Skip to main content

A Map-Reduce-enabledSOLAPcubeforlarge-scaleremotelysensed data aggregation

Wang, Frank Z. (2014) A Map-Reduce-enabledSOLAPcubeforlarge-scaleremotelysensed data aggregation. Computers & Geosciences, 70 (09). pp. 110-119. ISSN 0098-3004. (doi:10.1016/j.cageo.2014.05.008) (KAR id:69679)

Warning
There is a more recent version of this item available.
PDF Publisher pdf
Language: English
Download (1MB)
[thumbnail of MapReduceData.pdf]
This file may not be suitable for users of assistive technology.
Request an accessible format
Official URL:
https://www.sciencedirect.com/science/article/pii/...

Abstract

Spatial On-LineAnalyticalProcessing(SOLAP)isapowerfuldecisionsupportsystemstoolforexploring

the multidimensionalperspectiveofspatialdata.Inrecentyears,remotelysenseddatahavebeen

integratedintoSOLAPcubes,andthisimprovementhasadvantagesinspatio-temporalanalysisfor

environmentmonitoring.However,theperformanceofaggregationsinSOLAPstillfacesaconsiderable

challenge fromthelarge-scaledatasetgeneratedbyEarthobservation.Fromtheperspectiveofdata

parallelism, atile-basedSOLAPcubemodel,theso-calledTileCube,ispresentedinthispaper.Thenovel

model implementsRoll-Up/Drill-AcrossoperationsintheSOLAPenvironmentbasedonMap-Reduce,a

popular data-intensivecomputingparadigm,andimprovesthethroughputandscalabilityofraster

aggregation. Therefore,thelongtime-series,wide-rangeandmulti-viewanalysisofremotelysensed

data canbeprocessedinashorttime.TheTileCubeprototypewasbuiltonHadoop/Hbase,anddrought

monitoring isusedasanexampletoillustratetheaggregationsinthemodel.Theperformancetesting

indicated themodelcanbescaledalongwithboththedatagrowthandnodegrowth.Itisapplicableand

natural tointegratetheSOLAPcubewithMap-Reduce.Factorsthatinfluence theperformancearealso

discussed, andthebalanceofthemwillbeconsideredinfutureworkstomakefulluseofdatalocalityfor

model optimisation.

Item Type: Article
DOI/Identification number: 10.1016/j.cageo.2014.05.008
Uncontrolled keywords: SOLAP, Spatio-temporal cube, Data-intensive computing, Cyber GIS, Environment monitoring
Subjects: Q Science > QA Mathematics (inc Computing science) > QA 76 Software, computer programming,
Divisions: Divisions > Division of Computing, Engineering and Mathematical Sciences > School of Computing
Depositing User: Frank Wang
Date Deposited: 19 Oct 2018 09:50 UTC
Last Modified: 09 Dec 2022 03:57 UTC
Resource URI: https://kar.kent.ac.uk/id/eprint/69679 (The current URI for this page, for reference purposes)
Wang, Frank Z.: https://orcid.org/0000-0003-4378-2172

Available versions of this item

  • Depositors only (login required):

Downloads

Downloads per month over past year