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Abstract

Semi-functional partial linear model is a flexible model in which a scalar response is related to both
functional covariate and scalar covariates. We propose a quantile estimation of this model as an alterna-
tive to the least square approach. We also extend the proposed method to kNN quantile method. Under
some regular conditions, we establish the asymptotic normality of quantile estimators of regression co-
efficient. We also derive the rates of convergence of nonparametric function. Finite-sample performance
of our estimation is compared with least square approach via a Monte Carlo simulation study. The
simulation results indicate that our method is much more robust than the least square method. A real
data example about spectrometric data is used to illustrate that our model and approach are promising.
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1 Introduction

Over the last two decades, technological progress in many subject areas have produced a large number of
continuous data with curves or images as the units of observation. Functional data analysis (FDA) encom-
passes the statistical methodology for such data and has been prevailed. See Müller (2005); Cuevas (2014);
Morris (2015); Wang et al. (2016); Goia and Vieu (2016) for systematic reviews on this subject. The recent
monographs by Horváth and Kokoszka (2012); Hsing and Eubank (2015) offer some mathematical theories of
functional data. As the important tool of FDA, functional regression aim to model the relationship between
functional (scalar) response and functional (scalar) covariates. Researchers are increasingly interested in
functional regression models. See Greven and Scheipl (2017) for a short survey on this field. It is noteworthy
that semiparametric functional regression models offer a well-balanced mixture of parametric models and
nonparametric models. Semiparametric functional regression models keep flexibility of parametric regres-
sion models and overcome sensitivity to dimensional effects of nonparametric approaches. See Goia and Vieu
(2014) for a short survey. Semi-functional partial linear regression model is an important semiparametric
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functional regression model. It can be expressed as Y = m(X) +Z>β + ε, where X is functional covariate
that taking values in semi-metric space F , m : F → R is a unknown smooth function, Z is p-dimensional
random vector of scalar covariate, β is unknown coefficient of scalar covariate, ε is a random error. The
model has been widely used in many fields. Aneiros-Pérez and Vieu (2006) proposed profile least square es-
timation method and derived the asymptotic performances of proposed estimators. Aneiros-Pérez and Vieu
(2008) extended the model to time series area. Ling et al. (2017) proposed a k-nearest-neighbours (kNN)
procedure and derived the asymptotic performances of kNN estimators. Aneiros et al. (2015) extend the
model to high-dimensional framework. They proposed penalized least-squares method to study the problem
of variable selection and derived an oracle property.

The above-mentioned references are all focused on mean regression. It is known that mean regression
is sensitive to outliers. Quantile regression is usually recognized as an alternative to mean regression.
Quantile regression is more robust than mean regression. There is few literatures on quantile-regression-
based estimation procedures in the functional regression model. Cardot et al. (2005) proposed a spline
estimator for functional linear quantile regression model. Chen and Müller (2012) studied a estimation
method for conditional quantile analysis in the generalized functional regression framework. Kato et al.
(2012) studied quantile estimation in functional linear quantile regression model. In this paper, we study
quantile regression of semi-functional partial linear model. To the best of our knowledge, this method has
not been researched in the scientific literature. Since the model is flexible in practice, quantile regression
method is urgently needed, which motivates us to investigate quantile regression of estimation of the model.

In this paper, we use quantile regression method to estimate the nonparametric function and regression
coefficient of the model. We also extend the proposed method to kNN quantile method. Under some regular
conditions, we establish the asymptotic normality of estimators of regression coefficient and derive the rates
of convergence of nonparametric function. A Monte Carlo simulation and an application to spectrometric
data show the advantages of our proposed method.

The article is organized as follows. Section 2 describes our model and our estimation method. Section 3
and 4 present asymptotic properties and finite sample performance of the proposed estimators respectively.
Section 5 provides an application to spectrometric data. Concluding remarks are provided in Section 6.
Technical proofs are given in an Appendix.

