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Abstract. Despite the common use of anesthetics to modulate consciousness in 

the clinic, brain-based monitoring of consciousness is uncommon. We com-

bined electroencephalographic measurement of brain activity with deep neural 

networks to automatically discriminate anesthetic states induced by propofol. 

Our results with leave-one-participant-out-cross-validation show that convolu-

tional neural networks significantly outperform multilayer perceptrons in dis-

crimination accuracy when working with raw time series. Perceptrons achieved 

comparable accuracy when provided with power spectral densities. These find-

ings highlight the potential of deep convolutional networks for completely au-

tomatic extraction of useful spatio-temporo-spectral features from human EEG. 

Keywords: Consciousness, Anesthesia, EEG, Deep learning 

1 Introduction 

In the United States alone, 60,000 people receive general anesthesia (GA) every day 

for surgery [1]. Despite the obvious fact that GA fundamentally modulates brain ac-

tivity, brain monitoring is not routine practice in the operating room, and is limited to 

proprietary systems which have produced mixed results, in part due to considerable 

inter-individual variability [2]. Recent research into electroencephalographic (EEG) 

signatures of propofol-induced unconsciousness have highlighted the potential for 

improved brain monitoring [1, 3]. 
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One of the challenges encountered in deploying novel EEG metrics of conscious-

ness at the bedside is automation, in that they require expert analysis or interpretation 

of the data. To work towards addressing this challenge, we apply recent developments 

in artificial intelligence research, deep neural networks in particular, to the challenge 

of fully automated feature learning from EEG to detect states of unconsciousness due 

to propofol anesthesia. As there is no state-of-the-art deep learning model or reference 

dataset for EEG classification, we compare the performance of two widely used mod-

els, multilayer perceptrons (MLP) and convolutional neural networks (cNN), in their 

ability to discriminate states of unconsciousness from only 1 second of raw EEG data. 

With leave-one-participant-out-cross-validation, we show that cNNs achieve nearly 

90% accuracy and significantly outperform MLPs, and generalize to data from partic-

ipants unseen during network training. 

2 Methods 

2.1 Dataset Collection 

The data used in this work were acquired from a propofol anesthesia study [4], in 

which the experimental design is described in detail. Briefly, the study was approved 

by the Ethics Committee of the Faculty of Medicine of the University of Liege, with 

participants giving written informed consent. Moreover, physical examination and 

medical history were obtained, in order to assure of any potential issues during anes-

thesia (e.g. pregnancy, trauma, surgery, mental illness, drug addiction, asthma, motion 

sickness). 

Fifteen-minute spontaneous high-density electroencephalography (hd-EEG, 256 

channel Hydrocel GSN) was recorded from 9 participants (mean age 22± 2 y, 4 

males) during propofol anesthesia, at three different levels of consciousness, from 

fully awake, to mild sedation (slow response to command) and clinical unconscious-

ness (no response), as depicted in Fig. 1. Sedation procedure was monitored, while 

computer-controlled intravenous infusion was used to estimate effect-site concentra-

tions of propofol. The level of behavioral consciousness was confirmed with the 

Ramsay scale, see [4] for details.  

 

Fig. 1. Experimental design of the propofol anesthesia study. Participants underwent anesthetic 

induction into progressively deeper states of unconsciousness measured by behavior. 
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2.2 EEG Pre-processing 

Minimal pre-processing steps were applied to the original data, in order to simulate a 

real-world scenario where deep learning could be applied to EEG data in real-time. 

Although raw EEG recordings tend to be noisy, the selection of the workflow was 

based on the notion of an automated feature extraction done by deep learning, along 

with a potential practical value of such implementation within a clinical context, 

where manual intervention and a priori knowledge of the signal would be infeasible.  

Two different representations were extracted from the datasets, to compare the ef-

fects of using the raw time series versus a spectral representation. The latter has often 

been used in similar studies as a useful feature in EEG classification [5–8]. 

Raw Data Representation. For reducing the computational complexity of the deep 

learning pipeline, 20 electrodes of EEG data were examined, located as per the 10-20 

system, namely: Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3, Cz, C4, T4, T5, P3, Pz, P4, T6, 

O1, Oz, and O2. Data were segmented into 1 second non-overlapping epochs and 

band-pass filtered between 0.5-40 Hz using a window FIR design (firwin, scipy). The 

vertex (Cz) electrode was the online reference, which was replaced by the average 

activity of all the 19 channels. Finally, the time series were down-sampled to 100 Hz, 

resulting in 100 samples per epoch. No manual artefact or bad channel rejection was 

performed other than the removal of the first 10 seconds of recording, which con-

tained large unstable drifts. All pre-processing steps were implemented using the 

MNE-python library with default settings, unless specified otherwise. 

