is online."

2.4.3 Lazy Theta* Algorithm

A variation on the Basic Theta* algorithm, Lazy Theta* aims to reduce
the number of visibility checks. Basic Theta* is overly amhious in per-
forming line-of-sight checks even when it doesn't have to. Véh expanding
a vertex s, it performs a visibility check for each unexpanded neighioo of

s regardless of those vertices ever being expanded.

Nash et al. argue for the reduction of line of sight checks by ldging
them until necessary. Lazy Theta* delays visibility checkdy assuming
that s has line-of-sight fromparent(s). When the algorithm expandss, it
checks for a line-of-sight betwees and its parent. If not, it updates the
its g-score by using the g-score of its predecessors and petts to expand
s. Whenever a line of sight test fails, a costly clean-up step required
to undo the e ect of an incorrect assumption. Lazy Theta* atempts to
re ne Theta* by nding similar paths despite performing fewer line of sight
tests. The paths returned by Lazy Theta* are not always the sae as those
returned by Theta* since the edge relaxation occurs at a dirent point in

the iteration [58].

An additional variant, Lazy Theta* with Optimizations can n d longer
paths with a decrease in runtime. It does so by using weightddvalues
with weights greater than one (similar to Weighted A* [59]):h(s) = w

C(S; Syoar). This variation can reduce runtime without a signi cant increase
in path lengths while performing two orders of magnitude fesv line-of-sight
checks and more than one order of magnitude fewer vertex exgens [4].

The pseudo-code for Lazy Theta* is presented in Algorithm 4.

2.4. Any angle algorithms 42

Algorithm 4 Lazy Theta* [4]

1: function Main (Sstart ; Sgoal)
2: g(sstart) 0

3. parent(Sstart) Sstart

4: opem ;

S opeminsert (Sstart;g(sstart)"' h(sstart))
6: closed ;

7: while opené ; do

8: s openPop()

9 SetVertex (S)

10: if S = Sgoa then

11: return \path found"

12: closed closed s

13: foreach s°2 nghbrs(s) do
14: if s 2 closedthen

15: if s2openthen

16: parent(s%® NULL
17: g(sh 1

18: UpdateVertex (s;s9
19: return \no path found"

20:

21: function SetVertex (S)
22: if : LineOfSight (parent(s), s) then

23: parent(s) argmin so nghbryis (s)\ closed(g(sg + C(SO; s))
24: a(s) min ge, nghbryis (s)\ closed(g(S% + C(SO; s))
25:

26: function ComputeCost (s;s?)
27 if g(parent(s)) + c(parent(s);s) < g(s? then

28: parent(s® parent(s)
29: g(s® g(parent(s)) + c(parent(s);s9
24.4 Anya

One of the most notable additions to the any-angle path- ndig family, is
an optimal any-angle path-planning algorithm named Anya [24R5]. Its
optimality guarantee and any-angle property o er it the stdus of being
the rst online optimal any-angle algorithm. Unlike most shatest-path

algorithms, Anya does not search over individual nodes in thggid. Rather,

2.4. Any angle algorithms 43

it constructs 2-dimensional visibility cones consistingfaa root (i.e. node
in the graph) and an interval (i.e. horizontal bound region dlimited by
bounds visible from the root). Each visibility region takeghe form of a
tuple (I;r), wherer represents a root (a vertex corresponding to an outer
corner of an obstacle) and represents an interval describing all the points
along a row of the grid-map visible from the root in question.To direct
the search, Anya estimates, by means of a heuristic, the shest distance
from a root r to the goal node that passes through the interval. Anya
performs the search by expanding rows from and generating intervals in
which, if a turning point is found, it becomes a new root to beansidered
for expansion. The algorithm terminates when an interval againing the
goal node is expanded. The path is reconstructed similar to Aand related
algorithms), by following the parents of interval roots fran the goal to the

start node.

2.4. Any angle algorithms 44

Figure 2.7: Screen-shot of an expansion of the Anya search tregth red
lines representing the interval of a row, the black circles ank interval
roots, and the light blue lines the visibility cone of each terval; green line
- shortest path solution; blue & green cells - start & stop regeectively

In Figure 2.7, an example of a visibility cone is marked by a dirgreen
triangle towards the bottom of the image. The interval of a tple (I;r) is
represented by a red line (the longer bottom cathetus of thearked triangle
in our example). Each interval lies between its left and righbounds,
delimited by bright blue lines (the short cathetus and the hyptenuse of
the green triangle in Figure 2.7). The interval lines interse each other in
the tuple's root, r. In our gure, where the green triangle touches the lower
left vertex (marked by the black) a new rootr is created with its parent as

the start node (dark blue square).

Uras and Koenig observe in their analysis [29] that Anya \is thalgorithm
with the highest variance in runtime between di erent typesof maps”. As

Anya expands over intervals rather than grid cells, it can trasverse over

2.4. Any angle algorithms 45

open spaces with ease. Harabor et al. provide an open-sourog@lemen-
tation of Anya, publicly available on the code repository \Btbucket" at

[60].

Uras and Koenig note that for maps such as those found in the \Rgon
Age: Origins" database, for example, that have many tight coidors,
Anya's performance is degraded, as it requires many more intal ex-
pansions before reaching the goal. In their analysis, Anyaroa out as
the slowest algorithm on random maps and on the \Dragon Age: @jins"
database. It is to be noted, however, that the implementatio used by [29]

di ers from the one provided by Harabor et al. [60].

Using their own implementation of Anya, Harabor et al. experimaally
show Anya to outperform four purely online algorithms [25]. Te four
algorithms in question are A* [18], Theta* [55], Lazy Theta*$0] and Field
D* [22].

In their implementation, which uses a bit-packed map repres&tion (i.e.
array of integers in which the binary representation of thenteger re ects
a cell's occupancy), traversing a row becomes a very cheapergion, re-
quiring bit-shift operations, which avoids checking indiidual cells for oc-
cupancy (e.g. an integer consisting of 32 bits with value Opeesenting a
free-space interval). Furthermore, the cost of performingpokups for grid
map occupancy is minimal as the search can be aided by modericiro-
processors capable of caching the occupancy map for fastesldup times.
As such, even though Anya may cover a large search space, as seeh8,

it can do so with little impact on performance.

The performance increase of the Anya algorithm relative to A* mkes Anya
a good candidate for evaluation as a fast, online, optimalpg-angle path-
planning algorithm. However, in a real-world scenario, it add prove pro-

hibitively costly for a robotic platform (restricted by battery, wear and

2.4. Any angle algorithms 46

tear, sensors, etc.) to perform a search in an equivalent maar to the
method employed by the Anya algorithm. This is due to large seeh-space
coverage in environments with large open spaces or ones tllat not have

a solution (Figure 2.8).

Figure 2.8: Screen-shot of Anya performing an exhaustive sefai(explored
cells shown in red) for a scenario with no solution (map ARO78®R - Bal-
dur's Gate { modi ed to isolate goal)

2.5. Additional algorithms 47

2.5 Additional algorithms

2.5.1 Dubins Curves

This method was rst proven by Lester Dubins in 1957. The Dulnis
path refers to the shortest curve which connects two points @ a two-
dimensional Euclidean plane. It showed that the shortest pla would con-

sist of straight line segments $) and/or maximum curvature (C) [61].

Figure 2.9: The family CSC paths of four combinations. Case (aRSR,
Case (b)LSL, Case (c)LSR, Case (d)RSL [62]

There are considered to be two families of curves, which arecambina-
tion of the straight and curved lines: CCC and CSC. The CCC family
contains curves in the formation oLRL and RLR, whereL and R denote
left turn arc and right turn arc respectively. The family CSC contains
four combinations: LSL, LSR, RSR, RSL, where S denotes the straight

segment [62], this is shown in 2.9.

2.5.2 Articial Potential Fields

Arti cal potential eld (APF) is a well-known path planning alg orithm

methodology. It has the core concept to replicate the chartsristics of

2.5. Additional algorithms 48

electostatic potential. In particular, due to its 'mathemdical elegance and
simplicity’ it has been particularly favoured due to its e ectiveness in real-
time obstacle avoidance [63]. Under the in uence of the remive potential
elds and the attractive potential eld, the robot goes from a high to low
(i.e. the global minimum) potential eld, along the negative gradient, and
would also be repellent to any obstacles (i.e the local maxim). APF

is known to be suitable for online and o ine path generation de to its

reactive nature [64]. The APF methodology is depicted in 2.10

Figure 2.10: Electric potential eld, showing some of the gidient lines.
This diagram features a positive charge at the security cies and a negative
charge at goal. [64]

There are several disadvantages with using the APF methodgly though
there have been improvements to the original algorithm in der to coun-

teract some of these issues incurred, [65], [66].

1. While the robotic system is further away from the goal pointthe
attractive force is great. Therefore, this may lead to the fmot to

come too close to any obstacles.

2. Goals Non-Reachable with Obstacle Nearby (GNRON), [67].

2.6. Chapter Summary 49

3. When the potential eld between the repulsive and attractre forces
are almost equal or equal in nature, the potential force of thsystem is
zero, and hence it would cause a trap at the local minima, or@HBate

[68],[69].

2.6 Chapter Summary

This chapter introduced path- nding methodologies in detd. These method-
ologies have a number of properties - correctness, compleies and opti-
mality. There are various classes of path planning algoriths, including {

Bug algorithms, Grid constrained algorithms and any anglelgorithms.

Bug algorithms are a class of path- nding methodologies famavigating
unknown environments and operate by alternating between twmehaviours

{ walfollowing and motion-to-goal. Grid{constrained algorithms such as
grid{constrained A nd the shortest path composed of edges bound by
the grid. Additional methodologies include Dubins curves ahArti cial

potential elds.

Finally, any angle algorithms are a class, most relevant to & work, which
search for paths between two nodes in the free-space by prgating in-
formation along graph edges, similar to grid{constrainedlgorithms, but

without restricting the paths which are formed by graph edge

Chapter 3

Ray Path Finder: Path

construction

This chapter introduces a number of algorithms developed with the purpose
of aiding searches for the path- nding methodology described in Chapter 4
- An Any-angle path planner. Algorithms for performing line-of-sight and
contour tracing are introduced and a number of di erent concepts, such as

path direction, sidedness, pruning and redundancy, are explored in depth.

3.1 Introduction

The novel path-planning algorithm introduced in Chapters & 4 operates
under the free-space assumption, in the sense that it optigtically assumes
that there are no obstacles between a start and goal node, rmgtween any
two nodes that it identi es as part of a path. The principle ofoperation of
the overarching path-planning method is simple to understal. The search
is initiated by performing a line-of-sight towards the goaluntil an obstacle
is encountered. Afterwards, the search is propagated througwvo diverging

paths travelling in opposite directions along the edges ohé¢ encountered

50

3.1. Introduction 51

obstacle until it is determined that the paths can leave the tundary and
resume moving in a straight line towards the goal. Once a patias reached
a goal, the algorithm checks if the path that arrived to the taget has line-of-
sight between its nodes, and if not, repeats the same procedumentioned
earlier. The underlining algorithm that is conducive to theshortest path

solution is described in greater detail in Chapter 4.

We introduce the notion of \path state" as a means of keepingack of the
di erent stages a path goes through during its life-cycle. Aath can have

6 possible states, as depicted in Figure 3.1.

Figure 3.1: Path states with possible transitions

Each path being explored can be thought of as an independertate-
machine (not unlike a bug algorithm) which stores the statepecic to
the desired behaviour a path should adopt, given its immede environ-

ment e.g. travelling in a straight line if there are no obstrations in the

3.1. Introduction 52

direction of travel, following an obstacle's wall after hawmg intersected its

boundary, terminating if unreachable.

All classes of paths that terminate early (e.g. redundant, wping, locked-in,
locked-out) are bundled under the umbrella term of unreackée. Through-
out the life-cycle of each path, the state machine is updateaccordingly,
depending on the desired behaviour. Figure 3.1 illustratehé¢ possible

transitions of paths from one state to another.

A number of functions are necessary for the path- nding algithm to ex-

hibit the behaviour mentioned. All of the algorithms operateon a 2D grid-
map with uniform cost representing a binary space-state (fbr occupied,;
O-for unoccupied). Firstly, moving towards a target involve performing a
line-of-sight and identifying the point of intersection ifencountering an ob-
stacle (Section 3.2). Secondly, following the obstacle'sallvimplies tracing

the contour of the obstacle (Section 3.3). The algorithms #t assume the
role of constructing a path identify corners at points of intrest around an
obstacle's edges (Section 3.4), while those for maintaigia path's tautness
imply pruning nodes from the path (Section 3.6). A path also mintains
a sense of direction (Section 3.5) that helps it decide when teave the
obstacle boundary so as to avoid deadlock. Lastly, the selraims to en-
sure termination and avoid redundancy in paths (Sections B& 3.8). The

following sections detail these features.

3.2. Line of sight with intersection 53

3.2 Line of sight with intersection

A path is de ned as clear or unblocked if any two subsequent eces within

the path have line-of-sight between them. Any two vertices @ grid graph
are de ned as having line-of-sight if the segment connectinthem does
not pass through the interior of any occupied grid cells nordiween any
orthogonally or diagonally adjacent pair of occupied gridedls (i.e. any
pair of occupied cells that share one or two vertices). We gzfto a vertex
shared by exactly two diagonally adjacent occupied cells aslouble corner

(Figure 3.2).

. Blocked cell ® Double-corner vertex

Figure 3.2: Line of Sight:s; and s, { examples of double corner vertices

A vertex shared by exactly three occupied cells is referred as an inner
corner, while a vertex described by exactly three unoccupieells and one
occupied cell is referred to as an outer corner (Figure 3.3). tAue shortest-

path solution would only be comprised of outer corners.

3.2. Line of sight with intersection 54

. Blocked cell ® Vertices

Figure 3.3: Line of Sight:s,, S,, S3 & s4{ examples of outer corner vertices;
Ss, Se, S7 & Sg{ examples of inner corner vertices;

While, for simplicity, other any-angle algorithms (e.g. A* P&t Smooth-
ing, Theta*, Lazy-Theta*) do not explicitly disallow paths through double
corners by default, RPF enforces this limitation for both \vall following"
and \line-of-sight" behaviours. This restriction is consstent with the maps
from the \Moving Al Lab" database [70] that we use for experimetal

evaluation.

Performing a line-of-sight on a 2D regular grid is equivalério drawing
a line plot on a raster display. A variation of Bresenham linedrawing

algorithm (Algorithm 2) is used for this purpose.

As described in Algorithm 2, Theta* performs a line-of-sight leeck af-
ter a node has been expanded, in order to update its parent if sé of
sight exists between it and its neighbour's parent, and as &, the line
of sight algorithm requires returning a simple yes-or-no awer. The Bre-
senham algorithm employed by Theta* [71] and Lazy Theta* [Gllows a
straight line to pass between diagonally adjacent blockedid cells [4], for

the purpose of simplicity. For these algorithms, cutting amers through

3.2. Line of sight with intersection 55

walls is prevented by ignoring double-corner vertices whegxpanding a
node's neighbours, before the line-of-sight check is to breeuted. This
is unfortunately not the case for the RPF algorithm, as it dog not use
the Bresenham algorithm as a \string-pulling” technique, bt rather in-

corporates the line-of-sight into the search-space expams procedure. As
such, it is more similar in principle to the \ray-casting" technique used in
computer graphics for determining intersections with obs for rendering
purposes. RPF's behaviour is di erent from the Theta* familyof path-
nding algorithms, as it uses Bresenham's algorithm to direty perform

node expansion.

The variation on Bresenham's algorithm utilised by RPF reqgues two addi-
tional properties. It must actively not allow straight lines to pass between
diagonally adjacent occupied grid cells, and, if no line-sight exists be-
tween the two nodes, it must provide the point of intersectio with the
obstacle in its path. This implies returning the the indice®f two cells, the
occupied and unoccupied cells that de ne the intersectionFor instance,
the examples illustrated in Figures 3.4 and 3.5 do indeed haeeline-of-
sight between the two nodes, as at least one edge is sharedhwat free
cell and there exist no double-corners betweey,: and sgo,. For gure
3.5, the cellsD, through Dg are unoccupied, while for 3.4, the cells from
C, through Cs and cellsDs through Dg are unoccupied and also the pair

(Cs; Ds) prevent a double corner.

3.2. Line of sight with intersection 56

1 2 3 4 5 6 7 8 9 10

Sstart Ssfop

--- Imaginary line-of-sight . Blocked cell

Figure 3.4: Line of Sight: Valid line-of-sight Example 1

1 2 3 4 5 6 7 8 9 10

--- Imaginary line-of-sight [] Blocked cell

Figure 3.5: Line of Sight: Valid line-of-sight Example 2

For the con guration in Figure 3.4, the sg,t Vertex at C, has a line of
sight to vertex ssip at Cy. If the grid cell corresponding to vertexCs were
occupied, it would break the line of sight as vertexXCs would become a
double corner. Similarly, if the grid cell corresponding taertex Ds were
occupied, it would again break line of sight as verte€s would become a

double corner.

The complete line-of-sight method is presented in Algorithrd. To exem-

plify the behaviour of the RPF variant of the line-of-sight dgorithm, let

3.2. Line of sight with intersection 57

us rst consider the simple scenario described in Figure 3.&ith vertex
C, as the the starting node (labelled asg,:) and vertex Cg as the goal
node (labelled asss,p). The obstacle is represented by the blocked grid
cells corresponding to verticeB s and Cs respectively. The line-of-sight be-
tween Ssie and Sgop IS broken by the obstacle, as the line segment crosses
between the two orthogonally adjacent occupied cells forng the obstacle.
As the grid cells ofsg,t and sgop are horizontal in our example, the dif-
ference in theiry coordinate components is 0, which is assigned tq,, at
Line 15. For this con guration, the algorithm only follows the orthogonal
exploration branch at Line 22. The occupancy check rst fadl with Cs at
Line 40. The occupancy of the grid cell aDs decides if an obstacle was
encountered. To obtain the index oDs5, one subtracts the step value for
the minor axis (i.e. they axis for horizontal travel) from the current cell

index (Line 41).

In Figure 3.6, the start node atC, does not have line-of-sight to vertess,
at Cg, as it intersects an obstacle aCs. In Algorithm 5, the occupancy
tests at Lines 40 and 43 fail, while Line 44 passes, executlriges 48 { 50.
Thus Spre_intersect DECOMESC, aNd Sinrersect PECOMESCs and the algorithm

exits.

E
D
C = So
B
A

- -- Imaginary line-of-sight . Blocked cell ® Vertex

Figure 3.6: Example of line-of-sight intersecting obstacle

3.2. Line of sight with intersection 58

Observing the con guration in Figure 3.7, thesga: Vertex at C, does
not have line of sight to vertexsgo, at Cg, as it intersects an obstacle
at Cs, similar to Figure 3.6. In this scenarioC, is occupied, meaning that
the occupancy test at Line 44 fails, resulting irSpre_intersect = D4 and

Sintersect = D5 through the execution of Lines 45 { 47.

1 2 3 4 5 6 7 8 9

E

D

C = So
B

A

- -- Imaginary line-of-sight . Blocked cell @ Inner-corner vertex

Figure 3.7: Line of Sight: Intersecting inner-corner

Double corner special cases are handled separately. FiguBe8 & 3.9
are both handled by Line 24 in Algorithm 5, the di erence beingthat

StePmajor < O (St€Pminor 0 for orthogonal movement).

1 2 3 4 5 6 7 8 9

E
D
C =t e
B
A

- -- Imaginary line-of-sight . Blocked cell ® Double-corner vertex

Figure 3.8: Line of Sight: Double Corner vertex with Free Cell

3.2. Line of sight with intersection

59

1 2 3 4 5 6 7 8
E
D
C I Sor
B
A

--- Imaginary line-of-sight . Blocked cell @ Double-corner vertex

Figure 3.9: Line of Sight: Double Corner vertex with Free Cefl Negative

step

Figures 3.10 & 3.11 present a double corner with an occupiedi@nd are

both handled by Line 32 in Algorithm 5. The di erence betweenhem is

that stepmajor < O for Figure 3.11 6tepminor

1 2 3 4 5 6 7 8
E
D
C Ssglrt SS‘OIO
B
A

0 for orthogonal movement).

9

- -- Imaginary line-of-sight . Blocked cell ® Double-corner vertex

Figure 3.10: Line of Sight: Double Corner occupied vertex

3.2. Line of sight with intersection 60

1 2 3 4 5 6 7 8 9

E
D
C I Sor
B
A

--- Imaginary line-of-sight . Blocked cell @ Double-corner vertex

Figure 3.11: Line of Sight: Double Corner occupied vertex { Nagve Step

1 2 3 4 5 6 7 8 9
E
D
c Ssthrt Ss‘op
B
A

--- Imaginary line-of-sight . Blocked cell ® Double-corner vertex

Figure 3.12: Line of Sight: Double Corner Vertex with free dednd Occu-
pied previous step

The scenarios presented are identical for nodes in a verfican guration.
The algorithms imposes two restrictions on the global stagnd goal vertices
of a search scenario, namely that their corresponding grasll (vertex at
upper left corner of the observed cell) must be unoccupiedoftsistent with
the map database used for evaluation [70]). An additional regtion is

imposed such that neither start nor goal can be double-conrse

The ssart and Sgiop Vertices passed to théineOfSight function should not

3.2. Line of sight with intersection 61

be confused with the global start and goal vertices passedttee Ray Path
Finder algorithm. For the LineOfSight function, the parametersSgar
and s¢op Can take the values of either the global start and global goéle.
initial inputs of the nd-path problem) vertices or they can take values of
vertices belonging to a path. It is to be noted that the algothm is only
used to perform line-of-sight checks between vertices of alid path. This
implies that any vertices that are passed to théineOfSight function are
valid corners on the grid map, and as such, certain inconsestt scenarios
will never occur, and are not addressed by the algorithm. A wex is only
ever added to a path if it is a valid corner on the correspondi2D grid map
(3.4), meaning that neithersg,: NOr sgop, can be double corners. Also, for
any vertex belonging to a path, the 4 grid cells describinglfaring) the ver-
tex have a 3-unoccupied/1-occupied con guration (see Figerr3.30), with
the exception of the global start and goal vertices which cdre surrounded

by an arbitrary number of unoccupied cells (between 1 and 4).

Figures 3.13, 3.14, 3.15 & 3.16 illustrate the 4 possible casd encountering
a double corner while travelling diagonally and which are malled by Lines

60 - 62 in Algorithm 5.

1 2 3 4 5 6 7 8 9

--- Imaginary line-of-sight . Blocked cell ® Double-corner vertex

Figure 3.13: Line of Sight: Double corner with free vertex { digonal step

3.2. Line of sight with intersection 62

1 2 3 4 5 6 7 8 9

--- Imaginary line-of-sight . Blocked cell @ Double-corner vertex

Figure 3.14: Line of Sight: Double corner with free vertex { rgative diag-
onal step

--- Imaginary line-of-sight . Blocked cell @ Double-corner vertex

Figure 3.15: Line of Sight: Double corner vertex with occupdecell { diag-
onal step

3.2. Line of sight with intersection 63

1 2 3 4 5 6 7 8 9

--- Imaginary line-of-sight . Blocked cell @ Double-corner vertex

Figure 3.16: Line of Sight: Double corner vertex with occupdecell { neg-
ative diagonal step

A special case for the line-of-sight algorithm that requieto be handled
separately is illustrated in Figure 3.17. The exception ars when the cell
corresponding to a corner vertex is occupied and thus breake line of sight
to a target. As an example, let us consider the vertegg,s at D4, which
corresponds to an occupied grid cell, and any of the 3 vert&ssyp1(Bs),
Sstop2(B6) OF Ssiop3(Ce) that are obscured from view. For this con guration,
Spre intersect 1S iNitialised to the occupiedD,4 node (Line 18 in Algorithm
5) and the loop terminates early at Line 56. The condition at ine 78
identi es this scenario andsyre intersect IS allowed to step backward (Line 79)
and retrieve theE3 cell as a pre-intersection point. This is allowed because
Sstart IS @ corner vertex, which implies that it must have 3 unoccupd cells

describing it (i.e. tilesEsz, E4 and D3).

3.2. Line of sight with intersection 64

1 2 3 4 5 6 7 8 9

E
D
c -
B o=
A

- -- Imaginary line-of-sight . Blocked cell

Figure 3.17: Line of Sight: Corner vertex with occupied cellnal targets in
guadrant four

The red highlighted tiles in Figure 3.18 exemplify the nodedait Algorithm
5 expands while moving at a 45angle fromss,: at tile 391 to sy, at tile
205. Although the path (marked in green) passes directly thumh the
vertices of the tiles 360, 329, 298, 267 and 236, the tiles baw be checked

for occupancy, to ensure they are not double corners.

Figure 3.18: Expanded cells for diagonal Line of Sight (Scredhot from
RPF application)

3.2. Line of sight with intersection 65

1 2 3 4 5 6 7 8 9

--- Imaginary line-of-sight . Blocked cell @ Double-corner vertex

Figure 3.19: Line of Sight: Through double corner free cell {onintersection

The screen capture in Figure 3.20 illustrates the expandedlisefor a valid
line-of-sight with a single blocked obstacle at cell 201. Nogt that the only
extra cell that needs to be expanded is the one above the bledkcell. As
169, the neighbouring tile of the occupied tile 201 (expandeat Line 41)
is free (Line 43), the algorithm continues as normal until @ching Seop at

tile 205.

Figure 3.20: Expanded cells for horizontal Line of Sight witlobstacle
(Screenshot from RPF application)

The screen captures in Figures 3.21 & 3.22 illustrate the spaiccases of
the line-of-sight being blocked by double corners while mioygg horizontally
(Line 23). The red dot marks the vertex of the free celpre intersect » and
the purple dot marks the vertex of the occupied celinersect - FOr Figure

3.21, Line 23 is true, as tile 201 is a double corner and, beiag occupied

3.2. Line of sight with intersection 66

cell, the else branch at Line 35 storeSye intersect = 200 and Sipersect = 201
and exits the loop. For Figure 3.22, the algorithm follows thesame path

and yieldsspre,intersect =202 and Siptersect = 201.