2 Model and estimation

2.1 Model

Given quantile level τ ∈ (0, 1), we consider the following semi-functional partial linear quantile regression
model

Y = mτ (X) +Z>βτ + ετ , (1)

where X is functional covariate that taking values in semi-metric space F , and we denote the associated
semi-metric by d(·, ·), mτ : F → R is a unknown smooth function, Z = (Z1, . . . , Zp)

> are p-dimensional
random vector of scalar covariates, βτ = (β1τ , . . . , βpτ )> are unknown coefficients of scalar covariates, ετ is
a random error whose τth quantile conditional on (Z, X) being zero.

2.2 Estimation

Suppose that {(Yi, Xi,Zi), i = 1, . . . , n} is a random sample generated from model (1). We estimate coeffi-
cients βτ and function mτ (·) in model (1), by minimizing the following quantile loss function

n∑
i=1

ρτ

(
Yi −mτ (Xi)−Z>i βτ

)
, (2)
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where ρτ (s) = s{τ − I(s < 0)}.

Obviously, (2) contains both nonparametric and parametric component. And they can be estimated by
different rates of convergence, so we use three-stage procedure. In the first stage, we apply the local constant
weighted quantile smoothing technique to get an initial estimators. That is, we obtain an initial estimators
of mτ (Xj) and βτ by minimizing the following local weighted quantile loss function∑

i:i 6=j

ρτ

(
Yi − aτj −Z>i βτ

)
Kh0(d(Xi, Xj)), (3)

where Kh0
(·) = K(·/h0)/h0 and K(·) is a kernel function and h0 is a bandwidth. For convenience, we denote

the initial estimators of aτj ,βτ by ãτj , β̃τ . In the second stage, we further improve the efficiency of β̃τ .
Specifically, we derive the final estimator of βτ by minimizing the following quantile loss function

n∑
j=1

ρτ

(
Yj − ãτj −Z>j βτ

)
. (4)

Denote the final estimator of βτ by β̂τ . In the third stage, we obtain the final estimator of mτ (x). More
concretely, we obtain the final estimator of mτ (x) by minimizing the the following local weighted quantile
loss function

n∑
i=1

ρτ

(
Yi − aτ −Z>i β̂τ

)
Kh(d(Xi, x)). (5)

Denote the final estimators of aτ by âτ . Evidently, âτ are the final estimator of mτ (x).

Remark 1 The estimation procedure proposed above get the estimators of the mτ (x) and βτ by minimizing
quantile loss function. In next section, we show that minimizing (3) can help us to obtain initial estimators

β̃τ for βτ , and get a improved root-n consistent estimator β̂τ eventually if we continue to minimize (4). We
also show that âτ is the strong consistent estimator of mτ (x) and derive the rate of convergence of estimator.

2.3 Tuning parameters selection

To implement our estimation method, we need to know how to choose semi-metric d(·, ·) and bandwidths
h0 and h. We considered (as recommended in Ferraty and Vieu (2006)) a class of semi-metrics based on

derivatives {d[a,b]q (·, ·), q = 0, 1}, where

d[a,b]q (xi, xj) =

(∫ b

a

(
x
(q)
i (t)− x(q)j (t)

)2
dt

)1/2

.

We will use leave-one-out cross-validation to select (q, h0) and (q, h). The observation j is removed to

compute β̃
(−j)
τ,q,h0

and ã
(−j)
τ,j,q,h0

, where β̃
(−j)
τ,q,h0

and ã
(−j)
τ,j,q,h0

denoting the initial leave-one-out estimator of βτ
and mτ (Xj). Thus, for given (q, h0), we compute

CV1(q, h0) =
1

n

n∑
j=1

ρτ

(
Yj − ã(−j)τ,j,q,h0

−Z>j β̃
(−j)
τ,q,h0

)
.

Then, (q, h0) is obtained by (q, h0) = arg minq,h0
CV1(q, h0). Once (q, h0) is obtained, ãτj and β̃τ can be

computed using this tuning parameters. Then, β̂τ can be obtained. To provide a selector of (q, h), a second
leave-one-out cross-validation can be used. More precisely, (q, h) is defined as (q, h) = arg minq,h CV2(q, h).
where

CV2(q, h) =
1

n

n∑
j=1

ρτ

(
Yj − â(−j)τ,j,q,h −Z

>
j β̂τ

)
,

â
(−j)
τ,j,q,h denote that the final estimator of mτ (Xj) computed without observation j and using tuning param-

eters (q, h).
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2.4 Extension to kNN quantile method

