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Abstract—Finding a balance between observation duration
and detection rates is the ultimate goal of the detection of
ultra high speed targets. However, short observation durations,
both across range unit (ARU) and Doppler frequency migration
(DFM), may severely limit the detection performance of ultra
high speed targets. Although traditional coherent integration
methods can efficiently accumulate signal energy to produce a
high signal to noise ratio (SNR) measurement, they often need
to search for unknown motion parameters. This search is time-
consuming and unacceptable for real-time detection of ultra high
speed targets. In this paper, a coherent-like detection method
is designed based on the finite-dimension theory of Wigner
matrices along with velocity identification. The proposed method
can efficiently integrate signal energy without rendering motion
parameters. We use the distribution and mean of the eigenvalues
of the constructed matrix, i.e. an additive Wigner matrix, to
identify velocities and detect ultra high speed targets, respectively.
Simulation results validate the theoretical derivation, superiority
and operability of the proposed method.

Index Terms—Ultra high speed target, Wigner matrix, velocity
identification, coherent integration, short observation time.

I. INTRODUCTION

IN modern battlefields, the speed of an aircraft plays a cru-
cial role in achieving combat superiority. Many countries

across the world strive to develop high speed aircraft, and
consequently an increasing number of ultra high speed aircraft
(normally with a velocity over Mach 5) are employed for
long-range prompt strike and penetration [1], [2]. These high
speed aircraft can severely threaten the detection capability
of radar. Based on their velocity ranges, we can categorise
existing aircraft into three types: hypersonic (Mach 5-10),
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high-hypersonic (Mach 10-25) and re-entry speed (> Mach
25). Since the velocity of an ultra high speed target cannot be
ignored anymore in the estimation, compared with that of light,
the echo is unable to match the transmitted signals and obtain
sufficient high energy gains. Moreover, for pulse Doppler (PD)
radar, ultra high speed aircraft echoes spread across several
bins, which is called the across range unit (ARU) effect [3],
[4]. During a short observation period, the Doppler shift is
not a constant anymore and can be replaced by a non-linear
higher order polynomial of slow-time. In other words, the
time-varying Doppler may exceed the PD radar frequency
resolution, which is known as the Doppler frequency migration
(DFM) [3]. In the Doppler domain, the energy of a target
is distributed over various ranges and frequency bins. It is
difficult for a radar to accumulate signal energy and to detect
the target using its motion states and the Doppler information
of the target. Traditional coherent integration techniques are
no longer applicable. It is challenging to design a robust and
effective method to maintain the detection performance for
ultra high speed targets in a short observation duration [5].

Research on the detection of ultra high speed aircraft has
attracted increasing attention in recent years [5], [6], [36].
Unfortunately, research achievements in this area are very
limited. In modern PD radar systems, target detection gen-
erally contains two energy integrations in the fast- and slow-
time domains respectively [7]–[9]. Detecting ultra high speed
targets follows the same principal. The first integration in the
fast-time domain is through match filtering. However, for an
ultra high speed target, the reference signal which is matched
against the radar reflection is no longer the transmitted signal,
whose phase should be modified according to the phase of the
echoes of the target. Many studies have been conducted in the
second integration for mitigating the ARU and DFM effects for
regular speed maneuvering targets. These two issues severely
degrade the system performance of detecting ultra high speed
targets in regular circumstances. Based on the modulation
information of echoes, the second integration practice is often
divided into coherent integration and incoherent integration
[7].

Coherent integration methods use additional phase informa-
tion, resulting in higher integration gains than the incoherent
integration methods. Classical coherent integration methods
are based on a standard moving target detection (MTD)
algorithm e.g. [10], [11], which can be implemented using
a Fourier transform (FT) in each range bin. Unfortunately,
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MTD cannot solve problems such as ARU and DFM. Keystone
transform (KT) [12], [13] and its variants demonstrated better
performance in dealing with ARU and DFM. Yet, they still
need certain prior information to handle Doppler ambiguity
and these approaches are not effective for maneuvering targets
and the detection of ultra high speed targets. Recently, Radon-
Fourier transform (RFT) [14]–[16], Radon-fractional Fourier
transform (RFrFT) [17], [18] and Radon-Lv’s distribution
(RLVD) [19], [20] have been proposed to deal with the ARU
and DFM problems. RFrFT treats the Doppler frequency of a
maneuvering target as a linear frequency modulation (LFM)
signal, and uses the fractional Fourier transform (FrFT) [13],
[21] to improve coherent integration gains instead of FT in
the RFT algorithm. Like FrFT, Lv’s distribution (LVD) is also
a time-frequency analysis method, designed for LFM signals
to integrate the energy in the centroid frequency-chirp rate
domain. However, LVD outperforms FrFT on the detection
of LFM signals, which results in superior detection perfor-
mance by the coherent integration method RLVD. All of these
algorithms need to define suitable motion parameters, which
is time-consuming and inapplicable for real-time detection of
ultra high speed targets.

On the other hand, incoherent integration methods do not
need any prior information about the structure of the received
signals, which makes this type of detection methods relatively
easier to implement. Classical incoherent integration meth-
ods include maximum likelihood (ML) [22], [23] method,
polynomial-phase transform (PPT) [24], Hough transform
(HT) [25], Radon transform (RT) [26], and dynamic program-
ming (DP) technology [27]. More recently, the track-before-
detection (TBD) framework [28]–[30] was proposed for weak
signal detection so as to further improve the signal to noise
ratio (SNR). These incoherent detection methods can address
the ARU and DFM effects in part or entirely. Nevertheless,
most of these methods need to search for the unknown
motion parameters, normally leading to high computational
complexity.

Considering the requirements of computational complexi-
ty and accuracy for ultra high speed targets, motivated by
the established methods, we here propose a coherent-like
integration method using the finite-dimension random matrix
theory [33], [34], which not only requires low computational
complexity, but also can achieve better detection performance.
The proposed method neither uses phase information of the
echoes nor needs to search for motion parameters. The pro-
posed method stems from the same theory of a coherent
integration method. A standard coherent integration method
performs cancellation of background noise to achieve the
improvement of SNR. Comparably, our designed method uti-
lizes the eigenvalues of Wigner matrices [31]–[34] (a classical
random matrix) to capture high speed targets. In other words,
we undertake eigenvalue based cancellation of background
noise in order to improve SNR. Besides, the existence of
ultra high speed targets can seriously disturb the spectral
distribution of Wigner matrices, compared with that of low
speed targets. The difference of interference degrees can be
utilized to identify the velocity range of the detected target,
which can be measured by the Kullback-Leibler divergence

(KLD) [35] between different spectral distributions of multiple
velocities.

The rest of this paper is organized as follows. In Section II,
we introduce preliminaries about Wigner matrices to facilitate
the understanding of the proposed identification and detection
method. In Section III, the echo model of an ultra high speed
target is introduced and analyzed. In Section IV, an identi-
fication method of ultra high speed targets based on Wigner
matrices is proposed. We here present the proposed method
in detail and the establishment of identification thresholds
for different velocities. In Section V, an eigenvalue based
detection method for ultra high speed targets is designed, while
the technical details and the computational complexity of the
proposed method are also discussed. Both the theoretical and
experimental justification of the proposed method are reported
in Section VI. Section VII concludes this paper.

II. PRELIMINARIES

In probability theory and mathematical physics, random
matrices play an important role in the fields of telecommuni-
cation, physics, control, and finance. As an important element,
Wigner matrices have been widely used in recent years. They
follow a recognised limiting spectral distribution (LSD) law
that is homogeneous to the semi-circular law [31], [32].

Definition 1 (Wigner matrix). An n×n Hermitian matrix Wn

is a Wigner matrix if its off-diagonal entries are independent
and identically distributed (IID) complex random variables
with zero mean and σ2 = 1 variance, and the diagonal entries
are IID real random variables.

