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Abstract. Software verification tools that build machine-checked proofs
of functional correctness usually focus on the algorithmic content of the
code. Their proofs are not grounded in a formal semantic model of the
environment that the program runs in, or the program’s interaction with
that environment. As a result, several layers of translation and wrapper
code must be trusted. In contrast, the CakeML project focuses on end-
to-end verification to replace this trusted code with verified code in a
cost-effective manner.
In this paper, we present infrastructure for developing and verifying
impure functional programs with I/O and imperative file handling. Specif-
ically, we extend CakeML with a low-level model of file I/O, and verify
a high-level file I/O library in terms of the model. We use this library
to develop and verify several Unix-style command-line utilities: cat, sort,
grep, diff and patch. The workflow we present is built around the HOL4
theorem prover, and therefore all our results have machine-checked proofs.

1 Introduction

Program verification using interactive theorem provers is at its most pleasant
when one reasons about shallow embeddings of the program’s core algorithms in
the theorem prover’s native logic. For a simple example, consider this shallow
embedding in the HOL4 theorem prover6 of a program that given two lists returns
the longest:

longest l l ′ = if length l ≥ length l ′ then l else l ′

Reasoning about such a shallow embedding is a breeze. The definition above is
an equation in the HOL4 logic, so in a proof we can always replace the left-hand
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side with the right-hand side. The numbers and lists it uses are those of the
HOL4 library, so all pre-existing theorems and proof procedures for them are
directly applicable to our development. There is no need for the indirection and
tedium of explicitly invoking the semantic rules of some calculus, program logic
or programming language semantics.

This approach, while convenient, leaves two gaps in the verification story:

1. Any properties we prove are about a mathematical function in the HOL4
logic, and do not apply to the real program that runs outside of the logic,
other than by a questionable informal analogy between functions in logic and
procedures in a programming language.

2. Software must interact with its environment in order to be useful, but our
toy verification example above is a pure functional program, i.e., it is unable
to interact with its environment.

An overarching goal of the CakeML project7 [20] is to create a verification
framework that plugs both of these gaps, so as to maintain a small trusted
computing base (TCB) without sacrificing the convenience of working with
shallow embeddings. Our focus in this paper is how to plug the second gap.
In particular, we are concerned with verifying impure functional programs in
CakeML that interact with their environment in ways typically required by
console applications: programs that receive input via command-line arguments
and stdin, read from and write to the file system, and produce output via stdout

and stderr.
The other components of this overarching story have largely been established

in previous work. Our proof-producing translation [26] allows us to generate
executable code from shallow embeddings for the pure parts of our code, so that
shallow verifications done at the algorithm level in HOL4 can be automatically
transferred to CakeML programs that implement the algorithm. Our program
logic [13] based on characteristic formulae (CF) [7] supports the verification of
the impure parts of CakeML programs. Finally, our verified compiler [33] allows
us to transport whatever properties we verified using translation and CF to
properties about concrete machine code for several mainstream architectures
(x86-64, ARMv6, ARMv8, RISC-V, MIPS).

Our specific contributions in this paper are:

– We enrich CakeML with a low-level programmer’s model of file I/O, which
goes far beyond our previous toy read-only file I/O model [13]. The new model
of read and write operations covers the non-determinism that is inherent in
the fact that e.g. writing n bytes to a stream may sometimes fail to write all
n bytes, or indeed any bytes at all.

– On top of this file I/O model, we write a verified TextIO library in CakeML
that abstracts away from the low-level details. Instead it exposes an interface
of familiar high-level functions for file handling, such as inputLine. These
functions do not expose the aforementioned non-determinism to the user, e.g.

7 https://cakeml.org/



inputLine is verified to always return the first line of the stream, provided
the file system satisfies a natural liveness property.

– We present a case study of a verified implementation of the diff and patch

command-line utilities.

The case study serves two main purposes. First, it shows that our approach
can be used to verify interesting programs. Second, it illustrates how our specific
contributions fit into the bigger picture of our verification story. The bulk of the
verification effort is cast in terms of a shallow embedding of the core algorithms,
such as the auxiliary function longest above. Yet our file system model and TextIO

library, together with our proof-producing translation, CF program logic, and
verified compilation, allow us to transfer our theorems about the core algorithm
to theorems about the environmental interactions of the machine code that
implements the algorithm.

The end-result is a theorem with a remarkably small TCB: the HOL4 theorem
proving system8; a simple Standard ML program that writes the compiled bytes
of machine code into a file; the linker that produces the executable; the loading
and I/O facilities provided by the operating system as wrapped by the read,
write, open and close functions of the C standard library; our model of making
I/O system calls over our foreign function interface (FFI); and our machine code
semantics. Together, these constitute the whole formalisation gap. Notably, we
do not need to trust any code extraction procedure standing between the verified
model of each application and its code-level implementation, nor do we need
to trust the compiler and runtime system that bridge between source code and
machine code.

All of our code and proofs are contained in CakeML’s 2.1 release, available
at https://code.cakeml.org/. The example programs are in the examples

directory, and the file system model and library is in the basis directory. The
examples directory also contains verified implementations of cat, grep, and
sort that we have developed using the techniques and tools presented in this
paper. For lack of space we will not discuss these other examples further.

The CF-verified functions of the TextIO library, which is the topic of this
paper, have been used as opaque building blocks in a recent paper [15] on synthesis
of impure CakeML code.

2 Overview

In this section, we present an overview of how we achieved our results: we first
give background on how CakeML handles interaction with the outside world;
then explain how we instantiate the mechanism to a model of file I/O; and how
we build a verified TextIO library on top; and finally present a verification case
study that uses the new TextIO library.