The methodology and tuning parameters selection of the previous sections are based on the fixed bandwidth
parameter, which ignore the local denseness/sparseness in practice. In this section, we propose kNN quantile
method to address this problem. It is noteworthy that our proposed estimation procedure in Section 2.2
can be easily extended to kNN quantile method. A key step is to replace fixed bandwidth h0 and h with
local adaptive neighbourhood size, based on the distance of a point from its neighbours. Let B(x, h) be the
open ball centered at x ∈ F and of radius h > 0. We also use three-stage procedure similar to that used in
Section 2.2. We only need to replace (3) and (5) with

∑
i:i 6=j

ρτ

(
Yi − aτj −Z>i βτ

)
K

(
d(Xi, Xj)

Hk0(Xj)

)
and

n∑
i=1

ρτ

(
Yi − aτ −Z>i β̂τ

)
K

(
d(Xi, x)

Hk(x)

)

respectively, where Hk(x) = min{h > 0 :
∑n
i=1 IB(x,h)(Xi) = k}. By using leave-one-out cross-validation

method similar to that used in Section 2.3, we can choose optimal tuning parameters (q, k0) and (q, k).

Remark 1 kNN quantile procedure has two major advantages over quantile procedure in Section 2.2.
First, kNN quantile procedure includes local adaptive smoothing technology, which is a key point in infinite
dimensional analysis for taking into account local denseness/sparseness structures of the data. Second, kNN
quantile procedure uses a discrete smoothing parameter k which is much more easier to choose in practice
than the continuous bandwidth h.

3 Asymptotic properties

In this section we only establish asymptotic properties of the quantile estimators proposed in Section 2.2.
Let fτ (·|z, x) and Fτ (·|z, x) denote the density function and cumulative distribution function of the error ετ
condition on (Z, X) = (z, x) respectively. Let G(x) = E{fτ (0|Z, X)(1,Z>)>(1,Z>)|X = x}, Aτ (x, z) =

E
(
fτ (0|Z, X)Z

(
1,0>

)
|X = x

)
{G(x)}−1 z, H(x) = E{fτ (0|Z, X)Z|X = x}, M τ = E{fτ (0|Z, X)ZZ>}

and N τ = E{[Z − Aτ (X,Z)][Z − Aτ (X,Z)]>}. Let SF be a given compact subset of F . We assume that
X is valued in SF . For any ε > 0, ψSF = log(Nε(SF )) denotes the Kolmogorov’s ε-entropy of SF .(Nε(SF )
is the minimal number of open balls in SF of radius ε which is necessary to cover SF ). The following
conditions are needed:

(C1) For any x ∈ SF , assume that there exist positive constants c1 and c2 and a function φ(h) on (0,∞)
such that 0 < c1φ(h) ≤ P (X ∈ B(x, h)) ≤ c2φ(h) <∞.

(C2) We assume that mτ is smooth, in the sense that there exist constants c3 > 0 and α > 0 such that for
any u, v ∈ SF , |mτ (u)−mτ (v)| ≤ c3(d(u, v))α.

(C3) The kernel function K(·) satisfies:

(C3.i) K(·) is a bounded nonnegative function with support [0, 1] and satisfies a Lipschitz condition on
[0, 1).

(C3.ii) If K(1) = 0, the kernel function K(·) has to satisfy an addition condition: its derivative K ′(·)
exists and there exists two constants c3 and c4 such that −∞ < c3 ≤ K ′(u) ≤ c4 < 0.

(C4) The function φ satisfies:

(C4.i) There exists two positive constants c5 and η0 such that φ′(η) < c5 for any η < η0.

(C4.ii) If K(1) = 0, the function φ(·) has to satisfy an addition condition: there exists two positive
constants c5 and η0 such that

∫ η
0
ψ(u)du > c5ηψ(η) for any 0 < η < η0.

(C5) Kolmogorov’s ε-entropy of SF satisfies: for n large enough, (logn)2/nφ(h) < ψSF ( logn
n ) < nφ(h)/ log n.

