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Abstract

We consider a general form of a multivariate lifetime model in which depen-
dence is induced via a common shock component. The univariate marginal dis-
tributions come from the well-known and widely applied exponential dispersion
family that includes the normal, compound-Poisson, gamma and negative bino-
mial distributions. Any combination of truncation or censoring, either left or
right, is considered, for which all moments are derived. This allows for the model
to be calibrated to any affine transformation of lifetime data.
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1 Introduction

Based on a well-known method of constructing multivariate distributions and using
widely applicable and popular marginal distributions, we revisit the multivariate life-
time model of Alai et al. (2015). The multivariate distribution is constructed via a
common shock component; see e.g. Chereiyan (1941), Ramabhadran (1951), and Mathai
and Moschopoulus (1991), who applied the multivariate reduction method to gamma
marginal distributions. Many other forms of construction have been considered; see
e.g. Bildikar and Patil (1968), Jørgensen (1987), and specifically for the investigation
of joint-lifetimes, see Dhaene et al. (2000) and Denuit (2008).

The marginal distributions we consider are from the exponential dispersion family.
This family includes the Tweedie subclass, which is characterized by a power variance
structure. This subclass includes the normal, gamma, compound Poisson, and inverse
Gaussian distributions. The Tweedie subclass is widely used in actuarial science, in-
troduced by Tweedie (1984). It has been studied in numerous papers, such as Aalen
(1992), Jørgensen and De Souza (1994), Wüthrich (2003), Kaas (2005), and Furman
and Landsman (2010).

The Tweedie distribution was also considered in the lifetime model of Alai et al.

(2015). By restricting the lifetime model to the Tweedie subclass, pools of lives can
have distinct parameter values. This implies lives can exhibit different underlying risk
profiles, which may be very useful when studying a collection of heterogeneous pools.
Unfortunately, this flexibility is lost when generalizing from the Tweedie subclass to
the entire exponential dispersion family. Consequently, the model we presently consider
can only be applied to homogeneous pools of lives. Note, however, that the estimation
algorithms of Alai et al. (2013, 2015, 2016) were ultimately developed for the case of
homogeneous pools. Therefore, the present work still represents a generalization of
previous results.

Furthermore, we generalize the results of Alai et al. (2015) with respect to trunca-
tion and censoring adjustments. Truncation and censoring are important features of
lifetime data that can considerably complicate the dependence structure of multivariate
observations. In Alai et al. (2015), truncation and censoring adjustments were formu-
lated for the mean and the second, third and fourth central moments. In this paper we
formulate truncation and censoring adjustments for all raw moments. The adjustments
are based on knowledge of cumulants, see Section 3.1. Since the cumulants for the
exponential dispersion family have a very convenient form, the results we obtain have
straightforward proofs.

Perhaps most relevant to modelling real lifetime data, only the case of left-truncation
and right-censoring was considered in Alai et al. (2015). We consider left and right-
truncation, left and right-censoring, left-truncation and right-censoring, as well as right-
truncation and left-censoring. The case of left-truncation and right-censoring appears
most appropriate for fitting lifetime data, however, knowledge of right-truncated and
left-censored adjustments allows for the fitting of any affine transformation of lifetimes.
This is very important, since we show in Section 6 that transformed lifetimes using
right-truncation and left-censoring adjustments produce a much improved fit of real
data.

Organization of the paper: In Section 2, we introduce the exponential dispersion
lifetime model. Important properties related to truncation and censoring are formu-
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lated in Section 3 and the parameter estimation procedure is outlined in Section 4. In
Section 5, we consider two continuous exponential dispersion distributions, the gamma
distribution that belongs to the Tweedie subclass, and the Kendall-Ressel distribution
that does not; we also consider the binomial and negative binomial distributions, two
discrete exponential dispersion distributions that both do not belong to the Tweedie
subclass. We fit real data in Section 6 using the gamma distribution, first considered
in Alai et al. (2013), as well as the negative binomial distribution. Section 7 concludes
the paper.

2 Multivariate Lifetime Distributions

A multivariate Tweedie lifetime model was introduced in Alai et al. (2016); it was based
on the well-known common shock model. In this paper, we follow the same principle
but allow for the marginal distributions to come from any member of the exponential
dispersion family.

Let X ∼ ED (θ, λ) be a random variable that follows an exponential dispersion
distribution in the additive form with probability measure Pθ,λ, absolutely continuous
with respect to some measure Qλ, represented via cumulant κ (θ):

dPθ,λ(x) = exθ−λκ(θ)dQλ(x);

see Jørgensen (1997), Section 3.1; for a recent reference see Landsman and Valdez
(2005). The parameters θ and λ are called the canonical and dispersion parameters
belonging to {θ ∈ R|κ(θ) < ∞} and R

+, respectively.
Consider a pool of n lives. Denote with Ti the lifetime of individual i ∈ {1, . . . , n}.

Let Y0 represent the common shock, or systematic component in the pool, and Yi the
idiosyncratic component unique to individual i.

Ti = Y0 + Yi,

where

• Y0 follows an additive exponential dispersion distribution generated by cumulant
κ with canonical and dispersion parameters θ and λ0, ED(θ, λ0;κ),

• Yi follows an additive exponential dispersion distribution generated by cumulant
κ with canonical and dispersion parameters θ and λ1, ED(θ, λ1;κ), i ∈ {1, . . . , n},
and

• the Yi are independent, i ∈ {0, . . . , n}.

