
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Otero, Fernando E.B. and Johnson, Colin G. and Freitas, Alex A. and Thompson, Simon (2010)
Refactoring in Automatically Generated Programs. In: 2nd International Symposium on Search
Based Software Engineering, 7-9th September 2010, Benevento, Italy.

DOI

Link to record in KAR

https://kar.kent.ac.uk/71014/

Document Version

Author's Accepted Manuscript

Refactoring in Automatically Generated Programs

Fernando E. B. Otero, Colin G. Johnson, Alex A. Freitas, and Simon J. Thompson
School of Computing

University of Kent
United Kingdom

{F.E.B.Otero,C.G.Johnson,A.A.Freitas,S.J.Thompson}@kent.ac.uk

Abstract—Refactoring aims at improving the design of ex-
isting code by introducing structural modifications without
changing its behaviour. It is used to adjust a system’s design
in order to facilitate its maintenance and extendability. Since
deciding which refactoring to apply and where it should
be applied is not a straightforward decision, search-based
approaches to automating the task of software refactoring have
been proposed recently. So far, these approaches have been
applied only to human-written code. Despite many years of
computer programming experience, certain problems are very
difficult for programmers to solve. To address this, researches
have developed methods where computers automatically create
program code from a description of the problem to be solved.
One of the most popular forms of automated program creation
is called Genetic Programming (GP). The aim of this work
is to make GP more effective by introducing an automated
refactoring step, based on the refactoring work in the software
engineering community. We believe that the refactoring step
will enhance the ability of GP to produce code that solves
more complex problems, as well as result in evolved code that
is both simpler and more idiomatically structured than that
produced by traditional GP methods.

Keywords-refactoring; genetic programming; automated de-
sign improvement;

I. I NTRODUCTION

Software systems undergo incremental changes over time
in order to deal with new requirements. Since the original
design is not prepared for every new requirement in general,
the addition of functionality brings the risk of degrading
the quality of the design (structure) of the system. A
common approach to mitigate this risk involves the use of
refactoring. Refactoring aims at improving the design of
existing code by introducing structural modifications without
changing its behaviour. The motivation for refactoring the
code of a system is that a well-designed system is generally
easier to maintain and extend. Refactoring is now a core
part of software engineering practice, and is supported by
the inclusion of refactoring tools in well-used integrated
development environments. While refactoring can help to
improve a software design, deciding which refactoring to
apply and where it should be applied is not a straight forward
decision.

Recently, search-based approaches to automate the ap-
plication of refactoring have been proposed [1], [2]. These
approaches cast the refactoring as an optimisation problem,

where the goal is to improve the design quality of a system
based on a set of software metrics. After formulating the
refactoring as an optimisation problem by defining the
solution representation, search operators and fitness function,
several different methods can be applied to the problem of
automated refactoring—e.g. hill climbing, simulated anneal-
ing and genetic algorithms. So far, the idea of automatic
refactoring has been applied only to human-written code.

Genetic Programming (GP) [3], [4] is an evolutionary
technique, based on Darwin’s principle of natural selection,
which aims at automatically evolving computer programs.
In the GP context, a computer program is a solution to the
problem at hand, which can be represented as a mathematical
equation, a sequence of instructions or an arbitrary com-
bination of input values. GP uses the principle of natural
selection to find solutions to complex problems by evolving
initially poor solutions into near-optimal ones using a set
of genetic operators and a fitness measure. In recent years
GP has been applied to a number of problems of practical
significance, and has produced a number of solutions to
problems that arehuman-competitive[5]—for example with
a GP algorithm producing a solution comparable with one
which has been patented.

In this work, we aim at testing the hypotheses that
adding in an automated refactoring step will enhance the
ability of the evolutionary process in GP to produce code
that solves more complex problems than traditional GP
methods; and that by adding in the refactoring step the
code evolved is simpler and more idiomatically structured—
and therefore more readily understood and analysed by
human programmers—than that produced by traditional GP
methods. The research will draw upon work in the software
engineering community in automatically applying refactor-
ing steps that have proven effective for human software
engineers. Furthermore, it will automatically identify which
refactoring steps prove to be most effective during the GP
process in order to apply these explicitly in future GP runs.

