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ABSTRACT
The Java Virtual Machine (JVM) today hosts implementa-
tions of numerous languages. To achieve high performance,
JVM implementations rely on heuristics in choosing com-
piler optimizations and adapting garbage collection behavior.
Historically, these heuristics have been tuned to suit the
dynamics of Java programs only. This leads to unnecessarily
poor performance in case of non-Java languages, which often
exhibit systematic differences in workload behavior. Dy-
namic metrics characterizing the workload help to identify
and quantify useful optimizations, but so far, no cohesive
suite of metrics has adequately covered properties that vary
systematically between Java and non-Java workloads. We
present a suite of such metrics, justifying our choice with
reference to a range of guest languages. These metrics are
implemented on a common portable infrastructure which
ensures ease of deployment and customization.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance attributes;
D.2.8 [Metrics]: Performance measures

General Terms
Languages, Measurement, Performance

Keywords
Workload characterization, dynamic program analysis, byte-
code instrumentation, dynamic metrics
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1. INTRODUCTION
While originally designed for the Java language only, the

Java Virtual Machine (JVM) nowadays is targeted by hun-
dreds of languages ranging from Ada to Z-code. Some of
the more popular languages include Clojure, Groovy, JRuby,
Jython, Kotlin, and Scala. Moreover, numerous domain-
specific languages (DSLs) also target the JVM—for instance,
it is very easy to develop new DSLs in Scala. Java has thus
become one among many languages that run on the JVM.

Since stable, high-performance and mature JVM imple-
mentations are available, the choice of the JVM as a target for
newly launched languages is natural. Its automatic memory
management and adaptive optimizations allow the developers
of DSLs or newly-launched JVM languages1 to focus on the
language’s high-level features.

Despite hosting so many languages, today’s JVM imple-
mentations have primarily been tuned with respect to charac-
teristics of Java programs only. Ideally, a JVM would handle
all the JVM languages equally well, with respect to the
performance achieved by just-in-time compilation, memory
management and so on.

To guide developers towards this goal, we require the means
of characterizing the full range of workloads on the JVM,
including applications written in different JVM languages.
Two classes of artifact are useful for this: benchmarks and
metrics. The former draw representative samples from the
space of application code, while the latter identify useful
performance dimensions within their behaviour. Whereas
benchmarking shows how well a system performs at different
tasks, metrics show in what way these tasks differ from each
other, providing essential guidance for optimization effort.

Recently, JVM benchmarks encompassing Scala code have
been proposed [26, 28], and an informal collection of multi-

1We use the term “JVM language” to refer to any language
having one or more implementations targeting the JVM.
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language benchmarks has also emerged.2 However, the avail-
able metrics are more limited. Existing work has defined var-
ious dynamic metrics for Java [9], but these are Java-focused
and predate the proliferation of JVM languages. They do
not cover language-dependent performance properties, such
as the relative extents of call-site polymorphism or object
immutability, which have observably different distributions
in Java versus non-Java code.

Both JVM and language front-end implementers stand
to gain useful insight from a carefully chosen set of cross-
language metrics. For maximum benefit, there must be
an easy way for developers to compute these metrics over
workloads of their choosing. However, no existing work has
defined a comprehensive set of such metrics and provided
the tools to compute them. Rather, existing approaches
are fragmented across different infrastructures: many lack
portability by using a modified version of the JVM [8, 15],
while others collect only architecture-dependent metrics [30].
In addition, at least one well-known metric suite implemen-
tation [9] run with unnecessarily high performance overhead.
Ideally, metrics should be collected within reasonable time,
since this enables the use of complex, real-world workloads
and shortens the development cycles. Metrics should also
be computed based on observation of the whole workload,
which not all infrastructures allow. For example, existing
metrics collected using AspectJ are suboptimal since they
lack coverage of code from the Java class library [17]. Our
approach bases all metrics on a unified infrastructure which is
JVM-portable, offers non-prohibitive runtime overhead with
near-complete bytecode coverage, and can compute a full
suite of metrics “out of the box”. This toolchain has already
been successfully applied for characterizing both Java and
Scala workloads. The empirical results of this work are found
elsewhere [27, 28]. In summary, we present the following
contributions:

• a suite of dynamic metrics focused on capturing diver-
sity among JVM languages;

• a common infrastructure supporting computation of
both these and previously defined metrics, with a uni-
fied approach to instrumentation and data collection;

• a query-based definition of a subset of our metrics,
which is particularly amenable to customization and
extension.