Based on the well-known closure under convolutions property of the additive exponen-
tial dispersion family, all Ti follow an additive exponential dispersion family generated
by cumulant κ with canonical parameter θ and dispersion parameter λ = λ0 + λ1. For
this reason, T = (T1, . . . , Tn) may be considered to follow a multivariate exponential
dispersion distribution. Finally, we assume the magnitude of the systematic and id-
iosyncratic components are restricted in such a way that either truncation or censoring
can safely be applied to the idiosyncratic component only. This notable assumption
is relied upon for the approximations of Section 4.1, wherein we fully explain and jus-
tify the necessary conditions in relation to truncation and censoring points τ and υ,
respectively.
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3 Truncation and Censoring

In this section, we formulate results based on truncating and censoring univariate ex-
ponential dispersion random variables. We make use of these results when considering
model calibration in Section 4. Associated with random variable X, we denote left- and
right-truncation and left- and right-censoring, respectively, as

τ1Xτ2 = X|τ1 < X ≤ τ2, τ1 < τ2,
υ1Xυ2 = max{min{X, υ2}, υ1}, υ1 < υ2,

and left-truncation and right-censoring and right-truncation and left-censoring, respec-
tively, as

τX
υ = min{X, υ}|X > τ, τ < υ,

υXτ = max{X, υ}|X ≤ τ, υ < τ.

3.1 Cumulants for Truncated Random Variables

Theorem 1. Let X ∼ ED(θ, λ) and denote its cumulative distribution function by

F (x; θ, λ). Cumulants κn, n ∈ Z
+ are given by

κn (τ1Xτ2) = κn(X) +
∂n ln (F (τ2; θ)− F (τ1; θ))

∂θn
,

where κn(X) = λκ(n)(θ).

Proof. This result is a relatively straightforward extension of Theorem 3.1 found in
Furman and Furman (2010). For completeness, we provide a brief proof. Let K[τ1,τ2](t)
denote the cumulant generating function of τ1Xτ2 .

K[τ1,τ2](t) = lnE
[
eτ1

Xτ2
t
]

= ln

(∫ τ2

τ1

extexθ−λκ(θ)dQλ(x)

F (τ2)− F (τ1)

)

= λ(κ(θ + t)− κ(θ)) + ln (F (τ2; θ + t)− F (τ1; θ + t))− ln (F (τ2)− F (τ1)) ,

where F (y; θ+t) denotes the distribution function of random variable Y ∼ ED(θ+t, λ).
Differentiation with respect to t produces the desired cumulants.

κn (τ1Xτ2) =
dnK[τ1,τ2](t)

dtn

∣∣∣∣
t=0

= λκ(n)(θ) +
∂n ln (F (τ2; θ)− F (τ1; θ))

∂θn
.

In the case of one-sided truncation, for random variables τX = X|X > τ and
Xτ = X|X ≤ τ , we have

κn (τX) = κn(X) +
∂n lnF (τ ; θ)

∂θn
,

κn (Xτ ) = κn(X) +
∂n lnF (τ ; θ)

∂θn
;
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where F (x; θ) denotes the survival function of X. The first three cumulants and the
fourth central moment were considered in Alai et al. (2015, 2016) for left-truncation
only. Recall that the relationship between the fourth central moment and the fourth
cumulant is given by

µ4(X) = 3κ2
2(X) + κ4(X).

This implies the fourth central moment is readily found using Theorem 1. It is not
difficult to see that our findings agree with those of Alai et al. (2015, 2016).

3.2 Moments for Censored Random Variables

Theorem 2. Let X ∼ ED(θ, λ) and denote its cumulative distribution and survival

functions by F (x; θ, λ) and F (x; θ, λ), respectively. Raw moments αn, n ∈ Z
+ are given

by

αn(
υ1Xυ2) = υn

1F (υ1) + Bn (κ1(υ1Xυ2), . . . , κn(υ1Xυ2)) (F (υ2)− F (υ1)) + υn
2F (υ2),

where Bn is the nth complete Bell polynomial, which can be expressed as

Bn(x1, . . . xn) =
∑ n!∏n

j=1 mj!

n∏

j=1

(
xj

j!

)mj

,

where the summation is over all n-tuples (m1, . . . ,mn) ∈ N
n such that

∑n

j=1 j ·mj = n.

Proof. Let M [υ1,υ2](t) denote the moment generating function of υ1Xυ2 .

M [υ1,υ2](t) = E
[
e
υ1Xυ2 t

]

= eυ1tF (υ1) +

∫ υ2

υ1

extexθ−λκ(θ)dQλ(x) + eυ2tF (υ2)

= eυ1tF (υ1) + eλκ(θ+t)−λκ(θ)

∫ υ2

υ1

ex(θ+t)−λκ(θ+t)dQλ(x) + eυ2tF (υ2)

= eυ1tF (υ1) + eλκ(θ+t)−λκ(θ)(F (υ2; θ + t)− F (υ1; θ + t)) + eυ2tF (υ2).

In contrast to the case of truncation, working with the cumulant generating function
does not produce tractable results. In order to find the raw moments, we differentiate
the moment generating function n times and evaluate at t = 0.

dnM [υ1,υ2](t)

dtn
= υn

1 e
υ1tF (υ1) +

dneg(t)

dtn
+ υn

2 e
υ2tF (υ2),

where
g(t) = λκ(θ + t)− λκ(θ) + ln (F (υ2; θ + t)− F (υ1; θ + t)) .

The nth order derivative of eg(t) can be found by applying Faà di Bruno’s formula; see
Faà di Bruno (1855).

dneg(t)

dtn
= eg(t)

∑ n!∏n

j=1 mj!

n∏

j=1

(
g(j)(t)

j!

)mj

,
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where the summation is over all n-tuples (m1, . . . ,mn) ∈ N
n such that

∑n

j=1 j ·mj = n.
Notice that

g(j)(t) = λκ(j)(θ + t) +
∂j ln (F (υ2; θ + t)− F (υ1; θ + t))

∂θj
.