Lemma 1 (Semi-circular law). As n → ∞, the empirical
spectral distribution of the normalized Wigner matrix 1√

n
Wn

converges weakly to the semi-circular law with the density:

f
1√
n
Wn(x) =

1

2π

√
4− x2 1[−2,2](x). (1)

III. THE ECHO MODEL OF ULTRA HIGH SPEED TARGETS

To effectively detect a target via PD radar, the transmission
by radar is a narrow-band linear frequency modulated (LFM)
signal, which is treated as a point target on radar. The
transmitted signal of the PD radar can be denoted as:

s (t) =
∑
m

{
rect

(
t−mTI

TP

)
· exp {j2πfct}

·exp
{
jπk (t−mTI)

2
}}

,

(2)

where, rect (x) is a gate function,

rect (x) =
{

1, |x| ≤ 1
2

0, |x| > 1
2

(3)

where m represents the pulse sequence number, TI denotes
the pulse repetition interval (PRI) of the radar system, TP

denotes the pulse duration, fc is the radar carrier frequency,
and k = B

TP
is the frequency modulated rate with bandwidth

B. Here, t is the fast-time.
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After the demodulation, the echo signals from the point
target can be written as follows:

sr (t) = At ·
∑
m

{
rect

(
α
t− τ −mTI

TP

)
· exp {−j2πfcατ}

·exp
{
jπkα2 (t− τ −mTI)

2
}}

,

(4)

where α = c−v(tm)
c+v(tm) , τ = 2r(tm)

c−v(tm) is the time delay in
which v (tm) and r (tm) are the instantaneous velocity and
the instantaneous distance between the target and the radar, tm
is the slow-time, and c is the velocity of light. At represents
the fluctuant change of the echo amplitudes. For a low speed
target, since the instantaneous velocity v (tm) is much less
than the velocity of light c, α ≈ 1 and τ ≈ 2r(tm)

c . However,
for an ultra high speed target, the instantaneous velocity v (tm)
of the target cannot be ignored in the calculation of α and τ .

For an ultra high speed target, since the velocity v (t) of
the target cannot be ignored, compared against the velocity of
light, the matched filter is no longer uH (−t) but uH (−αt),
where u (t) = rect

(
t

TP

)
exp

{
jπkt2

}
, and uH denotes the

conjugate transpose of u. When the velocity and acceleration
satisfy the following relationship [36]:

|v|TP <
c

2B
or a <

λB

TP (2 +BTP )
, (5)

where a is the acceleration of the target and λ is the wave-
length, we can also use uH (−t) as the matched filter.

The echo signal sMF (t) after the matched filtering is

sMF (t) = A0sinc [B (t− τ)] exp {−j2πfcατ} , (6)

where, A0 is the amplitude of the echo after the matched
filtering.

According to Eq. (6), the Doppler frequency of the ultra-
high speed target can be calculated as

fd =
fcd (ατ)

dtm
=

fcd
(

2r(tm)
c+v(tm)

)
dtm

=
2fcdr (tm)

[c+ v (tm)] dtm
− 2fcr (tm) dv (tm)

[c+ v (tm)]
2
dtm

,

(7)

where, the instantaneous distance r (tm) can be expressed as
the Taylor series expansion,

r (tm) = r0 +
∞∑
k=1

[
r(k) (0)

k!
tkm

]
≈ r0 +

K∑
k=1

[
r(k) (0)

k!
tkm

]
,

(8)
where, r0 is the initial range between the target and the radar,
r(k) (0) denotes the k-order derivative of r (tm) at tm = 0.
Since the instantaneous distance r (tm) of the ultra-high speed
target should contain not only the term of range migration,
but also the higher order term of range curvature, we usually
use K = 3 to describe the ultra-high speed target. Then, the
instantaneous radial velocity v (tm) can be computed as

v (tm) =
dr (tm)

dtm
=

K∑
k=1

[
r(k) (0)

(k − 1)!
tk−1
m

]
. (9)

According to Eqs. (8) and (9), the first term of the right hand
side of Eq. (7) can be expressed as

2fcdr (tm)

[c+ v (tm)] dtm
=

2fcv (tm)

c+ v (tm)
= 2fc −

2fcc

c+ v (tm)

= 2fc −
2fcc

c+
∑K

k=1

[
r(k)(0)
(k−1)! t

k−1
m

] , (10)

and the second term of the right hand side of Eq. (7) can be
expressed as

2fcr (tm) dv (tm)

[c+ v (tm)]
2
dtm

=
2fcr (tm)

∑K
k=2

[
r(k)(0)
(k−2)! t

k−2
m

]
[c+ v (tm)]

2

=
2fc

(
r0 +

∑K
k=1

[
r(k)(0)

k! tkm

])∑K
k=2

[
r(k)(0)
(k−2)! t

k−2
m

]
[
c+

∑K
k=1

[
r(k)(0)
(k−1)! t

k−1
m

]]2 .

(11)

The exponents of the numerator and the denominator in Eq.
(11) are the same, both of which are 2K−2, and the first term
of the right hand side of Eq. (7) which is shown in Eq. (10) has
the form of an inverse proportional function of slow-time. The
Doppler frequency of the ultra-high speed target expressed in
Eq. (7) is no longer a linear function of slow-time. Therefore,
the target detection methods, based on the assumption that
the Doppler frequency is LFM, are not suitable for ultra-high
speed targets anymore.

IV. IDENTIFICATION OF ULTRA-HIGH SPEED TARGETS

Since ultra-high speed targets have a higher velocity than
regular military targets, we cannot use those systems designed
for low- and mid-velocity targets; so we have to propose
a new method to detect and identify high speed targets. In
this section, we will propose an easy and effective method
to identify them by using the spectral property of Wigner
matrices in finite dimensions.

A. Identification Theory

Suppose that both low speed and ultra-high speed targets,
which presumably have the same Radar Cross-Section (RCS)
[37], exist in each pulse during a short observation time. After
demodulation and matched filtering which are introduced in
Section III, these targets very likely hold very similar energy
in the received data. Thus, it is very difficult to identify them
using energy estimation. Due to the short observation time and
ultra high speeds, the energy in each range bin is relatively
low, and consequently the Doppler information is hard to be
extracted. Therefore, the echoes of the ultra high speed targets
accompany the problem of Doppler ambiguity. Here, we will
identify them using the difference of the numbers of the range
bins instead of the Doppler maps.

Assume that the number of the engaged range bins of a low
speed target is denoted as P , and the number of the involved
range bins of an ultra high speed target is denoted as K, where
the difference between them satisfies ∆r = K−P > 0 during
a short observation time TO. The received sampling data can
be constructed as a two-dimensional matrix R in a range and
slow-time domain. The number of the rows of the matrix R
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Fig. 1. Illustration of the range bin where the target exists in each pulse.

is the observed number of PRI, which can be calculated as
M = ⌊TO

TI
⌋. Without loss of generality, we let the target move

along an initial observation distance and exist within the whole
short observation time. We choose the first K range bins for
testing, allowing the echo of an ultra high speed target to
appear in the test matrix.

The target energy can be gathered in one range bin effective-
ly after the matched filtering and the target energy in the other
range bins has little effect on the identification results. For the
simplicity of the theoretical derivation, we ignore the target
energy in the other range bins. The two-dimension matrix R,
whose size is M × K, is illustrated in Fig. 1. Therein, we
denote the number of pulses where the target exists in the kth

range bin as ck, which satisfies the following condition:
for low speed targets:
c1 + c2 + · · ·+ cP = M ; cP+1 = · · · = cK = 0
for ultra high speed targets:
c1 + c2 + · · ·+ cK = M

.