We begin by introducing our new metrics and their in-
tended use cases.

2. DYNAMIC METRICS
All our metrics are dynamic, meaning that they can be

evaluted only by running the program on some input. The
significance of dynamic metrics, in contrast to static metrics
such as code size, static instruction distribution, etc., has
been motivated elsewhere by Dufour et al. [9], who defined a
list of sixty metrics considered useful for guiding optimiza-
tion of Java programs. Our infrastructure can compute all
of these metrics. However, the diversity of JVM languages
means that additional metrics are necessary to capture prop-
erties which vary significantly between Java and non-Java

2The Computer Language Benchmarks Game: http://
benchmarksgame.alioth.debian.org/. (All references to URIs
refer to content as retrieved on 2013/4/12.)

workloads. In this section we describe several new metrics
which our toolchain computes. Like those of Dufour et al.,
our metrics are defined at the bytecode level, making them
JVM-independent and allowing portable implementation.

Before introducing our metrics, it is worth summarizing in
exactly what ways our metrics can be of use to developers.

2.1 Usage modes
Use in bytecode generators.

The values of our metrics are of particular interest to the
developers of bytecode-emitting compilers and interpreters,
because they allow these developers to quantify the effects
of optimizations on their bytecode generators. For example,
a developer might hypothesize that a workload performed
poorly because of heap pressure generated by increased usage
of boxed primitive values—which are used relatively rarely
in normal Java code, but frequently in some other JVM
languages such as JRuby.3 Developers could optimize their
bytecode generator, for example, to try harder at using
primitives in their unboxed form. A dynamic metric of
boxing behaviour would allow these developers to quantify
the effects of such optimizations. This usage mode is exactly
that outlined by Dufour et al [9, §7]. In particular, we note
that the illustrative application they give for their metrics is
in various bytecode-level transformations.

Use in JVM development.
Meanwhile, JVM developers may also use our toolchain for

guidance, but in a rather different way. JVM optimizations
are dynamic and adaptive—we can think of each optimization
decision as being guarded by a heuristic decision procedure
applied to profile data collected at runtime. For example, the
decision of whether to inline a callee into a fast path depends
on factors such as the hotness of that call site (evaluated
by dynamic profiling) and the size of the callee. JVMs can
therefore benefit from better heuristics which more accurately
match real workloads, including non-Java workloads.

However, it must be possible to evaluate these at runtime
with low overhead. Our metrics are generally too expensive
to be computed on-line, but many of our metrics are query-
based, meaning the metric is computed in two stages: a
detailed trace is collected, and the metric is described as
a query (defined in the XQuery language4) computed over
the collected data after termination. Since this trace also
subsumes the typical profile information available during
dynamic compilation, it can be used to search for correlations
which will yield a better heuristic.

For example, suppose querying reveals that a feature of the
callchain at an object’s allocation site correlates well with
future use of the object (such as whether it requires explicit
zeroing; we describe such a metric in §2.2). In turn, this may
suggest a particular optimization (such as inlining a specific
version of the allocation path). Sampling the callchain can
detect such allocation sites at runtime. In this way, our
infrastructure reveals an optimization opportunity which can
be exploited during dynamic compilation. We describe this
query-based aspect of our toolchain in §3.2.

2.2 New dynamic metrics
We now describe the suite of dynamic metrics we propose.

Table 1 provides a summary. We believe our metrics are

3http://jruby.org/
4http://www.w3.org/TR/xquery
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comprehensive with respect to the current selection of JVM
languages, in that they cover the differences arising from
these languages’ distinct semantics. In turn, these differences
imply that differing optimizations will be required on the
part of JVM implementers and language (front-end) imple-
menters. Therefore, we have grouped the metrics according
to the language-level concerns which motivate them: the ob-
ject access (affecting sharing- and immutability-related op-
timizations), the relative usage of heap-allocated objects
versus primitives (affecting object allocation, initialization
and identity optimizations), and the differing usages of byte-
code features (affecting optimizations which depend on the
use of virtual dispatch, the density of procedural abstraction,
argument passing behaviours, and overall instruction mix).