8 https://hol-theorem-prover.org/



CakeML supports interaction with the environment via a foreign function
interface (FFI) based on byte arrays that is very open-ended: the precise imple-
mentation of the FFI is an external — and thus potentially unverified — program
that must be linked with the output of the CakeML compiler.

At the source code level, CakeML programs may contain FFI calls, written
#(p) s ba, where p is the FFI port name, s is an (immutable) string argument,
and ba is a (mutable) byte array argument. The FFI call may read the contents
of s and ba, affect the state of the external environment, and relay information
back to the caller by writing to ba. After compilation this becomes a subroutine
call to, e.g., the label ffiwrite if the port name happens to be write. This
subroutine must be present in the FFI implementation we link with.

The semantics of the CakeML language is parameterised on an FFI oracle
that describes the effect of FFI calls on the outside environment. For each port
name used by the program under consideration, the FFI oracle provides an oracle
function of type:

byte list → byte list → ′state → (byte list × ′state) option

The semantics of the aforementioned FFI call #(p) s ba is then given by
p_oracle st s ba, where st is the current state of the external environment. If
p_oracle st s ba = Some (st ′,ba ′), the result is that the state of the environment
is updated to st ′ and the contents of ba ′ are written to ba. If the oracle returns
None, the FFI call fails.

The design described above allows us to enrich CakeML with our file system
model by instantiating, rather than modifying, its semantics: our file system
model is simply an FFI oracle. Specifically, the ′state type variable above is
instantiated to a concrete type that models the file system. It describes which
files are present and their contents, the set of file descriptors currently in use,
and a non-determinism oracle for modelling the possibility that reading and
writing may process fewer characters than expected. We define oracle functions
for standard file system operations — write, read, open_in, open_out, and
close — that describe their expected behaviour in terms of state updates to the
file system model. (Section 3.2)

For each of the file system operations described above, we supply an imple-
mentation of the corresponding FFI call. These are simple C functions that are
responsible for unmarshalling the byte array it receives from CakeML into the
format that, e.g., the write standard library function expects. For the purposes
of our verification story, we trust that the behaviour of these C functions is
correctly modelled by the oracle functions described above. Hence we have strived
to keep their implementations simple enough so that it is reasonable to assess
their correctness by inspection. (Section 3.1)

We implement and verify a TextIO library for CakeML and integrate it into
CakeML’s basis library. The library is written entirely in the CakeML language
and verified with respect to our file system model using the CF program logic. We
handle low-level details such as non-deterministic write failures and marshalling of
parameters to byte arrays in a way that does not expose them to the user during
programming and verification. For example, the TextIO.inputLine function



takes a file descriptor as argument, and returns the first unread line in the file as
a string provided one exists and NONE otherwise. Its CF specification is kept at
the same level of abstraction as the preceding sentence. (Section 4)

As a case study, we develop a verified implementation of the diff command-
line tool. The core algorithm, i.e., computing a longest common subsequence of
two sequences and presenting their deviations from this subsequence in the diff

format, is developed and verified as a shallow embedding in HOL4. We verify
the correctness of this algorithm against a specification taken directly from the
POSIX standard description of diff. Thanks to the TextIO library described
above, and the CakeML translator and CF program logic described in previous
work, with minimal effort we can lift our theorems about a pure, shallowly
embedded HOL function on sequences, to theorems about the I/O behaviour
of a command-line tool. The main theorem says that the output produced on
stdout is the same as the diff computed by the shallow embedding, when given
as arguments two sequences corresponding to the contents of the files whose
names are given as command-line arguments, and that appropriate error or usage
messages are printed to stderr when called for. Thanks to the CakeML compiler
correctness theorem, we can further transfer this result to a theorem about the
I/O behaviour of the resulting binary. (Section 5)

3 File System Interaction

The Foreign Function Interface allows us to call foreign — and thus potentially
unverified — functions within CakeML programs. Each such function needs to
be modelled by a function in HOL (the FFI oracle), and to establish trust, they
should be carefully scrutinised for semantic equivalence. This is why we should
define as few of them as possible, and their code must be kept simple.

We have implemented in C a small set of foreign functions for command-line
arguments and file system operations, enough to write the examples which will
be described in Section 5 and Appendix A. In this section we present the file
system FFI, and describe how we model the file system itself.

3.1 File System Model

We want to be able to treat input and output operations in a uniform manner on
both conventional files, which are identified by a filename, and streams, especially
the standard streams stdin, stdout and stderr. The datatype inode models a file
system object as being either a file with an associated path, or a stream with an
associated name.

Datatype inode = UStream mlstring | File mlstring



We model the state of the file system using the following record datatype:

IO_fs = <|

inode tbl : (inode, char list) alist;
files : (mlstring, mlstring) alist;
infds : (num, inode × num) alist;
numchars : num llist

|>

The first two fields are association lists which describe the file system’s contents:
files maps each filename with its inode identifier (meant to be an argument
of the File constructor); and inode_tbl associates each existing inode with its
contents. Then, infds maps each file descriptor (encoded as a natural number) to
an inode and an offset. The latter list could easily be extended to contain more
detailed attributes, such as the mode on which a file has been opened (read-only,
append mode, etc.). The last field is a non-determinism oracle modelled as a lazy
list of natural numbers, whose purpose will be explained shortly.

Remark 1. This model could be made more detailed in many ways and is meant
to grow over time. Its limitations can be understood as implicit assumptions on
the correctness of CakeML programs using our file system FFI. For example,
we assume that the program has exclusive access to the file system (i.e. no
concurrent program writes to the same files as ours); file permissions are ignored
(inode_tbl will need to be extended to take this into account); file contents are
assumed to be finite (infinite contents could have been used to model pipes fed by
another program running concurrently); streams are assumed to be distinct from
regular files, although in practice standard streams also correspond to named
files (e.g./dev/std* on Linux). There is also no representation of the directory
structure of the file system: the files field can be seen as a unique directory
listing all the existing files. This simple model is nonetheless sufficient to reason
about interesting examples (detailed in Section 5) and to show the feasibility of
more involved features.

