Citation for published version

DOI

Link to record in KAR

https://kar.kent.ac.uk/69279/

Document Version

Presentation

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (e.g., Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html
The aesthetic paradox in processing figurative language

Ursula Christmann, Lena Wimmer, & Lisa Irmen

Psychologisches Institut der Universität Heidelberg
1 What is the aesthetic paradox?

• Our research is starting from two contradictory everyday experiences
 ➢ Cognitive load is normally experienced and evaluated negatively
 ➢ Cognitive load resulting from processing aesthetic objects is evaluated positively – provided that a satisfactory interpretation is achieved

• We have called this positive evaluation of a cognitive load in the field of processing aesthetic objects 'aesthetic paradox'
1 What is the aesthetic paradox?

- To test the phenomenon of the aesthetic paradox, we have concentrated on figurative language
 - Assumption: the aesthetic quality of figurative utterances depends on their non-/conventionality
 - Firstly, we had to demonstrate that non-conventional figurative utterances require a higher processing effort and that they are evaluated as more aesthetic than conventional ones (subjective measures)
1 What is the aesthetic paradox?

- Secondly, we tested whether non-conventional metaphors are cognitively more demanding and whether the cognitive process of comprehending non-conventional metaphors is evaluated positively (objective measures)
- Thirdly, we will try to test the aesthetic paradox by using an eye-tracking-method. We will present some preliminary results
3 studies were conducted on the relationship between non-/conventionality, aesthetic attraction, and cognitive effort in rhetorical figures (metaphor, irony, idioms)

Hypotheses

1. Non-conventionality covariates with aesthetic appreciation
2. Non-conventionality covariates with (perceived) cognitive effort
3. Both covariations apply to all rhetorical figures (here: metaphor, irony, and idioms)

• (In the following, we will concentrate on metaphors only)
Materials and subjects

- Study 1: 30 conventional and 30 non-conventional metaphors; N = 54
 - “When he was reading his grandmother’s diary, he suddenly saw the light”
 - “The girls’ piano playing opens a channel through the years”
- All metaphors were presented in sentence contexts
2 Cognitive effort and aesthetic appreciation in (non-)conventional figurative language

Procedure

- Semantic differential (12 items) for assessing (non-)conventionality, cognitive effort and aesthetic appreciation
- Clarification of dimensions: factor analysis
 - 3 factor solution (73.9 % of total item variance):
 - Factor 1: “Non-conventionality”
 - Factor 2: “Aesthetic appreciation”
 - Factor 3: “Cognitive effort”
Hypothesis testing

- Selection of appropriate metaphors, i.e. metaphors that were evaluated as very conventional or non-conventional
 - Criterion: mean rating score on factor 1 “non-conventionality” → 21 metaphors were included in the analysis
- Correlations between the 3 factors “non-conventionality”, “aesthetic appreciation”, and “cognitive effort”
- Multiple regression analysis (predictors: non-conventionality, cognitive effort)
Results

- Significant correlation between non-conventionality and cognitive effort ($\rho = .830; p < .01$); → confirmation of hypothesis 1

- Significant correlation between non-conventionality and aesthetic appreciation ($\rho = .665; p < .01$); → confirmation of hypothesis 2

- Multiple regression analysis:
 - Impact of non-conventionality on aesthetic appreciation is significant and stronger ($\beta = 1.306; t = 2.193; p < .05$) than the impact of cognitive effort ($\beta = -0.685; t = -1.150; \text{ns}$)
 - Satisfactorily high explained variance (40.3%) suggests a systematic effect
2 Cognitive effort and aesthetic appreciation in (non-)conventional figurative language

- Equivalent results for ironic utterances (study 2) and idioms (study 3) as well as for a combined sample of all three studies (21 metaphors, 24 ironic utterances, 17 idioms; N = 158).