2.2.1 Object access

Immutability.
In recent years, functional languages have gained much

attention. Functional programs generally create immutable
data structures, avoiding side effects, hence making them
amenable to parallelization. Determining those immutable
objects can help the developer to identify the possible places
in the code that can be parallelized. Moreover, popular
compiler optimization techniques benefit from immutable
objects and data structures [19]. One example of such an
optimization is load elimination, which replaces repeated
memory accesses to the immutable objects with access to a
compiler-generated temporary (likely to be stored in a regis-
ter). However, this optimization is defeated in the presence
of method calls or synchronization. Immutable objects avoid
this problem, since they are known not to change across
method calls.

We distinguish between class and object immutability.
Therefore, we define four metrics: number of instance fields
that are per-object immutable, number of objects that are
immutable (i.e., all fields immutable), number of fields that
are immutable in all allocated objects of the defining class,
and number of classes for which all allocated instances are
immutable.5

Lock usage and contention.
Since locking operations come at a cost, researchers have

developed thin locks [3] and biased locks [20] to minimize
the runtime overhead and memory cost. Thin locks are
used in the situation where most locks are never subject to
contention by multiple threads. Moreover, if most of the
locks are only acquired by a single thread, biased locks are
used. To apply synchronization optimizations one has to
identify the common-case nature of locking operations in the
application. We count the number of objects synchronized
on, and the average number of locking operations per object,
and the maximum nesting depth reached per (recursive) lock.

Unnecessary synchronization.
Immutability and sharing analyses can be used in combi-

nation to aid in removal of unnecessary synchronization [4].
Ordinarily, objects shared among different threads potentially

5Many of our metrics are collected as raw numbers, but could
be more usefully represented as fractions. Although we do
not state this explicitly from hereon, in all such cases the
relevant total is available for use as a divisor. As such, both
fractions and raw numbers are available.

require some synchronization. However, the synchronization
is redundant if we find that the object is immutable.

Our metrics here are counts of objects shared between
different threads, with separate counts for read-only sharing
(two or more readers; exactly one writer, i.e. the allocating
thread) and write-sharing (two or more writers; any number
of readers). As with immutability analysis we further dis-
tinguish between fully and partially shared objects, yielding
four counts in total.

2.2.2 Allocation concerns

Use of boxed types.
Different languages make differing use of boxed primitives.

For example, all primitive values in JRuby are boxed. How-
ever, boxing is expensive because it creates additional heap
pressure and can defeat optimization passes usually applied
to stack- and register-allocated primitive values. Different
optimization techniques can be used to reduce performance
overhead incurred by boxed values. Therefore, a metric char-
acterizing the extent of boxing in the workload is very useful.
Our two metrics here are the counts of boxed primitives allo-
cated and boxed primitives requested (by calls to valueOf()

methods on Integer, Byte and so on).

Object churn.
Creation of many temporary objects (i.e., object churn) is

detrimental to performance, since it comes at a cost of very
frequent garbage collection and inhibits parallelization if tem-
porary objects require synchronization [29]. Dufour et al. [10]
showed that object churn is the main source of performance
overhead in framework-intensive Java applications. Identify-
ing places where object churn happens leverages performance
understanding and is the basis of escape analysis [7].

Object churn distance is a metric defined recently else-
where [27], and is depicted on Figure 1. For each object
we keep track of its allocation and death calling contexts;
the closest capturing calling context is derived from those
two. The distance from the object’s capturing context to its
allocation or death context via the closest capturing context
is its dynamic churn distance. This metric is of particular
importance in dynamic languages where primitive types are
boxed. These workloads are characterized by lower average
churn distances. We group objects by their churn distances
and count the frequency for each group.