Foreign function implementations form part of our trusted computing base,
so we want them to be small, simple and easily inspectable. Thus, the C imple-
mentation for the write operation — and respectively for read, open and close —
will be a simple wrapper around C’s write function. We choose write because
it is well specified (see POSIX standard [17, p. 2310]), and because it is the most
low-level entry point available to us that does not commit us to the particulars
of any one operating system.

The main issue with write is that it is not deterministic: given a number of
characters to write, it may not write all of them — and possibly none — depending
on various factors. Some factors are included in our model (e.g. whether the
end of the file is reached) but others like signal interruptions are not. This is
the non-determinism that we model with the numchars oracle. More precisely,
numchars is a lazy list of integers whose head is popped on each read or write
operation to bound the number of read/written characters.



We can now specify basic operations on the file system, namely open, close,
read and write, in terms of our file system model. Here write is the most interesting
one and the rest of the section will mostly focus on it. We give the definition

` write fd n chars fs =
do
(ino,off ) ← assoc fs.infds fd ;
content ← assoc fs.inode tbl ino;
assert (n ≤ length chars);
assert (fs.numchars 6= [||]);
strm ← lhd fs.numchars;
let k = min n strm
in

Some
(k ,
fsupdate fs fd 1 (off + k)
(take off content @ take k chars @ drop (off + k) content))

od

Fig. 1. Write operation on files in HOL

of write in Figure 1, which informally can be read: given a file descriptor, a
number of characters to write, a list of characters to write, and a file system state,
write looks up the inode and offset associated with the file descriptor, fetches
its contents, asserts that there are enough characters to write and that the lazy
list is not empty. Its head is then used to decide how many characters at most
will be written. Then, the number of written characters is returned, and the file
system is updated using fsupdate, which drops one element of the lazy list, shifts
the offset and updates the contents of the file accordingly.

3.2 File System FFI

We will now take a closer look at the C-side FFI implementation and its HOL
oracle, focusing again on the write operation. The C type of such a function is

void ffiwrite (unsigned char *c, long clen, unsigned char *a, long alen)

where clen and alen are the respective lengths of the arrays c of immutable ar-
guments and a of mutable arguments/outputs. On the HOL side, this corresponds
to an oracle function of type

byte list → byte list → ′state → (byte list × ′state) option

where the argument of type ′state represents a resource on which the function
has an effect — which in our case will be the file system state — and the inputs
of type byte list encode respectively the immutable argument c and the state



of the array a at the beginning of the call. The return type is an option type in
order to handle malformed inputs, which returns the state of the array a after
the call, and the new state of the resource.

In the case of the write function, this corresponds to the HOL specification
shown in Figure 2. It takes the file descriptor (encoded as eight bytes in c), the

`ffi write c (a0::a1::a2::a3::a) fs =
do

assert (length c = 8);
fd ← Some (byte8 to int c);
n ← Some (byte2 to int [a0; a1]);
off ← Some (byte2 to int [a2; a3]);
assert (length a ≥ n + off );
do
(nw ,fs ′) ← write fd n (implode (drop off a)) fs;
Some (0w::int to byte2 nw @ a3::a,fs ′)

od ++ Some (1w::a1::a2::a3::a,fs)
od

Fig. 2. Oracle function for write. The ++ operator returns the first argument unless it
is None, and the second argument otherwise.

number of characters to write as well as an offset from a (both encoded on two
bytes in the second array), and calls the write operation (defined in Figure 1) on
the file system with these parameters. As write may fail to write all the requested
bytes, it may be necessary to call it several times successively on decreasing
suffixes of the data, which is why we use an offset to avoid unnecessary copying.
After this, the first byte of the array is updated with a return code (0 on success,
1 on failure) followed by the number of written bytes, encoded on two bytes.

Note that the arbitrary, and fixed size of the inputs and outputs allow to
address 264 file descriptors and read/write 216 bytes at once, which has not been
a restriction in practice so far.

Now let’s see how this FFI call is implemented in C. The other file system
FFI functions are handled similarly. Note that we trust this implementation to
behave according to its specification, namely ffi write.

void ffiwrite (unsigned char *c, long clen, unsigned char *a, long alen){

assert(clen = 8);

int fd = byte8_to_int(c);

int n = byte2_to_int(a);

int off = byte2_to_int(&a[2]);

assert(alen >= n + off + 4);

int nw = write(fd, &a[4 + off], n);

if(nw < 0){ a[0] = 1; }

else{ a[0] = 0; int_to_byte2(nw,&a[1]); }

}



All it does is the corresponding system call, and marshalling its inputs and
output between integers and fixed-sized sets of bytes using some easily-verifiable
marshalling functions (bytes*_to_int and int_to_bytes*).

4 A Verified TextIO Library

In this section, we illustrate how we built a standard library of high-level input-
output functions on top of the previously described foreign functions as well as
their specification. For this, we first need to reason about the file system, i.e.,
express separation logic properties about it. We are then able to write and prove
correctness properties about the file system operations in the CF program logic.

4.1 File System Properties

First, as we have seen in Section 3.2, when we make FFI calls from CakeML we
use a mutable byte array for carrying input and output. The following property
asserts that an array of length 2052 (i.e. 2048 plus 4 bytes to encode the two
two-byte arguments) is allocated at the address iobuff loc.