- In sum
 - Non-conventional figurative language is perceived as aesthetically more pleasing and as requiring more cognitive effort than conventional variants.
2 Cognitive effort and aesthetic appreciation in (non-)conventional figurative language

• Limitations
 ➢ Results are based on subjective perception of non-conventionality and cognitive effort
 ➢ Results refer only to the evaluation of aesthetic objects, not to the evaluation of the understanding process (as postulated by the aesthetic paradox)

• Next step
 ➢ Use of objective measures
 ➢ Inclusion of the comprehension process
3 Cognitive effort and evaluation of the comprehension process (in metaphors)

• Assumption: increased cognitive load is evaluated positively when processing non-conventional metaphors

• Theoretical background
 ➢ Theories of working memory and cognitive load:
 ➢ Increased cognitive load is perceived as stressful
 ➢ Empirical study of literature: Polyvalence convention
 ➢ Expectation that literary texts convey polyvalent messages
 ➢ Suggestion: Automatic activation of an aesthetic reception attitude by non-conventional figurative language
3 Cognitive effort and evaluation of the comprehension process (in metaphors)

• Hypotheses
 1. The subjective assessment of cognitive effort correlates to objective measures of processing
 2. Non-conventionality of metaphors correlates to subjective and objective measures of cognitive effort
 3. Cognitive effort is evaluated positively, when non-conventional metaphors are satisfactorily processed

• Measures
 ➢ Objective measures of cognitive effort: reading and processing times
 ➢ Subjective measure of cognitive effort, processing experience, and satisfactory result: rating scales
Material and subjects

- Subjects: N = 40
- Material: 15 conventional & 15 non-conventional metaphors (validated in the previous study); 2 paraphrases per metaphor, one better, the other not fitting
 - Example
 Metaphor: An embarrassing break occurred, because the speaker had lost the thread
 More appropriate paraphrase: An embarrassing break occurred, because the speaker had forgotten the sequence of his arguments
 Wrong paraphrase: An embarrassing break occurred, because the speaker got heated and emotional
3 Cognitive effort and evaluation of the comprehension process (in metaphors)

- Procedure
 - 3 consecutive tasks
 1. Collection of reading times (judging the familiarity of metaphors)
 2. Recording of processing times (decision, which of two paraphrases gives a better explanation)
 3. Subjective measure (evaluation of one’s own decision process on a 7-point bipolar rating scale (13 items))
3 Cognitive effort and evaluation of the comprehension process (in metaphors)

Results

• Hypothesis 1 (correlation of subjective assessment of cognitive effort to objective measures of processing)

 ➢ Clarification of dimensions underlying the rating scale: factor analysis
 ▪ 3 factor solution (explains 78% of total item variance):
 • “Cognitive effort”
 • “Satisfactory result”
 • “Process evaluation”
Correlations

- Reading time – processing time: $r = .787, p < .01$
- Processing time – subjective cognitive effort: $r = .739, p < .01$
- Reading time – subjective cognitive effort: $r = .729, p < .01$

Confirmation of hypothesis 1 (Correlation of subjective assessment of cognitive effort to objective measures)
Hypothesis 2 (non-conventionality covariates to objective measures of processing)

- Ranking list of metaphors sorted by decreasing processing times:
 - Mean conventional metaphors = 227.026 ms
 - Mean non-conventional metaphors = 361.4583 ms
 - Comparison of means: T = 5.033, p < .01
- Confirmation of hypothesis 2
Hypothesis 3 (positive evaluation of cognitive effort in case of satisfactory processing of non-conventional metaphors)

- Correlations between satisfactory result and process evaluation as well as the objective measure of processing time
- Multiple regression analysis (predictors: processing time, satisfactory result)
Correlations/regressions between the scales process evaluation, satisfactory result and processing time

<table>
<thead>
<tr>
<th>Pearson Correlations (partial-)</th>
<th>Process evaluation</th>
<th>Satisfactory result</th>
<th>Processing time</th>
<th>Satisfactory result*Processing time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfactory result</td>
<td>-.659** (-.471**)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing time</td>
<td>.527** (.079)</td>
<td>-.738** (-.612**)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Regression analysis