Impact of zeroing.
According to the JVM specification [16], every primitive

and reference type has to be initialized to a zero value—0 in
case of primitive types, false in case of a boolean type, and
null in case of a reference type. It was shown by Yang et
al. [31] that zeroing has large impact on performance.

This interests us because different languages have different
rules concerning the initialization of fields, and different
programming styles lead to greater or lesser extents of explicit
initialization. For example, more declarative languages are
less likely to rely on constructor-based piecewise imperative
initialization of objects than conventional Java code.

A zero initialization analysis can help compiler developers
to see whether implicit zeroing is actually necessary. Fields
that are written before their first read do not need to be
explicitly zeroed. Our zeroing analysis records occurrences

11



Metric family Description of metrics

Argument passing distribution of floating point arguments over all dynamic invocations (see text)
distribution of reference arguments over all dynamic invocations (see text)

Basic block hotness contribution of the top 20% of basic blocks to the dynamic total number of basic block executions
Call-site polymorphism distribution of target method count over all dynamically-dispatched calls

number of dynamically-dispatched call sites targeting a given number of methods
number call sites using each of the four invoke instructions
number of calls made using each of the four invoke instructions.

Instruction mix execution counts for each distinct bytecode instruction (opcode)
Method hotness contribution of the top 20% of methods to the dynamic total number of method executions
Stack usage and recursion depth distribution of stack heights upon recursive calls
Use of boxed types number of boxed primitives allocated

number of boxed primitives requested (using valueOf; see text)

Field sharing number of objects partially read-shared between different threads
number of objects partially write-shared between different threads
number of objects fully read-shared between different threads
number of objects fully write-shared between different threads

Field synchronization number of objects synchronized on
the average number of locking operations per object
the maximum nesting depth reached per lock

Field immutability number of fields immutable, counted once per containing object
number of fields immutable (per class)
number of objects immutable (all fields immutable).
number of classes immutable (all fields immutable for all objects)

Implicit zeroing number of primitive fields unnecessarily zeroed
number of reference fields unnecessarily zeroed

Use of identity hashcodes execution counts of overridden hashCode methods.
execution counts of System.identityHashCode methods.
execution counts of default Object.hashCode method.

Object churn distance distribution of object churn distances (see text)
Object lifetimes distribution of object survival times (see text)
Object sizes distribution of object sizes (see text)

Table 1: Metrics that can be computed by our toolchain.

of this pattern. The metric is a count of unnecessary zeroing
of primitive and reference fields.6

Identity hash codes.
The JVM requires that every object has a hash code. If

the object does not override the hashCode method, then
identityHashCode is used instead. Implementation of the
latter varies between JVM implementations, but commonly,
a computed identity hash code is stored in the header of
each object. This incurs costs in memory and cache usage.
The overhead can be eliminated by using header compression
techniques that define the default hash code of an object to
be its address [2], and explicitly store the hash code only in
the case when the object is moved and its identity hash code
has previously been issued. An extra header slot is lazily
added to the object in this case.

In workloads where the identity hash code is rarely used,
this extra slot will rarely be allocated, yielding lower memory
consumption with little runtime cost. In other workloads, ea-
gerly allocating the header space for the hash code will yield
better performance. Systematic variation between Java and
Scala workloads has been identified in our previous work [27].
Some heuristic is necessary in order to decide between the
eager and lazy approaches. We define three metrics over
binned invocation counts: frequency of objects receiving
overridden hashCode invocations; frequency of objects re-

6Our count of unnecessary zeroing currently assumes that
all fields are zeroed. However, a future JVM might apply
some optimization—perhaps motivated by our metric!—to
selectively skip zeroing. To give accurate results in these
cases, our metric would have to be reimplemented to account
for this, e.g., by instrumenting the allocation path in the
optimized zero-skipping case.

ceiving System.identityHashCode invocations; frequency of
objects receiving the default Object.hashCode invocation
(either by lack of override, or use of super).

Object lifetimes and sizes.
Some languages allocate more, smaller and/or shorter-lived

objects than others. Object lifetime analysis is of particular
importance for garbage collector (GC) implementers. New
GC algorithms are designed and evaluated by simulation
based on object lifetime traces. An example of such an
algorithm is lifetime-aware GC [14], in which the allocator
lays out objects based on their death-time predictions. At
each collection only objects that are expected to die are
scavenged. An object’s lifetime together with its size provide
an estimate of the GC cost, since larger objects that live
longer incur greater overhead than small, short-lived ones.

