
Johnson, Colin G. and Marsh, Duncan (1998) A CAD Representation of
Robot Manipulator Workspace. In: 29th International Symposium on Robotics.
.

Kent Academic Repository

Downloaded from
https://kar.kent.ac.uk/70984/ The University of Kent's Academic Repository KAR

The version of record is available from

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site.
Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type
setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title
of Journal , Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record
in KAR. If you believe that your, or a third party's rights have been compromised through this document please see
our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).

https://kar.kent.ac.uk/70984/
mailto:ResearchSupport@kent.ac.uk
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies
https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies

A CAD Representation of Robot Manipulator Workspace.

Colin G. Johnson.
Department of Computer Science,

University of Exeter,
Exeter, EX4 4PT, England, U.K.

and

Duncan Marsh.
Department of Mathematics,

Napier University, 219 Colinton Road,
Edinburgh, EH14 1DJ, Scotland, U.K.

Abstract: If robot programming is to advance to the
stage where the well-studied problems of automated
path-planning, collision detection, workspace mapping
et cetera can leave the research laboratory and take
their place in industry, then there is a need for a new
kind of robot programming. Incorporating robot pro-
gramming into a CAD system is one possibility, and the
first stage in producing such a system would be to repre-
sent robot workspaces in a CAD-amenable format. This
paper describes a representation of robot manipulator
workspaces in terms of non-uniform rational B-splines
(NURBS), a standard representation for free form shapes
in CAD. Applications of the technique to collision detec-
tion, path planning and workspace visualization prob-
lems are outlined. The paper concludes by providing
signposts towards a new model of mechanism program-
ming which is grounded in CAD free-form modelling
concepts.

1 Introduction

Currently robot manipulators (the robot “arms” commonly
used in industry) are typically programmed in one of two
ways. In the first form a robot is led through a sequence of
motions using a hand-held controller commonly referred to
as a teach pendant. The second is to write programs in a
computer language (either a specialist language or a library
added to an existing language) and test the results using a
graphical simulator.
What we would like to explore in this paper are the foun-
dational pieces of mathematical and computational mod-
elling which pave the way for a new approach to robot task

preparation. The new approach applies graphical program-
ming techniques within the context of a computer-aided ge-
ometric design system. In this paper we develop a new
model for robot workspace—the space in which the robot
is constrained by its geometry to move—based on exten-
sions of of non-uniform rational B-splines (NURBS), the
most commonly used mathematical representation of free-
form shapes in CAD systems. It shall be shown that NURBS

functions offer a mathematically and computationally pow-
erful representation of robot workspaces through which al-
gorithms, developed for other reasons in CAGD (Computer
Aided Geometric Design) and computer graphics, can be
brought to bear in providing a unified approach to a number
of problems in robotics. This facilitates the seamless inte-
gration into CAD systems of geometrical problems which
have been well studied in the past, allowing them to be in-
corporated into existing industrial design practice.

The eventual development of new approaches to robot pro-
gramming based on these ideas offers a number of advan-
tages over existing methods. Firstly the robot can be pro-
grammed mainly offline, thus liberating it for use whilst
other tasks are being prepared. Secondly these approaches
place robot programming in a familiar context—the CAD

system—thus empowering designers to program robots at
the task level, and allowing the technical detail about the
robot’s capabilities to be built into the programming sys-
tem. Thirdly this approach does not require the programmer
to have a detailed knowledge of robot engineering. Instead,
the detail is embedded into the machine thus allowing the
programmer to concentrate on task design.

This paper concentrates upon the CAD foundations of our
model. Details of the application of these ideas can be found

1

in [9, 10].

2 Algorithms for workspace generation

The foundations for our CAD system for robot programming
shall be based on a modelling technique which uses NURBS

for the representation of robot workspaces. In this section
we give a brief introduction to mechanism kinematics, the
describe two NURBS constructions. The first gives a mul-
tivariate NURBS function for the whole robot workspace,
while the second generates the volume swept out when a
robot follows a particular trajectory.
This section assumes a basic knowledge of geometrical
methods in CAD and the geometry of NURBS, details of
which can be found in many books such as [7, 17].