<table>
<thead>
<tr>
<th>Corrected R²</th>
<th>.638</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardized β (DV)</td>
<td>-.609</td>
</tr>
<tr>
<td>T (DV)</td>
<td>-3.678</td>
</tr>
<tr>
<td>p (DV)</td>
<td>.001</td>
</tr>
</tbody>
</table>

** p < .01 (two-tailed)
confirmation of hypothesis 3 (positive evaluation of cognitive effort in case of satisfactory processing):

- significant correlation between cognitive effort (processing time) and process evaluation (rho = .527, p<.01)
- paradoxical effect: negative covariation of satisfactory result and process evaluation (rho = -.659, p<.01)
- explanation: interaction effect (satisfactory result * processing time), confirmed by the regression analysis (beta=.590, t=4.369, p<.001)
→ given high cognitive load, the comprehension process is evaluated positively in case a satisfactory result is achieved
3 Cognitive effort and evaluation of the comprehension process (in metaphors)

• Conclusion

- First confirmation of the aesthetic paradox
 - The cognitively more demanding processing of non-conventional metaphors is evaluated positively, provided that subjects are satisfied with their processing result

- Important role of the emotional-aesthetic dimension in investigating figurative and quasi-literary language
4 Cognitive effort and conventionality – Eye-tracking as a methodological approach

- **Aim**
 - Replicate findings on aesthetic paradox with an objective measure of cognitive effort with high processing resolution

- **First step**
 - Relate cognitive effort as assessed by eye-movements to the dimension of conventionality
 - Control for potentially relevant confounds (contextual fit, length of lexical items, etc.)
4 Cognitive effort and conventionality –
Eye-tracking as a methodological approach

• We tested 82 metaphors with literal counterparts (parallel structure or parallel meaning and structure)

 ➢ Love is an emotion/a flower.
 ➢ This train is a long vehicle/worm.
 ➢ The kitchen is the center/heart of the house.
4 Cognitive effort and conventionality –
Eye-tracking study – Analyses

- Regression model with predictors
 - length of region
 - Metaphoricity
 - Conventionality
 - contextual fit

- Analysis of subsample of items
 - 26 items with tenor-vehicle structure
 two regions: A train is – a long worm/vehicle
 - 21 items with tenor-vehicle structure
 three regions: The kitchen is – the heart/center – of the house
4 Cognitive effort and conventionality – Eye-tracking study – First Pass Times

<table>
<thead>
<tr>
<th>Region</th>
<th>Met.</th>
<th>Convention</th>
<th>Fit</th>
<th>Interaction</th>
<th>R^2*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>/</td>
<td>B = -17.07</td>
<td>/</td>
<td>/</td>
<td>.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$t = 2.36$, $p = .02$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Conv \uparrow -> Fix \uparrow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worm/vehicel</td>
<td>/</td>
<td>/</td>
<td>B = -19.77</td>
<td>/</td>
<td>.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>$t = 1.95$, $p = .05$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fit \downarrow -> Fix \uparrow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kitchen</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>.17</td>
</tr>
<tr>
<td>Heart/Center</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>.07</td>
</tr>
<tr>
<td>House</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Met x Fit</td>
<td>.08</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$B = 32.36$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$t = 2.14$, $p = .03$;</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Literal:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fit \downarrow -> Fix \uparrow</td>
<td></td>
</tr>
</tbody>
</table>

Length of region included as further predictor
<table>
<thead>
<tr>
<th>Region</th>
<th>Metaphor.</th>
<th>Convention</th>
<th>Fit</th>
<th>Interaction</th>
<th>R²*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Train</td>
<td>/</td>
<td>/</td>
<td>B = -31.44</td>
<td>/</td>
<td>.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>t = 2.54, p = .01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fit ↓ -> Fix ↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Worm/Vehicle</td>
<td>/</td>
<td>/</td>
<td>B = -37.12</td>
<td>/</td>
<td>.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>t = 3.00, p < .01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fit ↓ -> Fix ↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kitchen</td>
<td>/</td>
<td>B = 20.64</td>
<td>t = 1.94, p = .05</td>
<td>/</td>
<td>.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Conv ↓ -> Fix ↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart/Center</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>.11</td>
</tr>
<tr>
<td>House</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>.11</td>
</tr>
</tbody>
</table>