(12)

Then, the two-dimensional matrix RM×K for testing can be
expressed as:

RM×K = (rij)
M,K
i=1,j=1

=

{
ηij + nij , i ∈ Ck,Ck ̸= ∅, j = k, k = 1, 2, · · · ,K

nij , others
,

(13)

where Ck is the set of the serial numbers of the row in which
the target signal exists in the kth range bin. It can be calculated
as:

Ck =

{
{∆k−1 + 1, · · · ,∆k−1 + ck} ,∆k > ∆k−1

∅ ,∆k = ∆k−1
,

(14)
wherein ∆k =

∑k
i=1 ci and ∆0 = 0, nij are IID random

variables drawn from a standard normal distribution. Since
the observation time is very short, the velocity of the target
can be regarded as a constant. We can use the same value η
to represent the gathered energy ηij in each pulse after the
matched filtering.

The sample covariance matrix of RM×K can be calculated
as:

ΦR =
1

M − 1
RT R = ΦN +ΦS +ΦN,S, (15)

where the symbol (·)T denotes the transpose, ΦN is the noise
component after the matched filtering, ΦN,S is a cross term

related to the target and noise, and the component ΦS which
contains the target information is:

ΦS = diag

{
c1η

2

M − 1
,

c2η
2

M − 1
, · · · , cKη2

M − 1

}
. (16)

In practice, after the matched filtering, the elements of the
noise component ΦN are correlated. Here, an additional decor-
relation technique can be adopted to remove the correlation
between the elements of ΦN, e.g. [41]. The sample covariance
matrix ΦR can be recast as:

Φ†
R = Q−1ΦNQ−1+Q−1 (ΦS +ΦN,S)Q−1 = Φ†

N+Φ†
S, (17)

where Q = E
[
nrnT

r

]
, nr is a K × 1 output vector of the

matched filter whose input is a white Gaussian noise vector,
and (·)−1 denotes matrix inversion.

As M → ∞ (usually M ≥ 100), we have Φ†
N → IK , where

IK is the K×K identity matrix, and
√
M

(
Φ†

N − IK
)

as ΦW ,
which is a Wigner matrix. Thus, the sample covariance matrix
Φ†

R can be reconstructed as follows:

Φ̃R =
√
M

(
Φ†

R − IK
)
= ΦW + Φ̃S, (18)

where

Φ̃S =
√
MΦ†

S =
√
MQ−1 (ΦS +ΦN,S)Q−1. (19)

Since ΦW is a random matrix, Φ̃R is naturally a random
matrix. We denote the eigenvalues and eigenvectors of matrix
Φ̃R as λ̃k and φ̃λ̃k , k = 1, 2, · · · ,K, where the eigenvalue λ̃k

can be treated as a random variable with probability density
function (PDF) f̃k (λ). As a result, we have:

K∑
k=1

Φ̃R (h, k) φ̃λ̃h (k) = λ̃hφ̃
λ̃h (h) . (20)

When φ̃λ̃h (h) ̸= 0, Eq. (20) can be recast as:

K∑
k=1,k ̸=h

Φ̃R (h, k)
φ̃λ̃h (k)

φ̃λ̃h (h)
+ Φ̃R (h, h) = λ̃h. (21)

We denote φ̃λ̃h (k)

φ̃λ̃h (h)
by b (h, k), and Eq. (21) can be written

as:
K∑

k=1,k ̸=h

Φ̃R (h, k) b (h, k) + Φ̃R (h, h) = λ̃h. (22)

According to Eqs. (18) and (19), matrix Φ̃S can be approx-
imated to a diagonal matrix, so we have:

Φ̃R (h, k) =

{
ΦW (h, k) , k ̸= h

ΦW (h, h) + Φ̃S (h, h) , k = h
. (23)

Therefore, Eq. (22) can be written as:

K∑
k=1,k ̸=h

ΦW (h, k) b (h, k) + ΦW (h, h) = λ̃h − Φ̃S (h, h) .

(24)
Comparing Eq. (24) with (22), since λ̃h are the eigenvalues

of matrix Φ̃R shown in Eq. (22), we recognise that λh =
λ̃h − Φ̃S (h, h), where h = 1, · · · ,K are the eigenvalues of
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Wigner matrix ΦW , whose PDF can be denoted by fh (λ),
and the global PDF f (λ) of these eigenvalues is [34]:

f (λ) =
1

K

K−2∑
i=0

h2
i (λ) +

1

2K
h2
K−1 (λ) . (25)

where K is even and hi (x) is the normalized Hermite func-
tion, which can be written as
hi (x) =

(√
π · 2i

)− 1
2 ·(i!)

1
2 ·e− 1

2x
2 ·
∑⌊ i

2 ⌋
l=0

[
(−1)l

l!(i−2l)! (2x)
i−2l

]
.

Thus, the PDFs of random variable λ̃h, where h =
1, 2, · · · ,K, are shown below:

f̃h (λ) = fh

(
λ− Φ̃S (h, h)

)
, (26)

and we denote the global PDF of eigenvalues λ̃h, h =
1, 2, · · · ,K, as f̃ (λ). The difference between f̃ (λ) and f (λ)
can be used to identify the targets with different velocities.
Proposition 1 states mathematically that there must be a
difference between the two PDFs, when the target exists.

Proposition 1 (Identification principle). Let λ(h, ζ), h =
1, 2, · · · ,K be random variables from a random process λ(ζ),
each of which is of PDF f̃h (λ, θh), where θh = Φ̃S (h, h).
For a fixed ζ, we have PDF f̃ (λ), based on the samples
λ(h, ζ), h = 1, 2, · · · ,K, is not equal to f (λ).

Proof: For a fixed ζ, the cumulative distribution function
(CDF) based on the samples λ(h, ζ), h = 1, 2, · · · ,K can be
expressed as follows:

F (λ|ζ) =
∑K

h=1 I(λ(h, ζ) ≤ λ)

K
, (27)

where I(·) is an indicator function.
The expectation of F (λ|ζ) for variable ζ is:

E [F (λ|ζ)] ≈
∑K

h=1 E [I(λ(h, ζ) ≤ λ)]

K

=

∑K
h=1

[∫ λ

−∞ f̃h (x, θh) dx
]

K
=

∫ λ

−∞

[∑K
h=1 f̃h (x, θh)

]
dx

K
,

(28)

where E [F (λ|ζ)] =
∫ λ

−∞ f(x)dx if and only if θ1 = θ2 =
· · · = θK = 0.

When the target exists, the parameters θh, h = 1, · · · ,K
are not equal or satisfy θ1 = θ2 = · · · = θK ̸= 0. Thus, we
reach the conclusion that, for a fixed ζ, the PDF f̃ (λ) based
on the samples λ(h, ζ), h = 1, 2, · · · ,K is not equal to f (λ).

According to Proposition 1, we can use the difference
between f̃ (λ) and f (λ) to identify the targets with different
velocities. Here, KLD is used to measure the difference
between these two PDFs, used as the identification criterion.
The next subsection presents its computation method and its
null and alternative distributions in more detail.

B. Determining Identification Thresholds

Since the interval of the eigenvalues of matrix Φ̃R is indeter-
minate, for the convenience of the numerical KLD calculation,
the probability integral transform (PIT) can be used here to

Fig. 2. Detailed calculation procedure for estimating DKL.

transform the eigenvalues to the interval [0, 1]. After we use the
PIT λ̂h = F

(
λ̃h

)
, the original eigenvalues can be transformed

into an equivalent set Λ̂ =
{
λ̂h, h = 1, 2, · · · ,K

}
, where, the

CDF F (λ) of the Wigner matrix in a finite dimension is [33]:

F (λ) =
1

K

∫ λ

−∞
h2
0 (x) dx+

1

K

∫ λ

−∞
h2
1 (x) dx

+
1

K

K−2∑
i=2

[
1√

π · 2i · i!
· Ci (λ) + Φ

(√
2λ

)]
+

1

2K

[
CK−1 (λ)√

π · 2K−1 · (K − 1)!
+ Φ

(√
2λ

)]
,

(29)

where:

Ci (x) = −e−x2

Hi (x)Hi−1 (x) + (−1)
i
e−x2

i−1∑
t=1

{
(−1)

t ·

2t ·

[
t−1∏
s=0

(i− s)

]
· (−1)

i−t−1 ·Hi−t (x) ·Hi−t−1 (x)

}
,

(30)

and Hi (x) = i!
∑⌊ i

2 ⌋
l=0

(−1)l

l!(i−2l)! (2x)
i−2l.