4



(C6) There exist constant M such that ∀m ≥ 2, E
{
|fτ (0|Z, X)ZZ>|m|X = x

}
< σm(x) ≤ M < ∞ with

σm(·) continuous on SF .

(C7) Fτ (0|z, x) = τ for all (z, x), fτ (·|z, x) is bounded away from zero and has a continuous and uniformly
bounded derivative.

(C8) Z has bounded support.

(C9) G(x) and H(x) are continuous on SF , G(x) is nonsingular on SF .

Remark 1 Condition C1-C9 are not the weakest possible conditions, but they are imposed to facilitate
the proof of Theorem. Conditions C1-C6 are required in the context of semi-functional partial linear model
(see Ling et al., 2017). They are also a direct extension of Aneiros-Pérez and Vieu (2006). Specifically, it
increases additional topological conditions to obtain uniform convergence results (see Ferraty et al., 2010;
Kudraszow and Vieu, 2013). Conditions C7-C9 are needed for quantile regression. They are quite usual
in nonfunctional quantile regression (see Kai et al., 2011). Condition C1-C6 and C9 are standard in the
nonparametric functional regression setting and extend what is usually assumed in the classical p-dimensional
nonparametric literature (see Ferraty and Vieu, 2006).

Theorem 1. Under the regularity conditions C1-C9, if in addition h0 satisfies C1 and C5, h0 → 0,
nh4α

0

ψSF
( logn

n )
→ 0 and

ψSF
( logn

n )

nφ2(h0)
→ 0 as n→∞, then

√
n(β̂τ − βτ )

L−→ N
(
0, τ(1− τ)M−1

τ N τM
−1
τ

)
. (6)

Theorem 2. Suppose that the regularity conditions C1-C9 hold. If h→ 0 as n→∞, then

sup
x∈SF

|m̂τ (x)−mτ (x)| = Op

hα +

√√√√ψSF

(
logn
n

)
nφ(h)

 . (7)

Remark 2 The condition about kernel bandwidth h0 in Theorem 1 ensures that we can derive the root-n
consistency and asymptotic normality for estimator β̂τ . Under the condition about kernel bandwidth h in
Theorem 2, we can get the rate of uniformly convergence of nonparametric function.

4 Simulation studies

In this section, we implement a simulation study to investigate the performance of the proposed estimation
methods. The data sets are generated from the following model:

Yi = Z1iβ1 + Z2iβ2 +m(Xi) + 0.3εi, i = 1, 2, . . . , n.

For the functional nonparametric component, we take the same form as Model M1 of Aneiros-Pérez and
Vieu (2011), that is, The functional data Xi(t) = ai(t − 0.5)2 + bi(t ∈ [0, 1]) with ai and bi are in-
dependent and identically distributed uniform random variables U(0, 1) and U(−0.5, 0.5), respectively.

g(Xi) = sign (X ′i(1)−X ′i(0))
√

3
∫ 1

0
(X ′i(t))

2
dt and m(Xi) = exp(−8g(Xi))− exp(−12g(Xi)), where sign(a)

denotes the sign of a. For the linear component, we let Z1i and Z2i are independent and identically distribut-
ed normal random variables N(0, 1). The coefficients of covariates are β1 = −1 and β2 = 3. Furthermore,
Xi, Z1i and Z2i are independent.

In our simulation, we consider two cases for error terms ε: N(0, σ2) and standard Cauchy, where
σ = maxX (m(X))−minX (m(X)). We also consider two choices for the sample sizes n = 100 and 300. Each

5



Xi(t) is observed at 100 equally space points on [0, 1]. We use the cross-validation procedure as described
in section 2.3 to select optimal semi-metric and bandwidths. We also use kNN quantile method. We apply
the cross-validation procedure as described in section 2.4 to select optimal semi-metric and neighbourhood
size. The Epanechnikov kernel is used in both the quantile regression procedure and kNN quantile regression
procedure. In order to evaluate the performance of estimators of different method, we compare the profile
least squares (PLS) method (see Aneiros-Pérez and Vieu, 2006), our quantile regression (QR) method and
kNN quantile regression (kNNQR) method. We focus on τ = 0.25, 0.5 and 0.75 in quantile regression. All
simulations are replicated for 1000 times.