Our lifetime metric counts objects binned according to
their survival time measured in cumulative bytes allocated
(≤1MiB, sim. 2MiB, 4MiB and 100MiB, and a separate bin
for objects not surviving beyond nursery collection). The size
metric collects a binned distribution of object sizes (including
the header).

2.2.3 Code generation concerns

Instruction mix.
An instruction mix metric can describe the nature of the

application—whether it is floating-point intensive or pointer
intensive. This is relevant because, for example, some lan-
guages are more commonly used for numerical computation
than others. This metric can be used for checking the diver-
sity of the benchmarks in a benchmark suite, thus verifying
that the benchmark suite indeed covers different application
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main(String[])

]

=

capturing context

Figure 1: The churn distance of an object is com-
puted as the distance between its allocation (]) and
death (=) calling contexts via their closest captur-
ing context. This metric has previously been shown
to exhibit variation between Java and Scala work-
loads [27].

domains. Moreover, this metric can lead to possible dynamic
optimizations. For instance, array bounds check removal for
array intensive applications can help further optimizations
like code motion and loop transformations.

In contrast to Dufour et al. [9] where the authors grouped
bytecodes manually, we instead use principal component
analysis (PCA) [18]. It offers a high-level view of the in-
struction mix in which the selected groupings of bytecode
instructions are tailored to the workload. PCA allows to
drastically reduce the data’s dimensionality, thus allowing
better comprehension of the results.

Stack usage and recursion depth.
This an important metric for the developers of dynamic

languages supporting the functional programming paradigm
such as Clojure. Functional languages often leverage recur-
sion to perform loops. Therefore it is very important for
compiler developers of those languages to perform tail call
elimination, such that executed method will not allocate any
new stack frames, making recursive calls to be executed in
constant space.

Our metric collects the distribution of stack heights upon
each of three cases of method calls: all method calls, “poten-
tially recursive” calls (virtual calls which can dispatch to the
same method), and “true recursive” calls (which actually do
dispatch in this way, whether virtually or by final).

Argument passing.
Information on parameters passed to methods can be used

by JVM developers to choose an optimal calling convention
in JIT-compiled code, making use of the registers available on
the target architecture. Some architectures require particular
types of arguments to be passed differently, for example, using
special floating-point registers. We partition arguments into
three kinds—integer primitive values, references and floating-
point values—and count each separately for each call. Our
metrics bin all method invocations by their total argument
count, then for each bin, compute a 5-vector counting the
number of those arguments that are floating-point (zero to
four and ≥5; elements beyond the total argument count are
always zero), and similarly for reference arguments.

Basic-block hotness.
Hotness metrics are fundamental, since any JVM with a

just-in-time compiler optimizes the code based on its hotness
(i.e., the code that is most frequently executed). While hot-
ness is traditionally identified at the granularity of methods,
some modern dynamic compilers instead use trace-based ap-
proaches which rely on identifying sequences of hot basic
blocks (possibly crossing method boundaries). These are
particularly popular among contemporary dynamic language
implementations such as PyPy [5] or Mozilla’s TraceMon-
key Javascript implementation.7 Therefore, a finer-grained
hotness metric is useful.

Having both method and basic block hotness data can indi-
cate the relative gains from different compiler optimizations
(say, inlining versus loop unrolling). Our metrics report to
which extent the most executed 20% of all (distinct) methods
in the code contribute to overall dynamic bytecode execution,
and likewise for basic blocks.

3. TOOLCHAIN DESCRIPTION
Our toolchain consists of several distinct tools with a

common infrastructure which is designed for ease of use and
extension. In this section we describe this infrastructure.