If a high speed target does not exist in the scene, the entries
of set Λ̂ come from the uniform distribution U [0, 1]. Therefore,
since set Λ =

{
λ̃h, h = 1, 2, · · · ,K

}
⇒ Λ̂, F̃ (x) ⇒ Ũ (x) =

1
K#

{
h ≤ K : λ̂h ≤ x

}
, where ⇒ denotes the mapping, #

denotes the cardinality of the set, and F̃ (x) is the CDF of
PDF f̃ (x) based on the samples λ̃h, h = 1, 2, · · · ,K. Now,
we calculate the KLD between the CDF Ũ (x) and the uniform
distribution U [0, 1] to measure the difference between f̃ (λ)
and f (λ), which is the identification criterion.

We denote ut, where t = 0, 1, · · · , T , as the equally spaced
partition points in the interval [0, 1] [39], and 0 = u0 < u1 <
· · · < uT = 1. The KLD can be numerically recast as:

DKL ≈

log T +

T∑
t=1

Ũ (ut)− Ũ (ut−1)

K
log

Ũ (ut)− Ũ (ut−1)

K
.

(31)

The calculation procedure for estimating DKL is illustrated
in Fig. 2.

Next, we will derive the null and alternative distributions
of the identification criterion DKL respectively to obtain the
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identification threshold, identification probability and corre-
sponding false identification rate.

Firstly, we specify the null distribution of DKL. When a
target does not exist in the scene, the relationship between
DKL and G tests is DKL = G

2K , and the relationship between
G and χ2 tests is G ≈ X2. Thus, we have DKL = 1

2KX2.
Since X2 has a χ2 distribution with T − 1 degrees of
freedom, the characteristic function of the χ2

T−1 distribution is

ΦX2(t) = (1− 2it)
−T−1

2 . According to the linear relationship
between X2 and DKL, the characteristic function of DKL is

ΦDKL
(t) = ΦX2(

1

2K
t) =

(
1− it

K

)−T−1
2

, (32)

which is the characteristic function of a gamma distribution
with the shape parameter µ = T−1

2 and the scale parameter
θ = 1

K . Thus, the CDF of DKL with no target can be
expressed as follows:

F0 (x, µ, θ) =
1

Γ (µ)
γ
(
µ,

x

θ

)
, (33)

where Γ (·) is a complete gamma function, and γ (·) is the
lower incomplete Gamma function.

Then, we consider the expression of the alternative distri-
bution of DKL by utilizing a chi-squared test.

We first calculate the theoretical probability distribution of
the eigenvalues which contain a high speed target. Based on
Eq. (29), we have ũt = F−1 (ut), that is F (ũt)−F (ũt−1) =
1
T , t = 1, 2, · · · , T , where F−1(·) is the inverse function of
F (·). We define Pt = F̃ (ũt)− F̃ (ũt−1), t = 1, 2, · · · , T − 1,
where, F̃ (·) is the CDF of f̃(·), and PT = 1 − F̃ (ũT−1).
Thus, the theoretical probability distribution, after PIT has
been performed, is:

P̃t =
P · Pt

K
+

K − P

K · T
, (34)

where, for an ultra-high speed target, P = K, and for another
velocity v, P = ⌈ vTO

∆r
⌉, where, ∆r is the range resolution.

Then, through introducing the theoretical probability dis-
tribution P̃t to the calculation of KLD, and denoting
Ũ(ut)−Ũ(ut−1)

K by P̂t, the KLD in Eq. (31) can be recast as:

DKL = log T +

T∑
t=1

P̂t log P̂t

=
T∑

t=1

P̂t log
P̂t

P̃t

+
T∑

t=1

(
P̂t − P̃t

)
log P̃t + C (v,ΦS) ,

(35)

where C (v,ΦS) is a function of target velocity v and target
component ΦS, which can be computed as:

C (v,ΦS) =
T∑

t=1

P̃t log P̃t + log T, (36)

where, by substituting the specific form of P and Pt into Eq.
(34), the theoretical probability distribution P̃t is

P̃t =
⌈ vTO

∆r
⌉
[
F̃ (ũt)− F̃ (ũt−1)

]
T +K − ⌈ vTO

∆r
⌉

KT
. (37)

By using the Taylor expansion, the numerical KLD in Eq.
(35) can be written as:

DKL = E
[
P̂t − P̃t

]
+

T∑
t=1

(
P̃t − P̂t

)2

2P̂t

+ C (v,ΦS)

=

T∑
t=1

(
P̃t − P̂t

)2

2P̂t

+ C (v,ΦS) =
1

2K
X2 + C (v,ΦS) .

(38)

Since 1
2KX2 has a Gamma distribution Gam

(
T−1
2 , 1

K

)
, the

CDF of DKL with a target is

FI (x, v, µ, θ) =
1

Γ (µ)
γ

(
µ,

x− C

θ

)
, x > C, (39)

where µ = T−1
2 , θ = 1

K , and C (v,ΦS) is denoted by C.
According to the null and alternative distributions F0 (·) and

FI (·), we can determine the identification threshold βI , the
identification probability Pd (·) and the false identification rate
Pfi.

Assume the identification velocity is vd. The identification
threshold βI with the false alarm rate P 1

fa is:

βI = F−1
0

(
1− P 1

fa,
T − 1

2
,
1

K

)∣∣∣∣
K=⌈ vdTO

∆r
⌉
, (40)

Using the identification threshold βI , the identification
probability of the ultra high speed target with velocity vd can
be calculated as:

Pd = 1− FI

(
βI , vd,

T − 1

2
,
1

K

)∣∣∣∣
K=⌈ vdTO

∆r
⌉
. (41)

Under the identification threshold βI , the detection proba-
bility of velocity vth, which is called the false identification
rate, can be written as:

P vth

fi = 1− FI

(
βI , vth,

T − 1

2
,
1

K

)∣∣∣∣
K=⌈ vdTO

∆r
⌉
. (42)

V. PROPOSED DETECTION METHOD OF AN ULTRA-HIGH
SPEED TARGET

A. Eigenvalue based Detection

As we know, the integration of different pulses can help sig-
nificantly to improve the target detection performance. MTD
is a traditional technique, which has two shortcomings for de-
tecting high-speed maneuvering targets, i.e. across range unit
(ARU) and Doppler frequency migration (DFM). In order to
handle these problems, Xiaolong proposed Radon-Fractional-
Fourier transform (RFrFT), which treats the Doppler frequency
of a maneuvering target as a LFM signal and uses the FrFT to
increase coherent integration gains after having followed the
target trajectory [17]. However, this method needs to estimate
the motion parameters, sacrificing efficiency that makes it
unsuitable for short-time detection. In this section, we propose
an eigenvalue based short-time integration method. It stems
from a standard coherent integration method but has significant
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innovations. The proposed method does not use the phase
information of the echoes. Instead, it uses the zero expectation
of the eigenvalues of a Wigner matrix to cancel the background
noise, similar to the standard coherent integration method.

To accurately detect a target, we need to concentrate on the
target energy and reduce the noise energy as much as possible.
As shown in Eq. (16), the sum of the diagonal elements of
matrix ΦS can effectively accumulate the target energy, which
can be written as:

Z̃S = (M − 1)
K∑

h=1

ΦS (h, h) . (43)

After decorrelation and reconstruction of matrix ΦR, the
accumulation of the target energy can be obtained by:

ZS = α
K∑

h=1

(
λ̃h − λh

)
, (44)

where α = (M−1)√
M

.
The target detection problem can be formulated as a binary

hypothesis test: H1 : ZR = ZS + ZW , H0 : ZR = ZW ,
where ZW = α

∑K
h=1 λh.