Performance of the estimators of coefficient functions β1 and β2 are assessed using the bias and standard
deviation of estimators. While performance of estimator of functional nonparametric function m(x) is
assessed using the square root of average squared errors (RASE) defined as

RASE {m̂(x)} =

{
1

100

100∑
i=1

[m̂(xi)−m(xi)]
2

} 1
2

,

where xi, i = 1, 2, · · · , 100 are new random samples of size 100 which generated from Xi(t).

Table 1-2 list RASEs of m̂(x) and biases and standard deviations of β̂1 and β̂2 under different error

terms. There is a general tendency for RASEs of m̂(x) and biases and standard deviations of β̂1 and β̂2
to decrease as sample sizes increases. From Table 1, we can see that PLS estimators, QR estimators and
kNNQR estimators have small RASEs and biases under normal error terms. QR estimators and kNNQR
estimators are slightly worse than PLS estimators as expected. When the error term follows heavy-tailed
standard Cauchy distribution, Table 2 illustrate that PLS estimators have very large RASEs and biases and
standard deviations while QR estimators and kNNQR estimators have reasonably small RASEs and biases
and standard deviations. Note that this conclusion agrees with the known fact that PLS fails when the error
variance is infinite. Overall, Our proposed estimation methods shows better performance even with infinite
variance errors. Focusing on the QR and kNNQR estimation of the nonparametric component m(·), we can
see that kNNQR estimators are better than QR estimators. This is because kNNQR method is similar to
QR method with a local adaptive variable bandwidth.

Table 1: RASEs and biases with standard deviations(in parentheses) with normal distribution error N(0, σ2)

n Method m̂(x) β̂1 β̂2
100 PLS 0.0017(0.0003) 0.0029(0.0062) -0.0023(0.0050)

QR(0.25) 0.0045(0.0008) 0.0041(0.0068) -0.0018(0.0067)
QR(0.50) 0.0022(0.0004) 0.0028(0.0083) -0.0026(0.0087)
QR(0.75) 0.0038(0.0008) 0.0039(0.0104) -0.0043(0.0082)

kNNQR(0.25) 0.0040(0.0013) 0.0034(0.0069) -0.0018(0.0050)
kNNQR(0.50) 0.0016(0.0004) 0.0036(0.0102) -0.0026(0.0071)
kNNQR(0.75) 0.0034(0.0010) 0.0029(0.0091) -0.0068(0.0081)

300 PLS 0.0012(0.0001) -0.0001(0.0036) -0.0003(0.0028)
QR(0.25) 0.0041(0.0004) 0.0004(0.0047) 0.0001(0.0048)
QR(0.50) 0.0018(0.0002) -0.0003(0.0056) 0.0003(0.0045)
QR(0.75) 0.0032(0.0005) 0.0001(0.0045) -0.0018(0.0041)

kNNQR(0.25) 0.0038(0.0011) 0.0008(0.0049) 0.0006(0.0044)
kNNQR(0.50) 0.0015(0.0002) 0.0001(0.0057) -0.0005(0.0048)
kNNQR(0.75) 0.0030(0.0010) 0.0010(0.0065) -0.0018(0.0040)
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Table 2: RASEs and biases with standard deviations(in parentheses) with standard Cauchy distribution
error

n Method m̂(x) β̂1 β̂2
100 PLS 32335.9(686275.9) 3.1875(80.3151) -0.9969(59.7885)

QR(0.25) 0.1003(0.0366) -0.0018(0.0823) 0.0017(0.0680)
QR(0.50) 0.0075(0.0071) -0.0031(0.0543) 0.0085(0.0455)
QR(0.75) 0.1168(0.0529) 0.0191(0.0698) 0.0108(0.0999)

kNNQR(0.25) 0.0439(0.0432) -0.0067(0.0769) 0.0017(0.0720)
kNNQR(0.50) 0.0042(0.0029) 0.0044(0.0450) 0.0077(0.0545)
kNNQR(0.75) 0.0589(0.0496) 0.0306(0.0697) -0.0102(0.0839)