When setting t = 0, we obtain

eg(0) = F (υ2; θ)− F (υ1; θ),

g(j)(0) = κj(X) +
∂j ln (F (υ2; θ)− F (υ1; θ))

∂θj
= κj(υ1Xυ2).

Hence,

αn(
υ1Xυ2) =

dnM [υ1,υ2](t)

dtn

∣∣∣∣
t=0

= υn
1F (υ1) +

∑ n!∏n

j=1 mj!

n∏

j=1

(
κj(υ1Xυ2)

j!

)mj

(F (υ2)− F (υ1)) + υn
2F (υ2),

which is simplified using complete Bell polynomials; see Bell (1927).
In the case of one-sided censoring, for random variables υX = max{X, υ} and Xυ =

min{X, υ}, we have

αn(
υX) = υnF (υ) + Bn (κ1(υX), . . . , κn(υX))F (υ),

αn(X
υ) = Bn (κ1(Xυ), . . . , κn(Xυ))F (υ) + υnF (υ).

For right-censoring only, the first three cumulants are given in Alai et al. (2015), where
additive censoring adjustments were formulated for the exponential dispersion family.
That our results agree with those found in Alai et al. (2015) is not easy to see; we
provide the details for the first raw moment.

α1(X
υ) = B1(κ1(Xυ))F (υ) + υF (υ)

=

(
κ1(X) +

∂ lnF (υ; θ)

∂θ

)
F (υ) + υF (υ)

= α1(X)(1− F (υ)) +
1

F (υ)

∂F (υ; θ)

∂θ
F (υ) + υF (υ)

= α1(X)−

(
α1(X) +

1

F (υ)

∂F (υ; θ)

∂θ

)
F (υ) + υF (υ)

= α1(X) + (υ − α1(υX))F (υ).

3.3 Moments for Truncated and Censored Random Variables

Theorem 3. Let X ∼ ED(θ, λ) and denote its cumulative distribution and survival

functions by F (x; θ, λ) and F (x; θ, λ), respectively. Raw moments αn, n ∈ Z
+ are given

by

αn(τX
υ) =

(
Bn (κ1(τXυ), . . . , κn(τXυ)) (F (υ)− F (τ)) + υnF (υ)

)
F (τ)−1,

αn(
υXτ ) =

(
υnF (υ) + Bn (κ1(υXτ ), . . . , κn(υXτ )) (F (υ)− F (τ))

)
F (τ)−1,

where Bn is the nth complete Bell polynomial.
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Proof. The proof is similar to that of Theorem 2. Let M ⌊τ,υ⌉(t) denote the moment
generating function of τX

υ.

M ⌊τ,υ⌉(t) = E
[
eτX

υt
]

=

∫ υ

τ

extexθ−λκ(θ)dQλ(x)F (τ)−1 + eυtF (υ)F (τ)−1

= eλκ(θ+t)−λκ(θ)(F (υ; θ + t)− F (τ ; θ + t))F (τ)−1 + eυtF (υ)F (τ)−1.

In order to find the raw moments, we differentiate the moment generating function n
times and evaluate at t = 0.

dnM ⌊τ,υ⌉(t)

dtn
=

dneg(t)

dtn
F (τ)−1 + υneυtF (υ)F (τ)−1,

where
g(t) = λκ(θ + t)− λκ(θ) + ln (F (υ; θ + t)− F (τ ; θ + t)) .

The remaining steps are similar to the proof of Theorem 2. To obtain the result for
left-censoring and right-truncation, notice that τ is swapped for υ in the cumulants,
and F is swapped, everywhere, for F .

If we consider the first raw moment, we find the following:

α1(τX
υ) =

(
B1(κ1(τXυ))(F (υ)− F (τ)) + υF (υ)

)
F (τ)−1

=

(
κ1(X) +

∂ ln (F (υ; θ)− F (τ ; θ))

∂θ

)
F (υ)− F (τ)

F (τ)
+ υ

F (υ)

F (τ)

= α1(X)
F (τ)− F (υ)

F (τ)
+

(
∂F (τ ; θ)

∂θ
−

∂F (υ; θ)

∂θ

)
1

F (τ)
+ υ

F (υ)

F (τ)

= α1(X) +
1

F (τ)

∂F (τ ; θ)

∂θ
−

(
α1(X) +

1

F (υ)

∂F (υ; θ)

∂θ

)
F (υ)

F (τ)
+ υ

F (υ)

F (τ)

= α1(τX) + (υ − α1(υX))F (υ)F (τ)−1.

This agrees with the results of Alai et al. (2015).

4 Parameter Estimation

In order to calibrate the model to data, we apply the method of moments. Let X =
(X1, . . . , Xn) denote a collection of possibly dependent observations. Let the kth raw
empirical moment of X, k ∈ Z

+, be denoted

ak(X) =
1

n

n∑

i=1

Xk
i .

Given the dependence structure inherent in T, the multivariate distribution outlined
in Section 2, we are forced to make conditional arguments when estimating λ and
predicting Y0. Before describing the estimation procedure, we consider the conditional
lifetime random variables.
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4.1 Conditional Lifetimes

We consider two cases. First, left-truncation and right-censoring, followed by right-
truncation and left-censoring.

For τ < υ, we rewrite the left-truncated and right-censored lifetime random variable
in terms of components Y0 and Yi, i ∈ {1, . . . , n}, both of which require left-truncation,
but only one of which requires right-censoring. Since we aim to condition lifetimes on
Y0, we apply right-censoring to the idiosyncratic component Yi, i ∈ {1, . . . , n}.