According to the central limit theorem, when the sample
size K is large (usually K ≥ 20), whilst satisfying a practical
radar target detection situation, ZR|H0 closely simulates the
normal distribution with mean αKµ0 and standard deviation
σ = α

√
Kσ0, where µ0 and σ0 are the mean and standard

deviation of the eigenvalues of Wigner matrix ΦW .
Mean µ0: According to Eq. (25), the mean must be 0, i.e.

µ0 = E [λ] = 0.
Variance:

σ2
0 = V ar [λ] =

∫ a

−a

λ2f (λ) dλ

=
1

K

K−2∑
i=0

∫ a

−a

λ2h2
i (λ) dλ+

1

2K

∫ a

−a

λ2h2
K−1 (λ) dλ,

(45)

where a =
√
2K.

To derive Eq. (45), we calculate the integration term∫ a

−a
λ2h2

i (λ) dλ. We substitute the normalized Hermite poly-
nomials into the probabilists’ Hermite polynomials, which has
the relationship hi (λ) = (

√
πi!)

− 1
2 e−

λ2

2 Hi

(√
2λ

)
. Then, the

integration term can be calculated as:∫ a

−a

λ2h2
i (λ) dλ =

1√
πi!

∫ a

−a

λ2e−λ2

H2
i

(√
2λ

)
dλ

=
1√
2πi!

∫ √
2a

−
√
2a

y2

2
e−

y2

2 H2
i (y) dy

(
by setting y =

√
2λ

)
=

1√
2πi!

∫ √
2a

−
√
2a

y2

2
Hi (y) (−1)

i di

dyi
e−

y2

2 dy(
Since Hi (y) = (−1)

i
e

y2

2
di

dyi
e−

y2

2

)
[38]
=

1√
2π

∫ √
2a

−
√
2a

y2

2
e−

y2

2 dy =
1

2
− ae−a2

√
π

− Φ
(
−
√
2a

)
,

(46)

where Φ(x) is the CDF of the standard normal distribution.
If the solution of the integration term is denoted as I (a), the
variance σ2

0 is σ2
0 = 2K−1

2K I
(√

2K
)

.
In order to obtain the detection threshold with a given

false alarm rate and the detection probability, the null and
alternative distributions of the detection statistic ZR should
be first derived.

Under the hypothesis H1, ZR|H1 is also a normal distri-
bution with mean µ1 = α

∑K
h=1 E

[
Φ̃S (h, h)

]
and variance

σ2
1 = α2

∑K
h=1 Var

[
Φ̃S (h, h)

]
, related to the power of the

transmitted signal and the variance of noise. The PDFs of
ZR|H0 and ZR|H1 are:

f (ZR|H0) =
1√
2πσ

e−
Z2
R

2σ2 , (47)

and

f (ZR|H1) =
1√
2πσ1

e
− (ZR−µ1)

2

2σ2
1 . (48)

Therefore, whether or not the target exists can be determined
by the detection threshold ξEigen, that is:

ZR

{
≥ ξEigen, H1

< ξEigen, H0
, (49)

where the threshold ξEigen can be obtained with a given false
alarm rate P 2

fa,

ξEigen =
√
2σerf−1

(
1− 2P 2

fa

)
, (50)

where erf−1 (x) is the inverse function of error function
erf (x).

The detection probability with the threshold ξEigen is de-
termined by:

PD =

∫ +∞

ξEigen

f (ZR|H1) dZR =
1

2

[
1− erf

(
ξEigen − µ1√

2σ1

)]
.

(51)

B. Implementation of the Proposed Method

The diagram of the proposed method is shown in Fig. 3.
There are three main parts in the scheme: (1) Acquisition of
data, (2) statistics for identification of ultra-high speed targets,
and (3) detection of ultra-high speed targets and determination
of the target number and location.

Part (1): Acquisition of data.
Suppose the required detection range is from r0 to r1, which

satisfies the condition that r1 − r0 is an integral multiple
L = r1−r0

∆r of the radar range resolution ∆r = C
2B , where C is

the light velocity. At an azimuth and pitching angle, the radar
receiver can obtain a string of the samples, whose sampling
interval in the distance domain is equal to the range resolution
during a short observation time TO. After demodulation and
PC have been applied to the samples in each PRI TI , a two-
dimensional matrix R in the range and slow-time domain
can be formulated. Suppose the velocity of the target which
we need to detect is V . Then, the number of the detection
range resolution is K = ⌈V TO

∆r ⌉, where ⌈·⌉ denotes the ceiling
function. The detection matrix can be defined as Rl

M×K =
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Fig. 3. Flowchart of the proposed method.

r (i, j) , i = 1, 2, · · · ,M, j = l + 1, l + 2, · · · , l + K, where
M = ⌊TO

TI
⌋, ⌊·⌋ denotes the floor function, and l is an indicator

of the starting detection distance with l = 0, 1, · · · , L− 1.
Part (2): Statistics for identification of ultra-high speed

targets.
For generating the statistics, the indicator l starts from 0,

and the identification statistics Dl
KL can be formed as shown

in Fig.2. Rl
M×K is the input and Dl

KL is the output. Suppose
we now detect the ultra-high speed targets from the low speed
targets whose velocity is less than V0. The parameter P can
be obtained as P = ⌈V0TO

∆r ⌉, and the identification threshold
βI can be determined by Eq. (40) with the given false alarm
rate P 1

fa and corresponding false identification rates P vth
fi

calculated by Eq. (42). If the identification statistics Dl
KL is

less than the identification threshold βI , we know that there
is no ultra-high speed target in the detection area under the
false alarm rate P 1

fa and false identification rates P vth

fi , or
the ultra-high speed target which exists in the detection area
cannot be effectively detected. We then continue to investigate
the identification statistics Dl′

KL for the next detection area,
i.e. l′ = l+1. However, if the identification statistics Dl

KL is
equal to or greater than the identification threshold βI , there
is an ultra-high speed target in the detection area with the
false alarm rate P 1

fa and false identification rates P vth

fi . We
apply the detection matrix to the eigenvalues based detector

for further evaluation of whether or not an ultra-high speed
target exists.

Part (3): Detection of ultra-high speed targets and
determination of the target number and location.

After having evaluated the detection matrix Rl
M×K with the

false identification rates P vth
fi and the false alarm rate P 1

fa,
we now check this matrix with the eigenvalue based detector
for the final decision of whether or not an ultra-high speed
target exists in the detection area. According to Eq. (44), the
detection statistics Zl

R can be derived by:

Zl
R = α

K∑
h=1

λ̃l
h, (52)

where λ̃l
h, h = 1, 2, · · · ,K are the eigenvalues of Φ̃R which

come from the detection matrix Rl
M×K .

If the detection statistics Zl
R is less than the detection

threshold ξEigen, there is no ultra-high speed target in the
detection area with the false alarm rate P 2

fa. Otherwise, there
is an ultra-high speed target in the detection area. We store
the detection statistics Zl

R in an empty-vector Θ1×L, and the
stored element is Θ(l + 1) = Zl

R. When the search of the
indicator l is completed, the empty elements of vector Θ1×L

are replaced by zero. We then look for the peaks of vector
Θ1×L, that is:

[Apk,Qloc] = findpeaks (Θ1×L) , (53)

where the elements of vector Apk refer to the peak values, and
the elements of vector Qloc are the corresponding indicators
for us to render the detection distance.