Figure 3.21: Double corner intersection (red{vertex of prawersection,
purple{vertex of intersection) (Screenshot from RPF apptiation)

Figure 3.22: Double corner intersection { with negative stegred{vertex
of pre-intersection, purple{vertex of intersection) (Saenshot from RPF
application)

3.2. Line of sight with intersection 67

Algorithm 5 Line of Sight - Ray Path Finder

1: function LineOfSight (Sstart ; Sstop; W)

2:

a ks w

10:
11:

12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27.
28:
29:
30:

31:
32:
33:
34:
35:
36:
37:

38:

x (Sstop MOAW) (Sstart modW)
y (SstopnW) (Sstart W)
stepe ((x<0=3) DA x 03 1)
step, (y<O0 9 W)r(y 0= W)
. horizontal o set for quadrants | and IV relative t0 Sgiqp
stef (<03 DA(x 03 0
. vertical o set for quadrants | and Il relative to Sgop
ster@ (y<039 W)r(y 0= 0
. current node in line of sight exploration
Snext Sstart
current node with o set in line of sight expansion
Smext Snext + steff) + ste]
xJ
yl
driving axis always increments
Stepmajor (X y :) step&)"(x < y :) SteQ/)
. secondary axis increments with slope progression
stepminor (X y :) StEQ,)A(x < y :) Stel&)
(max maxt ; g
(min minf X1 yg

X

J
y |

error 0

is_.edge false . track orthogonal move on edge of blocked tile
Spre_intersect Sstart . index of cell tile prior to intersection
Sintersect 0 . index of cell tile at intersection

while Spext 8 Sstop 0O
is_ free isFree (S2.)
if min =0 then . only moving horizontally or vertically
if isDoubleCorner (s%,.) then
if is_free then
if is_edgethen
Spre_intersect Sﬂext StePmajor St€Pminor
Sintersect S(n)ext Stepminor
else

Spre,intersect Sﬂext
Sintersect Sgext + Step'najor
else
if is_edgethen
Spre,intersect Sgext Stepminor
Sintersect Sgext + Stepmajor Step”ninor

else
0
Spre_intersect Shext St€Pmajor
) 0
Sintersect Snext
break

3.2. Line of sight with intersection 68

Line of Sight - Ray Path Finder: Continued

39: is_edge false
40: if : is_free then
41 nbr 0. StePminor
42: is_edge true
43: if : isFree (nbr) then
can't pass between 2 blocked tiles
44: if :isFree (Slex St€Pmajor) then

if previous cell not free, then neighbour's pre-
vious cell is free

45: Spre_intersect nbr Stepmajor
46: Sintersect nbr
47: break
48: Spre_intersect Sﬁext StepPmajor
49: Sintersect S?,ext
50: break
51: else
non-orthogonal line of sight expansion
52: error error + qin
53: if error max then . moving on minor axis
54: if . is_free then
55! Sintersect Sgext
56: break
57: error error max
58: if error =0 then . moving diagonally

vertex de ned by diagonally adjacent cells (see
Equation 3.13)

59: Sdiagonal Sﬂext + (StePminor + St€Pmajor + W +1)=2
60: if isDoubleCorner (Sgiagonal) then

61: Spre_intersect Sgext

62: Sintersect Sﬂext + StePminor

63: break

64: Spre_intersect S(r)lext

65: Shext Snext t St€Pminor

66: Sgext Sgext + Stepminor

67: if error =0 then

68: is_ free isFree (s2.)

69: if error 6 0 then . on driving axis
70: if :is_free then

71: Sintersect Sgext

72: break

73: else

74: Spre_intersect Sﬂext

75: Snext Snext T St€Pmajor . moving on driving axis

76: Sgext sﬂext + StePmajor

3.3. Contour tracing 69

Line of Sight - Ray Path Finder: Continued

77: if Sintersect > 0 then

78: if Spre_intersect = Sstart @ ISFree (Ssart) then
line of sight blocked by vertex's own tile, i.e. goal in
guadrant 1V

79: Spre,inter:sect Spre,intersect Stepﬂajor

80: return (Spre,intersect ; Sintersect)

81: return NULL .S start and Sgop have line of sight

3.3 Contour tracing

Wall following behaviours have been adopted in path- ndingolutions such
as bug algorithms and maze solving strategies. The proposetipplanning
algorithm also makes use of a wall following behaviour. Thenplementa-
tion detailed in this work operates on 2-dimensional grid-aps, represented

by a 2D occupancy matrix that encodes a cell as block or unblad.

On a grid-map representation, wall following is functiond& equivalent to
contour-tracing, a widely used segmentation technique irmiage analysis.
For this reason, we introduce a simple contour-tracing algthm. We as-
sume as known two grid-cells (one occupied and one unoccudlpidat repre-
sent the starting position on an obstacle's boundary from wth to perform
the contour tracing. The proposed technique is introduceddependently
of the RPF and, as such, we assume the tracing performs a fulhhsversal
of the contour. In practice, the RPF algorithm handles the sipping crite-
ria as it rarely performs a full trace of the obstacle (geneltg not required
if target is outside its convex hull) but can also allow the tace to extend
beyond closing the contour (i.e. the trace is allowed to canue and the
stopping criteria is left to the discretion of the higher-lgel main function
in the RPF algorithm { Algorithm 9 discussed in 4.3). For a genec stand-
alone implementation of the proposed contour trace algohin, a su cient

stopping criteria would be revisiting the two initial input cells.

3.3. Contour tracing 70

Given a cellP and its Moore neighbourhoodM (P) (Figure 3.23), we con-
sider the cell aboveP to have index 0 inM, as it coincides with the cardinal
North direction (i.e. Mo(P) Pnorth)- All other cells in the Moore neigh-
bourhood have indices incrementing in clockwise and countdockwise di-
rections based of the side that is considered. The indices tbe left and
right sided Moore neighbourhoods are symmetric along tidorth ~ South

axis and have the following relationship:

indeXsige = (8 iNdeXopposite_side) Mod 8 (3.1)

Figure 3.23: Indices relative to cellP in Moore-neighbourhood on 1-D
indexed grid

3.3. Contour tracing 71

Algorithm 4 Ray Path Finder: Contour tracing
1. function TryNextNeighbour (Swarr ; Side)

2. direction (direction +1) mod 8 . next direction
3: Stry Swan + getStep (direction;side)

4: if Sy = ; then

5: return ; . path has gone o map
6: if IsFree (Syy) then

7 Sfree Stry . move to newest free node
8: else

o: Swall Stry . move to newest occupied node
10: direction getindex (Sfree Swal; Sid€)

11:

12: function getStep (direction; side)
13: if side= RIGHT then
14: direction = (8 direction) mod 8
. W { width of the map
15: STEP =f W; W+1; 1L W+1;,W; W 1, 1, W 19
16: return STEP [direction]

17:

18: function getindex (step;side . function is the reverse of
GetStep ()

19: switch step do

20: case W : . North

21: index O

22: case W +1: . North-East

23: index 1

24: casel: . East

25: index 2

26: case W +1: . South-East

27: index 3

28: case W : . South

29: index 4

30: caseW 1: . South-West

31: index 5

32: case 1: . West

33: index 6

34: case W 1: . North-West

35: index 7

36: if side= RIGHT then

37 index = (8 index) mod 8

38: return index

3.3. Contour tracing 72

The proposed contour-tracing technique is a variation on taMoore tracing
algorithm [72]. Similar to the Moore neighbourhood algoritm (see Figure
3.24), the proposed solution iterates over the neighboura the Moore
neighbourhood of an occupied cell, until in encounters arf@r occupied
cell, after which it moves to the newly found cell and repeatke procedure

until it closes the contour of the object, i.e. returning tots initial position.

1 2 3 4 5 6 7 8 9 10

K 0
A
3 '
R SRR S e
I é l? .5- -m
- L 4b £ X T
H ;-a»—--- ;_-_\.{
x -
G | zope-e- -y
¥
F .Y
¥
E Y
¥
D v
C
B
A
. Blocked Cell . Contour-trace path
—>— Start point --»-= Contour-tracing steps

Figure 3.24: Contour tracing result of the Moore NeighbourhabTracing
algorithm

A contour tracing algorithm published by Seo et al. in 2016 Bj presents a
similar functional behaviour to our proposed method (see Rige 3.25) but

with a di erent underlining principle and a more complex algrithm. The

3.3. Contour tracing 73

former algorithm has a higher complexity as it needs to treandividual
patterns separately. While the contour traces generated byokh algorithms
have the fewest number of operations on unoccupied cellsethlgorithm
developed by Seo et al. has a higher number of operations ondied cells.
This di erence occurs for certain cases in which their algithm revisits

blocked cells.

1 2 3 4 5 6 7 8 9 10

. Blocked Cell . Contour-trace path

—>— Start point --»-= Contour-tracing steps

Figure 3.25: Contour tracing result using methodology prested by Seo et
al.

Figure 3.26 illustrates a comparative example of the propaselgorithm's
contour tracing behaviour relative to the Moore-neighbourntiod algorithm

(Figure 3.24) and the one proposed by Seo et al. (Figure 3.25).

3.3. Contour tracing 74

1 2 3 4 5 6 7 8 9 10

‘-]»--]»-.

. Blocked Cell . Contour-trace path

—>— Start point --»-= Contour-tracing steps

Figure 3.26: Result of left-sided contour tracing using prased algorithm

A notable observation is that, as opposed to the contour tramg algorithm
by Seo et al., the proposed method does not trace inner corriges, as this

is beyond the needs of the path-planning algorithm. Inner coer tiles are
blocked cells which share a vertex with two other blocked ¢gland one free
cell, with the free cell being diagonally opposite to the inmecorner. The
tiles at G4, F, and E4 (Figure 3.26) are examples of inner corners ignored by
the proposed Algorithm 4. The proposed algorithm can, howeyée easily
extended to account for inner corners as well. This would be@mplished
by performing one additional occupancy check after the blked cell on

the contour has been explored. This step could be extendedther, which

3.3. Contour tracing 75

would allow the algorithm to account for inner cavities as Wk if the cavities
are 1 cell distance from the outer contour of the object. If # additional
step does not detect an inner corner, but a free cell, it can bér be the
entrance to a cavity (e.g. ifE4 were a free cell it would represent a cavity in
the object) or, as in the case oflg, a cell belonging to the outer edge of the
object. As such, care must be taken in order to prevent in nitdoops. To
avoid this situation, the algorithm could be allowed to ternmate normally,
i.e. tracing the outer edge of the object, while rememberirany diagonally
free cells along with their corner pair. If, in the trace of tk contour, the
free cells are encountered again, such as would be the caseHg, they
are ignored. Otherwise, the remaining cells would indicatbée existence of
cavities inside the object which can be explored similarlyntil the starting

block cell is re-entered.

For the purposes of path-planning, the initial strategy is dopted as the
RPF algorithm does not allow diagonal crossing. As such, wercaafely
ignore inner corners and cavities. The proposed contour tiag algorithm
presented in Algorithm 4 operates on a 1D indexed grid-map, drmoves
along grid-cells (which can be though of as pixels in binarynages) rather
than vertices. The solution proposed in this work traces theontour of an
object with the fewest number of steps necessary to touch tlemtirety of
the contour. This is because it keeps track of both the last dtked and
unblocked cell in the contour trace, thus inferring the diretion by which
the blocked cell has been entered and always moving to the iradiate
next cell in the Moore neighbourhood. The algorithm is veryimple to
understand and implement. It is e cient because it avoids unecessary
cell re-entries. With the exception of closing the contour ain object when
the algorithm reaches the starting pair of free-blocked ds] (HFy; Fai in
our example), the only time the algorithm revisits a cell isn the case of

diagonally adjacent blocked cells, for instancel;, g, D7 and Cg in our

3.3. Contour tracing 76

example. An exception for when a free cell may be revisited wduwbe if
the object has a concave corridor more than 1 cell long but gnl cell wide
(i.e. blocked cells belonging to the same object sharing apging edges of

a free cell).

The variable direction, with direction 2 f0;1;2;3;4;5;6; 79, represents
the index of the position ofssee relative to s, and is calculated as the

displacement between cardinaNorth and the cardinal direction indicated

|
by Swall Stree -

Figure 3.27 illustrates the process of our proposed contowacing algo-
rithm. Each sub- gure representing the tracing of free-sp=e in the Moore
neighbourhood of an obstructed cell and the transition to th next oc-
cupied cell on the obstacle's contour. To exemplify the betwiaur of the
algorithm, let us consider the con guration illustrated in3.27a, where grey
cells represent the occupied cells of an object and whitelsehe free space
around it. For our example, we initiate the contour trace steiing with the
top left-hand corner. The cell marked byX with a red cross-hatch pattern
represents the initial and current occupied cell, represed by sy in Al-
gorithm 4. The unoccupied cell with a blue cross-hatch patte represents
the initial and current free cell adjacent toX and presented in Algorithm
4 by siree - The contour-tracing is performed following the object'sage on
the left-hand side as viewed in the direction of;f,ee Swal - The dierence
betweenssee and syq is W 1, which, in the left-sided Moore neigh-
bourhood, corresponds to index 7. This initial index is sted in direction
and the algorithm may proceed with contour tracing. With the rst call to
the function, direction advances by 1 to become 8 and takes the remainder
of dividing by 8 (the number of neighbours) to give index 0. Iretrieves
the step by which to advance, in this caséirectiono = W and add it

to syai to retrieve the next neighbour. The resulting cell is storedh sy

3.3. Contour tracing 77

and because it corresponds to a free cell in the map it is stdré Stree
and the function returns. On the next call,direction advances from 0 to 1
(represented in sub- gure 3.27b by the blue outlines). As befe, the value
is stored inSgee . ON the third call, direction becomes 3 with a step of 1.
The cell at index sy + 1 is an occupied cell which is then stored iS4 -
At this step, the algorithm calculates the new direction beteens;.. and
Swall; Sfree Swal = W which corresponds to index 0. Sub- gure 3.27c
shows the new positions oé;ee (blue cross-hatch with newdirection = 0)
and s, (red cross-hatch marked byK). This procedure repeats, withsee
advancing through all the free cells aroun&X in sequence, until encounter-
ing an occupied cell, in which cass,, advances. Becausdirection keeps
track of the direction between each new,; and the si.. node from which
it was entered, the algorithm minimises the number of times &ee cell is
visited. The number of visits to occupied cells is also minised, as the
occupied cell is never re-entered from the same side. In sgores 3.27e
and 3.27g the occupied cell is revisited, as it is not an outeorner yet two
of its edges are part of the object boundary. It is trivially gident that,
for any con guration where two occupied cells share only oneertex, the

algorithm would revisit at least one of the occupied cells.

3.3. Contour tracing 78

(a) (b)

WENE -

(d)

Figure 3.27:

(9) (h)

current wall node
current free node
next wall node in neighbourhood

next free nodes in neighbourhood

Scanning steps for left-sided contour-tracing

3.3. Contour tracing 79

Of particular use for RPF's needs is the ability of the contoutracing algo-
rithm to trace an object's edge in both left-sided and righside directions,
which can be achieved very easily. Tracing in the oppositerdction requires
two minor modi cations (Lines 14 & 37) that change a left-sied Moore
neighbourhood to a right-sided one. This involves performg a check on
the variable side that indicates the desired side for tracing and if true, in-
verting direction andindex by using equation (3.1). Figure 3.28 illustrates
the right-sided contour-tracing steps performed by the atgithm. For the

right-sided approach, the algorithm rotates around the oampied cellX in a

counter-clockwise direction, while exploring all of the sae cells in reverse

order.

3.3. Contour tracing 80

(a) (b)

110
2 6
3405
(© (d)
7 o
2 6
415 31415
(e) (f)
1§oOQ7 1§0 |7
6
3 4

(9) (h)

current wall node

current free node

next wall node in neighbourhood

next free nodes in neighbourhood

Figure 3.28: Scanning steps for right-sided contour-tragn

3.4. Path corners 81

3.4 Path corners

Sidedness plays more than one key role with respect to a pathiehaviour.
Awareness on the part of the algorithm of the notion of path setiness is
required in order to identify path corners and also to presee path taut-
ness during the path pruning phase. A path's sidedness simpkpresents
the side being considered relative to the path's directionf éravel (i.e. rst
person view), colloquially left and right. The sidedness @ path is deter-
mined by the sidedness of its parent path (the path from which branches
0) at the point of intersection with an obstacle. As such, anychild path
always has opposite sidedness to that of its parent. For theitial input,
the sidedness of the \root" path can be chosen at random, ansl preserved
for the entire life-cycle of the path. When an obstacle is engotered and
the path bifurcates along the edge of the obstacle, the childath splits

from the parent, following the obstacle on the opposite side

In evaluating sidedness, the cross product is used to detanma the sign of
the acute angle de ned by three pointsP; = (X1;Y1), P2 = (X2;Yy2) and
Ps = (X3;Y3). This angle corresponds to the direction of the cross produ
of the two coplanar vectorsi:’le =! u =nh xy; Yui and i:’lP3 =! vV =
h x,; y/. Operating in two-dimensional space, we describe the cross

product through Py, P, and Ps:

| Xy Yu
‘u v = = Xu W Xv Yu
Xy Yv
"u oty = (e x)ys v (Y2 y)(Xs Xa) (3.2)

|
If the points are coIIinear', u ! v =0 and Ps lies on lineP;P,. Otherwise,
the sign of the cross-product depends of the handedness o toordinate

.] . .
system, i.e. the sign ofu * v tells whetherPs lies to the left or to the right

3.4. Path corners 82

|
of P.P,. For a \right-handed" coordinate system, a positive crosgroduct

|
implies that P; lies on the left side ofP,P, (Figure 3.29).

Figure 3.29: Cross product of right-handed coordinate systerelative to

P.P,: the cross-product for all points in the blue region has pdsie values
while the cross-product of all the points in the red region lsnegative
values

The cross-product is used by RPF for a number of purposes, ietdrmining
which nodes should be considered as heading changes for ththpvhen
it alters its direction of travel, in maintaining path tautness by pruning
nodes from the path, and in deciding when a path can leave thdge of an

obstacle and resume moving towards the goal.

As described in 3.3, unlike operating with path nodes, the ctour tracing
algorithm operates on grid-cells (tiles) rather than verties. For this reason,
we wish to be able to transition from grid-cells to verticesduring the

contour tracing phase.

3.4. Path corners 83

(a) Lower right (b) Lower left

(c) Upper right (d) Upper left

Figure 3.30: Corner vertex cases: C - unoccupied corner nodegy cell -
occupied node diagonal to CW - width of the map

Analysing Figure 3.30, we explore the four possible instancks a corner

vertex:

Case3.30a: jC+W+1 Cj=W +1
Case 3.30b:)C+W 1 Cj=W 1

Case 3.30c: jC W+1 Cj=W 1

Case3.30d:jC W 1 Cj=W +1 (3.3)
Let: jSOCC Sfreej = J Sj
F i s =w 1

Fiosiow =1

3.4. Path corners 84
8
§X4:X1+W+1 (34)
§X4: Xo+ W (3.5)
T X4 = Xz+1 (3.6)
5-4 2X4 = 2X1 +2W +2
X4=X1+W+1+ x1+W +1
(3.7)
5'4 2)(4: X4+ Xl+ W +1
X1+ X4+ W +1
Xg = 2
22.3% o, = xo+ W + xz+1
_ Xo+ X+ W +1 (3.8)
2
+ + +
Case 3.30a: 5‘7 Xgq = it Xa ;1 Wl
X X1+ W +1
X4 = X1+ 4 12 (39)
+ + +
Case 3.30b: 5‘7 X4 = ot Xs ;2 Wl
X Xo+ W +1
X4 = Xo + 3 2 2 (310)
2X3 + + W +1
Case 3.30c: 5‘8 Xgq = 3T % ;(3
+ +
Xa= Xg+ 2 X8 5 W+l (3.11)
2X4 + + W +1
Case 3.30d: 3‘8 X4 = T ;4
+ +
Xa = xg+ 2 X4 5 Wl (3.12)
+W +1
3330310310802 o _StwH+l (3.13)

3.4. Path corners 85

Algorithm 5 Ray Path Finder: Identify Outer-Corner Vertex
1: function GetVenexlIfCorner (Stree ; Socc)
2: S Socc Stree . Stree - Unoccupied;Sycc - occupied
3 if j sj Wj=1then
. vertex of bottom right cell (Equation 3.13)

retu rn Sfree + %

B

5: return -1 . the two grid-cells don't describe a valid corner vertex

Considering Figure 3.31 as reference, we can explore how gidss helps in
identifying heading changes during path exploration. Givesg,: at (F2)
and syoa at (F11), and the cul-de-sac obstacle with the depression facing
the start node, let us consider the two possible paths arourtde obstacle.

We will explore the left-bound path in the rst instance.

1 2 3 4 5 6 7 8 9 10 11 12

K

F 4

Sstart Sstop

--- Left-bound path - -- Right-bound path . Blocked cell

Figure 3.31: Cul-de-sac stage 1: both paths reach goal withued cost
estimation

3.4. Path corners 86

The path begins from §,) and encounters the obstacle at vertexHg). The
path is split into two, a left-bound path and a right-bound pah that trace
the obstacle in opposite directions. Using the processes désed in Algo-
rithms 4 & 5, the left-bound path proceeds to trace the obstée boundary
towards vertex (Gg), and continuing through (1), (14) and (J4). Reaching
vertex (Js), the path can determine that the vertex at J4) (marked by
SL1) is a potential heading change, asJg) lies on the right-hand side of
!Sstart SL1- As such, a taut path from sg,x needs to pass throughJdy) in
order to reach (Js). Vertex (J,4) is added to the left-bound path ass;, and
the algorithm continues to trace the obstacle's boundary. &ching vertex
(I9), the path identi es (Jg) as a potential heading change of the path and
adds it to the path ass, ,, because) lies on the right-hand side (')stlst.
As (lg) lies of the right-hand side of'stsstop, the path is has a potential

line-of-sight to the goal node.

For the right-bound path, the process is symmetrical. Verte(B,) (marked
as sr;) is found to be a potential heading change, asB§) lies on the
left-hand side o#sstan Sr1. A taut path from sg,¢ needs to pass through
(By) in order to reach Bs). Continuing on the right-side of the obstacle,
the path reaches vertex Cg) and identies (Bg) as a potential heading
change of the path. The vertex is added to the path asz,, because Co)
lies on the left-hand side o'stlst. With both paths having identi ed
their heading changes using cross-product and the path'sdsdness, the
remaining step is to check for visibility between the pairsfamodes of each
path. As all nodes are visible from their parents, the resulig paths are
identi ed as: Setart ; SL1; SL2; Sstop { l€ft-bOund path; Ssiart ; Sr1; Sr2; Sstop -

right-bound path. The two paths are illustrated in Figure 3.2.

3.5. Path direction 87

start Sstop

— Final taut paths . Blocked cell

Figure 3.32: Cul-de-sac stage 2: nal left-bound and rightdund taut
paths of equal length

3.5 Path direction

Paths in RPF require a means of monitoring the direction of aavel when
wall-following. This is necessary because unlike behavisuiound in most
bug algorithms, the paths in the RPF algorithm do not circument the
obstacle in search for a point of shortest distance from wihido leave the
wall, nor do they make use of the M-line to decide a leave poinRather, a
path leaves an obstacle when it assumes that it is travellingn the convex

hull of the boundary and has a potential direct line-of-sighto the target.

The Pledge algorithm [74], named after John Pledge of Exetdras a similar

3.5. Path direction 88

approach to the above described. This algorithm is designeéd evade
obstacles, with an arbitrarily chosen path direction at thestarting node.
Such an algorithm accounts for traps shaped in the upper-eatetter \G".

The original Pledge algorithm assumes a xed arbitrary diretion of travel
that it uses as the reference to perform wall following whilsumming the
angles of each corner. The condition for the Pledge algonithto abandon

wall-following, is for the sum of the turns to be 0.

In contrast to the Pledge algorithm, the proposed method deenot assume
a xed direction of travel. Instead, it keeps track of two diections, that
of the path, and that of the goal. For simplicity of explanaton, one can
visualise two clock hands, with one hand (the minute hand foexample)
pointing in the direction in which the path is currently travelling, while the
other hand (hour hand) always points in the direction of the gal (as would
a compass needle for which the target represents North). Wheroming on
the edge of an obstacle, one must keep track of the number afgs the
minute hand crosses over the hour hand along with the relagvdi erence
between the two hands. A path may leave the wall-following b@viour and
resume travelling in a straight line towards a target, if thenumber of turns
performed away from the a goal is less then the number of turpgrformed

towards the goal.

Figure 3.33 serves as an example to illustrate the behaviour the direc-
tion monitoring functionality. Considering nodess,t at (Qqq) travelling
towards sgop at (Q1g), the algorithm explores the right-sided path. It inter-
sects the obstacle at@,s) and updates the goal direction to indicatessiq,
(i.e. goal pointed to by O in the indexed square). As the nextée node
on the right-side of the boundary is Py4), the path direction (indicated by
downward arrow) gives the number of turns away from the goalMoving

downwards, to (H14), the path direction remains the same but the orienta-

3.5. Path direction 89

tion of syoa Changes fromEast{bound to North East{bound, thus the
turn count becomes 3. At Eg) the path is heading W est{bound, with
a turn count of 5. At (Og), the path crosses over the goal direction (i.e.
it goes through O to complete a full rotation), headingeast{bound once
more. However, the crossover is taken into account, thus, rer that hav-

ing a turn count of 1, the full rotation is added for a total tum count of

9.
S1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19
R
Q
poal
P
@)
N
M
L
K
J
I
H
G
F
6
E
5 0
D
4
C
turms 3 3 turms 35 41312
B
furng =| 1
A

Figure 3.33: Direction Matrix rotations (0O always points tovards Syear;
arrow shows relative number of turns away fronsye, While following wall)

The path continuesSouth{bound from (Oy,) until (K ;) with a turn count

of 11, after which the path turns towards the goal atK ;) and (K1,). As

3.6. Path pruning 90

such, the turn count at (L,,) becomes 7 as the path crosses over the goal
direction in the opposite direction to the path side (i.e. fom right to left
for the right{bound path in our example). However, because #hturn count

is greater than 0, the path is not allowed to leave the obstazlboundary
and head towards the goal. Keeping track of the path's turn emt avoids
creating a cyclical path that would intersect the same obstde and creating

a loop. As the path is not allowed to stop following the wall, itarrives at
(Q4) with a turn count of 4 as the node is now horizontal tGy.a. Moving
South{bound towards (E3) the path is now 3 turns away from the goal.
Finally, reaching (D 16), the path once more crosses over the goal direction,
reaching a turn count of 1. At this stage, the contour tracing subroutine
returns, the state changes fronk OLLOW WALL to RAY CAST and the
path is allowed to leave the obstacle boundary and move in araight line

towards the goal.

3.6 Path pruning

Directing the search towards nding the shortest path solubn involves
presenting the estimated length for the path. The heuristiestimation for
the length of each path must preserve the admissibility pragty (Equation
1.5). As such, RPF can never overestimate the cost of reachitite goal
via the path in question, which implies preserving the patls' tautness. For
this purpose, a path requires the ability to prune any and alhodes that

do not respect the triangle inequality (Figure 3.34).

3.6.

Path pruning 91

X y
z<x+y
X y
z
X y
z Xx+y

Figure 3.34: Triangle inequality

When a new node is added to the path, if the two nodes prior to itanot

respect the triangle inequality, the path becomes suboptiah because the

heuristic estimation overestimates the cost of the path. Ah®rtest path

must always be taut, and as such can only have heading changesund

obstacle corners. The need for pruning with each new cornetdition arises

from the free-space assumption. The algorithm does not perm line-

of-sight checks between vertex pairs in a path, until a pathds reached

the nal target node. Because of this, the algorithm is not awar when

expanding towards the goal if there exists a line-of-sightetween node

paths that break the triangle inequality.

Drawing a parallel to Theta*, the pruning procedure in RPF ca be inter-

preted as updating the parent of a node. For Theta*, given a me s and

it's immediate neighbours® when s® has line-of-sight to parent of nodes,

the nodes's parent becomes a direct parent for nods’ (see Line 4 in Al-

gorithm 3). This implies that a shortest path can bypass when travelling

from parent(s) to s° or in other words, s can be pruned from the path

3.6. Path pruning 92

containing parent(s) and s®. This is also the case for RPF, with two key
di erences, namely thats and s do not have to be immediate neighbours,
and that RPF does not perform a line-of-sight check, but ratér it opti-

mistically assumes that a line of sight exists, postponinghé line-of-sight

check until the end goal has been reached.