τT
υ
i = min{Y0 + Yi, υ}|(Y0 + Yi > τ)

= Y0|(Y0 > τ − Yi) + min{Yi, υ − Y0}|(Yi > τ − Y0)

= τ ′′Y0 + τ ′Y
υ′

i ,

where τ ′ = τ − Y0, τ
′′ = τ − Yi, and υ′ = υ − Y0. If we condition on Y0, we either have

Y0 ≤ τ , τ < Y0 ≤ υ, or υ < Y0. Consider the first of these scenarios; we can write

τT
υ
i |Y0 ≤ τ = τ ′′(Y0)τ + τ ′Y

υ′

i

∣∣Y0 ≤ τ. (1)

In the case of right-truncation and left-censoring, we have for υ < τ ,

υ(Ti)τ = (Y0)τ ′′ +
υ′

(Yi)τ ′ .

Again, we have three scenarios, Y0 ≤ υ, υ < Y0 ≤ τ , or τ < Y0, of which we consider
the first. We obtain

υ(Ti)τ |Y0 ≤ υ = (Y0)υ′′ + υ′

(Yi)τ ′
∣∣Y0 ≤ υ, (2)

where υ′′ = min{τ ′′, υ}.

Approximating Conditional Lifetimes

It is clear that truncation is a non-trivial operation in common shock models. In gen-
eral, one cannot isolate truncation to either of the components, Y0 or Yi. In order
to proceed, we require an approximation based on knowledge of the magnitude of the
two components with respect to the truncation and censoring points, to which we have
alluded in Section 2.

Consider the case of left-truncation and right-censoring and suppose we anticipate
that P (Y0 > τ) and P (Yi << τ) are close to zero. In other words, we anticipate Y0

contributes a small part to Ti and that pools are non-empty. The latter could occur if
we select a truncation point that is too high; for example, if we set τ = 200, we never
obtain an observation. Based on these two conditions, we formulate an approximation
using Equation (1).

τT
υ
i |Y0 ≈ Y0 + τ ′Y

υ′

i

∣∣Y0.

Provided τ is appropriately selected, the accuracy of this approximation is inversely
related to the probability P (Y0 > τ). In other words, as long as P (Y0 > τ) ≈ 0, the
approximation is highly accurate. In the context of lifetime dependence modelling, this
implies that the level of dependence between lives cannot be too high. In Section 6.1,
we fit real data and predict the systematic component to have a magnitude of roughly
five, compared to a truncation point of sixty. This suggests the approximation is nearly
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exact. However, care must be taken when using the estimation procedure of Section
4.2 for applications where the level of dependence and the truncation point combine to
produce a significant probability that Y0 exceeds τ .

Similarly, in the case of right-truncation and left-censoring, suppose we anticipate
that P (Y0 > υ) and P (Yi >> τ) are close to zero. Again, this implies that we antic-
ipate that Y0 contributes a relatively small part to Ti and that pools are non-empty.
Consequently, we formulate a similar approximation using Equation (2).

υ(Ti)τ |Y0 ≈ Y0 +
υ′

(Yi)τ ′
∣∣Y0.

This time, the accuracy of the approximation is inversely related to the probability
P (Y0 > υ). In Section 6.2, we fit transformed real data and again predict the systematic
component to have a magnitude of roughly five, compared to a censoring point of sixty.

4.2 Estimation Procedure

Consider m realizations, τT
υ(1), . . . , τT

υ(m), of left-truncated and right-censored ran-
dom vectors. Each realization follows a multivariate exponential dispersion distribution
introduced in Section 2 such that τT

υ(j) = (τT
υ
1 (j), . . . , τT

υ
n (j)), j ∈ {1, . . . ,m}. Let

τZ
υ = (τT

υ(1), . . . , τT
υ(m)) denote the global sample. Recall that each T follows an

exponential dispersion distribution generated by κ with parameters θ and λ = λ0 + λ1.
Since τZ

υ is a collection of identically distributed, if not independent, random variables,
the raw sample moments are unbiased estimators of the raw theoretical moments of τT

υ
1 ;

this allows for the formulation of a system of equations able to estimate θ and λ.

E[a1(τZ
υ)] = E

[
1

n ·m

n∑

i=1

m∑

j=1

τT
υ
i (j)

]
= α1(τT

υ
1 ), (3)

E[a2(τZ
υ)] = E

[
1

n ·m

n∑

i=1

m∑

j=1

(τT
υ
i (j))

2

]
= α2(τT

υ
1 ). (4)

This system may need to be solved numerically to produce estimates θ̂ and λ̂.
We take estimate θ̂ and consider one pool at a time. We apply the approximation

given in Equation (1), consider the first two raw sample moments and take expectation.
We obtain the following system of equations able to estimate λ1 and predict Y0.

E[a1(τT
υ(j))|Y0] ≈ Y0 + α1(τ ′Y

υ′

1

∣∣Y0), (5)

E[a2(τT
υ(j))|Y0] ≈ Y 2

0 + 2Y0α1(τ ′Y
υ′

1

∣∣Y0) + α2(τ ′Y
υ′

1

∣∣Y0); (6)

this system may need to be solved numerically to produce estimate λ̂1 and prediction
Ŷ0.

Remark 1. Using the approximation in Equation (2), we find that the case of right-

truncation and left-censoring is analogous for both systems of equations.

Since we only make use of the first two raw moments, it is worthwhile to simplify
the results of Theorem 3. Consider the first raw moment of X ∼ ED(θ, λ).

α1(τX
υ) =

(
α1(X)(F (υ)− F (τ)) +

∂(F (υ)− F (τ))

∂θ
+ υF (υ)

)
F (τ)−1, (7)

α1(
υXτ ) =

(
υF (υ) + α1(X)(F (υ)− F (τ)) +

∂(F (τ)− F (υ))

∂θ

)
F (τ)−1. (8)
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The second raw moment can also be simplified.