We initiate the starting distance of detection as the starting
distance of the ultra-high speed target, which enables us to
obtain better detection statistics. The length of vector Apk

refers to the number of ultra-high speed targets, and the start-
ing distance of ultra-high speed targets is r0 + (Qloc − I)∆r,
where the elements of vector I are set to be one, having the
same length as that of vector Qloc.

C. Computational Complexity Analysis

The computational complexity of the proposed identification
and detection method for ultra high speed targets mainly
comes from the calculation of covariance matrix ΦR shown
in Eq. (15) and the eigenvalue decomposition of matrix ΦR.
Suppose the detection range contains L range bins, and the
size of the test matrix R is M × K. The computational
complexity of the sample covariance matrix is O

(
K2M

)
. For

the eigenvalue decomposition of matrix ΦR, the computational
complexity is O

(
K3

)
. Since we need to search over L range

bins, the computational complexity of the proposed method
can be written as:

O
(
K2ML+K3L

)
. (54)

Since M > K, the computational complexity of the
proposed method can be simplified as O

(
K2ML

)
.

Now, we compare our proposed method with the existing
RFrFT and RLVD methods, which are recognised maneuver-
ing target detection and estimation methods. The FrFT is the
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core component of the RFrFT method, whose computational
complexity is O (p1M log2 M), where, p1 is the number of the
searching transform angles in the FrFT. In addition, the RFrFT
method also needs to search for the motion parameters, such
as range, initial velocity and acceleration, where the searching
number can be denoted as L, p2 and p3 respectively. Thus,
the total computational complexity of the RFrFT method is
O (p1p2p3ML log2 M). To successfully explore the motion
parameters, the searching numbers p1, p2, p3 must be large
enough, while the value of parameter K is very small (usually
K ≤ 30) in our method. Besides, the echos of ultra high speed
targets accompany Doppler ambiguity, and the RFrFt method
requires extra computation complexity to deal with the prob-
lem. Therefore, the computational complexity O

(
K2ML

)
of

our method is much less than that of the RFrFT method.
Since the computational complexity of LVD based on 2D

FFT is O
(
M2 log2 M

)
[19] and the RLVD method also needs

to search for the motion parameters, such as range, initial
velocity and acceleration, wherein the searching numbers are
denoted as L, p2 and p3 respectively. Therefore, the total
computational complexity of the RLVD method is

O
(
Lp2p3M2 log2 M

)
, (55)

where, the searching numbers p2 and p3 must be large enough
to find the true motion parameters. Obviously, the computa-
tional complexity O

(
K2ML

)
of our proposed method is also

much less than that of the RLVD method.

VI. SIMULATION RESULTS

In this section, we first validate the correctness of the
proposed method in theory by comparing the expected values
(marked as Theo) using the derived equations against the
experimental values (marked as Monte) via the standard Monte
Carlo method [40]. Then, the identification and detection
performance are simulated to verify the superiority of our
proposed method. Finally, the system performance of the
proposed method is demonstrated by applying it to a simulated
detection scenario. In the simulations, the transmitted signal
is a narrow-band LFM signal, where the parameters are
empirically set as: Pulse repetition time TI = 0.001s, emitter
wavelength λ = 0.1m, waveform bandwidth B = 3.75MHz,
and pulse duration TP = 2.7us. For demonstration purposes,
we suppose that the target flies away from the radar and the
angle between the target velocity and the line of sight to the
radar is zero.

A. Validation of the Theoretical Analysis

In this subsection, the correctness of the distributions of the
identification and detection statistics, formulated as Eqs. (33),
(39), (47) and (48), are verified.

1) The Distribution of Identification Statistics: The cor-
rectness of the distributions of identification statistics DKL,
formulated as Eqs. (33) and (39), can justify the distribution
of the eigenvalues of matrix Φ̃R shown in Eq. (26). It also
verifies the correctness of the identification threshold by Eq.
(40), identification probabilities by Eq. (41), and the false
identification rate by Eq. (42).
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Fig. 4. Thresholds versus false alarm rates for the identification stage with
different K test range bins, where the dotted lines denote the experimental
values and the solid lines denote the expected values by Eq. (40) (TO = 0.1s).

For validating the correctness of the identification statistics
in the case where the target does not exist, we suppose
the observation time TO is 0.1s, suggesting that the row
number M of the test matrix is set to be 100, leading to the
verification results shown in Fig. 4 with K test range bins. It
clearly demonstrates that our derived Gamma distribution of
the identification statistics, formulated in Eq. (33), is correct
as the thresholds by Eq. (40) (shown as solid lines) are very
close to those of the Monte Carlo simulations (shown as dotted
lines) for different false alarm rates.

For validating the correctness of the distributions of the
identification statistics in the case where a target exists, we
assume that the velocity of the ultra high speed target is 20Ma,
the acceleration is 10m/s2, the observation time TO is 0.1s,
and the target starts moving at the beginning of the observation
time. Using the identification velocity, we can determine the
number K of the test range bins is 20. Fig. 5 denotes the
comparisons between the expected values (shown as red lines)
by Eq.(41) and the experimental values (shown as blue lines)
by the Monte Carlo method with four SNRs (−5dB, −3dB,
3dB and 5dB). As shown in Fig. 5, for each SNR, we see that
the curve of the experimental values looks similar to that of the
theoretical values, from which we conclude that the derived
distribution with the CDF formulated as Eq. (39) is correct.
From the four subfigures, we observe that the higher the SNR
is, the more the identification statistics DKL is, reflected by the
parameter C (v,ΦS) of the derived distribution. It suggests that
the higher the SNR of the echoes is, the better identification
performance can be achieved.

2) Distribution of Detection Statistics: The validation of
the correctness of the distributions of the detection statistics
ZR, formulated as Eqs. (47) and (48), can not only verify the
correctness of the means µ0, µ1, and the variances σ0, σ1, but
also verify the correctness of the detection thresholds ξEigen

by Eq. (50), and the detection probabilities by Eq. (51).
For the validation of detection statistics ZR|H0, we suppose

the observation time TO is 0.1s, and the verification results are
shown in Fig. 6 with K test range bins. In Fig. 6, we notice
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Fig. 5. Validation of the cumulative distribution of the identification statistics
in the case where the target exists with different SNRs: Blue lines denote the
experimental results and red lines denote the expected values by Eq. (41).
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Fig. 6. Thresholds versus false alarm rates for the detection stage with
different K test range bins, where dotted lines denote the experiment values
and the solid lines denote the theoretical values using Eq. (50).

that the detection threshold curve by the Monte Carlo method
looks similar to that of Eq. (50) except for some rotations.
Meanwhile, we also observe that the detection thresholds of
the Monte Carlo method, the estimation of mean µ0, are close
to zero when the false alarm rate is 0.5, and the rotation angles
of these curves, representing the estimation errors of variance
σ2, are small. Thus, we conclude that the distribution of the
detection statistics in the case where the target does not exist
approaches to a normal distribution, shown as Eq. (47).

For the validation of detection statistics ZR|H1, we also
assume that the velocity of the ultra high speed target is 20Ma,
the acceleration is 10m/s2, the observation time TO is 0.1s,
and the target starts moving at the beginning of the observation
time. Supposing the identification velocity is 20Ma, we can
determine the number K of the test range bins as 20. The
comparison between the theoretical values (shown as red lines)
by Eq. (51) and the experimental values (shown as blue lines)
by the Monte Carlo method is achieved with four different
SNRs (−5dB, −3dB, 3dB and 5dB). As shown in Fig. 7, for
each SNR, we find that the curve of the experimental values
looks similar to that of the theoretical values. The discrepancy
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Fig. 7. Validation of the cumulative distribution of identification statistics
ZR|H1 with different SNRs, where blue lines denote the experimental values
and the red lines denote the theoretical values by Eq. (51).

between these curves attributes to the estimation error of mean
µ1 and variance σ2

1 shown in Eq. (48) for the Monte Carlo
method. We believe that the derived distribution whose PDF
is formulated as Eq. (48) is correct. From the four subfigures,
we observe that the higher the SNR is, the better the detection
statistics ZR|H1 become, reflected by the mean µ1 of the
derived distribution. This indicates that the higher the SNR
of the echoes, the better the detection performance for ultra
high speed targets is, given a proper false alarm rate.