3.6.1 Backward pruning

Back-pruning maintains a path's tautness, by pruning nodethat do not
respect the triangle inequality. Pruning nodes allows a phtto provide con-
sistent heuristic length estimates. The forward pruning sategy is called
at each step when moving along an object's boundary beforecanfter a
path has reached the nal destination nodes.,q. While not recursively im-
plemented, the back-pruning strategy is reminiscent of thRecursive Strict
Theta* algorithm (described in 2.4.2), with the distinction that, for RPF,

pruning only ever needs to be applied to corner nodes.

3.6. Path pruning 93

1 2 3 4 5 6 7 8 9 10 11 12

Ssthrt

® Pruned Node . Blocked cell

- -- Right-bound paths

Figure 3.35: Back-pruning scenario: stage 1

To exemplify the backward pruning strategy, let us considethe map con-
guration illustrated in 3.35. For simplicity, we will only consider the path
that always follows an obstacle's edge on the left-hand sid&éhe algorithm
initiates the search fromsg,« at (D3) by ray casting towardsssio, at (D11)
until in encounters an obstacle at Ds). As a leftward exploring path, if
follows the edge of the obstacle and identi eds) as a corner node. From
3.2, we determine Es) to be on the right-hand side 01|‘E6D3, the vector
described by the next node on the edge and the last node in thatp, in
this casessart. We label (Es) as s; and add it to the path. (Es) now
becomes the last node in the path, as we continue with edgeldéaling. In
the same manner, we discoverEg) as the next corner, label it ass, and

add it to the path. As the path's direction of travel has gone bléow 0, as

3.6. Path pruning 94

1 2 3 4 5 6 7 8 9 10 11 12

Sl

¢
Ssthrt

® Pruned Node . Blocked cell
- -- Right-bound paths

Figure 3.36: Back-pruning scenario: stage 2

described in 3.5, we are now free to leave the edge of the obktaand once
again ray-cast towardsss,p,. A new obstacle is encountered betweeDs
and Eg and the path proceeds with edge following towards the left. hie
path encounters the nodes, 5 at (Fg). The last node in the path,s;, now
lies on the right-hand side 6slswa” , and becomes a candidate for pruning.
Nodes; is removed from the path ands; becomes the last (and only) node

in the path once again.

When s,y moves to Gg), as observed in Figure 3.365; becomes the next
candidate for pruning, as it lies on the right-hand side ésﬁstart Swaln - Node
s is pruned as the path proceeds with edge following. In the seamrmanner
as before, two new nodes are identi eds and s and are placed in the

path.

3.6. Path pruning 95

1 2 3 4 5 6 7 8 9 10 11 12

J
I
y g P
G A
F // -
£

Ssthrt Sstop

— Final shortest path] Blocked cell

Figure 3.37: Back-pruning scenario: stage 3

Nodes) is identi ed as the new jump-0 point and the path leaves the dge
of the obstacle. The ray-cast encounters no obstacle betwes) and Sgtop.

The path has now reached the end and its state is updated. Inehnext
phase (Figure 3.37), the path performs line of sight checkstixeen subse-
guent nodes for this simple scenario determines that the pgais cleared.
Its state is updated, and the it is moved from the open list totie cleared

list.

The pseudo-code for the back-pruning strategy can be seenAilgorithm 6.
The 1-D indices of the nodes are stored in the path along witlhé sidedness
of the path at the point of their expansion. This can be done eciently
by adopting the convention that all left-bound nodes have mgative value

and all right-bound nodes have positive value. The choice eign is not

3.6. Path pruning 96

important however, as long as it is consistent throughout,nsuring that left-
bound nodes have an opposite sign to right-bound nodes. Thigarithm
looks at all previous nodes in the path (Line 5). If the node; lays on
the opposite side ofsi 1Swan relative to the sidedness of the path, that
node is pruned from the path as the triangle inequality dicties there is a
shorter path to s, that does not pass throughs;. The condition at Line
8 allows for an early termination of the algorithm at the nodebefore the
path has switched sides. For example, if going from a left-bod path to a
right-bound path, the nodes; will have an opposite sign (i.e. negative for
left-bound paths) to the current sign of the path (i.e. posiwe for right-
bound paths). If the condition at Line 8 is true, the algoritm is allowed

to terminate early, as no other nodes could be pruned.

To check that the path is taut (Line 10), the sidedness d; is tested using
Equation 3.2. If the condition is respected, then the trianlg inequality
is preserved and the algorithm terminates as there is no ne&allook any
further. If the condition fails, however, the node is remowkfrom the path,

and the algorithm moves to the previous node in the path.

Algorithm 6 Ray Path Finder: Path Back-Pruning
1: function backprune (Syai)

2. if path:size < 2 then . path needs at least 2 nodes in the path

3 return

4: n path:indexOf (Sinterstart)

5: fori ndownto 2do

6: Si path:nodeAt (i) .Si SinterStart

7: Si 1 path:nodeAt (i 1) . node beforeSiyerstart

8: if sgn(s;) 6 sgn(path:side) then . Is s; from opposite side?

9 return . path at in ection point; cannot prune beyond it

10: if sgn('siswa” !si 1Swal) = sgn(path:side) then . checking
sidedness (Equation 3.2)

11: return . path is taut; no need to prune

12: path:remove (s;) . Sj On opposite side o'fsi 1Swall ; prune it

13:; SinterStart Si 1 . S; 1 becomes new interior starting node

14: updateLength (path)

3.6. Path pruning 97

3.6.2 Forward pruning

Similar to the back-pruning strategy, forward-pruning is enployed to main-
tain a path's tautness, by pruning nodes that do not respecthe triangle
inequality. The forward pruning strategy is only used aftera path has
reached the nal destination nodes.,q. To exemplify the forward prun-
ing strategy, let us consider the map con guration illustréed in 3.38. For
the purpose of describing the procedure, we will only considthe path
that always follows an obstacle's edge on the left-hand sid@milar to the

example in 3.6.1.

1 2 3 4 5 6 7 8 9 10 11 12

Ssthrt Sstop

--- Left-bound path [] Blocked cell

Figure 3.38: Forward-pruning scenario: Initial stage

The algorithm initiates the search fromSs,: at (C;) towards Sgiop at (Ci1)
by performing a a line of sight check. The ray-cast intersexian obstacle at

(C;) and updates its state toFOLLOW WALL . It proceeds by following

3.6. Path pruning 98

the edge of the obstacle and identi esK;) as a corner node, asHy) is on
the right-hand side o!ngcl, the vector described by the next node on the
edge andSgq , the last node in the path. We label F;) as s; and add
it to the path. (F7) now becomes the last node in the path. Continuing
with edge following, we discover the next corner atHo), (F1o) is on the
right-hand side oflEloF7, the vector described by the next node on the
edge andS,, the last node in the path. We label Fyp) as's, and add it to
the path. As the path's direction of travel has gone bellow 0,sadescribed
in 3.5, we are now free to leave the edge of the obstacle and oagain
ray-cast towardsssip. AS S, has a line of sight tosg,, the path's state is

updated to re ect that it has reached the goal.

1 2 3 4 5 6 7 8 9 10 11 12

G Syvatt

Ssthrt

--- Left-bound path ~ ® Pruned Node . Blocked cell

Figure 3.39: Nodes; on right side of Ieft-bount'jswa” S, is pruned from path

In the next phase (Figure 3.39), the path performs line of siglchecks be-

3.6. Path pruning 99

tween subsequent nodes beginning with the pais{a ; S1). A hew obstacle

is encountered betwee, and E4 and the path changes state to proceed
with edge following towards the left. We encounter the nods,,; at (G,)
which is of interest. The next node aftersqy, S1, lies on the right-hand
side o*swa” S,, the vector described the current node on the edge arsg,
the node afters; which is currently considered for pruning. Nodes; is
removed from the path ands, becomes the new goal as the next node after
Sstart - AS Swan progresses on the edge of the obstacle, two new nodes are
identi ed. The rst one at (H,), labelled s9, becomes the new start (de-
scribed assinerstart 1N Algorithm 9) and is inserted before the new goad,.
Similarly, the next node on the edges? at (H;) becomes the new start and
is inserted before the new godd,. After s,, the path's direction of travel
relative to the new goal, goes bellow 0 and the path's state igpdated to
RAY CAST. The line of sight check betweers) and s, is successful and
the path's state is once again updated t&OAL _FOUND. The path once
more performs line of sight checks between subsequent nodes deter-
mines that the path is clear (Figure 3.40), it removes the patlirom the

open list and inserts it into the cleared list.

3.6. Path pruning 100

1 2 3 4 5 6 7 8 9 10 11 12

Ssi

— Final shortest path] Blocked cell

Figure 3.40: Forward-pruning scenario: Final stage

The pseudo-code for the back-pruning strategy can be seenAtgorithm
7. Forward pruning is called at each step when moving along atstacle's
boundary, but only for paths that had previously reached thenal desti-
nation node s¢q. The algorithm for forward pruning is similar to that of
backward pruning, with a few distinctions. Iteration of theelements hap-
pens from the current goal NnodeSjnerstart ,» towards the end goakeng. The
algorithm looks at the nodes; and the next node in the path,s;;; (Line
7) and performs the cross-product (Equation 3.2) to check the path is
taut (Line 10). The cross-product indicates the sidedness g, relative to
!aNa”;siﬂ (as opposed t(!.Si 1; Swan for back-pruning). If the nodes; lays on
the opposite side o's,\,a” ' Si+1, vertex s is pruned from the path, otherwise

the algorithm terminates, as the path is taut. In the same mamer as for

3.7. Redundant paths 101

back-pruning, the condition at Line 8 allows for early terrmation of the

algorithm when the path has switched sides.

Algorithm 7 Ray Path Finder: Path Forward-Pruning

1. function forwardPrune (Swan)
2: if Sgoa 2 path then

3 return . haven't reached nal goal; cannot forward prune

4: n path:iindexOf (Sintercoar)

5: for i nto pathisize 1do

6: Si path:nodeAt (i) .Si SinterGoal

7: Si+1 path:nodeAt (i +1) . node afterSiyercoal

8: if sgn(sj) 6 sgn(path:side) then . is s; from opposite side?

9: return . path at in ection point; cannot prune beyond it

10: if sgn('swa” Si !swa” Si+1) = sgn(path:side) then . checking
sidedness (Equation 3.2)

11: return . path is taut; no need to prune

12: path:remove (s;) . S; on opposite side o'sNa” Si+1; prune it

13: SinterStart Si+1 . Si+1 becomes new interior goal node

14: updateLength (path)

3.7 Redundant paths

A search-space that contains non-convex obstacles presean additional
challenge for our algorithm. When the search encounters anjebt it fol-
lows the edge of its boundary until the jump-o0 condition is net, at which
point it leaves the edge of the object and resumes ray castibgwards a
goal. If the path encounters another obstacle when perforng the line of
sight query, there is no guarantee that the second interséah is with a
new obstacle or is in fact with the boundary of the same obstigcencoun-
tered previously. The solution to this problem is trivial: Let us consider
the example illustrated in gure 3.41 where D3) and (D1;) represent the
start and end point respectively, and the non-convex obstkcindicated by
grey cells. We consider the initial path, represented by béuarrows, to be
a left-sided path and label it aspath;. As in our previous examples, the

algorithm initiates its search with a line-of-sight check ad encounters an

3.7. Redundant paths 102

obstacle at Os). The path now splits into two paths, path; which proceeds
with following the obstacle on the left-hand side of the boudary and path,
(represented by green arrows) which follows it on the rightand side. Dur-
ing the boundary following procedurepath; encounters two corner points,
(Es) and (Eg) which are added topath; ass; and s, respectively. Ass; is a
jump-o point with a potential line-of-sight to s, path; abandons follow-
ing the boundary and proceeds to travel in a straight line toards the goal.
At the next intersection with an obstacle,path; once again splits into two
paths. The original path, path; a left-sided path described by<sar ; S1; S2)
with s; and s, as left-sided nodes, and the new patlpath; (represented
by red arrows) a right-sided path containing the same nodes gathg, i.e.
(Sstart ; S1;S2) With s; and s, as left-sided nodes. At this junction, let us
consider what happens to the new pattpaths. The path proceeds with fol-
lowing the object boundary on the right side until it arrivesat (Eg) which
it identi es as belonging to the path, as the nodes, which has an opposite
side to the current side opathz. This implies that the path is following the
boundary of a non-convex object and it has returned to the jupro point
of it's parent path, i.e. path;. If allowed to continue beyond this point,
paths would eventually return to the initial point of intersection, (Ds), and
continue exactly aspath,, which would makepath; redundant. From this
we may conclude that any path which, after having switched des, inter-
sects itself from the opposite while following a boundary iedundant, as
it would not be taut and because it would imply the existencefaan early

taut path that would perform the same search as the redundamgath.

3.7. Redundant paths 103

1 2 3 4 5 6 7 8 9 10 11 12
H

Ssthrt Sstop

A

Figure 3.41: Redundant path example:path; Left-bound path. path, -
Right-bound path (green). pathz left{right-bound path path; intersects
itself at s, while following wall in opposite direction to its parent.

Lemma 3.1. If a path revisits a node that has not been pruned while wall
following in the opposite direction it had at the rst visit of the node, the

path is deemed redundant, as it intersects the same obstacle.

Proof. If we let the path P continue on the obstacle boundary, beyond
the revisited node, it will arrive at the previous interseabn point of its
parent with the obstacle. At this junction, a path P° had previously split
0, given the path bifurcation procedure, and already traang in the same
direction asP. This implies that beyond the intersection,P would retrace
the search steps oP® makingP PP Thus, P is a redundant path and

can be safely terminated early. a

3.8. Self-intersecting paths 104

3.8 Self-intersecting paths

Within a search-space that contains non-convex obstacle$ere can be a
number of scenarios in which a path may intersect itself. Theeasons for
these intersections can help in determining what is the apppriate solution

in dealing with these scenarios.

G-shaped obstacle

Considering the scenario presented in Figure 3.42, let usléeV the right-
bound path's expansion. The path moves in a straight line fro Sgr
(Es) towards sq0q at (E11) until in encounters an obstacle atEg. It begins
tracing the contour of the obstacle right-bound and discove two vertex
corners,s; at (Dg) and s, at D; and adds them to the path. Froms; it
leave the obstacle's edge towards,., but encounters the obstacle again.
The path reverts back to tracing the object boundary right-lound. As it
moves toCy, the triangle inequality is broken ands, is pruned from the

path.

3.8. Self-intersecting paths 105

--- Right-bound path [] Blocked cell

Figure 3.42: Self-intersecting path in \G" shaped obstacle

Moving forward on the boundary,s; is also pruned when the path reaches
Cs. The path continues to trace the edge througit,, F4, F¢ and ends up
in s; (Dg), which has been previously pruned. The path allows the vaax
to be re-added to the path. Similarly,D; is re-added to the path, but now
the turn counter of the path does not allow the path to leave th edge of
the obstacle. It instead continues the contour trace nortliround, towards
G-. It identi es this vertex as a corner vertex and adds it to thepath as
s3. Similarly, nodess, at (G3), ss at (Bs) and sg at (B1p) become part of
the path. At vertex (Bio), the turn count again becomes negative which

allows the path to leave the obstacle's edge and reach the gbam Ej;.

3.8. Self-intersecting paths

106

— Left-bound paths
Line-of-sight ray-casts

B Start node

— Right-bound paths

Final shortest path solution

[Goal node

Figure 3.43: Screen-shot of solution in nested G-shaped aides (blue {
left-bound wall-following; red { right-bound wall-following; yellow { ray-

casting)

The screen-shots in Figures 3.43 & 3.44 illustrate two instaas of \G-

shaped" obstacles scenarios. Figure 3.44 presents a simtlgpology to

Figure 3.43, with the exception of two blocked cells that cleso the cor-

ridor for the path found in Figure 3.43. In Figure 3.43, the su@assful path

3.8. Self-intersecting paths 107

is the one that initiates a left-bound wall-trace after its nitial encounter
with the smallest of the \G"-shaped obstacles, and afterwas alternates
between right-bound and left-bound heading-changes. Ciog o the corri-
dor in Figure 3.44 creates the condition for a di erent path tdoe successful,
namely the path that performs two initial left-bound turns when encoun-
tering the same \G"-shaped obstacle twice, similar to the gh illustrated

in Figure 3.42.

The unsuccessful (abandoned) paths in the gures that tracéhe walls
of the obstacles (marked by the blue and red lines) presentttvia large
coverage relative to length of the nal paths identi ed. The eason for this
is related to the method used to calculate the heuristic cosf a path, which
computes the sum between the lengths of the segments formagath, the
cost from the last node in the path to the current position andhe distance
to the nal goal. \Overhead" paths that follow the interior of a shape (i.e.
curb inward) prune the \corners" that they identify in order to maintain
path tautness, but in doing so, underestimate the value retoned by the
heuristic cost function. This leads the algorithm to mistak these paths as
more favourable than they are in actuality, and prioritise heir expansion
to the detriment of other paths. Underestimated path costs & explored
in more detail in Section 4.5 where the limitations of the algithm are

discussed.

3.8. Self-intersecting paths

108

— Left-bound paths

Line-of-sight ray-casts

B Start node

— Right-bound paths

Final shortest path solution

[Goal node

Figure 3.44: Screen-shot of solution in nested G-shaped daades with
obstructed corridor (blue { left-bound wall-following; red { right-bound
wall-following; yellow { ray-casting)

Locked-in start node

Contrasting the \G"-shaped obstacle scenario with the ondlustrated in

Figure 3.45, we can observe an instance of path intersectiomat would

result in an in nite loop if not terminated.

3.8. Self-intersecting paths 109

= *

L 4
Sg oal

Sstart

--- Right-bound path [] Blocked cell

Figure 3.45: Self-intersecting path in locked-in start scanio

The sqat NOde at (Fg) is locked inside an obstacle's shape, with the goal
situated outside of the shape, atK;2). Following the right-bound path
towards the goal, the obstacle is encountered af§) (marked by Syai).
Wall following around the obstacle's boundary traces the tarior contour
of the obstacle throughCy, C4, 14, 19 and passes througls, for a second
time, similar to the path in Figure 3.42. Unlike the \G"-shapedscenario,
however, the path continues to follow the same wall throug@y, Cy, 14, 9
and back to s, , increasing its turn count by 8 with every pass through
swan - If allowed to continue, the path gets stuck in an endless Ippas no
solution can be found. To remedy it, we can keep track of the mber of

times the path has passed througk,,,; and terminate it if it passes more

3.8. Self-intersecting paths 110

than twice. We allow the path to pass twice throughs,5 to accommodate

for the \G"-shaped obstacle in the previous scenario.

Lemma 3.2. If a path revisits a node while wall following in the same
direction it had at the rst visit of the node, and the path is tracing along
the inner bounds of an obstacle, it is only allowed to revisit the node once,

after which the path is deemed unreachable.

Proof. Given a start node that is locked inside an obstacle, the relsing
paths will trace the inner boundary of the obstacle in an endks loop, and

thus no solution exists. O

Remark 1. It should be noted that the revisited node would not belong
to the path, as it would have been pruned in order to maintain the path's
tautness. The path is allowed to revisit the node once to allow it to escape

from a potential \G-shaped" obstacles (e.g. Figure 3.42).

Locked-in goal node

In the scenario presented in Figure 3.46 a solution does notigx The end
node atFg, Syoal, IS isolated within an obstacle with a hollow interior. We
will examine the attempt made by the right-bound path to reah the goal.
The search begins from nodsg,: at F, towards sy and intersects the
obstacle atF4. The path begins to navigate along the obstacle's edge on
the right-hand side. When it reache®, (marked by s,), it determines the
node to be a corner vertex and adds it to the path. The path comtues to

trace along the obstacle boundary without its turn count gaig below 0.

3.8. Self-intersecting paths 111

1 2 3 4 5 6 7 8 9 10 11 12 13

(@
N

Ssthrt

Hemssseessgeeesposnaf ey peeedf

w
n

--- Right-bound path [] Blocked cell

Figure 3.46: Self-intersecting path in locked-in goal scema

The contour trace nds 3 more corner vertices By, J11, and Jg4, respec-
tively, and adds them to the path ass;, sz and s;. From s,, the path heads
south-bound and encounters; once again. Because the path is taus;
has not been pruned from the path. Allowing the trace to contue would
result in a an endless loop in which the path would pass repeally through
the same vertices. The left-bound path fails in a similar f&gon, as it would
intersect itself in s,. We can conclude that a path which intersects itself

creates a loop, and can be discarded as it would never reacle #nd goal.

Lemma 3.3. If a path revisits a node that has not been pruned while wall
following in the same direction it had at the rst visit of the node, and the

path is tracing along the outer bounds of an obstacle, the path is deemed

3.9. Chapter Summary 112

unreachable, as it intersects itself to form a loop around the obstacle.

Proof. If the path is allowed to continue beyond the revisited nodeit
continues to retrace the outer bounds of the obstacle, reiting all other
nodes identi ed in the rst pass as being part of the path (or onvex convex
hull of the obstacle). If not terminated, the path would perbrm this cycle

ad in nitum, never arriving at a solution. O

Remark 2. It is allowed for a path that has reached the goal and is at-
tempting line-of-sight between each pair of nodes to revisit a noslén the
same direction if it had been pruned. This can happen if the free-space

assumption fails and the shortest path between nodes does pass threugh

3.9 Chapter Summary

This chapter introduced a number of algorithms developed thi the pur-
pose of aiding searches for Ray Path Finder, the proposed pgitanning

methodology.

The novel path-planning algorithm operates under a free-ape assumption.
It optimistically assumes there are no obstacles betweendlstart and goal
node, nor between any two nodes that it identi ed as part of te path. It
navigates towards a goal in a straight line and if it encounts an obstacle,
it follows along the obstacle's boundary in both left and rilgt directions,

until it is again able to travel in a straight.

A number of features are necessary for the path{ nding algghm to exhibit
the aforementioned behaviour. The notion of path state wasitroduced,
to inform on the condition of each path and to allow it to trangtion be-

tween states or to allow the driving algorithm to discard pats that have

3.9. Chapter Summary 113

reached an impasse. A contour tracing solution was introded which al-
lows avoiding passing through obstacles by moving aroundéin, along
their walls. A line-of-sight algorithm with intersection retrieval is derived
in order to move a path in a straight line and determine when anbsta-
cle is intersected. Path{pruning strategies are introduackto maintain a
path's tautness during expansion. Methods of identifyingedundant and
self{intersecting paths are presented, to enable the algtthm to discard
such problem-paths. Path direction enables directing theearch towards
the goal, and allow a path to infer when it should depart from he wall-
following behaviour. A key feature, path sidedness allowsrfidentifying
nodes at obstacle corners that may become heading changea path, and

also to prune such nodes if they compromise the path's tautse

These features are essential for the main search algorithm,which paths
are raced against each other and are selected for expansionhe order of

their heuristic lengths.

Chapter 4

Ray Path Finder: An

Any-angle path planner

In this chapter we introduce the novel path-planning solution that was devel-
oped { Ray Path Finder. We describe how the best- rst strategy behind the
Ray Path Finder algorithm drives the main search forward across multiple
paths and how RPF exploits 2D geometric properties of the topology and
makes inferences about its search-space. We discuss the principle behind

the algorithm, its properties, and address its current limitations.

4.1 Introduction

For paths identi ed by grid-constrained path- nding algorithms, such as
A*, a node can only have a direct (immediate) neighbour as a pant.
Because of this, the paths found are arti cially restrictedto only move
orthogonally or diagonally along grid edges. Often in prae, after a
grid-constrained algorithm identi es a solution, smoothig techniques are
applied in a post-processing step in order to morph the patmtio a more

realistic looking one, with fewer heading changes. Howevpgnst-processing

114

4.1. Introduction 115

the paths found by traditional edge-constrained nd-path #&orithms is
not always able to improve paths [4]. In contrast, any-anglpath- nding
algorithms nodes can have as a parent any other node with a @t line-

of-sight.

Any-angle path-planning algorithms generally nd shorter pths, which
have fewer heading changes, and make a robot's behaviourkdaoore nat-
ural. For an any-angle algorithm to nd the shortest path in asearch-space,
it must identify a taut path that has the lowest traversal cos between start
and goal nodes. In the general sense, a path is considered tathe path
wraps tightly around an obstacle (similar to a Dubins path { &ction 2.5.1).
For an octile grid, a taut path also implies that all the headag changes
in a path are formed by vertices that represent outer cornels.e. vertices
that have one occupied tile and three unoccupied ones as rdigurs). A

shortest path on octile grids must share this property.

Searching only amongst taut paths is desirable over having tonsider all
possible non-taut alternatives, which is what the proposealgorithm {Ray

Path Finder{ aims to do. The RPF algorithm achieves this by opmating

on a free-space assumption strategy. An initial path is diréed to move
in a straight line towards the goal. This expansion policy nies use of
the variant of Bresenham's line algorithm presented in Seon 3.2, which
returns the points of intersection with an obstacle that braks the line-of-
sight with the target. At the point of intersection, a new pah is generated
and splits o from its parent path. The two paths trace the cortour of an

obstacle using the novel contour tracing algorithm introdoed in Section
3.3. The expansion of the paths is guided by a best- rst-sedr strategy
which prioritises the path with the lowest heuristic length Outer-corner
points are identi ed on the contour of an obstacle and addedsanodes of

the path. When a path is allowed to move in the direction of thedrget

4.1. Introduction 116

again, it reverts to moving in a straight line. This processsi performed
for all path until a path reaches the goal. For paths that redt the goal a
line-of-sight check is performed between its nodes to vgrithe free-space
assumption. If obstacles are encountered, the path is agasplit into two

and are expanded based on their updated heuristic lengths.

The problem of e ciency in a path- nding algorithm revolves around two
key aspects, runtime and path length [75]. Generally, theris a trade-o

between minimising the length of a path and minimising the mtime of the
algorithm, as the two goals are antithetical. Using a best-st search strat-
egy to prioritize the expansion of the most promising path, RF wishes to
strike a balance between runtime and path length. The bestrst search al-
gorithm expands the most promising paths rst, allowing foithe algorithm
to converge to a solution quickly. Subsequently the algohin attempts
to shorten the paths that have reached the goal based on théieuristic
length, expanding the most promising one rst. When a path haveen
validated as having line-of-sight between all its subseqgutenode pairs, the

resulting path will have the shortest length.

4.2. A recursive approach 117

4.2 A recursive approach

In order to identify some of the issues that an e cient path-panner should
attempt to address, let us imagine a naive approach to an RPFaxant

illustrated in Algorithm 8.