2.1 Mechanism kinematics

Almost all robot arms in use in industry have an open-chain
kinematic structure. Such mechanisms consist of a chain of
links connected with joints. These joints are either revolute
joints which rotate around an axis, or prismatic joints which
move along an axis.
In order to specify the geometry and kinematics of such
a robot needs three items of information. Firstly, the spa-
tial position/orientation of the robot is given by a cartesian
coordinate frame. Secondly, the physical geometry of the
links is given by by a NURBS surface Sl for each link l (it is
simple to extend this to several surfaces per link). Finally,
we specify how the links are connected together, using the
Denavit-Hartenberg notation—the standard notation used in
kinematics [4, 5]. We describe this briefly as follows (see
figure 1). We begin by taking a line �i through the axis
of each joint of the mechanism, i.e. the axis that a link ei-
ther rotates around (revolute joint) or slides along (prismatic
joint). Each pair �i� �i�� is joined by their unique com-
mon perpendicular (unless they are parallel, in which case
any common perpendicular will suffice). Next we spec-
ify the kinematic relationship between these links exactly
using four parameters. Two of these parameters, the link
length ai�� and the link twist �i�� specify the fixed rela-
tionship between the two axes forced by the physical link.
The remaining two, the link offset di (which is variable for
a prismatic joint) and the joint angle �i (which is variable
for a revolute joint) specify the relationship between two
adjacent links.

2.2 Workspace generation

We use the Denavit-Hartenberg specification to generate a
set of mappings �i � R

�
� R

i
� R

�, where i ranges from

�� � � � � d, where d is the number of degrees of freedom of
the robot. The function �i specifies the region of space
occupied by the robot in a particular position. Consider
the mapping �i � �u� v� � �r�� � � � � ri� �� �x� y� z�. This
takes a value of the parameters �u� v� which specify a point
in the domain of Si�u� v�, and �r�� � � � � ri��j � �� � � � � i�
which specify the values of dj (when the jth link is pris-
matic) or �j (when the jth link is revolute). The image
�x� y� z� is a point in R� which specifies where the point
Si�u� v� is found when the robot is in the position specified
by �r�� � � � � ri�.
The next stage is to give these mappings are given a NURBS

structure. Place the control net for the surface S��u� v� in
base position. Form the tensor product of S��u� v� with a
motion-curve C�r��, which is an arc (ranging between the
upper and lower limits of ��) of a unit circle around the
base-axis if the joint 1 is revolute, and a NURBS line (rang-
ing between the upper and lower limits of d�) along the axis
if the joint is prismatic.
The penultimate part of the algorithm is to give a basic
structure on which to place the surface making up link 2.
To do this a NURBS arc/line segment D�r�� is constructed
having a radius/length ai��. The control net S��u� v� is
placed at the base position, and then displaced by ai��, ro-
tated by �i��, and finally rotated/translated by whichever
of �i and di is fixed. Finally a tensor product between the
line/arc C�r�� and the transformed S� is formed, and a fur-
ther tensor-product with D�r�� gives the 4-variable NURBS

function ���r�� r�� u� v�. We repeat this process until the
occupancy functions �n�r�� � � � � rn� u� v� for all links have
been generated.

2.3 Modelling specific motions

In addition to the mappings for workspace generation we
define mappings which give a NURBS model of the map-
ping which defines volume of space (or space-time) occu-
pied by the robot during the execution of a given trajectory.
More precisely for a given motionM, specified as a NURBS

path in configuration space [14], we define a function for
each link �i�M � � R� � R� R

�. This function takes a
pair �u� v� specifying a point in the domain of the Si�u� v�
and a parameter t specifying the distance travelled along the
motionM, to obtain �i�M� � �u� v�� t �� �x� y� z�, where
�x� y� z� is the point occupied by the image ofSi�u� v�when
the link is at the point in configuration space given byM�t�.
We model this using a geometric swept-volume algorithm.
This takes a template surface S�x� y� and moves it along a
trajectory T�t� whilst also executing a local motion of the
surface, producing a swept volume V�x� y� t� in space. We
can express it thus

V�x� y� t� � T�t� �N �S�x� y�� t�

whereN is a transformation of the surface with respect to its
fixed position, which varies with changes in t. This has been
used in planar kinematics, where the motionN was a multi-
plication of the control net of S�x� y� by control points in a
of transformation matrices [19]. This allows us to calculate
the volume swept out when we move the surface through
space whilst simultaneously transforming the shape with re-
spect to a moving coordinate frame.

We calculate these �i�M � in two stages. In the first stage
we take the link-surface Si�u� v�, placed with respect to a
coordinate frame at the origin. If the ith joint is a revolute
joint, we form a volume of revolutionVi�u� v� t� by form-
ing a tensor product of Si with an arc of a circle in NURBS

form [17]. Similarly for a prismatic joint we tensor product
the surface with a straight line along the axis to form a vol-
ume of extrusion. The length and parameterization of these
lines and arcs are derived by reparameterizing a standard
NURBS circle or line by a function specifying the motion of
the link.