B. Identification Performance Analysis

Although the established identification methods have shown
promising performance, they have to seek appropriate motion
parameters in a large search space. In real battle fields, it is
extremely demanding to efficiently and accurately estimate the
velocity of an ultra high speed target. Here, we compare our
identification method against the standard Doppler method,
which is reliable and efficient, instead of other intelligent but
time-consuming detection methods to evaluate the identifica-
tion performance of our proposed method.

The simulated observation time TO is 0.15s, and the number
K of the test range bins is 20. Suppose the target starts moving
at the beginning of the observation time. In order to study the
identification performance at different identification velocities,
the identification probabilities of each velocity are simulated
with the false alarm rate P 1

fa = 10−3 in different simulated
SNRs, which are listed in Table I (for the identification of
high-hypersonic target with velocity 15Ma), Table II (for the
identification of a hypersonic target with velocity 8Ma) and
Table III (for the identification of a high speed target with
velocity 4Ma). In each table, we notice that, for the identified
velocity, its identification performance is the best, while, for
other velocities, the further a velocity is away from the identi-
fied velocity, the worse the identification performance is. How-
ever, the Doppler method always has a superior identification
performance for low speed targets, but has poor identification
performance for ultra high speed targets. This is because the
higher the velocity of the target is, the less the energy is
accumulated in one range bin for the established identification
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Fig. 8. Detection probability vs signal to noise ratio for high-hypersonic
targets with velocities 10Ma and 15Ma (B = 3.75MHz).
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Fig. 9. Detection probability vs signal to noise ratio for hypersonic targets
with velocities 6Ma and 8Ma (B = 7.5MHz).

methods with low computational complexity. Therefore, our
proposed identification method supports identification if the
target velocity from the other velocities. For the identifica-
tion velocity in each table, our identification performance
is obviously superior to the Doppler method. For example,
in Table I, the identification probabilities of the identified
velocity 15Ma are all 100%, while those of the Doppler
method are all 0, with the simulated SNRs. Therefore, our
proposed identification method has much better identification
performance than the standard identification methods which
have low computational complexity. Furthermore, from Tables
I, II and III, our proposed method is suitable for high speed,
hypersonic and high-hypersonic targets, respectively.

C. Detection Performance Analysis

To demonstrate the detection performance of our proposed
method, we compare our method against three state of the
art detection methods, including RLVD, RFrFT, maximum-
minimum eigenvalue (MME) [41], [42], MTD and RT. They
are the most advanced methods recently developed in the field.
The RLVD and RFrFT methods are advanced coherent integra-
tion methods with high computational complexity. MTD is a

classical coherent integration method with light computational
complexity. MME is an advanced spectrum sensing method
based on the eigenvalues of the received signals. RT is an
incoherent integration method. Simulation parameters are set
to be: the observation time TO is 0.15s, the number K
of test range bins is 20, and the false alarm rate P 2

fa is
10−3. We also assume that the target starts moving at the
beginning of the observation time. We conduct simulations
for high-hypersonic targets with velocities 10Ma, 15Ma and
the hypersonic targets with velocities 6Ma, 8Ma. For high-
hypersonic targets, the bandwidth of the transmitted signal
is 3.75MHz. For hypersonic targets, the bandwidth of the
transmitted signal is 7.5MHz. The acceleration is set as
10m/s2.

Figs. 8 and 9 show the detection probability curves with
different SNRs for high-hypersonic and hypersonic targets,
respectively. As shown in Fig. 9, even for the detection of
a target with a high speed 6Ma, the detection performance
of RFrFT is still better than that of our proposed detection
method. The RFrFT method can detect the target of velocity
6Ma effectively with the SNRs of −13dB and above, while
our proposed method needs to be with the SNRs of −11dB
to implement an effective detection. With the increase of the
target velocity, the detection performance of RFrFT continues
to decline, while the performance of our proposed method for
ultra-high speed targets almost remains unchanged. As shown
in Fig. 8, when the velocity of the moving target is 10Ma, the
RFrFT method has almost the same detection performance as
our proposed detection method, both of which can detect the
target effectively until the signal-to-noise ratio (SNR) declines
to −11dB. Furthermore, when the velocity of the moving tar-
get increases to 15Ma, the SNR of an effective detection needs
more than −10dB for the RFrFT method, whilst the SNR of
our proposed detection method still stay around −11dB. As
shown in Figs. 8 and 9, although the RLVD method is still
based on the assumption that the Doppler frequency is LFM,
the degenerative detection performance of RLVD is better than
that of the RFrFT method and our proposed detection method
for ultra-high speed targets. However, with the increase of the
target velocity, the degradation of the detection performance of
the RLVD method continues, while our proposed coherent-like
detection method can almost keep its performance. According
to the analysis of computational complexity presented in
Section V-C, our proposed method has lower computational
complexity than the RFrFT method and the RLVD method.
Thus, our proposed method is efficient for the short time
detection. In addition, for different velocities, our proposed
method maintains consistent detection performance, while
all the other methods have unstable detection performance.
Therefore, our proposed detection method is robust against
different noise levels. From Figs. 8 and 9, we also observe that
the lower the velocity, the higher the detection performance
achieved by each detection method.

D. Identification and Detection of Moving Targets

In the previous subsections, we have validated the superior-
ity of our proposed method in the identification and detection
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TABLE I
IDENTIFICATION PROBABILITIES OF TARGETS WITH DIFFERENT VELOCITIES IN DIFFERENT SIGNAL TO NOISE RATIOS (SNRS) FOR THE IDENTIFICATION

OF HIGH-HYPERSONIC TARGET WITH VELOCITY 15Ma (P 1
fa = 10−3 , B = 3.75MHz, K = 20, TO = 0.15s).

Velocity Method SNR
−2dB −1dB 0dB 1dB 2dB 3dB 4dB 5dB 6dB 7dB 8dB 9dB

4 Ma Proposed method 0.097 0.105 0.096 0.101 0.119 0.144 0.143 0.133 0.142 0.134 0.138 0.149
Doppler method 0.080 0.192 0.327 0.514 0.737 0.857 0.913 0.926 0.975 0.980 0.986 0.998

6 Ma Proposed method 0.161 0.212 0.222 0.210 0.244 0.269 0.257 0.284 0.254 0.248 0.255 0.264
Doppler method 0.008 0.011 0.023 0.083 0.186 0.331 0.561 0.731 0.858 0.890 0.928 0.957

8 Ma Proposed method 0.296 0.365 0.442 0.594 0.683 0.720 0.720 0.759 0.763 0.760 0.733 0.735
Doppler method 0 0.001 0.007 0.007 0.03 0.056 0.124 0.238 0.429 0.551 0.670 0.737

10 Ma Proposed method 0.498 0.583 0.763 0.892 0.904 0.958 0.998 1 1 1 1 1
Doppler method 0 0 0 0 0 0 0 0.002 0.005 0.004 0.020 0.054

15 Ma Proposed method 1 1 1 1 1 1 1 1 1 1 1 1
Doppler method 0 0 0 0 0 0 0 0 0 0 0 0

TABLE II
IDENTIFICATION PROBABILITIES OF TARGETS WITH DIFFERENT VELOCITIES IN DIFFERENT SIGNAL TO NOISE RATIOS (SNRS) FOR THE IDENTIFICATION

OF HYPERSONIC TARGET WITH VELOCITY 8Ma (P 1
fa = 10−3 , B = 7.5MHz, K = 20, TO = 0.15s).