Algorithm 8 Naive Recursive Approach

1: function RecursiveRaySearch (Sstart , Sgoal, Sid€)
2: Prext MovelnStraightLine (Sstart 5 Sgoal)

3: if Phext = Sgoal then

4: return %path found®

5: else

6: COrneriest FollowWallUntilCorner (LEFT)
7 COrNe€fryight FollowWallUntilCorner (RIGHT)
8: if 9 cornere; then

o: RecursiveRaySearch (Sgart ; COrneriest)

10: RecursiveRaySearch (cornefies ; Syoar)

11: if 9 cornergn: then

12: RecursiveRaySearch (Sstart ; COrneryign:)

13: RecursiveRaySearch (cornefyight ; Sgoal)

14: return %ho path found®

The algorithm can be thought of as a series of paths racing tavds a
goal, with each path behaving similar to individual bug algathms. A
path travels towards a target until it encounters an obstad, after which it
generates a clone of itself and they both perform wall-folleng in opposite
directions, one tracing the obstacle on the left-hand sidend the other
on the right. Each bug traces the obstacle boundary until itdenti es a
\corner", after which two new searches are performed, onetampting to
travel from a start node to the corner node and from the cornerode to a
target node. This process is repeated recursively until Bier a search fails
or a path is found between all node pairs in the recursive stgcn which

case a path solution exists between start and goal.

Given a nite distance between start and goal positions, and goal isolated

inside an enclosure with nite bounds, no solution exists iattempting to

4.2. A recursive approach 118

reach the target (e.g. goal is inside a locked room). In a virally in -

nite search space, heuristic path-planning algorithms su@s those in the
A* family, will exhaustively explore the connected nodes ofhe free space,
which negatively impact runtime. Bug algorithms avoid thisdrawback, as
termination conditions can stop the search of a bug after, f@xample, the
bug travels along the outer perimeter of an obstacle, creag a cycle in its
path. Bug algorithms that alternate wall-following direcions may allow
more than one pass but eventually terminate because of the sfmen-
tioned condition. Ideally, a path-planning strategy wouldbe able to take
advantage of desirable properties from both bug algorithmasnd heuristic

path-planning algorithms.

The approach presented in Algorithm 8 has many shortcomingse would
be very ine cient. From an implementation standpoint, the recursive na-
ture of the search algorithm would employ a large amount of seurces for
an environment with a complex layout. Also, the algorithm wold only be
able to handle simple object geometries, as it does not havelaar notion
of direction and does not guarantee termination. For exampla path could

get stuck in an endless loop inside a \G-shaped" obstacle.

The naive recursive implementation behaves like a depthst search algo-
rithm [23]. An important drawback of depth- rst search algoithms is the
risk of non-termination. Also, the algorithm does not make anattempt to
maintain path tautness, nor prioritise the most promising pths. Because
the search interweaves nodes in the path in a simple mannef,fails to
maintain path tautness. The reason for this is simple. Givethree consec-
utive nodess;, s, and s;3 identi ed by the search as belonging to a path,
and s; not having a direct line-of-sight tos,, the recursive call to nd a
path from s; to s, can identify a hypothetical nodes? that has a direct

line-of-sight to s;. It such an instance, the taut path 6;, s?, s3) would not

4.2. A recursive approach 119

pass throughs,. For an algorithm to be optimal the tautness of each path
would need to be preserved throughout the search. Related tiois issue,
assuming that the algorithm identi es s, and afterwards identi essg, if s;
has a line-of-sight tosz, allowing the algorithm to proceed would pollute
the search. Searching for paths between the node paisg,6,) and (s;,S3)
would not be conducive to an optimal path as it would not needa pass

through s,.

Depth- rst search solutions can su er from a termination poblem. Let
us consider a number of thought experiments. Given an in ni& search
space, the naive algorithm presented here would exhibit thfault. A simple
thought experiment makes this evident. Consider a scenarin which a
wall blocks the line-of-sight between the start and stop na$, and which is
bound at one end but extends in nitely in the opposite direabn. For such
a con guration, Algorithm 8 could potentially run forever if attempting to
follow the wall in the unbound direction. The solution to thetermination
problem is such that, rather than allowing a path to search dmaustively,
multiple paths can search alternatively in di erent direcions, prioritising
based on the current best guess (heuristic estimation) of aafh's cost.
In essence, the solution is to manage the paths using a bes$t search

expansion strategy.

4.3. The Ray Path Finder Algorithm 120

4.3 The Ray Path Finder Algorithm

The concept of Best- rst search is one of the most studied tags in path-
planning and has been around for decades. Strategies for Best search
have been discussed in [21], [76], [77], [78] to nhame a fewitdmost general
form, Best- rst search is an informed graph search algorith which uses
a heuristic cost function to expand the most promising nodesst. Best-
rst search has the advantage that, if it reaches a dead-endode, the
algorithm continues to expand other nodes [79]. The A* algdhim is also,
in essence, a Best- rst search algorithm, but it distinguises itself by taking
into account the cost-distance already travelled in additio to its heuristic

estimate towards the goal [21].

Ray Path Finder, the proposed algorithm, employs a best- rssearch strat-
egy, but rather than applying it to grid nodes, it applies it © individual
paths. RPF selects the path which looks to be the most promis with re-
spect to its assumed length and explores it rst. In essencthe algorithm
races multiple bug-like paths towards the nal goal, until & obstacle in
encountered or the goal is reached. If an obstruction is deted, the path
splits in two, and they begin to trace the obstacle's boundgrin opposite

directions, until they are allowed to move in the direction bthe nal goal.

The order in which the racing paths are expanded is based oneih pre-
sumed length and distance to the goal node, while operatingnder a free-
space assumption. A path is populated with nodes only foundh@bstacle
boundaries and which break the triangle inequality and, asush, would
undermine the free-space assumption between nodes. Until @lpreaches
the nal goal, the nodes are optimistically assumed to havenle-of-sight,

with a heuristic cost function described by Equation 4.1:

4.3. The Ray Path Finder Algorithm 121

Xl

H()= D(Si;Si+1) + D(Sn;Swai) + D(Swall; Sstop) (4.1)
i=1

where is the path, ssp 2 and n = index Of (Sinterstop)-

After a path has reached the goal by moving around obstacle badaries,
the algorithm re-evaluates the path's free-space assummti by performing
line-of-sight checks between its pairs of consecutive nedeThe heuristic
cost function for paths that have reached the goal is descet by Equation
4.2:
X 1 X1
H()= D(si;Si+1)* D(Sm;Swat)* D(Swar;sn)+ D(sj;5+1) (4.2)

i=1 j=n

where s the path, Sgop 2, M = index Of (Sinerstart)»

n = index Of (SinterStOp) and p= index Of (Sstop)-

The pseudo-code for Ray Path Finder is presented in Algorithm. Q.et us
consider Figures 4.1, 4.2 & 4.3 as examples to illustrate thelaviour of

the algorithm.

In the initialisation phase, the main function of the algorihm creates a
path with a randomly chosen initial side, either left or righ. The choice
of side is inconsequential, as any child path will have an opgite side to
its parent, thus having exhaustive coverage. For simpligit the initial path

is selected as being left-bound and its state is set ®AY CAST, under
the assumption that the path can travel in a straight line tovards the goal

(Line 6).

The main function acts as a best- rst search algorithm, priotising the
path that is so far assumed to be the shortest. It does this bymgloying
a priority queue which orders the paths in order of their assned lengths,

from shortest to longest (Line 7). As the paths are expanded dgradually

4.3. The Ray Path Finder Algorithm 122

populated with nodes, their heuristic costs are updated, wich modi es

their order in the queue.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

A

(@

Sstaft

> mw O O m T O I

- -- Left-right-bound path . Blocked cell

Figure 4.1: Spiral path example: Alternating directions (léfright-bound
rst, right-bound second)

The initial path that was created is inserted into the queueafter which
the main loop is entered (Line 9). The while loop polls the pority queue,
extracting the most promising path, until all paths are exhasted. The
selected path is asked to perform an action based on the statewhich
it nds itself, in our case, RAY CAST. Referencing Figure 4.1, the path
moves in a straight line fromF, until it encounters an obstacle atF,,
at which point its state changes toHIT WALL (Line 43) and the new
state is returned to be handled by the main function, by the siich case
statement. At this stage, a new path is created, which split® in an
opposite direction (i.e. right-bound path in Figure 4.2), ad which is also
placed in the queue (Line 27). After the paths have been splitieir state is

changed toF OLLOW _WALL , and the loop reiterates. InF4, the cost of

4.3. The Ray Path Finder Algorithm 123

both paths (left-bound path in Figure 4.1 and right-bound pal in Figure
4.2) is equal and will remain as such, with the priority queuexpanding
them alternatively until they reach Ji, and Bj,, respectively, at which
point the left-bound path, being the shorter one, will gain a advantage.
While both paths can reach the goal and their constituent nogehave line-
of-sight between them, the right bound path's heuristic casestimate will
prove longer than that of the left-bound path and, as such, & path will

be taken out of the priority queue (Line 17).

K1234567891011121314

(&

Sstaft

> m O O m T O I

-- - Right-bound path [] Blocked cell

Figure 4.2: Spiral path example: Right-bound path

Switching our focus to the left-bound path (Figure 4.1), The Wil following
procedure is performed until the path reachdss, at which stage, the path's
state is switched back toRAY CAST, and the path moves towards the
goal. It, however, encounters an obstacle ati;,, at which point a new
path is created, with a right-bound direction (Line 27). Theoriginal left-

bound path, after wall-following through B1,, B4, would intersect itself

4.3. The Ray Path Finder Algorithm 124

in J4, becomingUNREACHABLE and will be discarded by the main
loop (Line 24). As such, we continue instead with the new rightound
path (blue line in Figure 4.1), which is conducive to a solutio. At H,
the path traces the obstacle and identi edHg, Dg and Dg as corners and
adds them to the path, after which it reaches the goal and chges state
to GOAL_FOUND. Similarly, the right-bound path (red dashed line in
Figure 4.2), added to the queue when the obstacle was encouatkat F,.
Following the contour of the obstacle, it discovers nodd3,, B1,, Hi,, Hg,
Dg, Dg and which point it has a clear line-of-sigh to the goal. Althogh
the path would have line-of-sight between all its node, bease the left-
bound path in Figure 4.1 is shorter, it reaches the goal befothe right-
bound one, and its nal shortest length would be shorter thaithe heuristic
length of the right-bound path, Line 17 would remove the righbound
path before it is cleared. The function invoked for each patm the main
which handles the state of each path (Line 33) delegates wiisubroutines
are required by the dierent states of the path. Consider Figre 4.3 as
reference. The gure presents a \G-shaped" obstacle with &ttt node at
Hs and goal node atHy. The main loop of the algorithm initiates the
search by inserting a left-bound path to the queue, and, in thwhile-loop
calls theHandleN extState function on the path with a RAY CAST state.
The switch statement is entered and activates the test at Len36. The line-
of-sight function (Algorithm 5) is invoked with parametersSinerstart ; Sqoal-
At this state, the only node in the path is the start node and, a such,
SinterStart Sstart - FOr Figure 4.3, Sinterstart = Hs, and Sgoa = Hg. As
the nodes do not have a line-of-sight between them, the elseabch is
activated and the state is set toHIT WALL (Line 39), and the function
returns control to the main. On the next call, the algorithm aters the
branch at Line 48, and updatess,,; and Siee, the parameters requires

for the wall following procedure with the points of intersetton with the

4.3. The Ray Path Finder Algorithm 125

1 2 3 4 5 6 7 8 9 10 11 12

Sgoal

- -- Left-bound path - -- Right-bound path
D Assumed Free Space . Blocked cell

Figure 4.3: Left-bound and right-bound paths for start-noden G-shaped
object

obstacle returned by theLineOfSight function. The state is updated
to FOLLOW WALL, so that, at the next call to the function, Line 47
can invoke the wall following procedure on the path. For Figer 4.3, in
the rst instance, let us assume that the grey cross-hatchedells at at
Gg and Gy are free. As such, the right{bound path (marked with a red
dashed line) is expanded before the left-bound one, tracdsetcontour of
the obstacle, discovering the path nodeSs, Fs, and nally, Fg, after which
its state is changed toRAY CAST once more. As there exists a line-of-
sight to sy from Fg, the test at Line 36 succeeds and Line 37 sets the
state to GOAL _FOUND and the method returns. Because the goal has

now been found, the next call to the function activates the lanch at Line

4.3. The Ray Path Finder Algorithm 126

40, which iterates over pairs of nodes in the path. For each de pair
(si;si+1), the line-of-sight procedure is invoked (Line 42), to ché&cthe
free-space assumption. If a line-of-sight test fails, therfloop terminates
early, returning the state asHIT WALL . Because the right-bound path
in Figure 4.3 has line-of-sight between all its nodes, all rations of the
for-loop succeed and the state is set t€LEARED (Line 45) and the
function returns normally, allowing for the removal of the ath from the
gueue, storing its nal length. The longer left-bound path blue line in
Figure 4.3), on its way tosy.q Will at some point provide a heuristic length
that is longer than the stored nal length of the right-bound path (Line
17), and will be removed from the queue as it would not be able provide

a shorter solution.

The wall-following strategy at Line 53 traces along an obstée's boundary,
identifying potential heading changes, and adding it to theath. It does
this by repeatedly applying the contour-tracing function Algorithm 4),
until a new free node is identi ed on the boundary. Let us conder the
case in which the cell-tiles atGg and Gg in Figure 4.3 are not free. The
right{bound path would instead trace the obstacle's wall fom Fs East{
bound to F;;, and North {bound onto K ;;, at which point it would leave the
map (Line 56), and the path's state is set a NREACHABLE . Thus,
the only other path left in the queue, the left-bound one (bla path in

Figure 4.3) is expanded and reaches the goal.

Lines 61 & 64 handle the cases for when a goal or inter-goal lie the
obstacle's edge and are encountered by the contour-tracialgorithm. Line
67 examines a path for redundancy (Section 3.7), making it teachable if
it follows an obstacle's boundary in the opposite directiothan the one it
had when it rst passed throughSjnerstart - Line 70 address self-intersecting

paths (Section 3.8) which are also unreachable. After the nedhat passes

4.3. The Ray Path Finder Algorithm 127

these tests, the algorithm is allowed to proceed and evalit as a possible
candidate in the path. If a corner node is identi ed (Line 73)it needs to
be added to the path. Its placement in the path depends on wheth
the path had previously reached the nal goal or not. For a pdt that had
previously reached the goal, and is in the process of verifgithe free-space
assumption between its nodes, the newly identi ed corner aced after the
inter-start node (Line 75). In other words, the free-spacesaumption was
wrong and the path does not have line-of-sight between the dwconsecutive
nodes under examination (i.e.Sinerstart and Sinerstart +1), IN Which case,
the newly identi ed corner lies on the obstacle boundary thiabreaks the
line-of-sight. For paths that are ray-casting towards the gal (i.e. from
Sinterstart 10 Sstop), the corner is simply appended at the end of the path
(Line 77). For both cases, the new corner now becomes the negide from
which the search continues (Line 78). After each change in tistructure
of the path, the path is pruned in order to maintain its tautness (Line 79).
This procedure ensures that a path can, at any stage in the sel, provide
the most optimistic score based on free-space assumption, énsure an
admissible heuristic. This, in turn, allows for the most prmising path to
be expanded rst. Finally, if a path's direction tracker (i.e turn count {
Section 3.5) allows it to abandon following an obstacle's bodary (Line
80), its state is changed tdRAY CAST and the path can travel in a straight

line towards the goal (Line 36).

4.3. The Ray Path Finder Algorithm 128

Algorithm 9 Ray Path Finder
1: function Main (Sstart ; Sgoal)

2. pathQueue ; . paths are ordered from shortest to longest
length

3: clearedP athQueue ;

4: shortestLength 1

5: state RAYCAST

6: path Path (Sstart ; Sgoal; State; LEFT)

7: pathQueueinsert (path)

8:

9: while pathQueue6 ; do

10: path pathQueuePeek ()

11: state HandleNextState (path; state)

12:

13: switch state do

14: case GOAL _-FOUND

15: UpdateLength (path)

16: case FOLLOW _WALL

17: if Lenght (path) > shortestLength then

18: pathQueueRemove (path)

19: case CLEARED

20: if Lenght (path) < shortestLength then

21: shortestLength EucledianLenght (path)

22: pathQueueRemove (path)

23: clearedP athQueuelnsert (path)

24: case UNREACHABLE

25: pathQueueRemove (path)

26: case HIT "WALL

27: pathQueueinsert (path:SplitPath (path:side:oppositg)

28:

29: if clearedP athQueuesEmpty () then

30: return \no path found"

31 else

32 return clearedP athQueuePop () . retrieve shortest path from

front of the queue

4.3. The Ray Path Finder Algorithm 129

Ray Path Finder: Continued

33: function HandleNextState (path; state)

34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:

46:
47

48:
49:
50:
51:
52:

switch state

do

case RAYCAST
if LineOfSight (SinterStart ;Sgoal) then
state GOAL _FOUND

else

state HIT _WALL
case GOAL _FOUND

for i

if :

state

1 to path:size 1do
LineOfSight (s;; Si+1) then
state HIT _WALL
return state
CLEARED . Path cleared; potential solution;

can be removed from list
case FOLLOW _WALL
path:FollowWall (path:side)

case HIT

Swall

Stree
State

return state

_WALL

Sintersect

Spre,intersect

FOLLOW _WALL

4.3. The Ray Path Finder Algorithm 130

Ray Path Finder: Continued

53: function FollowWall (path)

54:
55:
56:
57:
58:
59:
60:
61:
62:
63:
64:
65:
66:
67:
68:
69:
70:
71:
72:
73:
74:
75:
76:
17:

78:
79:
80:
81:
82:

do
Stree TTyNextNeighbour (Swan ; path:side)
if Stree = ; then
state UNREACHABLE
return . Path out of bounds
while : IsFree (Siee) . Find the next free neighbour on the wall

if Stree = Sgoal then

state GOAL _FOUND

return . Goal is on obstacle edge
else if Siee = Siz1 then

state GOAL _FOUND

return . Internal goal on obstacle edge
else if Stree = SinterStart N Side(sfree) 8 Side(sinterStart) then

state UNREACHABLE

return . Redundant path: hit side of obstacle and backtracked
else if Siee 2 path then

state UNREACHABLE

return . Node already in path. Path is looping
else if IsCorner (Stree) then
if Ssiop 2 path then . Path has already reached the end

path:insertAfter (IndexOf (Sinterstart); Stree)
else
path:AddLast (Stree)

SinterStart Stree
path:Prune (Sinterstart)

if path:lsOnDirection () then
state RAYCAST
return . Resume going in straight line

The extensive line-of-sight checks performed by algorittsrsuch as Theta*

can have a cumulative e ect of slowing down the search. WhilerBshen-

ham's line algorithm is not an expensive one, given a largeargh search-

space, it can still a ect performance when compounded by theverhead of

the search-algorithm itself. We advocate for a minimal usd Breshenham's

line algorithm, and operate with a free-space assumptionstead. This re-

sults in two use-cases for the line-of-sight algorithm. Ifie rst instance,

4.3. The Ray Path Finder Algorithm 131

before a path reaches the nal goal, line-of-sight is only plermed when
travelling in a straight line towards the nal goal, and assming free-space
when identifying heading changes on obstacle boundariesa the second
instance, after a path has reached the nal goal, line-ofgt is performed
between consecutive node pairs in the path. This veri es ihe free-space
assumption between heading changes that the algorithm hasade is cor-
rect. Those node pairs in the path for which a line-of-sighthecks fails, are
handled performing a sub-search using the same wall-foliog strategy and

free-space assumption strategies.

Because the algorithm only performs line-of-sight checketween the last
node in the path and the nal goal until the path has reached tk nal

goal there is no way to verify the assumption that there are nobstacles
between any two nodes of the path. Additional line-of-sighthecks may
results in non-taut paths that would have to be considered feexpansion,
but which would not necessarily be conducive to a solution. ugh paths
would not only be unnecessary but, from an implementation [t of view,

would also increase resource demands, and negatively impaerformance.

The screen-shot of RPF in action, illustrated in Figure 4.4, i@gsents how
the algorithm makes use of the line-of-sight algorithm. Thegellow lines
represent the line-of-sight expansions that the algorithrperforms for the
illustrated con guration. The only additional line-of-sight casts performed
are those between the nal nodes of the path that has reachetia goal
(masked by the green line in Figure 4.4), to assess if the pathclear. As
can be observed, in this instance only fteen line-of-sightxpansions are

su cient for Ray Path Finder to arrive to a solution.

4.4. Path updating 132

Figure 4.4. Example of minimal line of sight checks

--- Left-bound paths - -- Right-bound paths
Line-of-sight casts Final shortest path solution
M Start node [Goal node

4.4 Path updating

For speci c topologies, an additional step is required to mvent a path
from erroneously leaving the edge. Consider the con gurat presented
in Figure 4.5. Let us explore the right-bound path that trave$ from St
at Hs to syoal at E;3. The path encounters an obstacle aGg and traces
the edge of the obstacle until if nds the corner node afs. NodesFg and
F, break line of sight with sgiar¢ . Thus, Fg is added to the path ass;. As
F- is on the left side of'sl;sgom and the number of turns is negative, the
path is allowed to leave the edge and travel in straight lineowards Syoa.
It encounters another obstacle at celF;;. From this step, following the
left-bound path traditionally yields three more corner palhs s,, sz and s,
at Ks, Ls and Ly, respectively. The problem is evident, in that the path

does not have a line of sight betwees; and s,. Even if that were not the

4.4. Path updating 133

case, a path that would pass througlsgiar ; S1; S2; would not be taut.
Nodes; would also not be pruned from the path as it violates no critéa to
do so. One possible solution would be to purgg and allow the algorithm
to rediscover it when clearing the path, but this could provéne cient and
wasteful. The solution found for this problem is to perform @ additional
test that checks if the cell shared by theierstart NOde (S; In our example)
breaks line-of-sight with the node on the opposite wall. Whetracing the
obstacle on the left-side, the path arrives aG;; and the (Gg) cell now
blocks the \potential” line-of-sight from s;. To address this, a variation on
the FollowW all function in Algorithm 9 is applied, which involves tracing
the contour of the obstacle from thesiyersiarr 0N the opposite side (right-
bound: marked in red in Figure 4.5) to the explored path (lefbound:
marked with blue). Similar to the original F ollowW all, the wall-following
adds nodes to the path and stops when the updated path (red)nder the
free-space assumption, is optimistic that the newly discewved corner node
has a line-of-sight to the node on the opposite wall. Applyinthis strategy
to the example in 4.5, path follows wall, on the opposite sidérom s; to
Go, identi es s as the next valid corner and adds it to the path as a right-
bound corner. The normal path tracing resumes untK g, when the cell at
Gg now blocks the line-of-sight from the nevsierstat Node 9). Tracing
starts from s until sJ is identi ed as a new corner node with possible line
of sight to Kg. At this stage, there are no more issues and the algorithm is
allowed to continue normally, identifyings,, sz and s, as corners, resulting

in the path f Sgiart ; S1; 5(2); Sg; S2; S3; S4; Sgoal -

4.4. Path updating 134

1 2 3 4 5 6 7 8 9 10 11 12 13 14

- -- Initial Right{Left-bound path - -- Updated section of the path
- Blocked cell

Figure 4.5: Corner updating example: path crosses over &t4f); nodes
(Fo) and (Jo) are appended to the path beforeKs) and (Ls)

4.5. Limitations 135

4.5 Limitations

One important issue that remains unaddressed by the curreithplementa-
tion is that of underestimation of path heuristic lengths forcertain topolo-
gies. This drawback impacts the performance of RPF, due to tlagorithm
performing extensive searches along \inward" paths. Thesé&cumstances
can arise for paths that intersect an obstacle's interior ecbour when the
search-space is bound by it. The class of problematic con gions can be
illustrated through a representative example in Figures 4.& 4.7. Firstly,
with Figure 4.6, we follow the path conducive to a solution andontrast
it with the \inward" path Figure 4.7. The nodes are labelled inthe or-
der of their discovery. The left-handed path initiates trael from the start
node at D, towards the target at J,o, but encounters the inner bound-
ary at E;o. Tracing the edge, it discovers two corner pointss; and s,
which are appended to the path. After it leaves the wall as,, it encoun-
ters the obstacle again. The right-bound path (coloured rgds dropped
as it is redundant, i.e. it intersects left-sided node, from the right side.
The left-bound path resumes wall-tracing, while rst backpruning s,, and,
afterwards, s;. It discovers nodes; at E, and s, at |, after which it
can leave the wall and nds a line-of-sight toss,. At this stage, the
path in question is f Seiart ; S3; Sa; Sstopd. The path has reached the goal,
and attempts to check if the rst node pair (Ssiart ; S3) iS clear. Line-of-
sight to s; is blocked by the cell atE;. Following the right-handed child
path, the nodesss and sg are discovered. At this stage, the path becomes
f Sstart ; S5, S, S3; Sa; Sstopd- IN the previous to last steps, the left-handed
child path rediscoverss,, attempting to clear (Sstart ; S5), Which it reinserts
into the path (according to Lemma 3.2). Lastly, when clearingsg; s3), the
left-bound child path discovers nodes; at the Es corner. The nal solution

is, thus, f Setart ; S1; Ss; Se; S7; S3; Sa; SstopQ-

4.5. Limitations 136

- -- Left-bound path - -- Heuristic estimate of path

--- Right-bound path ® Pruned Nodes

- Blocked cell

Figure 4.6: Underestimated heuristic length example { left{bund path

If left unchallenged, the left-bound path would reach the g and the search
would terminate with a solution. Unfortunately, the right-bound path does
not allow this to happen. Let us explore this problematic scario and its

cause with the aid of Figure 4.7.

Exploring from the intersection atE o, the right-bound path (blue dashed
line) splits o from the left and follows the contour from Eo, through

E12, Cyp, Cg and, after reachingGsg, it identi es the vertex as a corner,

14

4.5. Limitations 137

adding it to the path as s;. The next corner, s, is found in the next
step. The path continues throughC;, C3 and reachesH; at which stage
S is pruned from the path. By the time the right-bound path reabesKg,
marked by s,a1, both previously identi ed corner nodess; and s, have
been pruned from the path. The path does not possess any inf@tion
regarding the free-space it hasn't explored, and, as suclssames to have
line-of-sight from sqt t0 Syai . From the right-bound path's perspective,
the tiles marked by grey cross-hatch are assumed to be hypetital free-
space. Under these assumptions, the next step fefa would be from
Kg to Lg, which would be identi ed as a path corner. As such, the hypo-
thetical path fsSgart ; Ls; Lo; B2; Bis; E1s; Ssiopd (demarcated by the dotted
green line in Figure 4.7) presents the maximum consistent hestic length
estimate. Because the path only computes its heuristic letlgbased on
the nodes it contains, it instead greatly underestimates thdistance as be-
iNg f Sstart ; Swall ; Sstopd- This has the consequence that the path is greedily
prioritized over the left-bound one. The path is eventuallyterminated,
considered to be locked-in, but not before looping over theterior contour
a second time. Given more complex topologies that lead to siar situa-
tions, numerous locked-in paths could be generated, whictowd result in

a slowing down of the algorithm's performance.