` IOFS iobuff = SEP EXISTS v .W8ARRAY iobuff loc v ∗ &(length v ≥ 2052)

Then, any program involving write will almost surely require the following property
on the file system’s non-determinism oracle:

` liveFS fs ⇐⇒
linfinite fs.numchars ∧
always (eventually (λ ll . ∃ k . lhd ll = Some k ∧ k 6= 0)) fs.numchars

Indeed, according to Figure 1, something can only be written if the head of
fs.numchars is non-zero. To write at least one character, one thus has to try
writing until it is actually done. This will succeed if the non-determinism oracle
list contains a non-zero integer, and is characterised by the following temporal
logic property:

eventually (λ ll . ∃ k . lhd ll = Some k ∧ k 6= 0) fs.numchars

Then, to ensure that this property still holds after an arbitrary number of read
or write operations, we need to ensure that it always holds and that the lazy
list is infinite, hence the definition of liveFS. Another way to put it is that the
file system will never block a write operation forever, which is not a strong
assumption to make.

We wrap the previous property with other checks on the file system — namely
that its open file descriptors can be encoded into eight bytes, and that they (as
well as all valid filenames) are mapped to existing inodes — to state that the file



system is well-formed.

` wfFS fs ⇐⇒
(∀ fd .

fd ∈ fdom (alist to fmap fs.infds)⇒
fd ≤ maxFD ∧
∃ ino off .

assoc fs.infds fd = Some (ino,off ) ∧
ino ∈ fdom (alist to fmap fs.inode tbl)) ∧

(∀ fname ino.
assoc fs.files fname = Some ino ⇒ File ino ∈ fdom (alist to fmap fs.inode tbl)) ∧

liveFS fs

Now here is the main property of file systems.

` IOFS fs = IOx fs ffi part fs ∗ IOFS iobuff ∗ &wfFS fs

It states that we have a buffer for file system FFI calls, and that the well-formed
file system fs is actually the current file system.

More precisely, IOx fs ffi part fs means that there is a ghost state encoding a
list of FFI calls whose successive compositions (like ffi_write from Figure 2)
produce the file system fs.

The latter property was heavily used when specifying various low-level I/O
functions, but we need more convenient user-level properties. In particular, most
programs using I/O will use the standard streams. Thus we need to ensure that
they exist, are open on their respective file descriptors (i.e. 0, 1, and 2), and that
standard output and error’s offsets are at the end of the stream, all of which are
ensured by the stdFS property.

The following property asserts that this is the case for the current file system
and also abstracts away the value of fs.numchars.

` STDIO fs = (SEP EXISTS ns. IOFS (fs with numchars := ns)) ∗ &stdFS fs

Indeed, the value of this additional field is not relevant, and we only need to
know that it makes the file system “live”. It would otherwise be cumbersome to
specify it, as we would need to know how many read and write calls have been
made during the execution of the program, which itself depends on fs.numchars
(the smaller its elements are, the higher the number of calls).

We also define convenient properties such as stdout fs out (and respectively
for standard input and error), which states that the content of the standard
output stream is out (and similarly for the other two streams), as well as the
function add stdout fs out which appends the string out at the end of the standard
output of the file system fs to out . The specifications of TextIO.output and
TextIO.print in Figure 3 and of diff in Figure 4 provide typical examples of
their usage.

4.2 Library Implementation and Specifications

In the same way that a typical standard library is supposed to expose high-
level functions to the user and hide their possibly intricate implementation,



one of the main challenges of a verified standard library is to provide simple
and reusable specifications for these functions so that users can build high-level
verified programs on top of it. Once again, we take the write FFI call as a
running example and build a user-level function TextIO.output which will be
used in most of our examples in Section 5.

Now that we have an FFI call for write, we define (in CakeML’s concrete
syntax) a function writei which on file descriptor fd and integers n and i,
encodes these inputs properly for the write FFI call, and keeps trying to write n

bytes from the array iobuff from the offset i until it actually succeeds to write
at least one byte.

As it is a quite low-level function, its specification won’t be reproduced here,
but the key point is that it requires the file system to be well-formed, and thus
to verify the liveFS property. Its correctness, and especially termination, relies
on the fact that, according to the latter property, the file system will always
eventually write at least one byte. Its proof is mainly based on the following
derived induction principle over lazy lists:

` (∀ ll . P ll ∨ ¬P ll ∧ Q (the (LTL ll))⇒ Q ll)⇒
∀ ll . ll 6= [||]⇒ always (eventually P) ll ⇒ Q ll

In words: in order to prove that Q holds for a non-empty lazy list such that P
always eventually holds, it suffices to prove a) that whenever P holds of a lazy
list, so does Q , and b) whenever P does not hold and Q holds of the list’s tail, Q
holds of the entire list. In the proof these get instantiated so that P is a predicate
stating that the next write operation will write at least one byte, and Q is the
CF Hoare triple for writei.

The writei function takes care of some part of the non-determinism induced
by the write system call. We can then use it to define a function write which will
actually write all the required bytes and whose outcome is thus fully deterministic.
But this is yet another intermediate function whose specification has a fair number
of hypotheses and whose Hoare triple is quite involved. We thus define SML-like
user-level functions like TextIO.output and TextIO.print whose specifications
involve the high-level property STDIO defined in Section 4.1. The latter are given
in Figure 3, in the form app p f v args P (POSTv uv . Q) essentially meaning that
whenever the separation logic precondition P is satisfied, the function named
f , on arguments args (related to HOL values with relations like FD, String or
Unit) terminates on a value uv which satisfies the postcondition Q .

From a user’s perspective, these theorems simply state that on a standard file
system, the return type of these functions is unit and they produce a standard
file system, modified as expected.

5 Case Study: A Verified Diff

In this section, we present verified implementations of diff and patch, using the
method described in preceding sections. For space reasons the presentation here
will focus mostly on diff. The end product is a verified x86-64 binary, which is



` FD fd fdv ∧ get file content fs fd = Some (content ,pos) ∧ String s sv ⇒
app p TextIO output v [fdv ; sv ] (STDIO fs)
(POSTv uv .