Velocity Method SNR
−2dB −1dB 0dB 1dB 2dB 3dB 4dB 5dB 6dB 7dB 8dB 9dB

4 Ma Proposed method 0.341 0.401 0.503 0.604 0.703 0.706 0.724 0.699 0.704 0.725 0.738 0.763
Doppler method 0.162 0.378 0.583 0.732 0.829 0.927 1 1 1 1 1 1

6 Ma Proposed method 0.914 0.993 1 1 1 1 1 1 1 1 1 1
Doppler method 0.003 0.003 0.018 0.062 0.083 0.181 0.331 0.598 0.832 0.961 1 1

8 Ma Proposed method 1 1 1 1 1 1 1 1 1 1 1 1
Doppler method 0 0 0.003 0.002 0.008 0.036 0.047 0.132 0.254 0.468 0.690 0.923

10 Ma Proposed method 0.457 0.915 1 1 1 1 1 1 1 1 1 1
Doppler method 0 0 0 0 0.003 0.005 0.011 0.028 0.080 0.170 0.329 0.564

15 Ma Proposed method 0.062 0.111 0.480 0.952 1 1 1 1 1 1 1 1
Doppler method 0 0 0 0 0 0 0 0 0 0.008 0.020 0.042

TABLE III
IDENTIFICATION PROBABILITIES OF TARGETS WITH DIFFERENT VELOCITIES IN DIFFERENT SIGNAL TO NOISE RATIOS (SNRS) FOR THE IDENTIFICATION

OF HIGH SPEED TARGET WITH VELOCITY 4Ma (P 1
fa = 10−3 , B = 15MHz, K = 20, TO = 0.15s).

Velocity Method SNR
−2dB −1dB 0dB 1dB 2dB 3dB 4dB 5dB 6dB 7dB 8dB 9dB

4 Ma Proposed method 1 1 1 1 1 1 1 1 1 1 1 1
Doppler method 0.009 0.025 0.049 0.139 0.241 0.459 0.738 0.903 0.980 0.998 1 1

6 Ma Proposed method 0.194 0.663 0.996 1 1 1 1 1 1 1 1 1
Doppler method 0 0 0.002 0.005 0.011 0.037 0.088 0.168 0.328 0.555 0.762 0.932

8 Ma Proposed method 0.040 0.119 0.510 0.937 1 1 1 1 1 1 1 1
Doppler method 0 0 0 0 0 0.005 0.018 0.033 0.082 0.157 0.294 0.569

10 Ma Proposed method 0.020 0.058 0.127 0.490 0.958 1 1 1 1 1 1 1
Doppler method 0 0 0 0.002 0.002 0 0.003 0.002 0.008 0.027 0.063 0.143

15 Ma Proposed method 0.013 0.016 0.023 0.063 0.178 0.600 0.983 1 1 1 1 1
Doppler method 0 0 0 0 0 0 0 0 0 0 0.001 0.004

stages. In this subsection, we will apply the proposed method
to two real battle scenes: in scene 1, there are four targets: two
high speed targets (v = 2Ma, r0 = 200Km and v = 4Ma,
r0 = 202.5Km) and two ultra high speed targets (v = 10Ma,
r0 = 201.3Km and v = 15Ma, r0 = 203.7Km); in scene 2,
there are also four targets: two high speed targets (v = 2Ma,
r0 = 200Km and v = 4Ma, r0 = 200.7Km) and two
ultra high speed targets (v = 8Ma, r0 = 200.3Km and
v = 10Ma, r0 = 201.1Km). The acceleration of all the targets
is 10m/s2. The simulated SNR is 0dB. The bandwidths of
the transmitted signal in the two scenes are 3.75MHz and
15MHz respectively. The received signals in the range and
slow-time domains, after the matched filtering, are shown in
Figs. 10 and 13, respectively. The left subfigure of Fig. 11
shows the range-Doppler of the radar echoes. We can hardly

observe these targets in the frequency domain. The target
energy is distributed over different range bins and Doppler
cells for each target. From Fig. 10 and the left subfigure of Fig.
11, we observe that although the observation time (0.117s) is
very short, there are still severe ARU and DFM effects to
influence the detection.

The right subfigure of Fig. 11 shows the detection result of
the traditional MTD method. Since the MTD method cannot
solve the ARU and DFM problems, the target energy is still
distributed over different range bins after the MTD processing,
which requires the SNR to be further improved. In addition,
since the ARU and DFM effects of the ultra high speed
target are more serious than those of the high speed target,
the outputs of the ultra high speed targets are mixed with
the output of the low speed targets for the MTD method as
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targets (10 Ma, 25 Ma), after the matched filtering, under the Gaussian noise
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Fig. 12. Identification and detection of an ultra high speed target with
velocity 15Ma: The left subfigure is the output of the identification. The
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shown in the right subfigure of Fig. 11. Thus, we are unable
to identify the ultra high speed targets from the high speed
targets by using the traditional MTD method.

However, the identification output for the identified velocity
15Ma is larger than those of the other velocities using our
proposed method, as shown in the left subfigure of Fig.
12. Therefore, we can successfully identify the target with
velocity 15Ma using the identification method with false
alarm rate 10−3, whose value is 0.889 (the red dotted line
shown in the figure). We can reuse the test matrix data with the
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4Ma: The left subfigure is the output of the detection statistics. The right
subfigure is the output of the detection (TO = 0.117s, P 1
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identification statistics exceeding the identification threshold
and their starting distance for the next detection stage. The
right subfigure of Fig. 12 reports the detection results of the
ultra high speed target whose velocity is 15Ma. After having
computed the detection statistics of those test matrix data,
we can retrieve the number and location of the ultra high
speed target searching for the maximum from the values of
the detection statistics over the detection threshold. As the
right subfigure of Fig. 12 shows, there is only one ultra high
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speed target with velocity 15Ma and its starting distance is
203.7Km, which is the same as shown in the battle scene
Fig. 10.

Fig. 14 reveals the identification and detection results of a
high speed target with velocity 4Ma. Comparing the iden-
tification threshold with false alarm rate 10−6, whose value
is 1.251 (red dotted line shown in the left subfigure of Fig.
14), we obtain the correct number and location of the high
speed target whose velocity is 4Ma. Therefore, our proposed
identification and detection method can be applied to both
high and ultra-high speed targets. Also, like other detection
methods, if we set up correct thresholds and pick up the
identification threshold with a larger false alarm rate, such as
10−3, we will detect more false targets and true targets whose
velocities are not correct, as shown in the right subfigure of
Fig. 15.

VII. CONCLUSION

The existing advanced target coherent detection methods
normally require high computational complexity, which is un-
acceptable for detecting ultra high speed targets in a short ob-
servation time. Even though these existing detection methods
without knowing motion parameters have low computational
complexity, they often lack sufficient ability to identify differ-
ent velocities. In this paper, a coherent-like detection method
along with velocity identification without the need to search
the motion parameter space has been proposed by balancing
the performance of identification, detection and computational
complexity. Since the proposed method does not use the
phase information of the echoes, it is not a standard coherent
integration method. Our proposed method was based on the
assumption that the expectation of the eigenvalues of Wigner
matrices is equal to zero, namely the eigenvalue cancellation
of background noise, to improve the SNR of the detection
system. The drawback of pursuing high detection performance
is that the detection method loses the information about the
differences of eigenvalues between different velocities, and
therefore it cannot identify different velocities effectively.
Therefore, we intend to design an identification method for
different velocities. The distribution and mean function of
the eigenvalues of an additive Wigner matrix was utilized to
identify the target velocity while detecting ultra high speed
targets. The proposed method can detect the interesting target
well by filtering the targets with less interesting velocities
in a general short-time detection scenario that there are no
overlapping range bins between the targets. In this paper, the
distributions of the identification and detection statistics with
or without a target have been derived in a solid form and
justified in the simulations. The superiority and operability of
our proposed method were also validated.
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