300 PLS 20711.1(459763.3) 1.8931(58.3539) 0.2585(19.2496)
QR(0.25) 0.1037(0.0357) -0.0032(0.0479) 0.0010(0.0482)
QR(0.50) 0.0050(0.0027) 0.0021(0.0270) 0.0129(0.0265)
QR(0.75) 0.1002(0.0297) 0.0185(0.0544) 0.0080(0.0425)

kNNQR(0.25) 0.0500(0.0305) 0.0024(0.0622) -0.0092(0.0585)
kNNQR(0.50) 0.0034(0.0012) 0.0028(0.0244) 0.0068(0.0193)
kNNQR(0.75) 0.0682(0.0416) 0.0068(0.0567) 0.0094(0.0360)

5 A real example

In this section, we apply our proposed quantile estimation to spectrometric data which are available from
http://lib.stat.cmu.edu/datasets/tecator. These data are obtained for 215 pieces of pure meat. Each
data sample contains fat, protein, water contents of finely chopped meat and spectrometric curve. The
three contents measured in percent, are determined by analytic chemistry. Spectrometric curve consist
of 100 wavelengths absorbance spectrum records. Aneiros-Pérez and Vieu (2006) consider the following
semi-functional partial linear model

Y = Z1β1 + Z2β2 +m(X) + ε.

where Y is the percentage of fat content, X is the spectrometric curve, Z1 and Z2 are the corresponding
percentages of water content and protein content, respectively. Our aim is not to achieve a full case study
but to provide a richer characterization of the data, allowing us to consider the impact of a covariate on
the entire distribution of Y , not merely its conditional mean. Firstly, profile least squares method (see
Aneiros-Pérez and Vieu, 2006) is used in the above model to analyse the normality of the residuals. The
norm quantile-quantile of the residuals is shown in Figure 1(a), from which we can see apparently that
the residuals cannot follow normal distribution. We also make a Shapiro-Wilk hypothesis test to judge the
normality of the residuals. By Shapiro-Wilk test, we find that the p value is less than 3.63 × 10−19. This
reminds us further that the error cannot be normal, and the mean regression is unsuitable here.

Our quantile regression method and kNN quantile regression method when τ = 0.1, 0.2, . . . , 0.9 are used
here to analyse the impact of water content and protein content on the entire distribution of fat content.
Both quantile regression estimators and kNN quantile regression estimators have similar performance. To
save space, we only show the result of quantile regression estimators proposed in Section 2.2. Specifically,
the kernel used in the real anlysis is K(u) = 0.75(1−u2)I[0,1](u). We also use the cross-validation procedure

as described in section 2.3 to select the semi-metric and bandwidths. The estimators of coefficients β̂1 and
β̂2 are shown in Table 3. We also construct pointwise median, 2.5% and 97.5% quantiles of coefficients β̂1
and β̂2 from τ= 0.1 to 0.9 and show it in Figure 1(b) and (c). It is apparent that the impact of water
content on fat content is negative across all quantiles, and that it decreases as the quantile increases. Table
3 and Figure 1(b) and (c) also indicate that the impact of protein content on fat content is negative across
all quantiles, but it increases as the quantile increases. As it is known to all, the more fat within the finely
chopped meat, the richer the taste, the higher the grade. In other words, the water content matters more
for low-quality meat in terms of fat content, whereas the protein content matters more for high-quality meat
in terms of fat content.
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Table 3: Means and standard errors (in parentheses) of coefficients for different quantiles

τ β̂1 β̂2
0.1 -0.8066(0.0125) -2.1419(0.0436)
0.2 -0.7863(0.0093) -1.9752(0.0333)
0.3 -0.9269(0.0051) -1.3573(0.0184)
0.4 -0.9872(0.0038) -1.1021(0.0137)
0.5 -1.0075(0.0030) -1.0108(0.0106)
0.6 -1.0231(0.0021) -0.9479(0.0076)
0.7 -1.0144(0.0022) -0.9659(0.0079)
0.8 -1.0263(0.0022) -0.9222(0.0074)
0.9 -1.0610(0.0023) -0.7946(0.0075)
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Figure 1: (a) QQ plot of the residual for profile least squares estimation method. (b) Pointwise median of

β̂1 is shown as solid line from τ= 0.1 to 0.9. (c) Pointwise median of β̂2 is shown as solid line from τ= 0.1
to 0.9. Pointwise 2.5% and 97.5% quantiles are given as doted lines in (b) and (c).

