
Downloaded from https://kar.kent.ac.uk/69384/ The University of Kent's Academic Repository KAR

The version of record is available from https://doi.org/10.1117/12.2282407

This document version Publisher pdf

DOI for this version

Licence for this version UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title of Journal, Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).
Biomimetic Tizian 'table tops' analyzed with swept source optical coherence tomography

Corina Marcauteanu, Cosmin Sinescu, Marius Toader, Meda Lavinia Negrutiu, Felicia Elena Mitroi, et al.
Biomimetic Tizian “table tops” analyzed with swept source optical coherence tomography

Corina Marcauteanu¹a, Cosmin Sinescu⁰a, Marius Toader⁰b, Meda Lavinia Negrutiu⁰a,
Felicia Elena Mitroi⁰a, Eniko Tunde Stoica⁰a, Florin Topala⁰a,
Virgil-Florin Duma⁰c,d, Adrian Bradu⁰, Adrian Gh. Podoleanu⁰e

¹Faculty of Dental Medicine, “Victor Babes” University of Medicine and Pharmacy of Timisoara,
2 Piata Eftimie Murgu, Timisoara 300041, Romania
²Alfa Test, 22 Cermena, Timisoara 300110, Romania
³3OM Optomechatronics Group, “Aurel Vlaicu” University of Arad, 77 Revolutiei Ave.,
Arad 310130, Romania
⁴Doctoral School, Polytechnic University of Timisoara, 1 Mihai Viteazu Ave.,
Timisoara 300222, Romania
⁵Applied Optics Group, School of Physical Sciences, University of Kent, Canterbury, CT2 7NH, UK

ABSTRACT

"Table tops"/occlusal veneers are partial crowns that allow for the biomimetic restoration of worn teeth in bruxing patients. The biomimetic approach includes a CAD/CAM composite resin for the manufacturing of the "table tops", for example Tizian, which is a zirconia reinforced composite (Schutz Dental Group). In the present study we prove the value of a fast swept source optical coherence tomography (SS-OCT) system in the evaluation of the marginal fit of Tizian "table tops". 12 maxillary first premolars were extracted and minimally invasive prepared for "table tops". The Tizian "table tops" were then adhesively cemented on the natural teeth with Variolink II (Ivoclar Vivadent). A SS-OCT system has been used to evaluate the marginal and internal adaptation of Tizian "table tops". The SS (Axsun Technologies, Billerica, MA) has a central wavelength of 1060 nm, a sweeping range 106 nm (quoted at 10 dB), and a 100 kHz line rate. The depth resolution of the system, measured experimentally in air was 10 µm. The same samples were analyzed by using a micro-computed tomography (µCT) system, in order to confirm the data obtained by using OCT. The imaging system used for this study offers good spatial resolutions in both directions, transversal and longitudinal, of around 10 µm, a high sensitivity, and it is also able to acquire entire 3D volumes as fast as 2.5 s. Once the full dataset has been acquired, rendered high resolutions en-face projections could be produced. With it, the "table top" – cement – abutment tooth interfaces were observed on both C-scans as 2D images and also in the 3D reconstructions; the system was able to detect several open interfaces, which were confirmed on the µCT images. The SS-OCT system allows for an efficient evaluation of biomimetic Tizian "table tops".

Keywords: optical coherence tomography (OCT), swept source, biomedical imaging, dentistry, Tizian "table tops", pathologic wear, bruxism, dental interfaces.

1. INTRODUCTION

"Table tops"/occlusal veneers are partial crowns that allow for the biomimetic restoration of worn teeth [1, 2]. The biomimetic approach includes a computer-aided design and manufacturing (CAD/CAM) composite resin for the fabrication of the "table tops", for example Tizian, which is a zirconia reinforced composite (Schutz Dental Group) [3]. The prognosis of such restorations depends also on their marginal fit; large marginal gaps are associated with early dissolution of the cement layer and failure of the crown [4].

1 marca_cori@yahoo.com; phone 0040-741-182478
Optical Coherence Tomography (OCT) is a non-invasive high resolution imaging method [5-7], that has been used by our group for the investigation of the marginal fit of different restorations; we analyzed the microleakage at prosthetic interfaces [8-10] and the quality of marginal adaptation and gap width of Empress veneers [11]. In the present study we prove the value of a fast swept source optical coherence tomography (SS-OCT) system in the evaluation of the marginal fit of Tizian "table tops".

2. MATERIAL AND METHODS

12 maxillary first premolars were extracted and minimally invasive prepared for "table tops", without conservation of the marginal ridges (occlusal veneers) (Fig. 1). This type of partial crowns restores the normal morphology of the entire occlusal surface. The teeth were further mounted in Frasaco models, while taking care to establish correct occlusal and proximal contacts.