&Unit () uv ∗
STDIO (fsupdate fs fd 0 (pos + strlen s) (insert atI (explode s) pos content)))

` String s sv ⇒
app p TextIO print v [sv ] (STDIO fs)
(POSTv uv . &Unit () uv ∗ STDIO (add stdout fs s))

Fig. 3. Specifications for TextIO.output and TextIO.print

available for download9. We focus on implementing the default behaviour. Hence
it falls somewhat short of being a drop-in replacement for, e.g., GNU diff: we do
not support the abundance of command-line options that full implementations of
the POSIX specification deliver.

At the heart of diff lies the notion of longest common subsequence (LCS). A
list s is a subsequence of t if by removing elements from t we can obtain s. s is a
common subsequence of t and u if it is a subsequence of both, and an LCS if no
other subsequence of t and u is longer than it.

lcs s t u ⇐⇒
common subsequence s t u ∧
∀ s ′. common subsequence s ′ t u ⇒ length s ′ ≤ length s

diff first computes an LCS of the two input files’ lines10, and then presents any
lines not present in the LCS as additions, deletions or changes as the case might
require.

We implement and verify shallow embeddings for a sequence of progressively
more realistic LCS algorithms: a naive algorithm that runs in exponential time
with respect to the number of lines; a dynamic programming version that runs
in quadratic time; and a further optimisation that achieves linear best-case
performance11.

On top of the latter LCS algorithm, we write a shallow embedding diff alg l l ′

that given two lists of lines returns a list of lines corresponding to the verbatim
output of diff. To give the flavour of the implementation, we show the main

9 https://cakeml.org/vstte18/x86_binaries.zip
10 The LCS is not always unique: both [a, c] and [b, c] are LCSes of [a, b, c] and [b, a, c].
11 There are algorithms that do better than quadratic time for practically interesting

special cases [3]; we leave their verification for future work.



loop that diff alg uses:

diff with lcs [ ] l n l ′ n ′ =
if l = [ ] ∧ l ′ = [ ] then [ ] else diff single l n l ′ n ′

diff with lcs (f ::r) l n l ′ n ′ =
let (ll ,lr) = split ((=) f ) l ; (l ′l ,l ′r) = split ((=) f ) l ′

in
if ll = [ ] ∧ l ′l = [ ] then

diff with lcs r (tl lr) (n + 1) (tl l ′r) (n + 1)
else

diff single ll n l ′l n ′ @
diff with lcs r (tl lr) (n + length ll + 1) (tl l ′r)

(n ′ + length l ′l + 1)

The first argument to diff_with_lcs is the LCS of l and l ′, and the numerical
arguments are line numbers. If the LCS is empty, all remaining lines in l and l ′

must be additions and deletions, respectively; the auxiliary function diff single
presents them accordingly. If the LCS is non-empty, partition l and l ′ around
their first occurrences of the first line in the LCS. Anything to the left is presented
as additions or deletions, and anything to the right is recursed over using the
remainder of the LCS.

We take our specification of diff directly from its POSIX standard descrip-
tion [17, p. 2658]:

The diff utility shall compare the contents of file1 and file2 and write
to standard output a list of changes necessary to convert file1 into file2.
This list should be minimal. No output shall be produced if the files are
identical.

For each sentence in the above quote, we prove a corresponding theorem about
our diff algorithm:

` patch alg (diff alg l r) l = Some r
` lcs l r r ′ ⇒

length (filter is patch line (diff alg r r ′)) =
length r + length r ′ − 2 × length l

` diff alg l l = [ ]

The convertibility we formalise as the property that patch cancels diff. The
minimality theorem states that the number of change lines printed is precisely
the number of lines that deviate from the files’ LCS12.

We apply our synthesis tool to diff alg, and write a CakeML I/O wrapper
around it:

fun diff’ fname1 fname2 =

case TextIO.inputLinesFrom fname1 of

12 Note that this differs from the default behaviour of the GNU implementation of
diff, which uses heuristics that do not compute the minimal list if doing so would
be prohibitively expensive.



NONE => TextIO.print_err (notfound_string fname1)

| SOME lines1 =>

case TextIO.inputLinesFrom fname2 of

NONE => TextIO.print_err (notfound_string fname2)

| SOME lines2 => TextIO.print_list (diff_alg lines1 lines2)

fun diff u =

case CommandLine.arguments () of

(f1::f2::[]) => diff’ f1 f2

| _ => TextIO.print_err usage_string

We prove a CF specification shown in Figure 4 stating that: if an unused file
descriptor is available, and if there are two command-line arguments that are both
valid filenames, the return value of diff alg is printed to stdout; otherwise, an
appropriate error message is printed to stderr. Note that we have a separating
conjunction between the file system and command-line, despite the fact that both
conjuncts describe the FFI state. This is sound since they are about two disjoint,
non-interfering parts of the FFI state; for details we refer the reader to [13].

diff sem cl fs =
if length cl = 3 then

if inFS fname fs (EL 1 cl) then
if inFS fname fs (EL 2 cl) then

add stdout fs
(concat

(diff alg (all lines fs (EL 1 cl))
(all lines fs (EL 2 cl))))

else add stderr fs (notfound string (EL 2 cl))
else add stderr fs (notfound string (EL 1 cl))

else add stderr fs usage string

` hasFreeFD fs ⇒
app p diff v [Conv None [ ]]
(STDIO fs ∗ CMDLN cl)
(POSTv uv .

&Unit () uv ∗
STDIO (diff sem cl fs) ∗
CMDLN cl)

Fig. 4. Semantics for diff (left) showing how it changes the file system state, and its
specification (right) as a CF Hoare triple.