Power Spectral Density Representation. To generate spectral representation of the 

EEG, raw data processed as above were submitted to the periodogram function 

(scipy) to obtain the power spectral density (PSD) of each channel and epoch. 201 

points were used to compute the PSD, which resulted in 100 frequency bins (one-

sided spectrum, dc coefficient removed).  Importantly, this ensured that the dimen-

sionality of the data was identical with both raw and PSD representations. The result-

ing dimension of each instance (epoch) was a 20 x 100 (channels x time sam-

ples/frequency bins) 2D-array for both representations.  

Finally, the data were normalized by epoch using the scikit-learn library, before feed-

ing them into the deep learning networks. This can be thought as normalizing the 

whole scalp activity for each epoch and participant independently. Although there are 

many ways to normalize the data (e.g. by time sample or by channel), this way was 

considered more appropriate in terms of its physical interpretation and practical appli-

cation, as only data from the current epoch is required for applying the normalization. 

2.3 Deep Learning Architectures 

Two deep learning architectures were compared, as a way to investigate the suitability 

of such algorithms in classifying states of consciousness and extracting relevant fea-
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tures from the EEG. Convolutional neural networks (cNN) are a class of feed-forward 

networks that have become very interesting for end-to-end EEG research (both for 

analysis and interpretation of data) during the recent years. This architecture has 

shown to be very efficient in analyzing raw data (mostly from images), as it reveals 

spatial features across different levels of abstraction, using the convolution operation 

over local segments of the data [9]. In contrast, the Multilayer perceptron (MLP) net-

work is a naïve implementation of a deep learning model, which can be used as a 

baseline for comparison (cNN can be thought as an MLP with a specialized structure). 

Our aim here was not to optimize each network for the given task, but rather to 

compare them fairly, to reveal the computational advantages of each design. Hence 

the two models were compared with respect to their architectural sizes, which can be 

thought as the number of neurons/trainable parameters within each functional layer. 

Convolutional Neural Network. The architecture of the cNN is a sequential model 

based on a simple design used in computer vision for hand-written digit classification 

(mnist example, Keras). The first functional layer (feature extraction) is a sequence of 

two convolutional layers, followed by a max-pooling and a dropout layer. The second 

functional layer (classification), consists of a fully connected layer, followed by a 

dropout layer and three softmax units (one for each conscious state). As a reference 

size, the original number of feature maps and hidden neurons were used, namely 32 

for the 1st convolutional layer, 64 for the 2nd convolutional layer and 128 neurons for 

the 3rd dense layer. The patch window for max pooling was 2x2. Dropout rates were 

0.25 and 0.5, respectively. Convolution windows were chosen with kernels 1x5 and 

5x10 (1x1 strides), with the first layer only extracting temporal information (no pad-

ding used). Finally, all activation functions were relu units (except output layer). The 

model was trained using the categorical cross-entropy loss function and the Adadelta 

optimizer. Initialization of network weights was done with the Xavier uniform initial-

izer. The cNN architecture is summarized in Fig. 2. 

 

Fig. 2. Convolutional neural network architecture (reference size) for classifying the three 

conscious states: wakefulness, sedation, loss of consciousness. Raw EEG or PSD epochs were 

used as an input tensor. 
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Multilayer Perceptron. We employed a sequential MLP model designed to match 

the number of output neurons in each functional layer of the cNN (rather than equalis-

ing network layers). This ensured that the computational cost of each design was 

comparable in terms of training time. Both functional layers of the MLP consist of 

fully connected layers, followed by a dropout layer (2nd layer includes the three soft-

max units). The number of hidden units for the 1st layer was based on the number of 

neurons after the flattening in the cNN architecture (22016 for the reference size), 

while for the 2nd layer was kept the same. Activation functions, dropout rates and 

other model parameters during training were also kept the same with respect to the 

cNN. The MLP architecture is summarized in Fig. 3. 

 

Fig. 3. Multilayer perceptron network architecture (reference size) for classifying the three 

conscious states. Raw EEG or PSD epochs were used as input tensors, after flattening the 2D-

array into a 2000-dimensional vector. 

2.4 Experiments 

Twelve experiments were done in total for the 2 x 2 x 3 combinations of data repre-

sentations (Raw vs PSD), deep learning architectures (MLP vs cNN) and 3 different 

network sizes – small, reference and large, in order to compare performance of the 

models. The number of feature maps and neurons of the fully connected layers for 

each architecture and network size are listed below. 

Table 1. Network Sizes 

Network Size cNN MLP 

Small (16, 32, 64) (11008, 64) 

Reference (32, 64, 128) (22016, 128) 

Large (64, 128, 256) (44032, 256) 

 

To evaluate model performance, EEG data were divided into training and test sets. 

Previous studies have divided data from each participant proportionally into training 

and test sets [6, 10, 11]. However, an ideal but hard goal would be to generalize and 

predict states of consciousness in unseen participants. With this goal in mind, leave-

one-participant-out cross validation (LOPOCV) was used for the training and testing 
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of the models, with each participant contributing 2700 instances on average (9 partic-

ipants, 3 states, 15x60 1-sec epochs ≈ 24300 total instances). Each instance was la-

beled with one-hot encoding as the target vector, indicating one of the three sedation 

states. Training was done with a batch size of 100 and for 10 runs (epochs). Models 

were evaluated by their accuracy, computed as the percentage of epochs correctly 

predicted in the left-out participant. All experiments were implemented in Python 3 

using Keras/Tensorflow on a CUDA NVIDIA GPU (Tesla P100). 