*Length included as further predictor
4 Cognitive effort and conventionality – Regressions out of Region Two

<table>
<thead>
<tr>
<th>Region</th>
<th>Metaphor.</th>
<th>Convention</th>
<th>Fit</th>
<th>Interaction</th>
<th>R²*</th>
</tr>
</thead>
<tbody>
<tr>
<td>...Worm/Vehicle</td>
<td>/</td>
<td>B = 0.13</td>
<td>/</td>
<td>/</td>
<td>.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wald = 15.61, p < .01</td>
<td>Conv ↓ -> Regr ↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...Heart/Center</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>Met x Fit</td>
<td>.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B = -0.15</td>
<td></td>
<td>Wald = 7.59, p < .01; Literal: Fit ↓ -> Regr ↑</td>
<td></td>
</tr>
</tbody>
</table>

Length included as further predictor, R²: Cox & Snell
• Eye-tracking measures are able to differentiate between conventional and non-conventional items

• Next steps
 - Control for further potential influences (e.g., lexical frequency)
 - Select sample of metaphors for future studies
 - Relate eye-movements to measures of aesthetic appreciation and evaluation of the comprehension process
Thanks a lot for your attention!
• Open questions

- The construct of ‘aesthetic reception attitude’ must be validated explicitly
 - Does it depend on prior knowledge, degree of expertise, verbal sensibility or working memory capacity?

- What is the exact nature of the cognitive and emotional processes that account for additional cognitive effort
4 Ratings Conventionality (84 Items, N = 32)

\[M_{\text{literal}} = 2.99, \ SD = 1.8, \ M_{\text{met}} = 4.14, \ SD = 2.08 \]
4 Ratings Contextual Fit
(84 Items, N = 32)

\[M_{\text{literal}} = 5.30, \ SD = 1.66, \ M_{\text{met}} = 4.65, \ SD = 1.84 \]
Metaphors: Correlations/regressions between the factors unconventionality, aesthetic appreciation and cognitive effort

<table>
<thead>
<tr>
<th>Spearman-rho Correlation coefficients</th>
<th>Aesthetic appreciation</th>
<th>Unconventionality</th>
<th>Cognitive effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconventionality</td>
<td></td>
<td>.665**</td>
<td></td>
</tr>
<tr>
<td>Cognitive effort</td>
<td>.492*</td>
<td>.830**</td>
<td></td>
</tr>
</tbody>
</table>

Regression analysis

<table>
<thead>
<tr>
<th>Corrected R²</th>
<th>.403</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standardized β</td>
<td>- (DV)</td>
</tr>
<tr>
<td>T</td>
<td>- (DV)</td>
</tr>
<tr>
<td>p</td>
<td>- (DV)</td>
</tr>
</tbody>
</table>

* p .05 (two-tailed)
** p .01 (two-tailed)
(Partial-)Correlations /regressions for the overall sample (metaphors, ironies, idioms)

<table>
<thead>
<tr>
<th>Spearman-rho Correlations (partial-)</th>
<th>Aesthetic appreciation</th>
<th>Unconventionality</th>
<th>Cognitive effort</th>
<th>Unconventionality* cognitive effort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconventionality</td>
<td>.666**</td>
<td>(.508**)</td>
<td>.544**</td>
<td>1.067 1.067</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>.903**</td>
<td>-.520 -.520</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>.222 .222</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regression analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrected R²</td>
<td>.498</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standardized β</td>
<td>- (DV)</td>
<td>1.067</td>
<td>-.520</td>
<td>.222</td>
</tr>
<tr>
<td>T</td>
<td>- (DV)</td>
<td>5.169</td>
<td>-2.370</td>
<td>2.185</td>
</tr>
<tr>
<td>p</td>
<td>- (DV)</td>
<td>.000</td>
<td>.021</td>
<td>.033</td>
</tr>
</tbody>
</table>

** p < .01 (two-tailed)