For an indication of where the effort went in this case study, we can compare
the size of the source files dedicated to each part of the development. Definitions
and proofs for LCS algorithms are 1098 lines of HOL script, and definitions
and proofs for the diff and patch algorithms is 1270 lines. Translation of
these algorithms to CakeML, and definition and verification of the CakeML I/O
wrapper comprises 200 lines of proofs in total. Of these, 59 lines are tactic proofs
for proving the CF specification from Figure 4. These proofs are fairly routine
and consist mostly of tactic invocations for unfolding the next step in the weakest
precondition computation; in particular, none of it involves reasoning about file
system internals. We conclude that our contributions in previous sections do
indeed deliver on their promise: almost all our proof effort was cast in terms of



shallow embeddings, yet our end product is a theorem about the I/O behaviour
of the binary code that actually runs, and at no point did we have to sweat the
small stuff with respect to the details of file system interaction.

6 Related work

There are numerous impressive systems for verifying algorithms, including
Why3 [11], Dafny [22], and F* [32] that focus on effective verification, but
at the algorithmic level only. Here we focus on projects whose goal includes either
generating code with a relatively small TCB, reasoning about file systems, or
verification of Unix-style utilities.

Small-TCB verification One commonly used route to building verified systems
is to use the unverified code extraction mechanisms that all modern interactive
theorem provers have. The idea is that users verify properties of functions inside
the theorem prover and then call routines that print the in-logic functions into
source code for some mainstream functional programming language outside the
theorem prover’s logic. This is an effective way of working, as can be seen in
CompCert [23] where the verified compile function is printed to OCaml before
running. The printing step leaves a hole in the correctness argument: there is no
theorem relating user-proved properties with how the extracted functions compile
or run outside the logic. There has been work on verifying parts of the extraction
mechanisms [24, 12], but none of these close the hole completely. The CakeML
toolchain is the first to provide a proof-producing code extraction mechanism
that gives formal guarantees about the execution of the extracted code outside
of the logic. In a slightly different way, ACL2 can efficiently execute code with
no trusted printing step, since their logic is just pure, first-order Common Lisp.
However, the Common Lisp compiler must then be trusted in a direct way, rather
than only indirectly as part of the soundness of the proof assistant.

The above code extraction mechanisms treat functions in logic as if they were
pure functional programs. This means that specifications can only make state-
ments relating input values to output values; imperative features are not directly
supported. The Imperative HOL [6] project addresses this issue by defining an
extensible state monad in Isabelle/HOL and augmenting Isabelle/HOL’s code
extraction to map functions written in this monadic style to the corresponding
imperative features of the external programming languages. This adds support
for imperative features, but does not close the printing gap.

The above approaches expect users to write their algorithms in the normal
style of writing functions in theorem provers. However, if users are happy to
adapt to a style supported by a refinement framework, e.g., the Isabelle Re-
finement Framework [21] or Fiat [9], then significant imperative features can
be introduced through proved or proof-producing refinements within the logic.
The Isabelle Refinement Framework lets users derive fast imperative code by
stepwise refinement from high-level abstract descriptions of algorithms. It targets
Imperative HOL, which again relies on unverified code extraction. Fiat aims to be



a mostly automatic refinement engine that derives efficient code from high-level
specifications. The original version of Fiat required use of Coq’s unverified code
extraction. However, more recent versions seem to perform refinement all the way
down to assembly code [8]. The most recent versions amount to proof-producing
compilation inside the logic of Coq. Instead of proving that the compiler will
always produce semantically compatible code, in the proof-producing setting, each
run of the tools produces a certificate theorem explaining that this compilation
produced a semantically compatible result.

The Verified Software Toolchain VST [4] shares many of the goals of our
effort here, and provides some of the same end-to-end guarantees. VST builds a
toolchain based on the CompCert compiler, in particular they place a C dialect,
which they call Verifiable C, on top of CompCert C minor and provide a powerful
separation logic-style program logic for this verification-friendly version of C.
VST can deal with input and output and, of course, with highly imperative
code. Much like CakeML, VST supports using an oracle for predicting the
meaning of instructions that interact with the outside world [16], though to
the best of our knowledge this feature has not been used to reason about file
system interaction. VST can provide end-to-end theorems about executable code
since verified programs can be compiled through CompCert, and CompCert’s
correctness theorem transfers properties proved at the Verifiable C level down to
the executable. The major difference wrt. the CakeML toolchain is that in VST
one is always proving properties of imperative C code. In contrast, with CakeML,
the pure functional parts can be developed as conventional logic functions in a
shallow embedding, i.e. no complicated separation logic gets in the way, while
imperative features and I/O are supported by characteristic formulae. We offer
similar end-to-end guarantees by composing seamlessly with the verified CakeML
compiler.

The on-going CertiCoq project [2] aims to do for Coq what CakeML has done
for HOL4. CertiCoq is constructing a verified compiler from a deeply embedded
version of Gallina, the language of function definitions in the Coq logic, to the
C minor intermediate language in CompCert and from there via CompCert to
executable code. This would provide verified code extraction for Coq, that is
similar to CakeML’s partly proof-producing and partly verified code extraction.
In their short abstract [2], the developers state that this will only produce pure
functional programs. However, they aim for interoperability with C and thus
might produce a framework where pure functions are produced from CertiCoq,
and the imperative parts and I/O parts are verified in VST.

File systems and Unix-style utilities There is a rather substantial literature on
file system modelling and verification [14, 5, 10, 1, 30], but comparatively little
work on reasoning about user programs on top of file systems. An exception is
Ntzik and Gardner [28], who define a program logic for reasoning about client
programs of the POSIX file system. Their emphasis is on directory structure
and pathname traversal, which we do not consider on our model, but apart from
this, the two models are equivalent (our files field behaves as a single directory
containing all file names). The programs they consider are written in a simple



while language enriched with file system operations; this is sufficient for their
aims since their aim is to study the correctness of file system algorithms in the
abstract, not binary correctness of implementations as in the present paper. As
a case study they consider the rm -r algorithm, in which they expose bugs in
several known implementations.