4.5. Limitations 138

Sstart

- -- Right-bound Path --- Ideal Heuristic Estimate
D Assumed Free Space . Blocked Cell

- -- Underestimated Heuristic ® Pruned Nodes

Figure 4.7: Underestimated heuristic length: exploring righbound path
(blue dashed line) fromsgyt t0 Swa; CcOrner nodess; and s, are pruned
before path reachess,y ; in Swar path assumes line-of-sight fromsga

(hypothetical free-space grey cross-hatch tiles); greemghed line { ideal
heuristic length estimate of path fromsga;t t0 Syan passing bysyai

To the author's knowledge, there exists no information on # number of
scenarios from the Moving Al database [70], which can presethie afore-
mentioned problematic con guration, and performing such @ evaluation
may not prove feasible. Because of this limitation, the algibhm's per-

formance may be negatively impacted and addressing the isscould po-

14

4.5. Limitations 139

tentially boost the performance of the algorithm. Some possde solutions
are considered for discussion, but are left for future resed. One such
solution would be to keep track of an \inner path" that wraps a ob-
stacle's boundary at inner corners (rather than outer corms). For the
example in Figure 4.7, the inner path is described yE5; C15; Cs; K3; Kg,
which would represent a better approximation for the heurtgc length of
the path. Such a solution has not been implemented as of thisriting.
This limitation can compromise the completeness of the algthm, as the
heuristic estimation for the pathsgay ; Swanr grossly underestimates its cost,
which prioritises these types of paths before others. In prace, scenarios
like these can result in long search times. A time-out funahnality was
introduced to mitigate this problem, but the increase in saah time can

negatively impact the performance metrics of RPF (Chapter)5

Additional in-depth knowledge of the environment can also loe t the algo-
rithm. If a preprocessing step can, for example, uniquelyeatify individual
obstacles in the search space, the algorithm could poteritjaavoid some
bifurcations that would result in redundant paths when re-ecountering
the edge of the same obstacle. Additionally, if the start andt@p nodes
belong to a free-space region that is bound by the interior badary of
an obstacle (e.g. outer walls of a house delimiting the inter), similar to
Figure 4.7, then, recognising the obstacle as bounding theeé-space can
be exploited. It is evident that following the edge would nobe conducive
to an optimal solution, in much the same way that following tle exterior
walls of a house from inside the house (without ever exitingyould be a
redundant search, in that one would either end up back at thetarting
point or, at best, would nd the goal through a path that is topologically
equivalent to the optimal one, but with a far greater cost oftavel. In the
example illustrated in Figure 4.7 and assuming knowledge df¢ bounding

obstacle, simply intersecting the outer bound aE g is insu cient to iden-

4.6. Algorithm properties 140

tify the direction of travel conducive to the solution. Howeer, identifying
the interior corners stretching the convex hull of the bounakry (i.e. vertices
Cs; C1s; K3 Kyqp, and potentially C;; Cg; E12; F12; Hio; 112) would allow for
a rapid termination of the east-bound path (when reaching #ier C,, or
E12). Such a preprocessing procedure can prove useful even ibatics ap-
plications operating in dynamic environments as changes the topology
of the outer boundary are far less likely to happen in realigt environments

(e.g. exterior walls don't change often).

4.6 Algorithm properties

4.6.1 Multiple path solutions

If the algorithm is allowed to run longer, beyond having foud a shortest
path it can generate multiple alternative paths, if such pdts exist and
given that in its expansion RPF has encountered su cient obscles. This
behaviour is trivial to implement and the only modi cation needed for
Algorithm 9. The conditional statement at Line 17 presents amxtra test,

becoming:
if (path:length > shortestLength) _(desired > size(clearedP athQueug)

wheredesired corresponds to the number of desired paths to search. This
unfortunately, is not enough to guarantee that the alternatve paths founds
are unique (don't overlap), nor that the target number of saltions can be

reached.

Examining the paths found by RPF in Figures 4.8 & 4.9, one shadiremark
that the multiple solutions found by the algorithm. In both scenarios, a
number of 4 paths were requested. However, for the con gurah in Figure

4.8, only 3 paths are identi ed. While a 4th path can be visuayl recognised

4.6. Algorithm properties 141

- - Left-bound paths - - Right-bound paths
Line-of-sight ray-casts Final path solutions
M start node & Goal node

Figure 4.8: Screen-shot of multi-path solutions found by RPF

as passing south-bound of the obstacle295 296 297 2653, none of the
paths of the algorithm ever encounter the obstacle and thusé path is
never explored. This also implies that with the exception ofhe shortest
path solution, the alternative paths are not discovered inscending order
of length, but rather as simple by-products of the root path tanching o

when it encounters obstacles.

Taking the example in Figure 4.9, a slight modi cation to the bpology in
the for of an obstacle atf 235267 allows the algorithm do discover the
requested number of paths, while the south-bound path alsakes priority

as solution when the obstacle is discovered by the intersict at cell f 2659.

Multi-path solutions found by RPF can be used if one wishes toonsider
alternative routes. This can be desirable to avoid congesti if multiple

agents or Al characters in a game navigate together towards arget. A

4.6. Algorithm properties 142

- - Left-bound paths - - Right-bound paths
Line-of-sight ray-casts Final path solutions
M start node [Goal node

Figure 4.9: Screen-shot of alternate multi-path solutionstind by RPF

post-processing stage can analyse paths based on critetiaeo that short-
est length. For example, it can provide longer paths that paoritize fewer
heading changes or low steering angles, such as S-Theta*].[8 ating

the space around path trails can allow for clearing the miniom width and
directing agents through di erent paths based on width or mmentum, for
example. Multiple paths may also be useful if one desires algarithm ca-
pable of replanning, such as D* [81]. Given A mobile robot thaliscovers
its planned path blocked by dynamic changes in the real-warlenviron-
ment, would be able to choose an alternate with very little y©@anning. If
alternative paths are stored in memory while the robot movewwards a
goal, it would require replanning only in switching from theblocked path
to the new path, or by updating its map and performing a new seeh be-
tween its current location and the next expected heading chge, similarly

to clearing a path section { Line 42 in Algorithm 9.

4.6. Algorithm properties 143

4.6.2 Any-time nature

There are algorithms that provide any-time suboptimal soltions by in-
ating the heuristic cost. For example, Any-time A*, also refered to as
ARA* [82], is a variant of A* that can provide any-time solutionsto a
path- nding problem even when it is interrupted before comigetion. It,
however, achieves this by executing A* multiple times with dgeasing cost
functions and using the information from previous searchés minimise the

length of the path.

An intriguing property of RPF is that, as a best- rst search aborithm, it is

an any-time algorithm, as it can provide a suboptimal solutin before the
algorithm completes. If a solution exists, the algorithm Wi have arrived
at the goal node prior to arriving at a shortest path solution The initial

suboptimal path would consist of the segments described kye line-of-sight
checks and the obstacle-adjacent nodes that trace the eddelte obstacle
from the intersection node to the tangent node where the patAbandons
the object boundary. The reader must note that RPF does not g@kcitly

assign parents to nodes (i.e. it only maintains lists of indes and their
sidedness). Having nodes pointing back to their parents is atacteristic
that would be required if one were to retrace a suboptimal sgion back
to the origin, as is the case for the algorithms in the A* famyl Enabling

such a behaviour in RPF can represent an alternate avenue @search.

Accounting for and providing suboptimal solutions would inar an overhead
that may impact performance. Availability of any-time soluions presents
with a trade-o in respect to time and memory, as each path wdd require a
separate structure to keep track of additional nodes. Howayeommitting
any-time suboptimal solutions to memory can be desirable icertain cir-
cumstances. For example, let us consider a hypothetical segio in which

RPF is implemented on a ground robot as an iterative life-lanoptimising

4.6. Algorithm properties 144

bug algorithm. The robot would, thus, navigate between a staand goal
point a multitude of times, attempting to shorten its path with each trip.

If, after having located its target, the robotic agent navigtes back to the
starting position while at also attempting to optimise its airrent path, nds

itself with a depleted power source and has deviated congidely from the
initial path, either by following a very long or unsuccessfuoute, its higher
level deliberative layer may choose to not allow it to attemipany more
exploratory behaviour. Instead, it would direct the robot b return via the
already known suboptimal path, which has a known length, ancetrace it

to the starting point within a window of safety.

4.6.3 Unknown 2D Environments

The focus of the research for the RPF algorithm is directed weards the
problem of path planning in known 2D environments. However, #re is
a related class of challenges when considering path-plamgpiin unknown
2D environments [83], [84], [85], [86]. Navigation for a robo agent in
known environments implies planning a path, and afterwardsxecuting
it. Inaccurate world models can compromise the validity of glan (e.g.
locked door, barrier) [15]. In unknown environments, the pblem domain
di ers in that the robot must transverse its environment without prior
knowledge of a map. Because of this, the navigation strategy one of
exploration, in which the robot only has information about is immediate
environment through its sensors, and memory of the searchaxe it had

previously visited.

The Ray Path Finder algorithm is presented as an online, any-gte path-
planning method. Drawing a parallel between bug algorithmand RPF,
the similarities lie in the behaviours of the latter's paths However, Ray

Path Finder operates in known environments, meaning that it pssesses

4.6. Algorithm properties 145

information on the entirety of the map at the start of the prodem, and can
formulate a solution based on this knowledge, before an agemgages in
moving towards its target. A key di erence between paths inle RPF al-
gorithm and classical bug algorithms is that paths are allowskto terminate
early, if they are deemed infeasible. A bug algorithm on thetleer hand
may not terminate until it reaches its target, which impliesthat the paths

it follows can intersect or loop freely.

While not addressed in this work, some of the strategies presed through
the Ray Path Finder algorithm could, however, be adapted inta bug-like
or multi-bug variant on unknown environments. The problem psed is of
an agent navigating in an unknown terrain with a goal-seekgbehaviour
that aims to guide them to the target in the shortest amount otime. One
can envision how such a behaviour would unfold in a real-wdrkcenario.
Let us consider a robotic agent placed in an environment forhich it has
no prior information. While navigating in a straight line towards its target,
when the line of sight is broken, the robots reverts back to &cing object
boundaries, pruning and inserting new nodes into its path #t it keeps in
memory. While wall following, it could infer that, by tracing the wall in a
speci c direction, it is moving too far away from the target,and it could
decide to return to the point of intersection and trace the oftacle bound-
ary by moving in the opposite direction, and repeat this strieegy based
on a heuristic estimation. The implemented algorithm has ndoeen opti-
mised for best performance. Due in part to the complexity ohie algorithm
relative to other algorithms, such a task can prove challengy. Potential
future improvements (of the principles as well as of the impmentation
could further reduce the search-space and improve on rumrie. For exam-
ple, if the algorithm posses prior-knowledge about the emenment, certain
subroutines can be bypassed, for instance, in the case of awieonment

that only contains convex objects, checking for path redurahcies becomes

4.6. Algorithm properties 146

unnecessary (i.e. any two points on the object boundary walihot go out-
side the object, thus a tangent line through any point on thatooundary
would not intersect the same object after leaving the objestedge). An
equivalent bug variant would not employ the methodologiesrpsented for
wall following and boundary departure, but rather rely on sesor informa-
tion. The behaviours of RPF could potentially be imitated bymeans of a

compass and odometry.

In the case of non-convex objects that the robot may intersemultiple
times while leaving the boundary, a strategy can be envisied which takes
note of redundant paths presented in Section 3.7. If, afteraliing left an
obstacle's boundary, it intersects the same obstacle agand begins tracing
the wall in the opposite direction of the previous search, throbot reaches
its previous point of departure from the wall boundary, it ca simply revert
back to moving in a straight line towards the target. It, thus intersects
the obstacle as it did previously, but traces its wall in the ther direction

and avoids retracing the redundant path.

Based on RPF's shortening of a path only after it has reached ¢hgoal, a
similar behaviour would allow a robot to optimise its path orsuccessive in-
stance of moving between its start and goal. With a free-spaessumption
strategy, the robot can attempt to nd a straight line-of-sight between its
successive points of departure from obstacles' boundaridfsno line-of-sight
exists, the robot may attempt to explore on the side which kes it close to
the wall boundary, as a free space is guaranteed given thatetmobot had
previously discovered its lower bound while originally mang towards the
goal. Other strategies on the RPF algorithm for navigating mknown 2D
environments could be thought of, and may make useful addis to the

class of Bug algorithms.

4.7. Chapter Summary 147

4.7 Chapter Summary

This chapter introduced the novel path-planning algorithmdeveloped in

this work - Ray Path Finder.

RPF, comes under the class of any{angle path{ nding algoritms, applied
within a 2D environment, in which nodes can have as a parent wrother
node with a direct line of sight. RPF minimizes the amount of @lision
check computations. It looks to connect the least amount ofgints belong-

ing to a path without breaking the line of sight between them.

For certain topologies however, an additional step is nes@sy to prevent
the path from mistakenly leaving the edge. RPF is able to prade sub-
optimal solutions before the algorithm completes, also RPI5 able to ter-
minate early, not having to backtrack steps. If the algoritm is allowed to
run longer, beyond having found the shortest path RPF is abl® generate

multiple alternative paths.

An important issue not addressed by RPF currently, is the undestima-
tion of the path heuristic lengths for certain topologies, rad thus impacts

performance of RPF.

Chapter 5

Experimental results

This chapter describes the experimental setup of this work, and the re-
sults which were subsequently obtained. The developed interface, and the
databases which were used are discussed, and analysis of the results acquired

are explored in depth.

5.1 Interface

5.1.1 Graphical user interface

The path planning algorithms has been implemented using th&ava Pro-
gramming Language (Java 8). Often, path-planning algoriths can be
di cult to debug, or even implement. The behaviour of an algeithm can
also be challenging to describe or visualise. For these reas, a graph-
ical user interface (GUI) was constructed to allow for easy delopment,
integration and testing of path-planning algorithms. The mplementation
provides a graphical user interface (GUI) developed using 8y and the
JavaFx platform. The GUI is used for testing and development anfbr the

visual inspection of solutions and for manual manipulatioof grids through

148

5.1. Interface 149

Figure 5.1: Screen-capture of path-planning visualisatiaiool

user input. A screen-capture of the user interface is illustted in Figure

5.1.

The application allows for constructing new maps by directser input (i.e.
clicking, dragging), choices of path-planning algorithmsan be selected for
evaluation, as well as visualising solutions. The GUI integtes with the
MovingAl database and allows for saving new maps that follonhe same

map data format described in [70].

5.1.2 Synchronisation

The application is implemented on multiple threads of exetwon, with var-
ious features such as a graphical user interface (GUI), le put/output
operations for loading or saving maps. Multi-threaded apations can
su er from thread interferences as one thread can randomlyapse the ex-
ecution of another, modify resources that are shared betwe¢hem, etc.

This can result in erroneous timing results and/or memory atsistency er-

5.2. Database 150

rors. As such care must be taken so that other threads do not imfere
with the thread responsible for executing the search, so thalgorithms
only get executed in isolation without the possibility of tle search being

interrupted from other threads.

To ensure that the path-planning algorithms run reliably wihout exter-
nalities a ecting their performance metrics, a separate wker thread is
allocated the sole responsibility for running the search thin a synchro-
nised block of execution which guarantees that when the thad executes
the synchronized function, all other threads which could imny way inter-
fere with the search block, suspend execution until the waek thread had

performed the search.

5.2 Database

Grid-based maps have been used as test-beds for path-plangnby a wide
variety of researchers. Furthermore, the paradigm is widesead, having
been adopted in countless video-game developments, or ire tform of oc-
cupancy grid maps in the eld of robotics, including the ROS latform
[87].

The Moving Al lab [88] is run by Prof. Nathan Sturtevant at the University
of Denver, as is publicly available for download. The datalsa is one of the
most popular databases of 2D grid-maps in the path-planninkierature.
The database is often used by state-of-the-art algorithmsif evaluation
[55],[50], [51], [89], [83], [25], [57]. It provides a goodlextion of game
maps and maze maps. Each map is provided with a large set of rsaeos
that provide as input map dimensions, the coordinates of thetart and
goal nodes along with the optimal length that assumeps (2) diagonal cost

and does not allow agents to cut corners through walls. For éise reasons,

5.2. Database 151

the MovingAl map database [88] has been used in this work forauating
the performance of the proposed methodology and for compmon against

other algorithms in the literature.

Map examples from the database can be seen in Figures 5.2, 5.5, 5.4,
5.6. Baldur's Gate is a set of 75 maps taken from BioWare's \@d-game
Baldur's Gate Il: Shadows of Amn, with a total of 93160 scenas. The
scaled version of (512 x 512) is used for evaluation. Mapsrfrahis game

generally present rooms with large open-space areas.

(a) ARO400SR (b) ARO406SR

Figure 5.2: Sample maps from Baldur's Gate Il

The largest of the four games in the database, BioWare's rgiaying game
Dragon Age: Origins consists of 156 maps ranging in size frorh 8 21
to 1104 x 1260, with a total of 159465 scenarios. Maps from tigame
are generally large is size, with long connected \corriddike" regions and

intricate topologies.

5.2. Database 152

(a) hrt201d (b) lak100d

Figure 5.3: Sample maps from Dragon Age: Origins

The popular military sci- game from Blizzard Entertainment, Starcratft,
has 37 map with a total of 97650 scenarios. Starcraft maps agenerally
large with dimensions of 512x512 and above, and present wittige regions

of connected free-space.

(a) BlackLotus (b) Inferno

Figure 5.4:. Sample maps from Startcraft

Maps from the popular video-game franchise Warcraft Il tal 36 with a

scenario number of 45101. Most similar to Starcraft in termsf topology.

5.2. Database 153

(a) riverrun (b) thecrucible

Figure 5.5: Sample maps from Warcraft Il

The Mazes database o ers a set of closed mazes with xed caolor widths

ranging from 32 cells wide to 2 cells wide.

(a) maze512-32-1 (b) maze512-2-0

Figure 5.6: Sample maps from Mazes

The experimental evaluations use 391 maps, with a cumulagwvnumber of
scenarios of 562170. Additionally, the maps are also used aiuthle the
original scale presented in the database. The numerical bdelown of the

database is presented in Table 5.1.

5.3. Experimental results 154

Table 5.1: Map Database: Games & Scenarios

H H Mazes 32W‘ Baldur's Gate Il Dragon Age: Origins Starcraft Warcraft ‘ Total ‘

Maps 10 75 156 37 36 314
Scenarios 60670 93160 159465 97650 45101 | 456046
Inputs Blocked 0 0 0 0 2446 2446
Double Corners 0 0 80 3 17 100
Invalid Scenarios 0 0 80 3 2463 2546

For simplicity, the algorithms imposes two restrictions orthe global start
and global goal vertices, namely that their corresponding igi-cell (vertex
at upper left corner of the observed cell) must be unoccupiddonsistent
with the map database used for evaluation) and, that neithevertex can
be a double-corner (scenarios from the database that don&spect the re-
striction are ignored for all evaluated algorithms). Eacheenario from the
Moving Al database provides metrics and restrict corner-ctihg (i.e. cross-
ing between two diagonally adjacent blocked grid-cells). dfF this reason,

cutting corners is disallowed in all evaluated algorithms.

The rejected scenarios total 2546 in number, for a total nunatn of 453500

valid scenarios.

5.3 Experimental results

5.3.1 Introduction

The current section presents results for metrics collectdtbm a number of
implemented algorithms. For comparison with other methodogies in the
literature, ve algorithms have been implemented or adapi for data col-
lection. All the algorithms presented perform single sourgeath-planning
on 2D uniform-cost octile grids. The search agent is treateals a point

object with no holonomic constrains, meaning that it can treel in any

5.3. Experimental results 155

direction, unrestricted. Each algorithm performs a total nmber of 453500
searches, with the scenarios spread over 314 maps from theviMgAl

database (presented in Table 5.1 of Section 5.2).

The rst two algorithms are the standard benchmarking algathm A* and
its post-processing variant, A* with Post-Smoothing. Both &orithms use
an octile heuristic for distance estimation.Dogie (Equation 1.9) is a con-
sistent heuristic for 2D grids with 8-neighbourhood connéeity, in which
orthogonal movements have a step cost of 1 and diagonal stdpsve a
cost ofIO 2. A second any-angle algorithm after A* with Post-Smoothing
Theta*, was selected for implementation due to its near-ophal path solu-
tions. Results from literature ([56], [55], [4]) suggest #t Theta* provides
a good trade-o between runtime and path length, by nding ner-optimal
paths that are shorter than the ones found by A*, and which looknore
realistic (i.e. have fewer heading changes outside of thas@und obsta-
cle corners) while incurring a slight increased runtime rative to A*. The
Anya algorithm is a recent addition to the any-angle path-planing family
of algorithms. It is also the rst to be optimal, nding true shor. Two im-
plementations of theAnya algorithm have been integrated into our exper-
imental setup. The rst Anya algorithm version is implemented by Oh et
al. [27] and available at [90]. The second version of Anya isplemented by
its original authors, Harabor et al. and described in [24], 8. The source-
code is made public at [60]. We label this version @&nya(Harabor et al:)
to distinguish it from the version introduced by Oh et al. [2]. As grid-
based any-angle algorithms, Theta* and Anya search over gritbdes but
are not bound to move on grid edges. As such, both Theta* and Aayuse
the Euclidean distance Deycigean { Equation 1.10) as their heuristic esti-
mation function. Finally, the novel path-planning methodobgy proposed
in this work is implemented in two variations: the original mplementation

of RPF (labelled RPF On Cells) which operates on cell centrgsising the

5.3. Experimental results 156

grid-map tiles as nodes as opposed), and the latest implenteion of the
algorithm which operates on vertices. Both versions of thdgorithm are
any-angle path-planning algorithms and use Euclidean detce O gyciigean

{ Equation 1.10) as the heuristic for distance estimation.

The experiments presented are performed on a 2.9GHz Intel @oi7 ma-

chine with 8GB of RAM running Windows 10.

A number of di erent metrics are considered for the evaluabin of our al-

gorithms:

path length - the sum of the Euclidean distance for each paif aodes

belonging to a path that connects the start and goal nodes;

run-time - the elapsed time between initiating the search faa path

and reaching a solution;

nodes expanded - the number of nodes within the search-spaicat

the path-planning algorithm visits during a search;

heading changes - number of nodes from start to goal in whiche

path changes its direction;

memory usage - the amount of RAM memory that a path planning

requires to perform the search;

The following sections describe the metrics and present tb&perimental re-
sults of the selected path planning algorithms. The experiemts have been
conducted on the popular maps from the MovingAl database (sékable
5.1 from Section 5.2). The experimental results informs u$aut the per-
formance of our novel path-planning algorithm, Ray Path Findr, against
the current state-of-the-art algorithms. A discussion onhe implications of
the results vis-a-vis the competitiveness and applicalii potential of the

algorithm follows in Section 5.4.

5.3. Experimental results 157

5.3.2 Path length

Solving the shortest-path problem has been a main focus of aofuof the
research in the path-planning eld. Path length is a key mefc in establish-
ing an algorithm's dominance. Minimising this metric imples converging
towards the optimal solution. For a game character, shortgraths improves
the perceived intelligence of the character. For a roboticgant, nding a

shorter path has many bene ts. Among them is the reduction ofrergy
expenditure and increased battery life, as the robot wouldravel shorter

distances. Additionally, it would limit the wear and tear of the platform.

Table 5.2 summarises the average path length data collecteder ve maps

from the MovingAl lab database by the aforementioned algottiims.

Table 5.2: Average Path-length

Baldurs Gate Il Dragon Age: Origins Starcraft | Warcraft | Mazes (32W)
A* 252.97 391.44 552.68 256.58 1107.30
A*PostSmoothing 243.61 380.49 532.97 246.97 1076.01
Anya (Oh et al.) 241.18 373.82 525.11 242.15 1071.86
Anya (Harabor et al.) 241.18 375.14 525.12 244.11 1071.86
Ray Path Finder 241.20 375.50 525.74 244.13 1071.86
Theta* 241.27 375.43 525.47 244.24 1072.00

As expected, A* consistently has the longest paths of the sixgbause of
its constraint to move along grid-edges. A* with Post-Smooihg, by its

simple smoothing technique, improves on the base path lehgaverage of
A* across all the games tested. Its biggest improvement is ohd maze

maps (last column in Table 5.2), reducing the length by 2.83%

This is expected given the simple topologies of the maze mapshich only

have right corner walls and no other obstacles.

The four remaining algorithms, namely the two Anya implemerdtions,

Theta* and the proposed algorithm, Ray Path Finder, performe similarly

5.3. Experimental results 158

well to each other, and further improve on the path lengths ienhti ed by

A* with Post-Smoothing.

If reducing path length is the main focus, simple smoothingokitions for
paths are a useful tool for game characters, because of theglicity of
implementing such a solution. It oers a reduction in path lagth and
improves on the perceived intelligence of a game characteittwminimal

e ort.

5.3.3 Run-time

Along with the path length, the run-time performance of a pathplanning
algorithm is one of the most important aspects of the shortepath prob-
lem. A reason for this is that, general, they are antagonist etrics, as
improving one degrades the other. Online algorithms such afeta* and
A* with Post-Smoothing have this trade-o because they reque additional
computation, and thus more time, to improve on the solutionftheir inher-
ited A* base algorithm. The run-time overhead that the extra omputation
carries will not allow these algorithms to outperform A* visa-vis this met-
ric. ldeally, we desire online algorithms to be as fast as misle while

limiting trade-o s.

A summary of the run-time performance of the algorithms canéobserved

in Table 5.3.
Table 5.3: Average Run-time (ms)
Baldurs Gate |1 Dragon Age: Origins Starcraft | Warcraft | Mazes (32W)
A* 7.11 8.43 45.58 8.98 72.80
A*PostSmoothing 38.66 15.45 203.08 57.61 165.63
Anya (Oh et al.) 1.99 12.29 13.34 2.44 2.91
Anya (Harabor et al.) 0.16 1.01 1.54 0.22 0.38
Ray Path Finder 0.24 15.52 4.98 0.31 2.21
Theta* 26.06 35.13 225.17 31.63 505.39

5.3. Experimental results 159

Looking at A* Post-Smoothing and Theta* in terms of average m-time,
the two algorithms alternate in outperforming each other, wh Theta*
being faster on maps from Baldur's Gate Il and Warcraft, and A*Post-
Smoothing taking the lead for the remaining games. Howeveroth algo-
rithms are an order of magnitude slower than A*. This is to be gected

given the overhead of performing additional line-of-sighthecks.

Both Ray Path Finder and Anya (Oh et al.) outperform A*, by an orde of
magnitude or more (e.g. RPF on Baldur's Gate Il maps) with thexception
of Dragon's Age: Origins, where A* is faster. The Anya algorithrby
Harabor et al. is the fastest of the six algorithms across all aps. It is
interesting to note that their implementation is an order oimagnitude faster
than that of Oh et al., which seems to slow down on the larger rpa from
the Starcraft and Dragon's Age: Origins games. Given that therinciple
behind the Anya algorithm is identical, the performance di @ence comes
down to the level of implementation. This serves as a good ewple on
how a good implementation can drastically improve on the rutime of an

algorithm.

Overall, Ray Path Finder is the second fastest algorithm afteAnya (Hara-
bor et al.) with the exception of Dragon Age: Origins, where RIPs per-
formance degrades, making it the second slowest after Th&teRay Path
Finder is similar in performance to Anya (Oh et al.), but is surpssed in
all instances by Anya (Harabor et al.). However, RPF has the sanwder
of magnitude as Anya (Harabor et al.), with the exception of Drgon Age:
Origins and Mazes (32W), where RPF is an order of magnitude sler.
Given this discrepancy in run-time, it is very likely that the degradation
in performance is due to the topology of the maps in Dragon AgeOri-
gins. Maps from the aforementioned game are large in sizetfiwiong and

narrow connected \corridor-like" regions, in which \overtead" paths that

5.3. Experimental results 160

challenge RPF are much more likely to occur.