6 Concluding remarks

We have proposed a quantile estimation of semi-functional partial linear regression model. The estimators
are obtained based on three-stage procedure. We also have extended the proposed method to kNN quantile
method. We have established an asymptotic theory for the our proposed estimation. Finite-sample perfor-
mances of our quantile estimation and kNN quantile estimation are compared with least square approach via
a Monte Carlo simulation study. The simulation result indicate that our quantile method and kNN quantile
method are much more robust than the least square method. A real data example about spectrometric data
has been used to illustrate advantage of our quantile estimation method.

There are two interesting possible extensions of semi-functional partial linear quantile regression. First,
we only propose the kNN quantile regression method. The kNN quantile regression method is based on
a random neighbourhood. Hence, the theory of kNN quantile estimation is much more complicated and
warrants further studies. Second, we note that our study focuses on finite-dimensional scalar covariates.
However, in many fields of applications the number of scalar covariates is high. Thus, estimation and
variable selection for extending the semi-functional partial linear quantile regression model with multiple
scalar covariates is a challenge for future work.

7 Appendix

Proof. Let ri = I(εiτ ≤ 0) − τ and rij = I(εiτ ≤ ζij) − τ , where ζij = mτ (Xj) − mτ (Xi). Denote

θ̃j =
√
nφ(h0)(ãτj −m(Xj), (β̃τ − βτ )>)>, Z∗i = {1,Z>i }>, Z∗ = {1,Z>}> and ηij = Z∗>i θ̃j/

√
nφ(h0).
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For convenience, we use the symbol An = Op(an) (or op(an)) to denote that the every element of matrix An

is Op(an) (or op(an)). For two sequences of positive numbers an and bn, an . bn means an/bn is uniformly
bounded. an � bn means an . bn and bn . an.

Lemma A.1. Let (X1, Y1), · · · , (Xn, Yn) be independent and identically distributed random vectors,
where Xi is functional random variable, Yi is scalar random variable. We assume that Xi and K(·) satisfy
conditions C1 and C3-C5. Assume that there exist constant M such that E(|Y m||X = x) < σm(x) ≤M <∞
for m ≥ 2, where σm(·) continuous on SF . Then

sup
x∈SF

∣∣∣∣∣ 1

nφ(h)

n∑
i=1

[K(h−1d(Xi, x))Yi − EK(h−1d(Xi, x))Yi]

∣∣∣∣∣ = Op


√√√√ψSF

(
logn
n

)
nφ(h)

 .

Proof. Let Ki = K(h−1d(Xi, x)). By condition C1 and C3, if K(1) > 0, there exist positive constants
c′1 and c′2 such that c′1φ(h) < E(Ki) < c′2φ(h) for any x ∈ SF . If K(1) = 0, by Lemma 4.4 of Ferraty and

Vieu (2006), we can get the same results. Let x1, . . . , xNε(SF ) be an ε-net for SF (SF ⊂ ∪Nε(SF )
k=1 B(xk, ε)

and x1, . . . , xNε(SF ) ∈ SF ). Set k(x) = arg mink∈{1,...,Nε(SF )} d(xk, x). Let g(x) =
n∑
i=1

(KiYi)/nE(K1),

G1 = sup
x∈SF

|g(x)− g(xk(x))|, G2 = sup
x∈SF

|g(xk(x))− Eg(xk(x))| and G3 = sup
x∈SF

|Eg(xk(x))− Eg(x)|. By using

analogous argument as for (13),(14) and (15) of Ferraty et al. (2010), we deduce that there exist constants
ω > 1, η and c′ such that

sup
n

P

 sup
x∈SF

|g(xk(x))− Eg(xk(x))| > η

√√√√ψSF

(
logn
n

)
nφ(h)

 ≤ c′Nε(SF )1−ω → 0

and

G1 = Op


√√√√ψSF

(
logn
n

)
nφ(h)

 , G3 = Op


√√√√ψSF

(
logn
n

)
nφ(h)

 .