Kosmatovet al. mention a verification of the Get_Line function in Spark
ADA [25].13 The file system is modelled by ghost variables that represent the file
contents and current position of the file under consideration. The fgets function
from libc is annotated with a contract that describes its behaviour in terms of
updates on the ghost variables, and is thus part of the TCB in the same way as
the system calls that we model by the FFI oracle is part of our TCB. This effort
uncovered several long-standing bugs in the implementation of Get_Line.

In terms of investigating diff from a formal methods point of view, Khanna
et al. [19] study the three-way diff algorithm and attempt to determine what
its specification is; the surprising conclusion is that it satisfies few, if any, of the
properties one might expect it to. It does not attempt to verify two-way diff,
which is the topic of the present paper; instead, it takes the properties of diff
that we prove in Section 5 as given.

Recently, Jeannerod et al. [18] verified an interpreter for a shell-like language
called CoLiS using Why3. The model of the underlying file system and the
behaviour of external commands is kept abstract, since the paper’s main focus
is on the CoLiS language itself. Verification of shell scripts that invoke verified
external commands such as our diff in, e.g., the setting of Jeannerod et al.
extended with a file system model, would be an interesting direction for future
work.

7 Conclusion

We have demonstrated that the CakeML approach can be used to develop
imperative programs with I/O for which we have true end-to-end correctness
theorems. The applications are verified down to the concrete machine code that
runs on the CPU, subject to reasonable, and documented, assumptions about
the underlying operating system. Verifying these applications demonstrates how
it is possible to separate the high-level proof task, such as proofs about longest
common subsequence algorithms, from the details of interacting with files and
processing command-line arguments. In this way, the proof task naturally mimics
the modular construction of the code.
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A Appendix: further example programs

For the benefit of readers, we describe our verified implementations of the grep,
sort, and cat command-line utilities.

A.1 Cat

A verified cat implementation was presented in our previous work on CF [13].
The cat implementation presented here differs in two respects: first, it is verified
with respect to a significantly more low-level file system model (see Section 3.1).
Second, it has significantly improved performance, since it is implemented in
terms of more low-level I/O primitives. Hence this example demonstrates that
reasonably performant I/O verified with respect to a low-level I/O model is
feasible in our setting. Here is the code:

fun pipe_2048 fd1 fd2 =

let val nr = TextIO.read fd1 2048 in

if nr = 0 then 0 else (TextIO.write fd2 nr 0; nr) end

fun do_onefile fd =

if pipe_2048 fd TextIO.stdOut > 0 then do_onefile fd else ();

fun cat fnames =

case fnames of

[] => ()

| f::fs => (let val fd = TextIO.openIn f in

do_onefile fd; TextIO.close fd; cat fs end)

The difference over the previous implementation is pipe_2048, which gains
efficiency by requesting 2048 characters at a time from the input stream, rather
than single characters as previously. We elide its straightforward CF specification,
which essentially states that the output produced on stdout is the concatenation
of the file contents of the filenames given as command line arguments. The cat

implementation above does not handle exceptions thrown by TextIO.openIn;
hence the specification assumes that all command line arguments are valid names
of existing files.

A.2 Sort

The sort program reads all of the lines in from a list of files given on the command-
line, puts the lines into an array, sorts them using Quicksort, and then prints out
the contents of the array. The proof that the printed output contains all of the
lines of the input files, and in sorted order, is tedious, but straightforward.

We do not use an existing Quicksort implementation, but write and verify
one from scratch. Unlike the various list-based Quicksort algorithms found in
HOL, Coq, and Isabelle, we want an efficient array-based implementation of
pivoting. Hence we implement something more akin to Hoare’s original algorithm.



We sweep two pointers inward from the start and end of the array, swapping
elements when they are on the wrong side of the pivot. We stop when the pointers
pass each other. Note that we pass in a comparison function: our Quicksort is
parametric in the type of array elements.

fun partition cmp a pivot lower upper =

let

fun scan_lower lower =

let val lower = lower + 1 in

if cmp (Array.sub a lower) pivot

then scan_lower lower

else lower end

fun scan_upper upper = ...

fun part_loop lower upper =

let

val lower = scan_lower lower

val upper = scan_upper upper in

if lower < upper

then let val v = Array.sub a lower in

(Array.update a lower (Array.sub a upper);

Array.update a upper v;

part_loop lower upper)

end

else upper end in

part_loop (lower - 1) (upper + 1) end;

Because this is intrinsically imperative code, we do not use the synthesis tool, but
instead verify it with CF directly. The only tricky thing about the proof is working
out the invariants for the various recursive functions, which are surprisingly subtle,
for an algorithm so appealingly intuitive.

Our approach to verifying the algorithm is to assume a correspondence between
the CakeML values in the array, and HOL values that have an appropriate ordering
on them. The Quicksort algorithm needs that ordering to be a strict weak order.
This is a less restrictive assumption than requiring it to be a linear order (strict
or otherwise). Roughly speaking, this will allow us to assume that unrelated
elements are equivalent, even when they are not equal. Hence, we can sort arrays
that hold various kinds of key/value pairs, where there are duplicate keys which
might have different values.

strict weak order r ⇐⇒
transitive r ∧ (∀ x y . r x y ⇒ ¬r y x ) ∧
transitive (λ x y . ¬r x y ∧ ¬r y x )

Even though we are not using the synthesis tool, we do use its refinement invariant
combinators to maintain the CakeML/HOL correspondence. This enforces a mild
restriction that our comparison function must be pure, but greatly simplifies
the proof by allowing us to reason about ordering and permutation naturally in
HOL.