3.1 Deployment and use
A primary goal of our infrastructure is to avoid imposing

unnecessary overheads on developers wanting to make use
of dynamic metrics. These include learning and setting up
multiple new runtime environments and/or instrumentation
tools. To avoid such overheads, all our tools are implemented
using DiSL8, a domain specific language for instrumentation.
DiSL provides full bytecode coverage, meaning execution
within the Java class library is covered. This is essential for
the accuracy of our metrics. Each metric can be computed for
a given workload application using a single script invocation.
Execution produces a trace, whose contents vary according
to the metric being computed. A separate postprocessor
script uses the trace to calculate the metric’s value. This
separation is useful because in some cases multiple metrics
can be computed from the same trace; several of our metrics
exploit this, as we explain shortly (§3.2).

Since all instrumentation is done using the same high-level
domain-specific language, namely DiSL, our implementations
are amenable to customization with relatively low familiar-
ization overhead. We envisage they can usefully be tweaked
and extended for specific needs, such as dumping the trace
in a different format or adding a custom online analysis. A
subset of our metrics are query-based, and these offer an
additional level of customizability, since custom queries can
be written in the high-level XQuery language.

The tools in our toolchain exhibit acceptable runtime over-
head. Among the most heavyweight of our tools is JP2,
which produces calling context trees; this incurs an overhead
factor of roughly 100 [25]. However, this cost is amortized in
that many different metrics are computed (as queries) over its
output. Object lifetime analysis also relies on heavyweight in-
strumentation. However, other tools instrument considerably
fewer events—for example, hashcode analysis instruments
only a few method entries—and incur correspondingly less

7https://developer.mozilla.org/en-US/docs/SpiderMonkey/
Internals/Tracing JIT
8http://disl.ow2.org/
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overhead. We note that our instrumentation-based approach
generally outperforms like-for-like metric implementations
using the older JVMPI9 interface, including those described
by Dufour et al. [9].

Metrics such as field immutability, zeroing, field sharing,
and use of identity hashcodes are collected via custom tools
that use DiSL to perform bytecode instrumentation. In
each case, the instrumentation maintains shadow state for
each object. Depending on the analysis different events are
intercepted and different information is stored in a shadow
state. For example, to measure immutability, our shadow
object keeps track of all field accesses to the underlying object,
according to a state machine. Each shadow object records
the class name, object allocation site and an array of field
states, each of which is a state machine with states virgin

(i.e., not read or not written to), immutable (i.e., read or was
written to inside the dynamic extent of its owner object’s
constructor), or mutable (otherwise). Figure 2 depicts the
corresponding FieldState class.

A suitably modified version of this shadow object ap-
proach is used in field sharing, field synchronization and
hash code analysis (storing counters for thread accesses,
counters for monitor ownership, and counters for executions
of Object.hashCode() and System.identityHashCode()

methods, respectively).
Object lifetime analysis uses a custom tool implementing

the Merlin algorithm [13]. Our tool is very similar to the
ElephantTracks (ET) tool built around this algorithm [22].
However, our implementation has the advantage that its in-
strumentation part is expressed cleanly using DiSL, uniformly
with the rest of our toolchain. In contrast, the original Ele-
phantTracks implementation primarily uses explicitly-coded
instrumentation (using the ASM library10) and JVMTI call-
backs. (Our implementation uses JVMTI only for heap
traversal required for reachability computations.)

3.2 Query-based metrics
Many of our metrics are defined as queries over trace data.

Specifically, these are metrics concerning instruction mix,
call-site polymorphism, stack usage and recursion depth,
argument passing, method and basic block hotness, and use
of boxed types. All these metrics are implemented over a new
implementation of the JP2 system. JP2 [24, 25] is a calling-
context profiler which produces execution traces in the form
of an annotated calling-context tree (CCT). For this work
we have reimplemented JP2 using the DiSL instrumentation
framework, for uniformity with other tools in our toolchain.
Each node in a CCT corresponds to a particular callchain
and keeps the dynamic metrics, such as number of method
invocations and number of executed bytecodes. JP2 is call-
site aware, meaning different call sites in the same method are
distinguished even if their target method is the same. Unlike
many other profilers, JP2 performs both inter- and intra-
procedural analysis and reports dynamic execution counts
for each basic-block of code in methods.