α2(τX
υ) =

(
(κ1(τXυ)

2 + κ2(τXυ))(F (υ)− F (τ)) + υ2F (υ)
)
F (τ)−1

=

[
(κ1(X)2 + κ2(X))(F (υ)− F (τ))

+

((
∂ ln(F (υ)− F (τ))

∂θ

)2

+
∂2 ln(F (υ)− F (τ))

∂θ2

)
(F (υ)− F (τ))

+ 2κ1(X)
∂ ln(F (υ)− F (τ))

∂θ
(F (υ)− F (τ)) + υ2F (υ)

]
F (τ)−1

=
α2(X)(F (υ)− F (τ)) + ∂2(F (υ)−F (τ))

∂θ2
+ 2α1(X)∂(F (υ)−F (τ))

∂θ
+ υ2F (υ)

F (τ)
. (9)

Similarly for right-truncation and left-censoring,

α2(
υXτ ) =

υ2F (υ) + α2(X)(F (υ)− F (τ)) + ∂2(F (τ)−F (υ))
∂θ2

+ 2α1(X)∂(F (τ)−F (υ))
∂θ

F (τ)
. (10)

Remark 2. As stated above, numerical solutions may be relied upon to solve the systems

of equations given in Equations (3) and (4), as well as Equations (5) and (6), respec-
tively. In fact, for the distributions we consider below, namely the gamma, Kendall-

Ressel, binomial and negative binomial distributions, a numerical approach is needed in

each case. To find estimates and predictions, we use mathematical software Maple. We

use ad hoc methods of solving the systems; we briefly demonstrate this using the gamma

distribution in Section 5.1, where we also provide a simulation study.

5 Exponential Dispersion Distributions

In this section, we begin by presenting two continuous exponential dispersion distri-
butions, the gamma and Kendall-Ressel distributions. The former is a well-known
distribution that belongs to the Tweedie subclass, while the latter is a little known
distribution that does not.

We also explore two discrete exponential dispersion distributions that both do not
belong to the Tweedie subclass, the binomial and negative binomial distributions. Dis-
crete distributions are not typically applied to lifetime data. We consider them primarily
for illustrative purposes, but do note that lifetime data are often inherently discretized,
either in years, or months. Therefore, they may be viable alternatives to previously
considered continuous distributions.

Together with the Poisson distribution, these distributions are well-known for in-
vestigating a range of discrete under or over-dispersed data. This distinction plays an
important role in determining their respective suitability to modelling lifetime data that
we further explore in Section 6.

5.1 The Gamma Distribution

Suppose X follows a gamma distribution with shape and rate parameters α > 0 and
β > 0, respectively. Equivalently, we may write X ∼ ED(θ = −β, λ = α), where
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κ(θ) = − ln(−θ).

E[X] = λκ′(θ) =
λ

−θ
=

λ

β
,

Var(X) = λκ′′(θ) =
λ

θ2
=

λ

β2
.

For x1, x2 ∈ R
+,

F (x2; θ, λ)− F (x1; θ, λ) =
(−θ)λ

Γ(λ)

∫ x2

x1

zλ−1eθzdz.

The first two derivatives with respect to θ are given by

∂ (F (x2)− F (x1))

∂θ
=

λ

θ

(
(F (x2)− F (x1))− (F (x2;λ+ 1)− F (x1;λ+ 1))

)
,

∂2 (F (x2)− F (x1))

∂θ2
=

λ

θ2
(
(λ− 1) (F (x2)− F (x1))− 2λ (F (x2;λ+ 1)− F (x1;λ+ 1))

+ (λ+ 1) (F (x2;λ+ 2)− F (x1;λ+ 2))
)
.

Together with Equations (7)–(10), the above enables one to apply the estimation pro-
cedure outlined in Section 4.2.

A Numerical Example

In Figures 1 and 2, we plot the relationship between the moments in the presence
and absence of left-truncation and right-censoring supposing lifetimes follow a gamma
distribution such that Ti ∼ ED(θ = −β, λ) for β = 0.2 and λ = 16; this corresponds
to an average lifetime of 80, with a variance of 200. The bold lines in Figures 1 and 2
represent the left-truncated and right-censored moments with τ = 60 and υ = 85.

Figure 1: The first raw moment of the gamma distribution.

(a) Over β for λ = 16. (b) Over λ for β = 0.20.

Simulation Study

As alluded to in Remark 2, we presently provide a brief simulation study applied to
the gamma distribution with left-truncation and right-censoring. The aim thereof is to

11



Figure 2: The second raw moment of the gamma distribution.

(a) Over β for λ = 16. (b) Over λ for β = 0.20.

validate the ad hoc numerical estimation procedure we use to investigate real data in
Section 6.

The procedure has two stages. First, an iteration is performed between Equations
(3) and (4). A starting value for λ is used in Equation (3) to find an estimate of θ,
which is subsequently used in Equation (4) to update the estimate for λ. The iteration is
terminated once a squared distance criterion involving both equations is met. This yields
estimate θ̂ and λ̂; recall, λ = λ0 + λ1. Second, a similar iteration is performed between
Equations (5) and (6); again, a squared distance criterion terminates the iteration

procedure. This yields prediction Ŷ0 and estimate λ̂1; we demonstrate the second stage
on the first pool of the simulated data only.

The results are shown in Table 1. In the first four rows of the table, the size of the
sample is given as well as the left-truncation and right-censoring points. The six middle
rows of the table show true and obtained parameter values. The final four rows of the
table show the sample moments used to obtain the estimates and prediction; the first
two, of the global sample, the last two, of the first pool.

It can be observed that estimation of θ, λ, and λ1, as well as the prediction of Y0

are accurate.