The following is our correctness theorem for partition. We assume that there
is a strick weak order cmp that corresponds to the CakeML value passed in
as the comparison. We also assume some arbitrary refinement invariant a on
the elements of the array. The _ → _ combinator lifts refinement invariants to
functions.

` strict weak order cmp ∧ (a → a → Bool) cmp cmp_v ∧
pairwise a elems2 elem_vs2 ∧ elem_vs2 6= [ ] ∧
Int (&length elem_vs1) lower_v ∧
Int (&(length elem_vs1 + length elem_vs2 − 1)) upper_v ∧
(pivot ,pivot_v) ∈ set (front (zip (elems2,elem_vs2)))⇒
app ffi_p partition v [cmp_v ; arr_v ; pivot_v ; lower_v ; upper_v ]
(ARRAY arr_v (elem_vs1 @ elem_vs2 @ elem_vs3))
(POSTv p_v .

SEP EXISTS part1 part2.
ARRAY arr_v

(elem_vs1 @ part1 @ part2 @ elem_vs3) ∗
&partition pred cmp (length elem_vs1) p_v pivot

elems2 elem_vs2 part1 part2)

We can read the above as follows, starting in the conclusion of the theorem.
Partition takes 5 arguments cmp_v , arr_v , pivot_v , lower_v , and upper_v , all
of which are CakeML values. As a precondition, the array’s contents can be
split into 3 lists of CakeML values elems_vs1, elems_vs2, and elems_vs3.14 Now
looking at the assumptions, the length of elem_vs1 must be the integer value for
the lower pointer. A similar relation must hold for the upper pointer, so that
elem_vs2 is the list of elements in-between the pointers, inclusive. We also must
assume that the pivot element is in segment to be partitioned (excluding the last
element).

The postcondition states that the partition code will terminate, and that
there exists two partitions. The array in the heap now contains the two partitions
instead of elem_vs2. The partition pred predicate (definition omitted), ensures
that the two partitions are non-empty, permute elem_vs2, and that the elements
of the first are not greater than the pivot, and the elements of the second are not
less. These last two points use the shallowly embedded cmp and elems2, rather
than cmp_v and elems_vs2.

A.3 grep

grep <regex> <file> <file>... prints to stdout every line from the files that
matches the regular expression <regex>. Unlike sort, diff and patch which
need to see the full file contents before producing output, grep can process lines
one at a time and produce output after each line. The main loop of grep reads a
line, and prints it if it satisfies the predicate m:

fun print_matching_lines m prefix fd =

case TextIO.inputLine fd of NONE => ()

14 @ appends lists.



| SOME ln => (if m ln then (TextIO.print prefix; TextIO.print ln)

else ();

print_matching_lines m prefix fd)

For each filename, we run the above loop if the file can be opened, and print an
appropriate error message to stderr otherwise:

fun print_matching_lines_in_file m file =

let val fd = TextIO.openIn file

in (print_matching_lines m (String.concat[file,":"]) fd;

TextIO.close fd)

end handle TextIO.BadFileName =>

TextIO.print_err (notfound_string file)

The latter function satisfies the following CF specification (eliding stderr output):

` cf let (Some “a”) (cf con None [ ])
(cf let (Some “b”)

(cf app p (Var (Long “Commandline” (Short “arguments”)))
[Var (Short “a”)])

(cf let (Some “c”)
(cf app p (Var (Long “List” (Short “hd”))) [Var (Short “b”)])
(cf let (Some “d”)

(cf app p (Var (Long “IO” (Short “inputLinesFrom”)))
[Var (Short “c”)]) . . . ))) st (CMDLN cl ∗ STDIO fs)

(POSTv uv . . . . )

The postcondition states that the output to stdout is precisely those lines
in f that satisfy m, with f and a colon prepended to each line. The three
assumptions mean, respectively: that f is a string without null characters, and
fv is its corresponding deeply embedded CakeML value; that our view of the
file system has a free file descriptor; and that m is a fully specified (i.e., lacking
preconditions) function of type char lang and mv is the corresponding CakeML
closure value.

The main function of grep is as follows:

fun grep u =

case CommandLine.arguments () of

[] => TextIO.print_err usage_string

| [_] => TextIO.print_err usage_string

| (regexp::files) =>

case parse_regexp (String.explode regexp) of

NONE => TextIO.print_err (parse_failure_string regexp)

| SOME r =>

List.app (fn file => print_matching_lines_in_file

(build_matcher r) file) files

parse_regexp and build_matcher are synthesised from a previous formalisation
of regular expressions by Slind [31], based on Brzozowski derivatives [29].



The semantics of grep is given by the function grep sem, which returns a
tuple of output for stdout and stderr, respectively.

grep sem (v0::regexp::filenames) fs =
if null filenames then (“”,explode usage string)
else

case parse regexp regexp of
None ⇒ (“”,explode (parse failure string (implode regexp)))
| Some r ⇒

let l =
map (grep sem file (regexp lang r) fs)
(map implode filenames)

in (flat (map fst l),flat (map snd l))
grep sem v2 = (“”,explode usage string)

regexp_lang is a specification of build_matcher due to Slind, and grep_sem_-

file is a semantics definition for print_matching_lines_in_file. The final
CF specification states that the output to the std* streams are as in grep sem,
and has two premises: that there is an unused file descriptor, and that Brzozowski
derivation terminates on the given regular expression15.

15 Finding a termination proof for the kind of Brzozowski derivation we use is an open
problem that is not addressed by Slind’s work nor by the present paper. See, e.g.,
Nipkow and Traytel [27] for a discussion.