JP2 provides complete dumps of an entire execution, in-
cluding coverage within the Java class library and some
coverage of native code. Although native methods do not
have any bytecode representation, JP2 uses JVMTI’s native
method prefixing feature to insert bytecode wrappers for

9http://docs.oracle.com/javase/1.5.0/docs/guide/jvmpi/
10http://asm.ow2.org/

public class FieldState {
private State currentState = State.VIRGIN;
private enum State {

VIRGIN, IMMUTABLE, MUTABLE };
private boolean defaultInit = false;
public synchronized void onRead() {
switch (currentState) {
case VIRGIN:
defaultInit = true;
currentState = State.IMMUTABLE;
break;

} }
public synchronized void onWrite(

boolean isInConstructor) {
switch(currentState) {
case VIRGIN:
case IMMUTABLE:
currentState = isInConstructor ?

State.IMMUTABLE : State.MUTABLE;
break;

} }
/* ... */

}

Figure 2: The field immutability state machine.

each native method. Control flow within native methods
is covered only from points where these call back into Java
code or other prefixed natives.

Figure 3 depicts a three-step process of computing dynamic
metrics with JP2. First, the application is instrumented for
profiling; second, the collected profile is dumped in an XML-
based format for later offline analysis; finally, the desired
metrics are computed offline. Dumping in XML format allows
using off-the-shelf tools for metrics computation. We use
XQuery for formulating metrics as queries.

3.3 Instrumentation
Some of the information needed for our metrics’ computa-

tion is not stored in a CCT, but depends on static properties
of class files. For this, we use another facility of JP2, which
can dump a list of all classes loaded during execution. These
classes are converted to an XML representation to allow
querying alongside the CCT data [25]. Many of our queries
make use of the ability to cross-reference between CCT and
class data.

Figure 4 shows an example of a query for identifying meth-
ods with hottest basic blocks. It can be useful for finding
methods with rich intra-procedural control flow, but with
low method execution counts that cannot be spotted with
typical profilers. The algorithm is straightforward: return
the methods of the application, sorted in decreasing order
of the total execution counts over all their contained basic
blocks.

A key benefit of the query-based design is that custom
queries can be used to formulate previously unanticipated
metrics. For example, dumped CCTs contain enough infor-
mation to recover a k-calling context forest, which offers an
alternative (k-bounded) level of context sensitivity offering
advantages in certain scenarios [1].

The separation between dumps and queries avoids potential
problems with nondeterminism. Multiple different metrics
can be computed without the need for repeated application
runs, hence avoiding any risk of divergent behaviour across
such runs.
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loadtime
instrumentation CCT

.xml

.xml

.class

JP2 XQuery

XML
converter

original classes

Figure 3: Query-based metrics are implemented on
top of JP2 [25].

4. RELATED WORK
Our work is inspired by the *J metric suite developed by

Dufour et al. [9]. This defines five families of dynamic metrics
that characterize Java applications with respect to program
size, data structures, concurrency and synchronization, and
polymorphism. All these metrics can be obtained using our
toolchain; we expand on them by introducing metrics which
usefully characterize non-Java workloads. Moreover, our
infrastructure offers several benefits. *J’s implementation
relies on the JVMPI11, a deprecated profiling interface for
the JVM. JVMPI also exhibits huge performance overhead,
and has certain limitations which prevent the authors from
collecting memory-related metrics. In contrast, our imple-
mentation uses bytecode instrumentation, offering substantial
performance improvements and executing on contemporary
production JVMs.

Shiv et al. [30] compare the SPECjvm9812 and
SPECjvm200813 benchmark suites. The authors present
quantitative evaluation using different JVM- and architecture-
dependent metrics. They look at the effectiveness of Java
runtime systems including just-in-time compilation, dynamic
optimizations, synchronizations, and object allocations. They
also report results for the SPECjAppServer200414 and the
SPECjbb200515 benchmarks. This approach yields metrics
whose values strongly depend on the chosen architecture,
which are of limited utility in our envisaged usage scenarios.
We avoid this problem by computing JVM- and machine-
independent metrics.