For the first joint this volume is ���M �, the space swept
out by S� as the first joint moves around a fixed coordi-
nate frame. However for the other joints the axis itself is
moving, so we have a second stage. Take a point at the
ith joint and apply the rotation/extrusion to that, giving a
NURBS-curve T�t� in space, having a knot vector which we
shall call Ut. Then use degree-raising and knot insertion to
equate Ut withUr , the knot-vector ofVi�u� v� t� in the t di-
rection. This produces a new set of control points for T�t�
which we call �T�� � � � � Tnt�. Create a set of new points
Pijk from the control points Vijk ofV�u� v� t� and the con-
trol points Ti of T�t�.

Pijk � RVijk � Ti

Where R is the rotation matrix (an affine transformation)
that carries the frame based at the origin into the Frenet
frame moving along the curve. The desired swept surface
V�u� v� t� is defined by

V�u� v� t� �
ntX

k��

nuX

j��

nvX

i��

PijkRi�du�u�R
�

j�dv �v�R
��

k�dt�t�

Where Ri�du�u�, R
�

j�dv �v� and R��

k�dt are the non-uniform
rational basis functions defined over Uu, Uv (the knot vec-
tors of S�u� v�) and Ut respectively.

Note that isoparametric surfaces for fixed t values of
V�u� v� t� consist of S�u� v� transformed to an appropriate
position along the curve. That the placement of these sur-
faces at the control points is sufficient to describe the entire
motion follows from the the affine invariance property of
B-splines [7].

2.4 Comments

This representation restricts the motions allowed to those
which can be represented in NURBS form. It could be well
argued that this is not a restriction at all. Firstly, we can
approximate any motion as accurately as desired using a
NURBS path. Secondly, we have to design a motion using
something, and NURBS, with their properties of local con-
trol, control over their smoothness and their ability to in-
corporate many other kinds of motion such as straight-line
interpolants and circles [16] offer an intuitive and geomet-
rically elegant method for this.
It can be seen that this can be extended to the case of cre-
ating a swept volume in four-dimensional space-time [3].
This is important for studying the interaction of a robot with
other moving obstacles [1, 2, 3, 6], or attempting to detect
self-intersections.
The main advantage of this representation is that it allows
the motion, the shape of the links and the resultant swept
volume to be represented in a common form, and has the
added advantage that that form is a standard in CAD. Such
advantages are not to be found in other swept-volume mod-
els of workspace such as [13].

3 Applications

The workspace representations developed above yields a
CAD framework in which robot programming can be incor-
porated into a CAD system. Thus it is possible to develop
systems which work at a higher level of automation then at
present, based around a task planning ideal, where the gross
tasks are specified in a graphical or natural language and the
fine details formulated within the software.
In working towards this aim a number of problems arise
which can be abstracted from the task. The first of these
is the development of a collision detection algorithm, that
is given a motion within a (designed) environment, deter-
mining whether the robot hits anything in its environment.
Cameron [1, 2] has identified four ways in which poten-
tial collision can be detected, from which we have chosen
to use testing for the intersections of the robot’s swept vol-
ume with other static object in R�. For situations which
are time-dependent we use another method, the intersection
of the four-dimensional space-time sweep, to test for self-
intersections or for studying motions in dynamic environ-
ments.
The key to our algorithms is the convex hull property of
NURBS. We have used this to create bounding boxes,
and use generalizations of surface-surface intersection al-
gorithms [15, 18, 21] to both check whether there is a colli-
sion, and if there is to check where the collision occurs.
Harder problems are accessibility checking and path plan-
ning. This is part of developing a higher level of automa-