The following gures present the correlation between patheihgth and run-
time of the six tested algorithms across the ve games. dishutions of
the data-points for each algorithm across The x axis repress the path
length, expressed in cell units of a 2D grid-map. The logahimic y axis
represents time, expressed in nanoseconds. A red horizoriae is drawn

at the 1 millisecond mark (16 nanoseconds) as a reference point.

(a) (b)

() (d)

(e))

Figure 5.7: Baldur's Gate: 1x Scale. (Path Length vs. Time (DB

5.3. Experimental results 161

Figure 5.7 illustrates the performance of the six algorithmen the game
maps from Baldur's Gate II. Both A* and A* with Post-Smoothing (Figures
5.7a & 5.7b) exhibit a strong correlation between a path's tgth and the
algorithm's run-time. This is due to the nature of the searclperformed by
the A* family, in which three costs need to be calculated in ration to each
expanded node. A* with Post-Smoothing presents an additionaverhead
of performing line of sight checks between the nodes of thelidmn. As
such, it exhibits earlier signs of run-time degradation, wh more of its
run-time pro le being distributed towards the 13* ns mark even for paths
shorter than 100 units (Figure 5.7b). Theta* presents a sinal pro le to
A* but delayed in time. Similar to A* with Post-Smoothing, Theta* also
has a wider distribution across the time axis but it is only eident for longer
paths. Theta* is 177% faster than A* with Post-Smoothing on Blalur's

Gate Il maps, but 266% slower than A*.

A notable distinction among the algorithms is the variant ofAnya by Oh
et al. (Figure 5.7¢), with a 72% improvement in run-time compad to A*.
While the data-points are exclusively situated above the $#ts mark, mak-
ing it generally slower than the other Anya implementation (. Harabor
et al.), the pro le is very compact and mostly concentrated blow the 10
ns mark, which allows for a consistent, predictable perforamce on maps

of the type found in Baldur's Gate II.

Ray Path Finder (Figure 5.7¢e) presents a similar pro le to Anya KHarabor
et al.) (Figure 5.7d), with the exception of the lower part of he distribu-
tion, which is more strongly associated with paths that havdine-of-sight
between start and stop nodes. Because of this, the algorithomly needs to
perform a simple line-of-sight check that results in a strght-line solution.
Figure 5.7e suggests that for such scenarios, Ray Path Findertperforms

Anya (Harabor et al.). and indeed all the other algorithms. AnygHarabor

5.3. Experimental results 162

et al.) concentrates more of its solutions in a narrow band beeen 1¢ and
10° ns while RPF has more outliers above the #hs mark, with a more
sparse distribution. This indicates that for some scenaso the algorithm
does perform better than Anya (Harabor et al.) but for others itperforms

worse.

(a) (b)

() (d)

(e))

Figure 5.8: Dragon Age Origins: 1x Scale. (Path Length vs. Tim@s))

Examining the algorithms' behaviour on maps from Dragon's Agy Origins
in Figure 5.8, it is evident that this map dataset is more chadinging for all

six algorithms, resulting in longer run-times. Of the thregro les among

5.3. Experimental results 163

A*, A* Post-Smoothing and Theta*, Theta* presents with the highest
run-time overall, while A* Post-Smoothing presents a very €rp increase
in run-time even for short paths. Anya (Oh et al.)'s pro le (Figure 5.8c
presents with a similar sharp increase in run-time for shogaths. This is
likely due to Dragon's Age: Origins having maps with more conkgx and

cluttered environments.

Anya (Harabor et al.) (Figure 5.8d) proves the most adept at soing the

maps while maintaining a good run-time average around the 4@s mark.

Ray Path Finder (Figure 5.8e) experiences large variabilityesulting in a
sparse pro le and some considerable degradation in run-ter{ one order of
magnitude slower than Anya (Harabor et al.), with numerous oliers above
10’ ns. It does, however, share a similar pro le with Anya (Haraboet al.)
for data-points below the 16 ns mark. Some maps from Dragon's Age:
Origins present with longer than average paths (i.e. over @0 units, with
the average path length of approximately 375 units { see Tabl5.2). Most
algorithms show little increase in run-time in response tohe longer path
lengths (over 1000) provided by the scenarios. However, RPfuggles with
these scenarios. One reason for RPF's poor performance on @ra's Age:
Origins may have to do with the speci c topologies of the gans maps,
some of which are large in size and have long and narrow coaid. In
such instances, \overhead" paths are more likely to occur.hEse present a
challenge for RPF as it underestimates the heuristic lengshof these paths,

which leads to the algorithm performing extensive expansie.

Figure 5.9 examines the algorithms on the Starcraft game map#é* and
Theta* present similar pro les, with Theta* su ering a steeper degradation
in run-time for longer paths. A* with Post-Smoothing exhibits a sharp

increase in run-time for all path-lengths.

5.3. Experimental results 164

(@) (b)

(c) (d)

(e))

Figure 5.9: Starcraft: 1x Scale. (Path Length vs. Time (ns))

Anya (Oh et al.) has poor performance on Starcraft when compad to
both Anya (Harabor et al.) and Ray Path Finder. Anya (Harabor et
al.) and Ray Path Finder present with similar pro les, and RPFsu ers a
sharper increase in run-time for scenarios above the®18s mark, mostly

for path-lengths above 250 units.

Figure 5.10 illustrates the performance of the algorithms othe popular

game Warcraft. The pro les of the algorithms on Warcraft arereminiscent

5.3. Experimental results 165

of the ones for Baldur's Gate Il. Theta* presents a similar grle to A*
with a longer run-time. A* with Post-Smoothing (Figure 5.10b)has a wider
distribution across the time axis than A* with short paths hawng a longer

run-time, even when compared to Theta* (Figure 5.10f).

(@) (b)

() (d)

(€) ()

Figure 5.10: Warcraft: 1x Scale. (Path Length vs. Time (ns))

Anya (Oh et al.) (Figure 5.10c), while having a longer runningitne than
both Anya (Harabor et al.) and Ray Path Finder, has a consistentun-

time window between 10 and 10 ns, similar to the behaviour on maps

5.3. Experimental results 166

from Baldur's Gate Il. Ray Path Finder (Figure 5.10e) presentsa similar
pro le to Anya (Harabor et al.) (Figure 5.10d). Similar to its prole on
Baldur's Gate Il, Anya (Harabor et al.) concentrates more of & solutions
in a narrow cluster. Ray Path Finder, on the other hand, has a nte sparse
distribution along the time axis, implying that it has a higher variability
in performance, with some searches running faster than Anyaldérabor et

al.) and others running slower.

(@) (b)

(c) (d)

(e))

Figure 5.11: Mazes (32W): 1x Scale. (Path Length vs. Time (ns))

5.3. Experimental results 167

Figure 5.11 illustrates the performance of the algorithms omaze maps
with 32-unit wide corridors. A*, A* with Post-Smoothing and Theta*
exhibit a similar pro le, with Theta* being the slowest of the three. All
three algorithms are outperformed by Ray Path Finder and AnyaHarabor
et al.), and by Anya (Oh et al.) for longer paths (Figure 5.11c).While
slower than Anya (Harabor et al.) and Ray Path Finder, Anya (Oh et &)
presents an interesting pro le, in that path length has venylittle in uence
on its run-time. As this is not the case for maps from Dragon's Ag Origins
and Starcraft, Anya (Oh et al.)'s pro le suggests that the gearal topology
of the maps plays a role in the algorithm's response. With thexeeption
of scenarios with line-of-sight solutions, Ray Path Finder ([gure 5.11e) is
outperformed by Anya (Harabor et al.) (Figure 5.11d). RPF exhilis a
shallow slowdown in run-time when compared to Anya (Harabor el.),
which mostly maintains its run-time below the 10 ns mark. Given that
the maze maps have a xed size of 512 by 512 cells, with wide mdors at
right angles, the Anya algorithms would readily scan the majay of the
map (as exempli ed in Figure 5.12), while searching for longaphs within

the topology.

Figure 5.12: Anya Search-space on Mazes (32W): red { searchempa
scanned by Anya; green { path found

5.3. Experimental results 168

5.3.4 Node expansions

During the search process for a path between the start nodedathe target

node on a 2D grid graph, the algorithm directs the incrementdraversal of

the graph from a node to its immediate free neighbours in thearch-space.
The number of nodes that are expanded by the algorithm can imapt the

e ciency of the algorithm. Performing occupancy checks on th nodes im-
plies accessing the data structure that stores the map infoation. The

nodes generally need to be stored in memory, in a data structu(e.g.

open list) that requires insertion and extraction of elemén. These opera-
tions can cumulatively reduce performance. As such, the numbof node
expansions during a search is desired to be minimal.

Table 5.4: Average Node-expansion (1@inits)

Baldurs Gate |1 Dragon Age: Origins Starcraft | Warcraft | Mazes (32W)
A 268.95 196.07 1094.19 395.75 1159.61
A*PostSmoothing 268.95 196.07 1094.19 395.75 1159.61
Anya (Oh et al.) 527.21 646.67 1023.21 528.20 535.70
Anya (Harabor et al.) N/A N/A N/A N/A N/A
Ray Path Finder 2.43 73.50 21.57 2.93 30.60
Theta* 3784.46 3995.38 30708.76 | 4229.78 59869.25

Table 5.4 presents the average number of node expansionstttiee algo-
rithms perform across the ve games. As a note, node expansioriorma-
tion was not collected for the Anya (Harabor et al.) algorithm.Their ver-
sion of Anya employs bit-level shifting and masking in a numbef di erent
procedures that scans along grid rows which are representadintegers in
an 1D integer-array that encodes at the bit-level the occupay of the grid.
The optimisations adopted by Harabor et al. for their implemetation of
Anya results in a fast and e cient algorithm, but the resulting tightly cou-
pled codebase makes collection of the node-expansion ntetfi cult. The

version of Anya by Oh et al. does not employ this approach and asich,

the node expansions were more easily obtainable.

5.3. Experimental results 169

Examining the node expansions in Table 5.4, Theta* stands pbas the
most costly of the ve remaining algorithms. This is expect&, given that
it eagerly performs line-of-sight operations for all pairsf nodes in its open
list. The two versions of A*, having the same underlining exp@sion policy

expand the same number of nodes.

The proposed methodology, Ray Path Finder, expands the fewesimber
of nodes on average, by two orders of magnitude on maps froml@a's
Gate Il, Starcraft and Warcraft and by one order of magnituden Dragon's
Age: Origins and maze maps. Because of its principle of opeacat, RPF
works on free-space assumptions and only expands nodes wimaving in

free-space towards a target, or tracing the bounds of an obste.

Figures 5.13, 5.14 and 5.15 exemplify the nodes expanded byeth of the

tested algorithms: Theta*, Anya (Oh et al.) and Ray Path Finder

5.3. Experimental results 170

Figure 5.13: Search-space of Theta*: red { expanded nodesegn { path
solution

Theta* (Figure 5.13) presents a similar search-space to A*. Hewer, as
observed in Table 5.4, Theta* can perform an order of magnit® more
node expansions than A*. While the number of distinct nodes eapded
is similar to A* (i.e. the area covered by the search), expandenodes are
frequently revisited during the line-of-sight checks thafTheta* performs,
which negatively impacts the performance of the algorithm.Performing
line-of-sight checks between each node and its parent rasuh the algo-

rithm having a long run-time, which limits its applicability.

5.3. Experimental results 171

Figure 5.14: Search-space of Anya (Oh et al.): red { expandeddes; green
{ path solution

We observered in Section 5.3.3 that the run-time performaacf Harabor
et al.'s implementation of Anya is unchallenged. One reasoaorfthis is its
principle of operation. From a visual inspection of Anya's s&ch-space,
as depicted in Figure 5.14, we see that the surface of the expld free-
space is typically comparable to algorithms such as A* or That (Figure

5.13). Unlike A* and Theta*, however, which expand nodes sequielly,

updating a node's parent and calculating a score for each r®dAnya,
instead, searches over intervals of free-space across gos. This proves
to be very e ective, as both implementations of Anya (Oh et al. and
Harabor et al.) perform well in practice. The second reasonrf@nya

(Harabor et al.)'s performance revolves around its e cientinplementation

that makes use of bit-level manipulation to expand over gridows very fast.

5.3. Experimental results 172

Figure 5.15: Search-space of Ray Path Finder: blue { expandeddes by
left-bound paths; red { expanded nodes by right-bound pathsyellow {
expanded nodes by line-of-sight; green { path solution

A key attribute of the Ray Path Finder algorithm is its reduced search-
space. An example of RPF's expansion policy is illustrated in gure 5.15.
The algorithm only expands nodes along object boundaries amked with
blue for nodes expanded by left-bound paths and with red foroules ex-
plored by right-bound paths) and when traveling in a straighline towards
a goal after leaving an obstacle's boundary (marked with ylelv). Because
in operates on the free-space assumption, it also delays fpeming line-
of-sight between the nodes of a path, until it has reached thgoal. This
avoids the caveat of performing extensive line-of-sight ebks that encum-

ber algorithms such as Theta*.

As observed in this section, while RPF exhibits an order of magude

5.3. Experimental results 173

reduction in the number of nodes expanded relative to Anya, b is not
directly re ected in the run-time performance of the algotthm (as observed
in Table 5.3). The probable causes and possible solutions iimproving the

run-time performance of RPF are discussed in Section 5.4.

5.3.5 Heading changes

A path on a 2D grid graph is composed of sequential segmentstitonnect
pairs of nodes from the start node to the end node. A holonomagent
following this path would require to change direction in anynode of the
path where the segments are not collinear. These nodes aréered to
as heading changes and re ect on the perceived intelligencethe agent.
Shortest paths only have heading changes around obstaclensrs. Arbi-
trary heading changes of the path in free-space look unrestic and are not
conducive to optimal path solutions. In general, minimisig the number
of heading changes creates a more realistic path and contribs to the
perceived intelligence of the robotic platform by making té subsequent
path-following more e cient, reducing fuel consumption, ninimising loss

of momentum, etc..

Table 5.5: Average Heading-changes

Baldurs Gate Il Dragon Age: Origins Starcraft | Warcraft | Mazes (32W)
A* 51.23 52.46 95.65 44.83 60.51
A*PostSmoothing 5.97 19.71 23.32 5.84 24.66
Anya (Oh et al.) 4.71 17.36 15.01 5.04 23.97
Anya (Harabor et al.) 4.60 15.97 13.66 4.99 23.78
Ray Path Finder 4.85 17.35 16.27 5.30 24.75
Theta* 491 17.13 16.00 5.32 2431

Table 5.5 summarises the average number of heading changes algo-
rithms perform. As the only grid-constrained algorithm of tle six exam-

ined, A* exhibits the largest number of heading changes. A rob that

5.3. Experimental results 174

would use A* as its path-planning algorithm would behave veryne -
ciently, being restricted to movements of 90 deg and 45 degdannneces-
sarily having to change its direction instead of navigatingtraight through
free space. Even employing a simple smoothing techniqueclsuas A*
with Post-Smoothing would improve on the robot's behavioyrsometimes
by an order of magnitude, as is the case for Baldur's Gate Il dnWar-
craft. Among the any-angle algorithms, A* with Post-Smoothig is the
least e ective but nonetheless manages to signi cantly rage the number

of heading changes.

The remaining algorithms, Anya (Oh et al. and Harabor et al.)Theta* and
Ray Path Finder, all improve on this metric to a similar extent To justify
why Anya (Harabor et al.) presents with a smaller number of heaal
changes, as compared to the implementation by Oh et al., we stunote
that the metric for the four algorithms was collected by retieving the
number of nodes contained in the path of a resulting solutionCollinear
nodes (which are inconsequential to path length) that weredéenti ed by
the algorithms but are in fact redundant do not get removed &m the
path, and, as such, are not discounted by the heading change=tric.
Additionally, the algorithms do not account for the existene of di erent
equal-cost paths that have the same length but are di ereniithe number

of heading changes, as minimising a path's length is what des the search.

5.3.6 Memory footprint

The memory footprint during the algorithm's runtime is congdered as an
indicator of the resource usage of the methodology, whichrca ect per-
formance and which can dictate the employability of an algghm. Reduc-
ing the memory footprint of an algorithm reduces the load oneasources,

and frees them up to be used for other purposes and minimisesygr con-

5.3. Experimental results 175

sumption, ownership cost of the hardware and response tim&.space-time
trade-o can occur when an algorithm produces fast resultst dhe cost of
higher memory requirements. For an algorithm to be e cient,we wish to

have a fast algorithm that is not demanding of higher resoues.

Table 5.6 presents the average memory expenditure of the alghms.

Table 5.6: Average Memory (KB)

Baldurs Gate |1 Dragon Age: Origins Starcraft | Warcraft | Mazes (32W)
A* 63.10 51.83 415.02 69.54 1553.47
A*PostSmoothing 78.13 58.17 444.52 81.25 1668.20
Anya (Oh et al.) 122.83 3415.76 3397.54 163.06 505.84
Anya (Harabor et al.) 88.82 807.27 1178.49 96.59 428.78
Ray Path Finder 18.99 999.22 209.68 296.37 469.93
Theta* 4973.34 2182.60 36545.15| 5498.77 79919.66

Examining Table 5.6, no one algorithm stands out as the most amory
e cient for all game maps. A* and A* with Post-Smooting presentwith
a relatively consistent memory footprint for Baldur's Gatell, Dragon's
Age: Origins, Warcraft and Starcraft, outperforming all alg@rithms apart
from Ray Path Finder. However, their performance degrades csiderably
on Mazes, in which they are the most memory demanding after €ta*.
Theta* is the poorest performing algorithms of the six evakted, by as
much as two orders of magnitude against A* on the maps from Balds
Gate I, Dragon's Age: Origins, Warcraft and Starcraft. It has the highest
memory footprint of all algorithms on Mazes, followed by A* wh Post-
Smooting and A*. The reason for this is that maze maps have a g
concentration of connected, unoccupied nodes which havelte maintained
in memory, with each node requiring to update their heuristi cost. This
results in a ood- Il behaviour of the algorithms, in which they require to
explore the entirety of the search-space up to the goal node addition to
this requirement, Theta* also needs to perform line-of-dify checks for the

unoccupied nodes.

5.3. Experimental results 176

Anya (Oh et al.) is the second poorest performing algorithm &dr Theta*.
Anya (Harabor et al.) outperforms Anya (Oh et al.) for all maps, p to an
order of magnitude on game maps from Baldur's Gate Il, DragtmAge:
Origins and Warcraft. It also outperforms Ray Path Finder on Dagon's
Age: Origins, Warcraft and Mazes. However, it is outperformedy Ray
Path Finder, A* and A* with Post-Smooting on Baldur's Gate Il and

Starcraft.

Ray Path Finder has the smallest memory footprint for maps in Bldur's
Gate Il and Starcraft, but performs poorly on Warcraft, whee it is the
second most memory demanding after Theta*. The higher memodemand
for these games is likely due to overhead paths, for which RBath Finder
grossly underestimates the heuristic cost, and which focéhe algorithm
to maintain them in memory for longer. On Dragon's Age: Origis, it
outperforms Anya (Oh et al.) but not Anya (Harabor et al.), and isan

order of magnitude more memory intensive than A*.

5.3. Experimental results 177

5.3.7 Impact of Gridmap resolution

This section illustrates the impact on performance relate to the scale of

the maps. Maps were scaled at two times (2X) their original diensions.

The experiments presented are performed on a 2.9GHz Intel @oi7 ma-
chine with 8GB of RAM running Windows 10. For this particular experi-
mental setup, the number of scenarios is reduced to a 1{in{ampling rate.
The graphs presented are semi-logarithmic scatter plots dne Y axis. Ta-
bles 5.7, 5.8, 5.9, and 5.10 present the averages for the nasticollected on

maps scaled at double their original size.

Table 5.7: Average Path-length

Baldurs Gate Il Dragon Age: Origins Starcraft | Warcraft | Mazes (32W)
A* 503.66 821.10 1094.77 512.67 2222.61
A*PostSmoothing 484.94 797.76 1055.57 493.49 2159.63
Anya (Oh et al.) 480.16 783.04 1040.13 484.19 2151.33
Anya (Harabor et al.) 480.16 786.68 1040.13 487.82 2151.33
Ray Path Finder 480.19 786.86 1041.29 487.87 2151.33
Theta* 480.26 787.04 1040.48 487.95 2151.35

As expected, the path length is double that of the original sta (see Table

5.2) for all algorithms tested.

Table 5.8: Average Run-time

Baldurs Gate |1 Dragon Age: Origins Starcraft | Warcraft | Mazes (32W)
A* 35.73 39.78 213.27 43.07 373.95
A*PostSmoothing 317.22 113.97 2356.46 616.80 1147.10
Anya (Oh et al.) 5.96 31.85 32.52 6.07 8.18
Anya (Harabor et al.) 0.25 1.63 2.35 0.34 0.68
Ray Path Finder 0.37 24.58 7.23 0.42 4.54
Theta* 184.08 295.31 1852.82 226.00 2991.25

In Table 5.8, at the 2X scale, run{time of Theta* is substandard. It is

seen to have an average of a 87% increase in comparison to thgimeal

5.3. Experimental results 178

scale, Table 5.3. A* Post{Smoothing is seen to suer from magnde

degradation.

While Anya (Harabor et al.) and Ray Path Finder are approximatelytwo
times slower than the original scale, they are still the fasst algorithms of
the six examined. Anya (Oh et al.) appears to slow down more due the

algorithm implementation.

Table 5.9: Average Node-expansion (1@inits)

Baldurs Gate |1 Dragon Age: Origins Starcraft | Warcraft | Mazes (32W)
A* 1059.44 780.84 4241.25 1533.82 4542.11
A*PostSmoothing 1059.44 780.84 4241.25 1533.82 454211
Anya (Oh et al.) 2102.57 2601.42 3979.59 2104.75 2119.72
Anya (Harabor et al.) N/A N/A N/A N/A N/A
Ray Path Finder 4.85 283.70 52.77 5.90 62.89
Theta* 29697.33 35355.73 233104.12| 33872.69 482717.58

Node expansions in 2X Scale is seen in Table 5.9. A* and A* Post-
Smoothing have the same expansion principal, and would exmghthe same
number of nodes. From examination of this table, Theta* remas standing
out as the costliest of the algorithms (refer to Table at origal scale 5.4) -
this was again expected, similar to the 1X scale, has to pemfio line-of-sight

checks for all pairs of nodes in its open list.

Table 5.10: Average Heading-changes: 2X Scale

Baldurs Gate Il Dragon Age: Origins Starcraft | Warcraft | Mazes (32W)
A* 92.08 74.06 142.68 79.56 91.34
A*PostSmoothing 5.91 20.87 23.08 5.80 24.77
Anya (Oh et al.) 4.68 18.31 14.82 5.02 24.08
Anya (Harabor et al.) 4.56 16.80 13.48 4.97 23.89
Ray Path Finder 4.83 19.97 16.61 5.28 24.86
Theta* 4.97 18.81 16.30 5.41 24.47

With the exception of A*, heading changes are not a ected by stiag, as
the topologies of the paths don't change, but merely their fgyth. This

can be observed in 5.10. A*, as discussed previously, is coasted to

5.3. Experimental results 179

moving along grid edges and hence would have to perform a hegmumber
of heading changes whilst attempting to move diagonally atrales other

than 45 .

In comparison to A*, A* with Post-Smooting and Theta*, scalinghas less
of an impact on Ray Path Finder overall. RPF's metrics preserviéhe same
order of magnitude compared with those seen at the originatae (i.e. in

Table 5.5). which demonstrates RPF's resilience to map saadj.

It has also been observed that Anya (Harabor et al.) appears to afe
RPF's resilience to map scaling. However, Anya (Oh et al.) is nas

fortunate, as its run-time degrades faster.

Looking at Figures 5.16, 5.17,5.18, 5.19, and 5.20, the pred of these
algorithms appear to remain almost identical in comparisoto their 1X

pro les, Figures 5.7, 5.8, 5.9, 5.10, 5.11, respectively.

5.3. Experimental results

180

(@)

(©)

(e)

Figure 5.16: Baldur's Gate: 2x Scale.

(b)

(d)

)

(Path Length vs. Time @))

5.3. Experimental results

181

(@)

(©)

(e)

(b)

(d)

)

Figure 5.17: Dragon Age Origins: 2x Scale. (Path Length vs. Ten(ns))

5.3. Experimental results

182

(@)

(©)

(e)

Figure 5.18: Starcraft: 2x Scale.

(b)

(d)

)

(Path Length vs. Time (ns))

5.3. Experimental results

183

(@)

(©)

(e)

Figure 5.19: Warcraft: 2x Scale.

(b)

(d)

)

(Path Length vs. Time (ns))

5.3. Experimental results

184

(@)

(©)

(e)

Figure 5.20: Mazes (32W): 2x Scale.

(b)

(d)

)

(Path Length vs. Time (ns))

5.3. Experimental results 185

5.3.8 RPF versions

This section compares two di erent implementations of the Ry Path Finder
algorithm, the variant described in the current work and redéred to as Ray
Path Finder or RPF, and a legacy variant labeledRPF on Cells The
development ofRPF on Cells was subsequently abandonded in favour of

RPF, which favours a cleaner and less complex implementation

Ray Path Finder, the newer version of the algorithm operatesver vertices
on a 2D uniform-cost octile grid-graph indexed as a 1D arrayrhe legacy
variant, RPF on Cells operates over cell centers on a 2D uniform-cost
octile grid-graph. It indexes the grid-map as a 2D array, mataing the x
and y coordinates for each node, as opposed RPF which treatsdes as

single integer values in the 1D array representation of therid.

The principle of operation of both algorithms is the same, liwiven their
di erent implementations, it serves as a useful showcase jstify the adop-
tion of the vertex based solution, embodied by RPF. The impleentation
of RPF on Cellsavoided using vertices, but rather operated directly on the
grid-cells. However, this version presented with functiomassues when ex-
ploring narrow spaces, such as corridors with minimum widghof 1 cell. For
such scenarios, a cell could be visited repeatedly from dient directions,
and additional checks were required to identify these sittians. Further-
more, because obstacles could occasionally share the saoreer cell and
the search paths require keeping track of such corner nodesths could
pass through the same cell but attempt to indentify it as a dinct corner,
which would result in an unwanted self-intersection. For emple, two di-
agonally opposing squares that are spaced one cell apart édlkie same cell
as a corner, one as its lower-right corner, and the other asiupper-left
corner. Because of this, a path could end up passing throughet same cell

while following the edge of the two separate obstacles, buti$ely conclude

5.3. Experimental results 186

that it had intersected itself. To account for such cases, aoskaround re-
quired keeping track of pairs of cells for each corner, botiné free corner
node that belonged to the path and the occupied corner that benged to
the object boundary. In addition to list which maintains the path, the

implementation required additional lists to keep track of he corner pairs.
Unfortunately, these solutions considerably increased tle®mplexity of the

algorithm further, and resulted in a degradation of perforrance from the
additional overhead. The vertex based solution was adoptedstead, as it
proved more elegant, and allowed for better performance. €lvertex-based
Ray Path Finder avoided the pit-falls that plagued the previas cell-centric

variant, as each vertex uniquely indenti es a corner of an aacle.