5.2 The Kendall-Ressel Distribution

The Kendall-Ressel distribution, although little known, has been studied for some
time. As a member of the exponential dispersion family, the Kendall-Ressel distribution
has recently been studied in, e.g., Vinogradov (2011) and Bar-Lev et al. (2016). The
density of the Kendall-Ressel distribution, expressed as a member of the exponential
dispersion family, is given directly below.

f(x; θ, λ) =
λxx+λ−1e−x

Γ(x+ λ+ 1)
exθ−λκ(θ), x > 0,

where

κ(θ) = ln

∫ ∞

0

λxxe−x

Γ(x+ 2)
exθdx,

for λ ∈ R
+ and θ ∈ (−∞, 0].

In order to apply the results of Theorems 1–3, we must differentiate the cumulative
distribution function with respect to the canonical parameter θ. In the case of the

12



Table 1: Simulation Study for the Gamma Distribution

n 100 1000 1000 10000 1000
m 50 50 500 50 10000
τ 60 60 60 60 60
υ 85 85 85 85 85

θ -1 -1 -1 -1 -1

θ̂ -0.99841 -1.01624 -0.99734 -1.01269 -1.00086
λ 75 75 75 75 75

λ̂ 74.5 76.6 74.9 75.8 75
λ1 70 70 70 70 70

λ̂1 69.06512 71.24841 69.93857 70.86714 70.24287
Y0 2.62665 5.43929 4.62641 6.39051 4.21039

Ŷ0 2.58919 5.41454 4.57163 6.40498 4.16477

a1(τZ
υ) 74.72538 75.26531 75.07176 74.88626 74.95261

a2(τZ
υ) 5632.20420 5712.46635 5683.93573 5655.75911 5665.99757

a1(τT
υ(1))|Y0 72.63455 75.35333 74.71620 75.98690 74.46820

a1(τT
υ(1))|Y0 5323.43931 5722.39086 5632.59105 5818.32426 5594.53207

gamma distribution, we rely on a convenient representation of the cumulative distri-
bution function; we cannot do the same here. For completeness, we provide the first
two derivatives of the cumulative distribution function, but do not consider a numerical
example.

∂F (x; θ, λ)

∂θ
=

∫ x

0

∂f(y; θ, λ)

∂θ
dy

=

∫ x

0

λyy+λe−y

Γ(y + λ+ 1)
eyθ−λκ(θ)dy − λκ′(θ)F (x; θ, λ),

∂2F (x; θ, λ)

∂θ2
=

∫ x

0

λyy+λ+1e−y

Γ(y + λ+ 1)
eyθ−λκ(θ)dy − 2λκ′(θ)

∫ x

0

λyy+λe−y

Γ(y + λ+ 1)
eyθ−λκ(θ)dy

+
(
(λκ′(θ))2 − λκ′′(θ)

)
F (x; θ, λ).

Since the cumulant fuction, κ, has an intractable form, a mean value reparameteriza-
tion could be implemented. Let µ = κ′(θ) and V (µ) = κ′′(θ) be the mean and variance
functions, respectively. It is shown in Letac and Mora (1990) that V (µ) = µ2(1 + µ)
and in Bar-Lev et al. (2016) that

θ(µ) = ln
1 + µ

µ
−

1

µ
,

κ(θ(µ)) = ln
µ

1 + µ
.

Hence, the density of the Kendall-Ressel distribution can be rewritten in terms of µ as
follows:

f(x;µ, λ) =
λxx+λ−1e−x

Γ(x+ λ+ 1)
ex(ln

1+µ

µ
− 1

µ
)−λ ln µ

1+µ , x > 0.

The first and second derivatives of the cumulative distribution function could then also
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be rewritten in terms of µ, or derived directly from the density above noting that

dµ

dθ
= κ′′(θ) = V (µ) = µ2(1 + µ).

5.3 The Binomial Distribution

Suppose X follows a binomial distribution with parameters p ∈ (0, 1) and n ∈ Z
+,

where p denotes the probability of success and n, the number of trials. Equivalently,
we may write X ∼ ED(θ = logit(p), λ = n), where κ(θ) = ln(1+ eθ). We solve for p by
inverting the logit function, we obtain p = eθ/(1 + eθ).

E[X] = λκ′(θ) = λ
eθ

1 + eθ
= λp,

Var(X) = λκ′′(θ) = λ
eθ

(1 + eθ)2
= λp(1− p).

For x ∈ {0, . . . , λ− 1}, the cumulative distribution function of X is given by

F (x;λ, p) =
x∑

i=0

(
λ

i

)
pi(1− p)λ−i

= 1−
Bp(x+ 1, λ− x)

B(x+ 1, λ− x)

= 1− Ip(x+ 1, λ− x),

where Bz(a, b),B(a, b) and Iz(a, b) are the incomplete, complete and regularized beta
functions, respectively.

Bz(a, b) =

∫ z

0

ua−1(1− u)b−1du,

B(a, b) = B1(a, b),

Iz(a, b) =
Bz(a, b)

B(a, b)
,

for 0 ≤ z ≤ 1, a > 0 and b > 0. Consider x1, x2 ∈ {0, 1 . . . , λ− 1},

F (x2;λ, p)− F (x1;λ, p) = Ip(x1 + 1, λ− x1)− Ip(x2 + 1, λ− x2).

Differentiating with respect to θ produces

∂ (F (x2;λ, p)− F (x1;λ, p))

∂θ
=

B′
p(x1 + 1, λ− x1)

B(x1 + 1, λ− x1)

dp

dθ
−

B′
p(x2 + 1, λ− x2)

B(x2 + 1, λ− x2)

dp

dθ
,

where B′
p(a, b) =

∂Bp(a,b)

∂p
. Notice that dp/dθ = p(1−p) and that B′

z(a, b) = za−1(1−z)b−1.