tion, where instead of using the computer to test paths that
have been designed, we merely need to specify the general
constraints and task-requirements, and require the program
decide whether any path is feasible, and if so, to find it.
Clearly this is a hard problem, and while much research has
been carried out, it has yet to find its way into industrial
practice.
It is our intention that by embedding these problems within
a CAD framework these methods will become more accessi-
ble to industry. We have looked at two approaches to these
problems. One approach is to take advantage of the fast
calculation times for collision detection and develop a test-
and-correct system. This could take ideas from genetic al-
gorithms, taking a large number of simple paths and finding
a good path by iterating through selecting the best current
paths and then subdividing and recombining them until a
good solution is found.
Our work to date has concentrated on a second, more ge-
ometric approach, where models of the whole workspace
are prepared, as described in section 2 above, and regions
which cannot be accessed are trimmed away. This begins
by cutting away large areas of the workspace which can-
not be reached by gross motions of the earlier links, so that
by the time we are looking at the fine detail we are able to
concentrate on small, relevant regions. This combination of
fine detail where it is needed combined with cruder chop-
ping away of undesirable regions makes for a combination
of speed and accuracy which previous approaches have not
obtained.
A further problem with a geometrical flavour is workspace
visualization—that is producing a graphic image of the en-
tire space which can be reached by the robot. This is
where the natural graphical nature of our method had a
clear advantage—we can take the mappings of the occu-
pancy space, possibly trimmed away as above, and render
the images of these functions using rapid subdivision meth-
ods [7, 8, 11].
So far we have considered work within a designed envi-
ronment. At present we are working towards incorporat-
ing computer vision to enable these methods to be applied
within an unknown environment. This could draw on the
work of Wang and Wang [20], who use the projection of
a structured light pattern onto objects to recover curvature
information, and Lavallée and Szeliski [12], who use range
data to recover B-spline models of unknown surfaces.
Details of algorithms for several of these applications are
given in our other papers [9, 10].

References

[1] S. Cameron. A study of the clash-detection problem in
robotics. In IEEE International Conference on Robotics and
Automation, pages 488–493. IEEE Press, March 1985.

[2] S. Cameron. Collision detection by four-dimensional inter-
section testing. IEEE Transactionson Robotics and Automa-
tion, 6(3), June 1990.

[3] S. Cameron. Using space-time for collision detection : solv-
ing the general case. In K. Warwick, editor, Robotics, Ap-
plied Mathematics and Computational Aspects, pages 403–
415. Clarendon/IMA, 1993.

[4] J. Craig. Introduction to Robotics. Addison-Wesley, second
edition, 1989.

[5] J. Denavit and R. Hartenberg. A kinematics notation for
lower-pair mechanisms based on matrices. Journal of Ap-
plied Mechanics (Transactions of the ASME), June 1955.

[6] M. Erdmann and T. Lozano-Pérez. On multiple moving ob-
jects. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 1419–1424, 1986.

[7] G. Farin. Curves and Surfaces for Computer Aided Geomet-
ric Design. Academic Press, third edition, 1993.

[8] M. Frühaud and M. Göbel, editors. Visualisierung von Vol-
umendaten. Springer, 1994.

[9] C. G. Johnson and D. Marsh. Modelling robot manipulators
in a CAD environment using B-splines. In N. Bourbakis, ed-
itor, Proceedings of the IEEE International Joint Symposia
on Intelligence and Systems, pages 194–201. IEEE Press,
1996.

[10] C. G. Johnsonand D. Marsh. A robot programming environ-
ment basedon free-form CAD modelling. IEEE International
Conference on Robotics and Automation, Leuven, Belgium,
1998.

[11] D. Lasser. Free-form volumes : Definitions, applications,
visualization techniques. Technical Report Interner Bericht
238/94, Universität Kaiserlautern, Fachbereich Informatik,
1994. Habilitationschrift.

[12] S. Lavallée and P. Szeliski. Recovering the position and ori-
entation of free-form objects from image contours using 3D
distance maps. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 17(4):378–390, 1995.

[13] Z.-K. Ling and Z.-J. Hu. Use of swept volumes in the de-
sign of interference free spatial mechanisms. Mechanism
and Machine Theory, 32(4):459–476, 1997.

[14] T. Lozano-Pérez. A simple motion-planning algorithm for
general robotic manipulators. IEEE Journal on Robotics and
Automation, RA-3(3):224–238, 1987.

[15] Q. Peng. An algorithm for finding the intersection lines
between two B-spline surfaces. Computer Aided Design,
16(4), July 1984.

[16] L. Piegl. On NURBS : A survey. IEEE Computer Graphics
and Applications, January 1991.

[17] L. Piegl and W. Tiller. TheNURBS Book. Springer, 1995.
[18] T. W. Sederberg and S. R. Parry. Comparison of three curve

intersection algorithms. Computer-Aided Design, 18(1):58–
63, January/February 1986.

[19] M. G. Wagner. Planar rational B-spline motions. Computer-
Aided Design, 27(2):129–137, February 1995.

[20] Y. Wang and J. Wang. On 3D model construction by fusing
heterogeneous sensor data. CVGIP-Image Understanding,
60(2):210–229, 1994.

[21] J. Yen, S. Sprach, M. Smith, and R. Pulleyblank. Parallel
boxing in B-spline intersection. IEEE Computer Graphics
and Applications, pages 72–79, January 1991.