A set of experiments pits the two implementations of RPF agast each
other. Scenarios were selected from the entire databasethwa 1{in{3

sampling step. The experiments were performed on an 1.8GHzdnhCore
i3 with 4GB RAM running Windows 10. The following tables represnt
the averages of the collected metrics. The new algorithm imgves on the
metrics of the original, with an average 55.75% decrease imrtime (Table

5.11), and an average 80.01% decrease in memory expendifisble 5.12).

Table 5.11: Average Time (ms) on maps

Baldur's Gate Il Dragon Age: Origins Starcraft | Warcraft | Mazes 32W
RPF 0.45 4.95 9.18 0.51 2.96
RPF On Cells 1.02 9.34 14.80 1.25 13.90

Table 5.12: Average Memory usage (KB)

Baldur's Gate Il Dragon Age: Origins Starcraft | Warcraft | Mazes 32W
RPF 0.55 37.81 127.36 0.65 5.27
RPF On Cells 9.59 1862.47 1730.36 0.77 1425.85

Table 5.13 shows an improvement in path length due to paths apping

tighter around an obstacle boudary, i.e. the path passes thmgh the corner

5.3. Experimental results 187

vertex which neighbours an occupied cell.

Table 5.13: Average Path Length

Baldur's Gate Il Dragon Age: Origins Starcraft | Warcraft | Mazes 32W
RPF 235.65 186.66 496.89 239.80 1024.70
RPF On Cells 236.74 190.93 505.74 240.93 1174.91

Additionally, the search procedure also presents a speed-upconverging
to the any-time solution. Table 5.14 summarises the averagiene in mil-

liseconds for the algorithm to rst encounter the goal, bef@ it proceeds

to optimise a solution.

Table 5.14: Average Time (ms) to reach goal on rst encounter

Baldur's Gate Il Dragon Age: Origins Starcraft | Warcraft | Mazes 32W
RPF 0.12 3.48 3.75 0.14 1.14
RPF On Cells 0.19 6.50 5.88 0.19 4.56

While an improvement on its experimental predecesor, the ingmentation
of the Ray Path Finder algorithm has not been optimised for p&rmance.

Re nement of RPF is a subject for future research and has theopential

to further improve on the algorithm's metrics.

5.3. Experimental results 188

5.3.9 Anya vs. RPF

This section compares Ray Path Finder, the proposed algorith with the

two implementations of Anya, identi ed in the previous secions as the
best performing algorithms. The metrics used for comparisowith RPF

for taken from Anya (Harabor et al.), with the exception of nodeexpansions
which are not available. The node expansion metrics are iestd extracted
from Anya (Oh et al.). The following experiments were perfored on an
1.8GHz Intel Core i3 with 4GB RAM running Windows 10. Scenarios eve

selected from the MovingAl database, with a 1{in{3 samplingtep.

Tables 5.15, 5.16 & 5.17 summarise the averages of the coddametrics.
Anya has a 48.88% higher memory footprint on average, and cav&9.21%
more of the search-space, but outperforms RPF in run-time 185.68%. Ta-
ble 5.18 presents the percentage of scenarios for each gamehich Ray
Path Finder outperforms Anya (Harabor et al.) with respect to un-time.
The rst row in the table indicates the total percentages in vinich RPF is
faster. This includes the scenarios in which the start and gp goal have a
direct line-of-sight to eachother. The second row in the tdé excludes the
aformentioned scenarios, looking only at scenarios in whithere is at least
one obstacle breaking the line of sight between the start argkstination.
Even for such cases, RPF outperfroms Anya (Harabor et al.) beden 40%
and 49% of the time, with the one exception being Mazes, in vdhi it only
outperforms it on 15% of occassions. Coupling this with theaformation
from Table 5.17, in which it was observered that Anya (Haraborteal.) is
faster on average than RPF, it becomes apparent that there aseenerios
for which the performance of RPF is severely degraded. Emigial obser-
vations made from comparisons of the two algorithms on indodual maps
indicate that the ocassions for which RPF su ers considerdd degradation

in run-time occur when the scenarios under observation le#lde algorithm

5.3. Experimental results 189

to form \over-head" paths for which the heuristic length furction greatly
underestimates the cost of travel, and prioritises them oveviable paths
with a consistent heuristic cost. This is likely to happen focertain map
topologies, as best can be observered for the cases with thaez@ maps, in

which overhead paths are very common due to long, winding ciiors.

Table 5.15: RPF vs. Anya (Harabor et al.): Average Memory (KB)

Baldur's Gate I Dragon Age: Origins Starcraft | Warcraft | Mazes 32W
Anya (Harabor et al.) 470.69 630.07 1105.92 490.04 621.89
RPF 173.43 374.19 1177.74 470.46 583.61

Table 5.16: RPF vs. Anya (Oh et al.): Average search-space exyson

Baldur's Gate I Dragon Age: Origins Starcraft | Warcraft | Mazes 32W
Anya (Harabor et al.) 49382.35 69968.98 476788.60] 77352.50| 186510.63
RPF 2269.59 11501.90 19237.24 | 2893.57 46861.51

Table 5.17: RPF vs. Anya (Harabor et al.): Average Run-time(ms)

Baldur's Gate Il Dragon Age: Origins Starcraft | Warcraft | Mazes 32W
Anya (Harabor et al.) 0.26 0.80 2.40 0.37 0.73
RPF 0.50 6.62 11.38 0.51 5.27

Table 5.18: RPF vs. Anya (Harabor et al.): Scenarios where RPFak
better Run-time than Anya (Harabor et al.) (%)

Baldurs Gate Il

Dragon Age: Origins

Starcraft

Warcraft

Mazes (32W)

RPF - obstacles 0

48%

45%

52%

52%

16%

RPF - obstacles 1

40%

41%

49%

44%

15%

The graphs illustrated in Figures 5.21, 5.22, 5.23, 5.24 and25 are log-
arithmic scatter plots which present the behaviours of RPF rad Anya
over the ve database games. They indicate that with the exqeion of
scenarios where start and goal nodes have direct line-affsi Anya out-
performs RPF in run-time. Both algorithms present a similarbehaviour

pro le between path length and run-time for all types of mapswith Anya

5.3. Experimental results 190

(Harabor et al.) having a faster run-time than RPF. These restd can be
explained by Anya (Harabor et al.)'s performance optimisatios curtsey
of the authors, and by RPF's ine cient implementation coupled with the
performance hit due to the liberal expansion of \over-headpaths which
advertise grossly underestimated heuristic lengths to thériving Best- rst

search algorithm of RPF.

Figure 5.21: Anya (Harabor et al.) vs. RPF: Path Length - Time(ns)n
\Baldur's Gate II" maps

Figure 5.22: Anya (Harabor et al.) vs. RPF: Path Length - Time(ns)n
\Dragon Age: Origins" maps

5.3. Experimental results 191

Figure 5.23: Anya (Harabor et al.) vs. RPF on Warcraft maps: Path
Length - Time(ns)

Figure 5.24: Anya (Harabor et al.) vs. RPF: Path Length - Time(ns)n
\Starcraft” maps

Figure 5.25: Anya (Harabor et al.) vs. RPF: Path Length - Time(ns)n
\Mazes 32W" maps

Figure 5.26 presents a sub-sample of Figure 5.24 which isolatke data
points for scenarios in which start and target have a directfe-of-sight.
As can be observed, RPF performs slightly better in these cumstances

because the search is equivalent to a single line-of-sighteck.

5.3. Experimental results 192

Figure 5.26: Anya (Harabor et al.) vs. RPF: Path Length - Time(ns)
sub-sampling of direct line-of-sight data-points

5.4. Discussion on RPF 193

5.4 Discussion on RPF

A novel strategy for nding any-angle paths on octile grids was introduced
in the form of Ray Path Finder. To the author's knowledge, RPF 3 the
only algorithm to combine a best- rst-search strategy and bg-like path

searches to perform online any-angle path-planning.

In this chapter we presented the experimental evaluation ¢fie RPF algo-
rithm against ve popular state-of-the-art online path-planning algorithms
from the literature, namely A*, A* with Post-Smooting, Theta*, and two
distinct implementations of the Anya algorithm (Anya (Oh et al) and
Anya (Harabor et al.)). Each algorithm was evaluated over 4588 scenar-
ios on 314 maps from ve popular game maps from the MovingAl dabase

(presented in Table 5.1 of Section 5.2).

The algorithm has been shown experimentally to be competig on a num-
ber of di erent metrics against the other ve algorithms. The metrics used
for this evaluation were the length of the identi ed path, run-time of the al-
gorithm, nodes expanded during search-space exploratitvgading changes

of the path, and memory requirements of the algorithm.

Regarding path length, Ray Path Finder nds short paths on thesame
level as Anya (Oh et al.), Anya (Harabor et al.) and Theta* (as obasrved
in Section 5.3.2). Looking at run-time (Section 5.3.3), Rapath Finder is
the second fastest algorithm, overall, after Anya (Harabortel.) on four of
the ve evaluated games, and is similar in performance but gerally faster
than the variant of Anya by Oh et. al. which present a non-optinsed im-
plementation. One game represents the exception. RPF susa reduction
of performance on Dragon's Age: Origins, making it the secorstbwest af-
ter Theta*. The limitation of RPF described in Section 4.5 rgarding the

underestimation of the heuristic cost of \over-head" pathgi.e. paths that

5.4. Discussion on RPF 194

the interior contour of an obstacle that contains the start nde) is another
aspect that is subject for future improvement. As there existno strategy
to inform on which scenarios or maps present with topologiekdt can lead
RPF to create and expand \over-head" paths, no straightforard conclu-
sion can be drawn as to the negative impact that these scenasihave on
the performance of the algorithm. Our conjecture is that, iin elegant so-
lution for accurately estimating the heuristic length of \aver-head" paths
were to be identi ed and implemented, the performance of Ragath Finder
would improve, and possibly make RPF more competitive agahthe dom-
inant algorithm in our experimental results, namely Anya (Haabor et al.).
Such a solution would come in the form of an e cient way of impgment-
ing a methodology similar to the one described in Section 4.5 allow
for an accurate estimate of the heuristic of \over-head" p&is. Because
such a solution does not exist in practice as of this writinghe optimality
of the algorithm is compromised. The Best- rst search algghm priori-
tises paths that promise the smallest heuristic. As such, avhead paths
can nd themselves being evaluated rst, as they underestiate their true

heuristic cost, which can result in additional run-time.

As observed in Subsection 5.3.4, the proposed methodologyplexes fewer
nodes within the search-space compared to other on-line paplanning
algorithms. However, while Ray Path Finder exhibits a reductin in the
number of nodes expanded relative to Anya, this is not alway< ected
in the run-time performance of the algorithm. The version ofAnya by
Harabor et al. is, on average, faster than our proposed methmdgy across

all game maps, as observed in Subsection 5.3.3.

Subsection 5.3.6 shows Ray Path Finder to have a smaller meméwotprint
than other algorithms for game maps from Baldur's Gate |l andtarcraft,

and a memory footprint comparable to Anya (Oh et al.) and Anya (Hea-

5.4. Discussion on RPF 195

bor et al.) for the other evaluated games. Both Ray Path Findeand Anya
(Harabor et al.) present with decent resilience to scaling upf maps, as

observed in Subsection 5.3.7.

Because RPF, in its current form, is generally dominated by Aray(Hara-
bor et al.), it may not be the preferred search method for angngle path-
planning on octile grids. However, RPF possesses propertilbat can make
it appealing for certain applications. If a faster run-timeis desirable over
path-length, the algorithm can be allowed to terminate eayl after at least
one path has converged to a sub-optimal solution. Given itsbéity to

produce multiple solutions, for instance, gives the optiofor a higher-level
planner to chose alternative paths that may have other faveable charac-

teristics, such as shallow turning angles for preserving mentum.

The variability in performance of the algorithm requires father investiga-
tion, as it could be attributed to a number of di erent factors. One key
reason for this comes down to the implementation of the Ray BaFinder
algorithm. Ine ciencies in Ray Path Finder's implementation may con-
tribute to the algorithm's poor performance relative to Anya(Harabor et
al.). One aspect of Anya (Harabor et al.)'s implementation istte use of
a Fibonacci heap for operating its priority queue, which immves an algo-
rithm's asymptotic run-time. In contrast to Anya (Harabor et al.), RPF
has not been optimised to use a Fibonacci heap for its priorityueue data
structure, but uses only a generic queue provided by the Java ARbrary.
The second reason for Anya (Harabor et al.)'s performance rdwes around
its e cient implementation that makes use of bit-level manpulation to ex-
pand over grid-rows very fast. This allows the algorithm tosn the free
search-space e ciently, but tightly-couples the algorithm to the data struc-
ture representing the grid-map. For their implementation Anya (Harabor

et al.) use a bit-packed integer matrix where each bit of an ieger element

5.4. Discussion on RPF 196

represents the occupancy state of the search-space. WhileyRath Finder
along with the other algorithms use the same underlining datstructure
for consistency of the experimental results, they are not &bto take ad-
vantage of the bit-packed matrix, having to access the datstructure one
bit at a time. Because of these reasons, the algorithm prowdd room for
improvements of its implementation. As well, other additios to its prin-
ciples of operation could help it make further headway in impving its
performance. One caveat of RPF's implementation is how pattbgects are
represented and handled internally by the algorithm. Indidual paths are
treated as linked lists which undergo look-ups, insertiongxtractions and
cloning. These processes can cumulatively take a long timedaconsume
resources. Cloning the paths, for instance, can be a relaly expensive
procedure, as memory needs to be allocated on the heap forreaew ob-
ject (i.e. list). The main Best- rst search algorithm is impgemented as a
priority queue that extracts and reinserts paths with eachteration. With
each insertion and reinsertion, the heuristic length of ehath is calcu-
lated in order to compare them with each-other, and to orderagh path
in the queue from shortest to longest. Recalculating the patof each path
with each expansion is expensive and unnecessary. A bettetusion that
stores the path's length and only updates it during a change its topology
would be preferable. As an additional example of ine ciencygiven a large
number of intersections with obstacles, the priority queuenay hold many
paths in the queue, out of which only a handful may prove usdfin leading

to a solution.

The positive aspects in Ray Path Finder's performance predea promis-
ing avenue for further research into the algorithm. The eviehce to date
presents RPF as a competitive algorithm as compared to othetate-of-
the-art algorithms. It has been observed in Subsection 53that RPF

can outpeform Anya (Harabor et al.) in run-time, up to 52% of theime

5.4. Discussion on RPF 197

on certain game maps. The algorithm's main de ciency lies in RF's

inability to accurately estimate the cost of \over-head" p#hs, as no ap-
propriate solution has been developed as of this writing. Eure research
into Ray Path Finder that extends beyond the scope of the curng¢ work,

may provide a solution to the problem of \over-head" paths. flsuch a
solution is indeed identi ed, it could address a large arrayf scenarios
for which RPF currently exibits a substantial degradation m performance.
It is likely that additional optimisations brought to the algorithm would

improve the run-time and potentially further reduce the nunber of node
expansions. Such optimisations would include, but not bentited to, using

a Fibonacci heap to operate RPF's priority queue, caching thessults of
line-sight checks that have succeeded, information shagirbetween paths
to indicate search-spaces that have already been exploreahd possibly
adopting/implementing a better data structure representig the expanded
paths, e.g. using a tree structure. A solution that accuratg estimates the
heuristic of \over-head" paths would also allow RPF to conuge to solu-
tions faster. Applying a smarter branch-and-bound strateggnd heuristics
to the Best- rst search algorithm may be able to discard pathk early would

also prove useful in reducing the number of paths in the queue

Chapter 6

Conclusion

This chapter presents the summary of the ndings of the developed any-
angle path-planning algorithm. Conclusions and recommendations are of-
fered for future research work, including some potential applications of the

novel algorithm.

6.1 Summary

The thesis introduces a novel best- rst search algorithm fonding any-
angle paths on grid-constrained graphs. To the author's kméedge, RPF
is the only algorithm to combine a best- rst-search strateg and bug-like

path searches to perform online any-angle path-planning.

We have developed and implemented an online any-angle paitanning
algorithm based on \bug-like" paths with free-space assurtipns and con-
ducted by a best rst-search algorithm. The paths travellig towards a
goal (using a variant of Bresenham's line algorithm introdced in 3.2) bi-
furcate when encountering an obstacle and split o in oppas directions.

The paths perform wall-following (using a novel contour treing algorithm

198

6.1. Summary 199

introduced in 3.3), while identifying corner points that ca be added to the
path. While wall-following, each path investigates its tautess to preserve
the optimality of the best- rst search that handles the priaity of each path
based on which path estimates it is the shortest. For this ppose it prunes
nodes that compromise a path's tautness at each step to rataa consis-
tent heuristic. It greedily searches for a solution among g¢hmost promising
paths and only performs line-of-sight checks between patknices after the

path has arrived at a solution.

The proposed algorithm is shown experimentally to be comptte on a
number of performance metrics with state-of-the-art any+agle algorithms.
It also presents desirable properties that allow it to have eeduced search-

space and make it suitable for providing any-time solutions

Employing the algorithm can reduce the search space consigay (Fig-
ure 6.1) and nds solutions fast. The algorithm presents wit competitive
metrics, comparable to Anya, the fastest state-of-the-artrdine any-angle
path-planning algorithm. It also allows for multi-path and any-time solu-
tions, making it a good candidate for robotic platforms or aplications that

impose time constraints.

Figure 6.1: Search space comparison: A* (left), Theta*(midd), RPF
(right)

6.1. Summary 200

Additionally, a graphical user interface was developed in der to:

provide a general and simple tool for evaluating path-planing algo-

rithms.

perform simulations and visualise results regarding algtim be-

haviours.
provide compatibility with the MovingAl map database.

enable large-scale data collection of algorithm metrics.

This would allow future researchers to use the tool and integte their al-
gorithm with the application, allowing them to focus on the @velopment
of their respective path-planning methodology rather tharhaving to im-
plement, manage and handle low-level interactions with imenpatible map

databases.

RPF operates on 2D grid-maps, represented by a 2D occupancytnix

that encodes a cell as block or unblocked. As such, its implemt&tion is

speci ¢ to operations performed on the matrix, i.e. traveiag the encoded
free-space of the occupancy grid by incrementally moving the Moore
neighbourhood of a cell, as well as tracing along the conteuof blocked
regions in the same manner. Through its principle of operain, however,
RPF could also operate on a ground robot by employing behavis similar
to those used by bug algorithms (e.g. tactile and/or range ssors along
with odometry). Essentially, the paths that the algorithm propagates to-

wards the goal node act in a similar way to individual bugs.

As part of the Ray Path Finder algorithm, a novel contour tracirg algo-
rithm has been developed, which can provide a good alternagito other
methodologies in the literature and which can have potentiapplications

beyond RPF (e.g. image segmentation).

6.2. Future Work 201

6.2 Future Work

The research presented in this work has been undertaken astpaf the
Cognitive Assisted Living Ambient System (COALAS) Project (Nr. 4.94)
[91]. The COALAS project was selected under the European cressrder
cooperation programme INTERREG IV A France (Channel) { Englad,
and co-funded by the European Regional Development Fund (EH), with
the aim of developing an \autonomous cognitive platform, ¢abining an
intelligent wheelchair coupled with the assistive capaliies of a humanoid
robot" [91]. The project aimed to develop a system consistinof a hu-
manoid robot, powered wheelchair, and sensors in order orveép an
assistive navigation system, which has been a key issue ovelepment for
the disabled. The COALAS wheelchair falls under the categoryf assistive
technology, with semi-autonomous (collision avoidancend autonomous
functionality (mapping, planning). The wheelchair has ba® supplied with
Udoo Quad on-board mini PC, a LIDAR sensor and wheel-encoderd/e
have adapted the system for collision avoidance, remote ¢, odometry
estimation and integrated the ROS navigation stack for the yrposes of
mapping and autonomous navigation. The ROS framework for botics
development and visualisation along with the Gazebo Robatisimulation
environment (Figures 6.2, 6.3, 6.4) allow for a safe testingha experimen-
tation environment. Complementary to the development of ta Ray Path
Finder algorithm, the ROS-enabled smart wheelchair serves @ mobile
robotic agent capable of mapping the environment and autonwus navi-
gation, and represents the prime candidate for a future impmentation of

a ROS-based RPF path-planning solution.

6.2. Future Work 202

Figure 6.2: Screen-capture of platform model with LIDAR sensanside
maze constructed using Gazebo simulation environment [92]

Figure 6.3: Screen-capture of platform model with LIiDAR sensan RViz
following path found by Theta* implementation [92]

6.2. Future Work 203

Figure 6.4: Left: screen-capture of platform model with LiDARsensor
feedback as viewed in RViz (ROS compatible robotics visuaison tool);
Right: screen-capture of platform with LIDAR in simulated wald with
obstacles in Gazebo [92]

6.2. Future Work 204

6.2.1 Optimisations

This section presents a brief discussion on potential optisations of the

RPF algorithm.

The current implementation of Ray Path Finder performs ray-asting be-
tween subsequent node pairs until all node pairs have a cldare of sight
between them. This presents some redundancy. After a path hesached
the goal, line-of-sight checks are performed between sutpsent nodes in
the path. If both the path and its bifurcated descendent sh& common
vertices other than the root (start node) and continue to be »xpanded
after having reached the goal (i.e. they have similar lengshand/or the
algorithm requests multiple solutions), the line-of-sighchecks between the
shared vertices are performed independently for each patleading to re-
dundancy. This can be prevented by sharing information be®en paths
(i.e. maintaining a history of the performed line-of-sight lszecks). A possi-
ble implementation would be to cache the results of the Bresieam algo-
rithm explorations already performed in order to avoid redadancy in the

line-of-sight expansions.

The direction monitoring functionality of each path is impemented by
maintaining references to subsequent vertices on the obslels edge and
computing the discrete number of turns away from the desiredirection
of travel towards a goal node. This solution is part of a leggdmplemen-
tation, but the same functionality could be achieved in otheways. One
such way would be to perform angle calculations, which coufitove more
appropriate for implementing RPF on a robotic platform lackng a grid-
map discretisation of the environment. Another possible atnative, which
would operate on grid maps would be to add the number of innebmers

and subtract the number of outer corners.

6.2. Future Work 205

As of this writing, a drawback of the current implementation éthe RPF al-
gorithm relates to how a path bifurcates at the point of intesection with an
obstacle. Each individual path is implemented as a self-caihed object,
and maintains its own references to path nodes it had previsly visited,
and the list of nodes under consideration to be part of the pat When an
obstacle is encountered, a new copy of the path in questionasnstructed,
i.e. copies of the data structures containing the node reterces are as-
signed to the newly created path. Given an environment or cajuration
conducive to a high number of intersections, the copying ptess could de-
lay the runtime of the algorithm with memory management task. The
redundancy of the information in each path could be reducedThis re-
mains an elusive problem and among the most prominent openeagiions

that have arisen from the current research.

Path creation

In an environment with many concave objects, paths could ietsect repeat-
edly with edges of the same object, which would lead to the gamation of
a new redundant path for each new intersection. From an impteentation
stand-point, object creation and duplication of the data stuctures from
one path object to another can strain resources and impact germance.
Given that one drawback of RPF is that it requires the creatin of a new
path object with each wall intersection, it can prove desitale to avoid un-
necessary path generation. This could be achieved in a numb ways

and we will discuss three possible options:

O -line obstacle labelling - in a preprocessing stage, olastles inside
a map can be uniquely identi ed (by means of contour tracingfor
example) and the cells belonging to the same obstacle can i€han

identi er unique to each individual object; by this means, m the on-

6.2. Future Work 206

line path-planning search, when an intersection occurs Wita cell that
has the same identi er as the ones of the previous wall follavg step,
the algorithm can avoid creating a new path to follow the obsicle
in the opposite direction, as the path would intersect itséland be
discarded as redundant. One should note that if the goal nodeere
located inside the convex hull bounding an obstacle, the predure
described above could fail to nd a solution. Therefore, adtonal in-
formation may be required from the preprocessing stage, fexample,

a bounding box associated with each object.

Online lookahead step - after a path determines that it can &ve the
edge of an obstacle and resume travel in a straight line, begoen-
gaging in a ray-cast towards a goal node (or internal goal ney the
algorithm can perform a lookahead step, in which it allows t wall
following to carry on for a number of steps (chosen stochasdily);
the lookahead procedure would terminate in one of three waysi-
ther by intersecting the path, in which case the obstacle wddi not
be intersected again, or by crossing on the opposite side betM-
line de ned by the goal node and the internal start node (poinof
departure from obstacle edge), in which case the wall follovg can
be allowed to continue normally (i.e. a new path would be redu
dant), or, nally, by exhausting the number of steps, in whit case
a conclusion would not be drawn, and the algorithm would resuwe
normal ray-casting behaviour. The latter case would proveostly as a
redundant path may still be generated; as such, choosing thamber
of lookahead steps could have an either a positive or negativmpact

on performance.

Avoidance of path structures - one could circumvent the issuey
avoiding the task of path creation altogether. The implemeation

choice for moving away from node objects (e.g. implementatis of

6.2. Future Work 207

algorithms in the A* family), and using path objects instead \&s done
on the basis of simplicity. The implementation uses structes such
as linked lists for appending, inserting and deleting nodesghich are
represented by signed integer values (the absolute valugresents
the index corresponding to the vertex, and the sign re ectshe side
of the path at the moment of exploration). The main di cultie s of
using individual node objects is the problem of nodes havimgultiple
potential parents and also maintaining the sides of the pathpassing
through the node. Algorithms such as R* [93] and LIAN [94] could
provide alternatives methods for handling multiple parers. A solu-
tion that would address these issues is reserved as a potehtvenue

for future research.

Multi-threading

The algorithm could bene t from parallelisation (eg. paralel Dijkstra [95])

as the searches executed by each path are performed indeptly of each
other. From an implementation point of view, multiple threals running si-
multaneously would have access to shared resources suchhasgrid graph.
For static maps however, occupancy queries (read operatoofrom mem-
ory and/or cache) would not require synchronisation (prevéing multiple

threads from accessing the object at the same time). Sharezsources that
would require synchronisation to prevent concurrency fatsl would be the
priority stack maintaining references of the active paths.The decision of
adopting parallelisation would take into consideration tke boost in perfor-
mance and weigh the potential reduction im runtime againstite overhead
of multi-threading (thread object creation, shared resowe synchronisation,

processor architecture, etc.).

6.2. Future Work 208

6.2.2 Open Questions and Potential Applications

The following section presents a brief discussion on sometgraial appli-
cations and variations on the RPF framework. Some questiotisat could

hopefully fuel future research directions are considered:

One avenue of investigation, that has not been explored in t@d by the

current work, would be to alter the algorithm to perform pathclearing pro-
cedures (i.e. checking for line-of-sight between subsequeodes of a path)
in reverse order (from stop to start) after having reached # goal node at
least once. Such a behaviour would be desirable and expectéd robotic
agent that would enact a RPF-like navigation strategy. In an nknown
environment the robot would learn about its surroundings bynultiple at-

tempts of travelling between the start and stop goals, assilating more
information about the environment and optimising the path 1 travels with

each iteration. Such a scenario would imply travelling towas the goal and
returning to the start node, but rather than retracing its steps, the robot
can attempt to optimise the path by minimising the travel scoe between
path nodes. Preliminary experiments indicate that reverag the order of
the nodes in a path (Line 40 of Algorithm 9) and/or reversing tk path's

side are insu cient to accomplish this behaviour.