Daly et al. [8] analyze the Java Grande benchmark suite [6]
using JVM-independent metrics. The authors consider static
and dynamic instruction mix and use five different Java-to-
bytecode compilers to quantify the impact of the choice of
a compiler on the dynamic bytecode frequency. To com-
pute the metrics, the authors use a modified version of the
Kaffe Java Virtual Machine16. Gregg et al. [11] also use a
modified Kaffe to characterize workloads by their number
of native methods activations. Similar approaches are used
elsewhere [12, 15]. The choice of a non-standard JVM im-

11http://docs.oracle.com/javase/1.5.0/docs/guide/jvmpi/
index.html, deprecated in Java 6.

12http://www.spec.org/jvm98
13http://www.spec.org/jvm2008
14http://www.spec.org/jAppServer2004
15http://www.spec.org/jbb2005
16http://www.kaffe.org

for $method in functx:distinct -nodes(
for $bb in $methods/dcg:basicBlock

order by $bb/dcg:executionCount/xs:
long (.) descending

return $bb /..)

Figure 4: Example of a query for identifying meth-
ods with hottest basic blocks. dcg refers to “dy-
namic call graph”, referring to the calling context
tree. Other identifiers are self-explanatory.

poses additional overhead on developers willing to use the
tools to compute dynamic metrics. In contrast, our tools are
based on bytecode instrumentation and can be run on any
production JVM used by the developer.

Several works aim at characterizing JavaScript applica-
tions. Ratanaworabhan et al. [21] compares JavaScript bench-
marks with real web applications using various static and
dynamic platform-independent metrics, including instruc-
tion mix, method hotness, and the number of executed in-
structions. Although our infrastructure can compute all
the dynamic metrics used in the comparison, it cannot be
used to reproduce the measurements, because it targets the
JVM, whereas the authors have conducted their experiments
directly in a web browser.

Richards et al. [23] computes several dynamic metrics for
JavaScript code. Both the metrics and the infrastructure are
specialized for JavaScript, and the problem motivating our
work, namely tuning a multi-language infrastructure, does
not arise in this scenario. However, many metrics in this
work target features specific to JavaScript and other highly
dynamic languages—such as prototype-based object creation,
field additions and so on. These features can be supported
on the JVM, but only in simulated form (e.g., by generating
new classes at run time). It would be interesting to extend
our toolchain to subsume these metrics, using an awareness
of these simulation approaches.

5. CONCLUSIONS AND FUTURE WORK
Despite hosting many different languages, today’s JVM

implementations are still unable to handle all JVM languages
equally well. To achieve this goal, both language and JVM
developers need to explore the space of possible optimizations
and code generation techniques with non-Java languages
in mind. Consequently, they need suitable benchmarks to
obtain samples of representative application behavior, and
metrics to characterize workloads produced by programs
originating in non-Java languages.

To aid in their exploration, we have presented a unified in-
frastructure for characterization of workloads executing in the
JVM. Our infrastructure is portable, offers non-prohibitive
overhead with near-complete bytecode coverage, and pro-
vides a full suite of dynamic metrics, including several new
metrics which have observably different distributions in Java
versus non-Java code. This paper will be accompanied by an
open-source implementation of the toolchain which can be
used out-of-the-box for collecting various dynamic metrics.
We therefore believe that our toolchain will attract users
from the ranks of JVM and language developers, and that it
will help to shed light on performance regressions affecting
various language–VM pairings.
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The availability of an established and widely recognized
benchmarking suite—something akin to the DaCapo suite,
but for non-Java languages—remains an open issue. Such
a suite is needed to capture relevant real-world workloads
for analysis by JVM developers—with the exception of
Scala, benchmark applications for other languages targeting
the JVM come mostly from the Programming Languages
Shootout Project. The obvious problem of such applications
is that they are rather small, and not representative of com-
plex, real-world workloads. Besides refining and extending
the set of metrics provided by our suite, an obvious continu-
ation of our work may therefore include the design of such a
benchmarking suite.

The metrics presented here are not bound to the JVM
and can be generalized for the case of .NET and Common
Language Runtime (CLR), although the instrumentation
technique would be slightly different. Developing a version
of the toolchain for the CLR is considered to be a subject
for future work.
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