∂ (F (x2;λ, p)− F (x1;λ, p))

∂θ
=

px1+1(1− p)λ−x1

B(x1 + 1, λ− x1)
−

px2+1(1− p)λ−x2

B(x2 + 1, λ− x2)
.

The second derivative is given by

∂2 (F (x2;λ, p)− F (x1;λ, p))

∂θ2

=
px1+1(1− p)λ−x1((x1 + 1)− p(λ+ 1))

B(x1 + 1, λ− x1)
−

px2+1(1− p)λ−x2((x2 + 1)− p(λ+ 1))

B(x2 + 1, λ− x2)
.

The above enables one to apply the estimation procedure outlined in Section 4.2 using
Equations (7) and (9), or Equations (8) and (10), replacing x1 with τ and x2 with υ, or
vice versa.
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A Numerical Example

Suppose lifetimes follow a binomial distribution; in other words Ti = Y0 + Yi, where
Y0 ∼ ED(θ = logit(p), λ0), Yi ∼ ED(θ = logit(p), λ1), and consequently, Ti ∼ ED(θ =
logit(p), λ) with κ(θ) = ln(1 + eθ) and where p is the probability of success, and λ =
λ0 + λ1, the total number of trials.

The binomial model is very straightforward to interpret for lifetime data. Assign to
each trial a period of time, then p is the average survival probability over that period;
for example, if λ represents years, then p is the average annual survival probability.
Suppose we adopt an annual viewpoint and let λ = 120 and p = 0.75. This implies that
in the absence of truncation and censoring, the average lifetime is 90, with a variance of
22.5. Furthermore, consider left-truncation at 60 and right-censoring at 85; the impact
on the first two raw moments can be seen in Figures 3 and 4, where the bold line
represents the raw moment with left-truncation and right-censoring and the thin line
represents the case without truncation or censoring.

Figure 3: The first raw moment of the binomial distribution.

(a) Over p for λ = 120. (b) Over λ for p = 0.75.

Figure 4: The second raw moment of the binomial distribution.

(a) Over p for λ = 120. (b) Over λ for p = 0.75.

It can be seen that the un-truncated and un-censored moments represent good ap-
proximations over a range of parameter values. This is due to the fact that for these
parameters, not many observations are truncated or censored.
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5.4 The Negative Binomial Distribution

Given the under-dispersion of the binomial distribution, it does not promise a good
fit to real data. Therefore, we investigate the negative binomial distribution. Suppose
X follows a negative binomial distribution with parameters p ∈ (0, 1) and k ∈ Z

+,
where p denotes the probability of success and k, the number of failures. Equivalently,
we may write X ∼ ED(θ = ln p, λ = k), where κ(θ) = − ln(1 − eθ). Note that
unlike the binomial distribution, the negative binomial does not readily lend itself to
interpretation.

E[X] = λκ′(θ) = λ
eθ

1− eθ
=

λp

1− p
,

Var(X) = λκ′′(θ) = λ
eθ

(1− eθ)2
=

λp

(1− p)2
.

For x ∈ N, the cumulative distribution function of X is given by

F (x;λ, p) =
x∑

i=0

(
λ+ i− 1

i

)
pi(1− p)λ

= 1−
Bp(x+ 1, λ)

B(x+ 1, λ)

= 1− Ip(x+ 1, λ),

where Bz(a, b),B(a, b) and Iz(a, b) are the incomplete, complete and regularized beta
functions, respectively, as given in Section 5.3 above. Notice the similarity with the
binomial distribution; consider x1, x2 ∈ N,

F (x2;λ, p)− F (x1;λ, p) = Ip(x1 + 1, λ)− Ip(x2 + 1, λ).

Differentiating with respect to θ produces

∂ (F (x2;λ, p)− F (x1;λ, p))

∂θ
=

B′
p(x1 + 1, λ)

B(x1 + 1, λ)

dp

dθ
−

B′
p(x2 + 1, λ)

B(x2 + 1, λ)

dp

dθ
,

where B′
p(a, b) =

∂Bp(a,b)

∂p
. Notice that dp/dθ = p and that B′

z(a, b) = za−1(1− z)b−1.

∂ (F (x2;λ, p)− F (x1;λ, p))

∂θ
=

px1+1(1− p)λ−1

B(x1 + 1, λ)
−

px2+1(1− p)λ−1

B(x2 + 1, λ)
.

The second derivative is given by

∂2 (F (x2;λ, p)− F (x1;λ, p))

∂θ2

=
px1+1(1− p)λ−2((x1 + 1)− p(λ+ x1))

B(x1 + 1, λ)
−

px2+1(1− p)λ−2((x2 + 1)− p(λ+ x2))

B(x2 + 1, λ)
.

The above enables one to apply the estimation procedure outlined in Section 4.2 using
Equations (7) and (9), or Equations (8) and (10), replacing x1 with τ and x2 with υ, or
vice versa.
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A Numerical Example

Suppose lifetimes follow a negative binomial distribution; in other words Ti = Y0 + Yi,
where Y0 ∼ ED(θ = ln p, λ0), Yi ∼ ED(θ = ln p, λ1), and consequently, Ti ∼ ED(θ =
ln p, λ). In this case, κ(θ) = − ln(1− eθ), p is the probability of success and λ = λ0+λ1

is the total number of failures.
Suppose we let λ = 60 and p = 0.6. This implies that in the absence of truncation

and censoring, the average lifetime is 90, with a variance of 225; notice that the variance,
in this example, is ten times greater than the one considered in Section 5.3. Furthermore,
consider left-truncation at 60 and right-censoring at 85; the impact on the first two raw
moments can be seen in Figures 5 and 6, where the bold line represents the raw moment
with left-truncation and right-censoring and the thin line represents the case without
truncation or censoring.