The Tizian "table tops" were dry-milled in the Tizian Cut 5 smart CAD/CAM system and were adhesively cemented on the natural teeth with Variolink II (Ivoclar Vivadent) - Fig. 2.

![Figure 1. Right maxillary first premolar minimally invasive prepared for a Tizian "table top", without conservation of the natural marginal ridges (at black arrows).](image1)

![Figure 2. A Tizian "table top", with an occlusal thickness of 1 mm at the developmental grooves (at black arrows).](image2)
An in-house developed SS-OCT system was used to evaluate the marginal and internal adaptation of Tizian "table tops". The SS (Axsun Technologies, Billerica, MA) has a central wavelength of 1060 nm, a sweeping range 106 nm (quoted at 10 dB), and a 100 kHz line rate. The depth resolution of the system, measured experimentally in air was 10 µm. Figure 3 presents a schematic diagram of the SS OCT imaging system used for our study; details on this system can be found in [12]. The OCT images were further used to create 3D reconstructions of the examined samples.

The same samples were analyzed by using a micro-computed tomography (µCT) system, in order to confirm the data obtained by using OCT. We used the X-ray system phoenix micromex DXR HD equipped with an unique temperature stabilized detector GE DXR250RT, a 180 kV/20 W microfocus X-ray tube and CT-Option. It combines the high resolution 2D X-ray technology and CT in one system. The results of the CT scanning were evaluated and saved with the Volume Graphics Max Studio Max 2.2 software. The CT data analysis obtained with this software can be viewed interactively by using the myVGL 2.2 application.

![Figure 3. Schematic diagram of the SS-OCT system. Components: SS: swept source; DC₁: 20/80 single mode directional coupler; DC₂: 50/50 single mode directional coupler; XYSH: two-dimensional XY lateral scanning head [13]; L₁ to L₄: achromatic lenses; O: object to be imaged; PhD₁, PhD₂: photo-detectors; DA: differential amplifier; TS: translation stage.](image)

3. RESULTS AND DISCUSSION

OCT allows for the imaging of prosthetic restorations because of its micrometer resolutions and millimeter penetration depths [5, 6]. The SS OCT technique has increased speed and better resolution as compared to the initially developed Time Domain OCT systems [7].

In this study we prove the advantages of a fast SS OCT system in the evaluation of Tizian "table tops". Tizian (Schütz Dental Group) is a zirconia reinforced composite, well suited for biomimetic restorations [3]; it has a "buffer action" and...
a low Young’s modulus (similar to the dentine modulus). The imaging system used for this study offers good spatial resolutions in both directions, transversal and longitudinal, of around 10 µm, sensitivity as high as 94 dB, and it is also able to acquire entire 3D volumes of 500 x 500 pixels in the transversal section as fast as 2.5 s. Once the full dataset was acquired, rendered high resolutions en-face projections could be produced. The "table top" – cement – abutment tooth interfaces were observed on both C-scans as 2D images, and also in the 3D reconstructions; these images were then compared with the µCT data.

![Figure 4. Large marginal gap on the distal surface of sample 7, combined with a consistent internal defect in the luting cement layer - at white arrow (µCT sections and 3D reconstruction).](image)

![Figure 5. SS-OCT system images of the distal surface of a sample 7: (a) large marginal gap at white arrow and (b) internal defect in the luting cement layer at white arrow. Both images have a size of 2.8 x 2.8 mm.](image)
The marginal fit was clinically acceptable on all axial surfaces of the samples, except for sample 7; on the µCT images we detected an excessive marginal gap on its distal surface (over 120 µm) and a large inner defect in the luting cement layer (Fig. 4). The marginal and internal defects were clearly detected by our fast SS-OCT system (Fig. 5).

4. CONCLUSIONS

The in-house developed SS OCT system has been efficient in the marginal evaluation of zirconia reinforced composite "table tops". It allows for the assessment of these biomimetic restorations – to see if they have a clinically acceptable marginal fit or not. The future development of the master-slave OCT technology [12], the application of galvoscanners in OCT [13], and the newly developed handheld scanning probes [14] create the basis for in vivo imaging of pathological dental wear and biomimetic restorations in bruxing patients.

ACKNOWLEDGEMENTS

This work is supported by the Romanian National Authority for Scientific Research, CNDI-UEFISCDI project PN-III-P2-2.1-PTE-2016-0181 (http://3om-group-optomechatronics.ro/). C. Sinescu also acknowledges the support of the research project TE101/2010. M. Negruțiu also acknowledges the support of COST ACTION MP 1005. A. Bradu and A. Podoleanu acknowledge the support of the European Research Council (http://erc.europa.eu), grant 249889. A. Podoleanu is also supported by the NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology.

REFERENCES