3 Results 

3.1 Architecture Comparison 

The results from our 2 x 2 experimental design (Raw/PSD X cNN/MLP) were similar 

for all three network sizes, and are summarized below. Reported figures and accura-

cies are for the reference size networks depicted in Figs. 2 and 3.  

Raw Data. With raw EEG input, the MLP achieved an average accuracy of 75.45% 

across participants, with the cNN achieving 86.05% (Fig. 4). These accuracies are 

significantly higher than the chance level accuracy of 33.33%. Cross-entropy loss on 

the test set did not significantly decrease after the first epoch. Overall, the cNN was 

able to achieve better accuracies for each state of consciousness and participant.  

 

Fig. 4. MLP vs cNN (reference size) comparison for raw EEG classification of the three con-

scious states. Cross validation accuracies, average model loss and confusion matrices are shown 

for each architecture. 
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As seen in Fig. 4, the confusion matrices suggest that Wakefulness and LOC were not 

often confused. The intermediate state of Sedation was hardest to predict, due to indi-

vidual variability in response to propofol. However, this would not present a problem 

in the clinical context, where anesthetic induction is much more rapid [10]. 

Power Spectral Density. With PSD input, the two architectures were equally capable 

in classifying states of consciousness (Fig. 5). In particular, the MLP performed better 

than when provided with raw time series as input, but the cNN did not (MLP: 83.4%, 

cNN: 87.35%). Importantly, cross-entropy loss revealed that the models converged 

faster using the PSD representation. 

 

Fig. 5. MLP vs cNN (reference size) comparison for EEG classification of the three conscious 

states, using the PSD representation.  

To understand the changes in the underlying EEG signal driving these accuracies, we 

visualized the PSDs in each state of consciousness (Fig. 6). As expected, we observed 

a decrease in alpha oscillations in Sedation, followed by the emergence of high-alpha 

oscillations during LOC.  
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Fig. 6. Power spectral density (uV2 /Hz, dB) of the EEG epochs, divided by the sedation phases 

of the experiment. Representative frontal (Fz) and parietal (Pz) electrodes are shown. 

3.2 Statistical Analysis – ANOVA Model 

As a final step, a three-way ANOVA (type 2) was performed on the accuracies ob-

tained in all twelve experiments across 2 architectures, 2 data representations and 3 

model sizes, as summarized in Fig. 7 and detailed in Table 2. 

 

Fig. 7. Three-way ANOVA for the comparison of the data representations, architectures and 

network sizes. Error bars indicate 95% confidence interval. 

Table 2. ANOVA Table 

 Sum_sq df F Pr(>F) 

Architecture 1230.94 1 10.601 0.0015 

Data Representation 620.06 1 5.340 0.0229 
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Model Size 14.34 2 0.061 0.9401 

Architecture-Data Representation 351.13 1 3.024 0.0852 

Architecture-Model Size 6.21 2 0.026 0.9735 

Data Representation-Model Size 6.18 2 0.026 0.9737 

Architecture-Data Representation-Model Size 0.85 2 0.003 0.9963 

Residual 11146.71 96   

 

The results of the ANOVA indicated that network architecture (cNN/MLP) was the 

strongest contributor to model performance (F = 10.6, p=0.0015), while data repre-

sentation (Raw/PSD) also had a significant but weaker effect (F = 5.34, p=0.0229), 

driven by the improved accuracy of MLPs with PSD data. 

In terms of resource utilization, the cNN was also better than the MLP, as the latter 

had a significantly larger number of parameters to learn (e.g. 46,872,579 in MLP vs 

2,921,219 in cNN, for the reference network size). cNN was also faster to train by 

~18%. Furthermore, a repetition of the above experiments with an alternative compar-

ison using the same number of trainable parameters (rather than the same number of 

neurons) in each architecture, gave a much more prominent difference in accuracies, 

with the MLP performing much worse. Finally, we also verified that increasing epoch 

size from 1s through to 10s did not improve performance of either model. 

4 Discussion 

Our findings highlight the capability of potential for deep learning of human EEG to 

discover and utilize generalizable features for automatic identification of conscious-

ness during anesthesia. Further, we have shown that modern cNNs significantly out-

perform fully connected MLPs, potentially due to their ability to extract more effec-

tive spatio-temporo-spectral features from the raw signal. This notion is supported by 

the fact that MLPs performed as well as cNNs when given PSD data as input. 

Though this study aimed to conduct a comparative analysis rather than hyperpa-

rameter optimization to maximize accuracy, the fact that cNNs were able to perform 

very well given only with 1 second of raw EEG data despite the lack of such optimi-

zation suggests that they could find utility in real-world applications for assessment 

and monitoring of consciousness. 
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