6.2.3 Hybridisation

One can imagine a hybrid algorithm that combines the initialstage of
the Ray Path Finder algorithm (racing a path towards an end gdawith
other solutions such as Theta* or Anya to clear a path that haseached a
goal. During the development stage, brief experimentationith a RPF- A*
variant allowed for the discovery of solutions with fewer e expansions

than a purely A* algorithm, but had the same limitations in a pah's any-

6.2. Future Work 209

angle and optimality attributes as A*. In an RPF hybrid algorithm, a path
is allowed to search until it terminates or reaches its targeafter which a
second algorithm is allowed to perform internal searchestiween nodes of
the path. To arrive at an optimal solution, any such hybrid slould also
maintain a path's tautness (node backward and forward prung), which

would introduce a higher complexity to the implementation.

Similar to other algorithms, such as Bidirectional A* [96], RRF on known
environments may bene t from a bidirectional variant, in whch two simul-
taneous searches from start and goal meet to form a solutiod bidirec-
tional RPF could, ideally, improve performance, but with a tade-o of
having a higher memory demand and complexity. Other hybridhat more
closely tthe any-angle paradigm would see a RPF variant thiecan handle

non-holonomic movement, such as in the case of Theta*-RRT/P

Swarm robotics

In a hypothetical adaptation of RPF in a robot swarm applicaion, robots
can be sent out and allowed to perform a search for the targetfter which
more robots can attempt to optimise the solutions found. If mitiple paths
are discovered, the robots can be distributed among them se & avoid

congestion.

Cellular automata

A discrete computational model with applications in divers elds of study,
from biology to mathematics, cellular automata are a usefubol for gener-
ating complex using relatively simple rules. In general, attular automaton
consists of a cell grid where each cell represents an entihat exists in one

of a nite number a states [98]. Given a set of rules applied teach cell

6.2. Future Work 210

based on the states of the cells in its neighbourhood, the steof the cell
can change with each generation. Some classes of resultiagfgyns that

evolve with each generation can exhibit complex behaviourntiv few simple
governing rules. Conway's Game of Life, one of the most populexamples
of a cellular automaton, has been determined to be Turing cqtete [99],
making it a powerful method of computation, and is designedreund four

simple rules:

a live cell with fewer than two neighbours dies, due to undgrepulation
a live cell with more than three neighbours dies, due to ovgmpulation
a live cell with two or three neighbours survives to the nextgneration

a dead cell with exactly three neighbours becomes a live cell

Hypothetical algorithms combining RPF inspired behavioursvith a cellular
automaton are considered as a future research direction. ©oan envision
such a cellular automaton in a path planning strategy having few simple

rules:

automaton starts o with only one cell (start node)

a dead cell which nds itself in an open space, and has a livellcas

neighbour (either an open space or a leave point) or next t
a live cell with more than three neighbours dies, due to ovempulation
a live cell with two or three neighbours survives to the nexteneration

a dead cell which nds itself on an object boundary with at lest one
living neighbour becomes a live cell (i.e. contour tracinglunless the

neighbour is a leave point

Rather than expanding one cell at a time, a cellular-automat solution

would be able to cover a larger surface depending on the sizeh® desired

6.2. Future Work 211

object or based on the momentum of a navigating agent. This wial also
be applicable to solutions found by RPF, where cellular autoata would
re-trace the path or paths found by the algorithm, expandindarger sur-
face areas to account for desired properties or behavioursrh the robotic
agent, such as corner clearance to avoid collisions with nioy targets, or
to approach the corner from a better angle of attack to preses momentum

and have a smoother, more natural trajectory.

An RPF inspired cellular automaton variant may provide a soltion to
path-planning on grids with non-uniform traversal costs, sithe automaton
may allow the search-space to dilate locally, in order to agsunt for paths
with di erent weights. A cellular automaton approach to RPF may also

be able to tackle the problem of path-planning in 3D environents.

Bibliography

[1]

2]

[4]

[5]

[6]

[7]

(8]

J. Hawkins and S. BlakesleeOn Intelligence: How a New Understanding of the

Brain will Lead to the Creation of Truly Intelligent Machines. Macmillan, 2007.

K. Magzhan and H. M. Jani, \A Review And Evaluations Of Shortest Path Algo-
rithms," International journal of scienti ¢ & technology research, vol. 2, no. 6, pp.

99{104, 2013.

J. Jones, \A Morphological Adaptation Approach to Path Planning Inspired by
Slime Mould," International Journal of General Systems vol. 44, no. 3, pp. 279{

291, 2015.

A. Nash, \Any-Angle Path Planning," Ph.D. dissertation, University of Sou thern
California, 2012.

M. Pala, N. Osati, F. lopez-Colino, A. Sanchez, A. de Castro, and J. Garrido,
\HCTNav: A Path Planning Algorithm for Low-Cost Autonomous Robot Naviga-
tion in Indoor Environments,” ISPRS International Journal of Geo-Information ,

vol. 2, no. 3, pp. 729{748, 2013.

J. Antich, A. Ortiz, and J. Mnguez, \A bug-inspired algorithm fore cient anytime
path planning,” in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on. |IEEE, 2009, pp. 5407{5413.

\Real Time Collision," http://realtimecollisiondetection.net/b log/?p=56, (Ac-

cessed on 01/05/2017).

R. G. Golledge, \Path Selection and Route Preference in Human Navigatio:
A Progress Report," in International Conference on Spatial Information Theory.

Springer, 1995, pp. 207{222.

\Harvard Medical School - Imagery Lab,” http://www.nmr.mgh.harvard.edu /

mkozhevnlab/, (Accessed on 01/04/2017).

212

BIBLIOGRAPHY 213

[10] A. Madkour, W. G. Aref, F. U. Rehman, M. A. Rahman, and S. Basalamah, \A
Survey of Shortest-Path Algorithms," arXiv preprint arXiv:1705.02044, pp. 1{26,
2017.

[11] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT press, 2005.

[12] J. Aulinas, Y. Petillot, J. Salvii and X. Llacdb, \The SLAM Problem:
A Survey," in Proceedings of the 2008 Conference on Articial Intelligence
Research and Development: Proceedings of the 11th International Cosence
of the Catalan Association for Articial Intelligence . Amsterdam, The
Netherlands, The Netherlands: 10S Press, 2008, pp. 363{371. [Online]. Availabl
http://dl.acm.org/citation.cfm?id=1566899.1566949

[13] N. Karlsson, E. Di Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian and
M. E. Munich, \The vSLAM Algorithm for Robust Localization and Mapping,"
in Robotics and Automation, 2005. ICRA 2005. Proceedings of the @05 IEEE In-
ternational Conference on IEEE, 2005, pp. 24{29.

[14] R. F. Salas-Moreno, R. A. Newcombe, H. Strasdat, P. H. Kelly, and A. J. Dawon,
\SLAM++: Simultaneous Localisation and Mapping at the Level of Objects,"
Proceedings of the IEEE Computer Society Conference on Computer Vien and

Pattern Recognition, pp. 1352{1359, 2013.

[15] G. Dudek and M. Jenkin, Computational Principles of Mobile Robotics Cambridge
University Press, 2010.

[16] P. Yap, \Grid-based Path- nding," in Conference of the Canadian Society for Com-
putational Studies of Intelligence Springer, 2002, pp. 44{55.

[17] A. Patel, \Red Blob Games," https://www.redblobgames.com/, 2000, (Accesseal
on 01/04/2017).

[18] P. E. Hart, N. J. Nilsson, and B. Raphael, \A Formal Basis for the Heuristic
Determination of Minimum Cost Paths," |IEEE transactions on Systems Science

and Cybernetics vol. 4, no. 2, pp. 100{107, 1968.

[19] A. Botea, M. Muller, and J. Schae er, \Near Optimal Hierarchical Path- nding,"
Journal of Game Developmentvol. 1, no. 1, pp. 7{28, 2004.

[20] A. W. Kring, A. J. Champandard, and N. Samarin, \DHPA* and SHPA*: E cient
Hierarchical Path nding in Dynamic and Static Game Worlds," in Sixth Arti cial

Intelligence and Interactive Digital Entertainment Conference, 2010.

BIBLIOGRAPHY 214

[21] R. Dechter and J. Pearl, \Generalized Best- rst Search Strategis and the Opti-
mality of A," Journal of the ACM (JACM) , vol. 32, no. 3, pp. 505{536, 1985.

[22] D. Ferguson and A. Stentz, \Field D*: An Interpolation-Based Path Planner and
Replanner," Robotics research pp. 239{253, 2007.

[23] R. E. Korf, \Depth- rst Iterative-deepening: An Optimal Admissi ble Tree Search,"
Arti cial Intelligence , vol. 27, no. 1, pp. 97{109, 1985.

[24] D. Harabor and A. Grastien, \An Optimal Any-Angle Path nding Algorithm,"
ICAPS 2013 - Proceedings of the 23rd International Conference onAutomated
Planning and Scheduling pp. 308{311, 2013.

[25] D. Harabor, A. Grastien, D. Oz, and V. Aksakalli, \Optimal Any-angle Path nding

in Practice," Journal of Arti cial Intelligence Research , vol. 56, pp. 89{118, 2016.

[26] A. G. Michael Cui, Daniel D. Harabor, \Compromise-free Path nding on a Nav-
igation Mesh," in Proceedings of the Twenty-Sixth International Joint Conference

on Arti cial Intelligence, IJCAI-17 , 2017, pp. 496{502.

[27] S. Oh and H. W. Leong, \Edge N-Level Sparse Visibility Graphs: Fast Op-
timal Any-Angle Path nding Using Hierarchical Taut Paths,” arXiv preprint
arXiv:1702.01524 2017.

[28] T. Uras and S. Koenig, \Identifying Hierarchies for Fast Optimal Search,” Proceed-
ings of the Twenty-Eighth AAAI Conference on Arti cial Intelligence | dentifying,
pp. 878{884, 2014.

[29] T. Uras and S. Koenig, \An Empirical Comparison of Any-angle Path-planning
Algorithms," in Eighth Annual Symposium on Combinatorial Search 2015.

[30] D. D. Harabor, A. Grastien et al., \Improving Jump Point Search,” in ICAPS,
2014.

[31] V. J. Lumelsky and A. A. Stepanov, \Path-Planning Strategies for a Point Mobile
Automaton Moving Amidst Unknown Obstacles of Arbitrary Shape,” Algorithmica,

vol. 2, no. 1, pp. 403{430, 1987.

[32] V. J. Lumelsky, S. Mukhopadhyay, and K. Sun, \Dynamic Path Planning in
Sensor-Based Terrain Acquisition," IEEE Transactions on Robotics and Automa-

tion, vol. 6, no. 4, pp. 462{472, 1990.

[33] A. Sankaranarayanan and M. Vidyasagar, \Path Planning for Moving a Point Ob-

ject Amidst Unknown Obstacles in a Plane: The Universal Lower Bound on he

BIBLIOGRAPHY 215

Worst Path Lengths and a Classi cation of Algorithms," in Robotics and Automa-
tion, 1991. Proceedings., 1991 IEEE International Conference @. |IEEE, 1991,
pp. 1734{1741.

[34] H. Noborio and T. Yoshioka, \An On-line and Deadlock-free Path-planning Algo-
rithm Based on World Topology," in Intelligent Robots and Systems' 93, IROS'93.
Proceedings of the 1993 IEEE/RSJ International Conference on vol. 2. IEEE,
1993, pp. 1425{1430.

[35] I. Kamon and E. Rivlin, \Sensory-Based Motion Planning with Global Pro ofs,"

IEEE transactions on Robotics and Automation, vol. 13, no. 6, pp. 814{822, 1997.

[36] I. Kamon, E. Rimon, and E. Rivlin, \TangentBug: A Range-Sensor-Based Naw
gation Algorithm," The International Journal of Robotics Research vol. 17, no. 9,

pp. 934{953, 1998.

[37] M. Weir, A. Buck, and J. Lewis, \POTBUG: A Mind's Eye Approach to Prov iding
BUG-Like Guarantees for Adaptive Obstacle Navigation Using Dynamic Potential
Fields," in International Conference on Simulation of Adaptive Behavior, vol. 4095.

Springer, 2006, pp. 239{250.

[38] R. A. Langer, L. S. Coelho, and G. H. Oliveira, \K-Bug, a New Bug Approach for
Mobile Robot's Path Planning," in Control Applications, 2007. CCA 2007. IEEE
International Conference on. IEEE, 2007, pp. 403{408.

[39] J. Ng and T. Braunl, \Performance Comparison of Bug Navigation Algorithms,"

Journal of Intelligent & Robotic Systems vol. 50, no. 1, pp. 73{84, 2007.

[40] Y. Gabriely and E. Rimon, \CBug: A Quadratically Competitive Mobile Rob ot
Navigation Algorithm," IEEE Transactions on Robotics, vol. 24, no. 6, pp. 1451{
1457, 2008.

[41] A. Yufka and O. Parlaktuna, \Performance Comparison of the BUG's Algorithms
for Mobile Robots," in International Symposium on Innovations in Intelligent Sys-

tems and Applications (INISTA'09) , 2009, pp. 416{421.

[42] M. Pala, N. O. Eraghi, F. lopez-Colino, A. Sanchez, A. de Castro, and J. Garrdo,
\HCTNav: A Path Planning Algorithm for Low-cost Autonomous Robot Naviga-
tion in Indoor Environments," ISPRS International Journal of Geo-Information,

vol. 2, no. 3, pp. 729{748, 2013.

[43] J. Ng, \An Analysis of Mobile Robot Navigation Algorithms in Unknown Environ-

ments," Ph.D. dissertation, University of Western Australia, 2010.

BIBLIOGRAPHY 216

[44] P. Corke, Robotics, Vision and Control: Fundamental algorithms in MATLA B.
Springer, 2011, vol. 73.

[45] H. Choset, \Prinicipals of Robot Motion: Theory, Algorithms and Implementa-
tions," Robotica, vol. 24, no. 2, pp. 271{271, Mar. 2006.

[46] S. Shrotriya and A. Pandey, Imitating Humans: A Technical Approach, ser. Imi-
tating Humans. LULU Press, 2013.

[47] \Open Robotics," http://blog.daum.net/pg365/115, (Accessed on 01/05/2017).

[48] B. C.V, A. T, and R. B, \A New Multi-Bug Path Planning Algorithm for Robot
Navigation in known Environments," in 2016 IEEE Region 10 Conference (TEN-

CON), Nov 2016, pp. 3363{3367.

[49] S. Skiena, \Dijkstra's Algorithm,” Implementing Discrete Mathematics: Combina-
torics and Graph Theory with Mathematica, Reading, MA: AddisonWesley, pp.
225{227, 1990.

[50] A. Nash, S. Koenig, and C. Tovey, \Lazy Theta*: Any-Angle Path Planning and
Path Length Analysis in 3D," Third Annual Symposium on Combinatorial Search

(SOCS-10) Lazy, pp. 153{154, 2010.

[51] D. Harabor and A. Grastien, \Online Graph Pruning for Path nding On Gri d
Maps." AAAI Conference on Atrti cial Intelligence , pp. 1114{1119, 2011.

[52] J. E. Bresenham, \Algorithm for Computer Control of a Digital Plotter," IBM
Systems Journa) vol. 4, no. 1, pp. 25{30, 1965.

[53] K. I. Joy, \Breshenham's Algorithm," Visualization and Graphics Research Group,

Department of Computer Science, University of California, Davis pp. 1{15, 1999.

[54] C. Thorpe and L. Matthies, \Path Relaxation: Path Planning for a Mobile Rob ot,"
in OCEANS 1984 Sept 1984, pp. 576{581.

[55] A. Nash, S. Koenig, and M. Likhachev, \Incremental Phi*: Incremental Any-Angle
Path Planning on Grids*," IJCAI International Joint Conference on Arti cial In-

telligence pp. 1824{1830, 2009.

[56] A. Nash, K. Daniel, S. Koenig, and A. Felner, \Theta*: Any-Angle Path Planni ng
on Grids," in AAAI , 2007, pp. 1177{1183.

[57] S. Oh and H. W. Leong, \Strict Theta*: Shorter Motion Path Planning Using Tau t
Paths," in ICAPS, 2016, pp. 253{257.

BIBLIOGRAPHY 217

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

A. Nash, \Lazy Theta*: Faster Any-Angle Path Planning," http://aigamedev.com/
open/tutorial/lazy-theta-star/, July 2013, (Accessed on 01/04/2017).

S. Kopiva, D. Sshk, D. Pavtek, and M. Rechoiwcek, \lterative Accelerat ed A*
Path Planning," pp. 1201{1206, 2010.

D. Harabor, \Bitbucket," https://bitbucket.org/dharabor/path nding, 2017, (Ac-
cessed on 01/3/2017).

L. E. Dubins, \On curves of minimal length with a constraint on average
curvature, and with prescribed initial and terminal positions and tangents,"
American Journal of Mathematics, vol. 79, no. 3, p. 497, jul 1957. [Online].

Available: https://doi.org/10.2307/2372560

W. Cai, M. Zhang, and Y. Zheng, \Task assignment and path planning for multiple
autonomous underwater vehicles using 3d dubins curveg" Sensors vol. 17, no. 7,

p. 1607, jul 2017. [Online]. Available: https://doi.org/10.3390/s17071607

L. Chuan-ling, T. Jing, and Y. Jing-yu, \Path planning of mobile robot
using new potential eld method in dynamic environments," in 2011 Seventh
International Conference on Natural Computation. IEEE, jul 2011. [Online].

Available: https://doi.org/10.1109/icnc.2011.6022190

J. Guldner and V. Utkin, \Sliding mode control for gradient tracking an d
robot navigation using arti cial potential elds,” IEEE Transactions on Robotics
and Automation, vol. 11, no. 2, pp. 247{254, apr 1995. [Online]. Available:
https://doi.org/10.1109/70.370505

H. H. Triharminto, O. Wahyunggoro, T. B. Adji, A. |. Cahyadi, and
I. Ardiyanto, \A novel of repulsive function on articial potential eld
for robot path planning," International Journal of Electrical and Computer
Engineering (IJECE), vol. 6, no. 6, p. 3262, dec 2016. [Online]. Available:
https://doi.org/10.11591/ijece.v6i6.11980

P. Shi and Y. Cui, \Dynamic path planning for mobile robot based
on genetic algorithm in unknown environment,” in 2010 Chinese Control
and Decision Conference IEEE, may 2010. [Online]. Available: https:
//doi.org/10.1109/ccdc.2010.5498349

J. Guo, Y. Gao, and G. Cui, \Path planning of mobile robot based on improved
potential eld,” Information Technology Journal, vol. 12, no. 11, pp. 2188{2194,
nov 2013. [Online]. Available: https://doi.org/10.3923/itj.2013.2188.2194

BIBLIOGRAPHY 218

[68] P. Bhattacharya and M. Gavrilova, \Roadmap-based path planning - using
the voronoi diagram for a clearance-based shortest path,"IEEE Robotics &
Automation Magazine, vol. 15, no. 2, pp. 58{66, jun 2008. [Online]. Available:
https://doi.org/10.1109/mra.2008.921540

[69] A. Sgorbissa and R. Zaccaria, \Planning and obstacle avoidance in mobile
robotics," Robotics and Autonomous Systemsvol. 60, no. 4, pp. 628{638, apr
2012. [Online]. Available: https://doi.org/10.1016/j.robot.2011.12.009

[70] N. Sturtevant, \Moving Al Lab," http://www.movingai.com/, (Accessed on

01/04/2017).

[71] K. Daniel, A. Nash, S. Koenig, and A. Felner, \Theta*: Any-angle Path Planning
on Grids," Journal of Arti cial Intelligence Research, vol. 39, pp. 533{579, 2010.

[72] A. Gheuneim, \Contour Tracing - Square Tracing Algorithm,” http:
/iwww.imageprocessingplace.com/downloadsV3/root _downloads/tutorials/
contour_tracing_Abeer_GeorgeGhuneim/square.html, 2000, (Accessed on

01/04/2017).

[73] J. Seo, S. Chae, J. Shim, D. Kim, C. Cheong, and T. D. Han, \Fast Contour-
tracing Algorithm Based on a Pixel-following Method for Image Sensors,"Sensors

(Switzerland), vol. 16, no. 3, pp. 1{27, 2016.

[74] H. Abelson and A. A. DiSessa,Turtle Geometry: The Computer as a Medium for

Exploring Mathematics. MIT press, 1986.

[75] V. Lumelsky, \A Comparative Study on the Path Length Performance of Maze
Searching and Robot Motion Planning," IEEE Trans. Robotics and Automation,

vol. 7, no. 1, pp. 57{67, 1991.

[76] R. E. Korf, \Linear-space Best- rst Search," Arti cial Intelligence , vol. 62, no. 1,

pp. 41{78, 1993.

[77] N. R. Vempaty, V. Kumar, and R. E. Korf, \Depth-First Versus Best-F irst Search,"
in AAAI, 1991, pp. 434{440.

[78] B.Bonetand H. Ge ner, \Planning as Heuristic search: New Results,"in European

Conference on Planning Springer, 1999, pp. 360{372.

[79] H. Farreny and H. Prade, \Heuristics|intelligent search strategies for computer
problem solving, by judea pearl. (reading, ma: Addison-wesley, 1984),"
International Journal of Intelligent Systems, vol. 1, no. 1, pp. 69{70, 1986.
[Online]. Available: https://doi.org/10.1002/int.4550010107

BIBLIOGRAPHY 219

[80] P. Munoz and M. D. R-Moreno, \S-Theta*: Low Steering Path-planning Algo-
rithm," Res. and Dev. in Intelligent Syst. XXIX: Incorporating Application s and
Innovations in Intel. Sys. XX - Al 2012, 32nd SGAI Int. Conf. on | nnovative

Techniques and Applications of Arti cial Intel. , pp. 109{121, 2012.

[81] A. T. Stentz, \Optimal and e cient path planning for partially-know n environ-
ments," in Proceedings of the IEEE International Conference on Robotics andAu-

tomation (ICRA '94) , vol. 4, May 1994, pp. 3310 { 3317.

[82] M. Likhachev, G. J. Gordon, G. Gordon, and S. Thrun, \ARA*. Formal Analysis, "

2003, unpublished Manuscript.

[83] L. Shelton, \Optimizing Modern Path Finding Methods in Imperf ect 2D Environ-

ments," Journal of Game Behavior, vol. 1, 2014.

[84] T.-K. Wang, Q. Dang, and P.-Y. Pan, \Path Planning Approach in Unknown
Environment,” International Journal of Automation and Computing, vol. 7, no. 3,

pp. 310{316, 2010.

[85] P. K. Das, A. Konar, and R. Laishram, \Path Planning of Mobile Robot in Un-

known Environment,” Special Issue of IJCCT, vol. 1, no. 2, p. 3, 2010.

[86] R. Vatcha and J. Xiao, \Perceived CT-Space for Motion Planning in Unknown and
Unpredictable Environments,” Springer Tracts in Advanced Robotics vol. 79, pp.

883{897, 2014.
[87] \ROS," http://lwww.ros.org/, (Accessed on 01/04/2017).

[88] N. R. Sturtevant, \Benchmarks for Grid-based Path nding," IEEE Transactions

on Computational Intelligence and Al in Games vol. 4, no. 2, pp. 144{148, 2012.

[89] T. Uras and S. Koenig, \Speeding-Up Any-Angle Path-Planning on Grids," pp.
234{238, 2015.

[90] \Github - ohohcakester/any-angle-path nding: A collection of algorithms used
for any-angle path nding with visualisations." https://github.com/Ohoh cakester/

Any-Angle-Path nding, 2017, (Accessed on 09/12/2018).

[91] N. Ragot, G. Caron, M. Sakel, and K. Sirlantzis, \COALAS: A EU Multi-
disciplinary Research Project for Assistive Robotics Neuro-rehabitation," in
IEEE/RSJ IROS Workshop on Rehabilitation and Assistive Robotics Bridging
the Gap Between Clinicians and Roboticists, Chicago, USA2014.

BIBLIOGRAPHY 220

[92] W. Wycherley, \A Robot Navigation System based on Image Processing," 2017,

unpublished Manuscript.
[93] M. Likhachev and A. Stentz, \R* Search," Lab Papers (GRASP), p. 23, 2008.

[94] K. Yakovlev, E. Baskin, and |. Hramoin, \Grid-Based Angle-Constrained Path
Planning," vol. 9324, pp. 208{221, 2015.

[95] N. Jasika, N. Alispahic, A. EIma, K. llvana, L. Elma, and N. Nosovic, \Dijkstra' s
Shortest Path Algorithm Serial and Parallel Execution Performance Analyss," in
2012 Proceedings of the 35th International Convention MIPRQ May 2012, pp.
1811{1815.

[96] G. Nannicini, D. Delling, D. Schultes, and L. Liberti, \Bidirecti onal A* Search on
Time-dependent Road Networks," Networks vol. 59, no. 2, pp. 240{251, 2012.

[97] L. Palmieri, S. Koenig, and K. O. Arras, \RRT-based Nonholonomic Motion Plan-
ning Using Any-angle Path Biasing," in Robotics and Automation (ICRA), 2016
IEEE International Conference on. |EEE, 2016, pp. 2775{2781.

[98] P. Singhal and H. Kundra, \A Review Paper of Navigation and Path nding using
Mobile Cellular Automata,” Int. J. Adv. Comput. Sci. Commun. Eng.(IJACSCE) ,
vol. 2, no. |, pp. 43{50, 2014.

[99] \Game of Life,” http://web.stanford.edu/ cdebs/GameOfLife/, (Accessed on
01/04/2017).

	Abstract
	Introduction
	Introduction and overview
	Motivation
	Path planning and navigation
	Map discretisation and notations
	Heuristics

	Contribution
	Chapter Summary

	Path planning methodologies
	Introduction
	Bug algorithms
	Bug-1 Algorithm
	Bug-2 Algorithm
	Tangent Bug Algorithm
	MBPP - Multi-Bug Path Planning

	Grid constrained algorithms
	Dijkstra's algorithm
	A* algorithm

	Any angle algorithms
	A* with post-smoothing
	Theta* Algorithm
	Lazy Theta* Algorithm
	Anya

	Additional algorithms
	Dubins Curves
	Artificial Potential Fields

	Chapter Summary

	Ray Path Finder: Path construction
	Introduction
	Line of sight with intersection
	Contour tracing
	Path corners
	Path direction
	Path pruning
	Backward pruning
	Forward pruning

	Redundant paths
	Self-intersecting paths
	Chapter Summary

	Ray Path Finder: An Any-angle path planner
	Introduction
	A recursive approach
	The Ray Path Finder Algorithm
	Path updating
	Limitations
	Algorithm properties
	Multiple path solutions
	Any-time nature
	Unknown 2D Environments

	Chapter Summary

	Experimental results
	Interface
	Graphical user interface
	Synchronisation

	Database
	Experimental results
	Introduction
	Path length
	Run-time
	Node expansions
	Heading changes
	Memory footprint
	Impact of Gridmap resolution
	RPF versions
	Anya vs. RPF

	Discussion on RPF

	Conclusion
	Summary
	Future Work
	Optimisations
	Open Questions and Potential Applications
	Hybridisation