II. M ETHODOLOGY

Essentially, a GP algorithm consists of a population of
candidate solutions to the target problem and an iterative
selection process that mimics an evolutionary process. A
traditional GP involves four main steps, as illustrated in

Population

Initialisation

Selection

Crossover

Mutation

(a)

Population

Initialisation

Refactoring

Selection

Crossover

Mutation

(b)

Figure 1. Introducing a refactoring step into genetic programming. In (a)
the traditional GP steps; (b) the GP steps with the addition of a refactoring
step.

Figure 1(a). Firstly, a population of random programs is
generated. The remaining stages form an iterative loop. The
programs are evaluated, e.g. by running them on a set of test
data and measuring the resultant performance on the problem
at hand—this measurement is called the fitness score. Based
on this fitness score a number of the fitter programs are
chosen to form a basis for the next generation—these are
called the parent programs for the next generation. This
next generation is then created by performing mutation and
crossover steps on programs chosen from the set of parents.
This loop continues until a particular fitness value is found,
or until a particular number of iterations have been carried
out.

The core idea in this work is to explore the addition of
a refactoring stepinto the genetic programming iteration.
That is, there will be an additional loop in which refactoring
steps drawn from a catalogue of such steps will be applied to
individuals of the population. The contrast between this and
traditional GP is illustrated in Figure 1(b). These refactoring
steps will be based on traditional software engineering, and
developed to take into account factors that are important for
GP (e.g., reducing the amount of unused code).

Given that programs are generated by an evolutionary pro-
cess in GP, the introduced refactoring step adopts asearch-
basedapproach to automatically carrying out refactorings.
Individuals are selected from the population and undergo a
refactoring step, checking whether the preconditions for that
refactoring obtain, and if so, applying the refactoring.

III. O NGOING WORK

As a first case study, we are currently working on im-
plementing a refactoring step to replace duplicated code

within an individual, dubbedcode duplication refactoring.
This refactoring consists on improving the structure of an
individual by identifying duplicated code, encapsulatingit
as a single instruction and replacing each occurrence by the
single instruction. The encapsulation of the duplicated code
could help the evolutionary process by preserving useful
blocks of code from the effects of genetic operators, as
well as providing a more compact structure for the individ-
uals. For example, in a symbolic regression problem where
individuals represent arithmetic expressions, an individual
corresponding to the expression ‘y+(x∗x)−(2∗(x∗x))’—
with x and y representing numeric variables—undergoing
the code duplication refactoring would be transformed to
‘y + E − (2 ∗ E))’. In this case, the variableE would
encapsulate the expression ‘(x ∗ x)’.

A variation of the code duplication refactoring is the
example offunction extraction, where a program is refac-
tored so that a code block is removed from its context and
replaced by a function call. The block of code removed
forms the body of that function. As with the code duplication
refactoring, the function extraction could provide a way of
forming blocks of code—or modules—for the evolutionary
process to reuse, something which has already been shown
to be useful in GP [6]. A complementaryunfold refactoring
step will also be investigated, which has the opposite effect
of the code duplication and function extraction refactorings.
The unfold refactoring replaces a variable or a function
call by the corresponding encapsulated expression, allowing
expression to evolve independently from that point on.

REFERENCES

[1] O. Seng, J. Stammel, and D. Burkhart, “Search-based deter-
mination of refactorings for improving the class structureof
object-oriented systems,” inProceedings of the Genetic and
Evolutionary Computation Conference (GECCO 2006). ACM,
2006, pp. 1909–1916.

[2] M. O’Keeffe and M. O. Cinnéide, “Search-based refactoring:
an empirical study,”Journal of Software Maintenance and
Evolution: Research and Practice, vol. 20, no. 5, pp. 345–364,
2008.

[3] J. Koza,Genetic Programming: On the Programming of Com-
puters by Means of Natural Selection. MIT Press, 1992.

[4] W. Banzhaf, P. Nordin, R. Keller, and F. Francone,Genetic
Programming—an introduction: on the automatic evolution of
computer programs and its applications. Morgan Kaufmann,
1998.

[5] J. Koza, M. Keane, M. Streeter, W. Mydlowec, J. Yu,
and G. Lanza,Genetic Programming IV: Routine Human-
Competitive Machine Intelligence. Kluwer Academic Pub-
lishers, 2003.

[6] J. Koza, Genetic Programming II: Automatic discovery of
reusable programs. MIT Press, 1994.