Figure 5: The first raw moment of the negative binomial distribution.

(a) Over p for λ = 60. (b) Over λ for p = 0.60.

Figure 6: The second raw moment of the negative binomial distribution.

(a) Over p for λ = 60. (b) Over λ for p = 0.60.

In contrast to the binomial model, the un-truncated and un-censored moments de-
viate substantially from the truncated and censored moments. This is due to the higher
variance, which means observations are more likely to be truncated or censored.
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6 Fitting Real Data

The (left-truncated) multivariate gamma distribution was first applied to the investi-
gation of lifetimes in Alai et al. (2013). It was shown that transformed lifetimes had
the potential to produce a much better fit. The transformation they considered was
T̃i = ω − Ti, where ω is the ultimate age. Notice that for Ti left-truncated, T̃i is right-
truncated. Theorem 3 enables us to fit transformed lifetimes T̃i accounting for both
right-truncation as well as left-censoring. For comparability, we investigate the same
data used in Alai et al. (2013). We transform Norwegian mortality rates from cohorts
1846-1898, obtained from the Human Mortality Database (HMD), into crude lifetime
data; see Human Mortality Database (2016). We fit both the untransformed and trans-
formed lifetimes with ω = 120, applying left-truncation and right-censoring points 60
and 85, and right-truncation and left-censoring points 60 and 35, respectively.

In addition to applying the gamma distribution, we also fit the negative binomial dis-
tribution. From the previous section, we find that the binomial distribution is unsuited
to fitting lifetime data but that the negative binomial distribution may be considered.
To the best of our knowledge, the negative binomial has not previously been applied to
lifetime data.

6.1 Fitting the Lifetime Model

In Figure 7, we plot the histogram of all observations and observations for those born in

1885, respectively. The fitting procedure using Equations (3) and (4) produces estimates

λ̂ = 67.55 and β̂ = 0.8661 for the gamma and k̂ = 63.30 and p̂ = 0.550 for the negative
binomial distributions. In Figure 7a, we plot the corresponding density and probability
mass functions; the gamma density is the bold line. Figure 7a is analogous to Figure 1
in Alai et al. (2013) with the addition of right-censoring.

Taking our estimates β̂ and p̂, respectively, we consider the cohort born in 1885.
Equations (5) and (6) produce estimates λ̂1 = 65.06 and k̂1 = 59.89 and predictions

Ŷ0 = 3.7265 and Ŷ0 = 5.5447, respectively. In Figure 7b, the corresponding gamma
density and negative binomial probability mass functions are plotted over the histogram;
the bold line represents the gamma density. Figure 7b is analogous to Figure 2 in
Alai et al. (2013) with the addition of right-censoring. Furthermore, the gamma fit
estimates that 22.9% of all observations and 25.0% from cohort 1885 are censored and
the negative binomial fit estimates these as 28.5% and 31.9%, respectively. The actual
proportions of censored observations are 26.1% and 27.2%, respectively. Altogether, the
fit of untransformed lifetimes is not great.

6.2 Fitting Transformed Lifetimes

In Figures 8a and 8b, we plot the results for the fit of right-truncated and left-censored
transformed lifetimes; they are analogous to Figures 3 and 4 in Alai et al. (2013), which
had not accounted for either right-truncation or left-censoring. The right-truncation and
left-censoring versions of Equations (3)–(6) applied to the gamma distribution produce

estimates β̂ = 0.3717, λ̂ = 16.27, λ̂1 = 15.02, and prediction Ŷ0 = 2.2422, where the
latter two are obtained from the cohort born in 1885. For the negative binomial fit, we
obtain estimates p̂ = 0.552, k̂ = 35.0, k̂1 = 30.0, and prediction Ŷ0 = 5.2401. We plot
the corresponding gamma density and negative binomial probability mass functions
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Figure 7: Fitting lifetimes using the gamma and negative binomial distributions.
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(a) Lifetimes; total population.

Age

N
um

be
r 

of
 D

ea
th

s 
/ S

ca
le

d 
D

en
si

ty
 F

un
ct

io
n

60 65 70 75 80 85

0
20

0
40

0
60

0
80

0
12

00

(b) Lifetimes; one pool.

over the histograms; the gamma density is the bold line. Furthermore, the gamma
fit estimates that 23.4% of all observations and 25.8% from cohort 1885 are censored.
For the negative binomial fit, these are 23.6% and 21.8%, respectively. The actual
proportions of censored observations are unchanged since we consider exactly the same
data as before; they are 26.1% and 27.2%, respectively.

Figure 8: Fitting transformed lifetimes using the gamma and negative binomial distri-
butions.
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(a) Transformed lifetimes; total population.
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(b) Transformed lifetimes; one pool.

Although not perfect, the fit of the transformed data is significantly better than the
original. The gamma distribution performs slightly better at capturing the nature of
the data and should be preferred. However, the difference is not great. In fact, this
leads one to consider the relationship between the gamma and the negative binomial
distributions; Adell and De la Cal (1994) show that a normalized negative binomial can
be used to approximate the gamma distribution.

7 Conclusion

In this paper we start with the common shock lifetime model of Alai et al. (2015). We
allow the marginal distributions to come from any member of the exponential dispersion
family, rather than restricting them to the Tweedie subclass. We formulate truncation
and censoring adjustments for all moments. Lastly, we consider all forms of truncation
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and censoring, rather than just left-truncation and right-censoring. This latter gener-
alization allows for the fitting of affine transformations of lifetimes, which we show to
have a considerable impact on the goodness-of-fit.
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