Thus, we have

sup
x∈SF

∣∣∣∣∣ 1

nE(K1)

n∑
i=1

[K(h−1d(Xi, x))Yi − EK(h−1d(Xi, x))Yi]

∣∣∣∣∣ = Op


√√√√ψSF

(
logn
n

)
nφ(h)

 .

Hence,

sup
x∈SF

∣∣∣∣∣ 1

nφ(h)

n∑
i=1

[K(h−1d(Xi, x))Yi − EK(h−1d(Xi, x))Yi]

∣∣∣∣∣
≤ sup

x∈SF

∣∣∣∣∣ 1

nE(K1)

n∑
i=1

[K(h−1d(Xi, x))Yi − EK(h−1d(Xi, x))Yi]

∣∣∣∣∣ sup
x∈SF

∣∣∣∣E(K1)

φ(h)

∣∣∣∣ = Op


√√√√ψSF

(
logn
n

)
nφ(h)

 .

Lemma A.2. Suppose that the regularity conditions C1-C9 hold. If h0 → 0 as n→∞, then

θ̃j = −
{

E
{
K(h−10 d(X,Xj))E

[
fτ (0|Z, X)Z∗Z∗

>|X
]}}−1√φ(h0)

n

n∑
i=1

Z∗i rijK(h−10 d(Xi, Xj)) + op(1).
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Proof. Fix Xj and let Kij = K(h−10 d(Xi, Xj)). Seen from (1), we deduce that

Yi −Z>i β̃τ − ãτj = εiτ +Z>i (βτ − β̃τ ) +mτ (Xi)− ãτj = εiτ − ηij − ζij .

Then, θ̃j is also the minimizer of `∗n(θj) =
∑
i:i6=j {ρτ (εiτ − ηij − ζij)− ρτ (εiτ − ζij)}Kh0

(d(Xi, Xj)). By
the identity of Knight et al. (1998), we can get

`∗n(θj) =
∑
i:i 6=j

{
ηijrij +

∫ ηij

0

{I(εiτ ≤ ζij + t)− I(εiτ ≤ ζij)}dt
}
Kij = S∗j

>
θj +R∗n(θj),

where S∗j = 1√
nφ(h0)

∑
i:i 6=j rijZ

∗
iKij and R∗n(θj) =

∑
i:i 6=j Kij

∫ ηij
0
{I(εiτ ≤ ζij + t)− I(εiτ ≤ ζij)} dt.

Consider the conditional expectation of R∗n(θj), we have

E {R∗n(θj)|Z, X} =
∑
i:i 6=j

Kij

∫ ηij

0

{Fτ (ζij + t|Z, X)− Fτ (ζij |Z, X)}dt =
1

2
θ>j Qjθj +Op(h

α
0 ) + op(1).

whereQj = 1
nφ(h0)

∑
i:i6=j fτ (0|Z, X)KijZ

∗
iZ
∗
i
>

. Using similar calculations, we can get Var {R∗n(θj)|Z, X} =

op(1). Therefore, we obtain

R∗n(θj) = E {R∗n(θj)|Z, X}+ op(1) =
1

2
θ>j Qjθj + op(1),

By Lemma A.1, we have

Qj = E{Qj}+Op


√√√√ψSF

(
logn
n

)
nφ(h0)

 = Q∗j +Op


√√√√ψSF

(
logn
n

)
nφ(h0)

 ,

where Q∗j = 1
φ(h0)

E
{
K(h−10 d(X,Xj))E

[
fτ (0|Z, X)Z∗Z∗

>|X
]}

. Thus, `∗n(θj) can be written as

`∗n(θj) = S∗j
>
θj +

1

2
θ>j Q

∗
jθj +Op


√√√√ψSF

(
logn
n

)
nφ(h0)

+ hα0

 .

Following from basic corollary of Hjort and Pollard (2011), the minimizer of `∗n(θj) can be written as

θ̃j = −{Q∗j}−1S
∗
j +Op


√√√√ψSF

(
logn
n

)
nφ(h0)

+ hα0

 . (8)

Proof of Theorem 1. Let θ =
√
n(β̂τ − βτ ), ζi = ãτi − mτ (Xi). By using the identity of Knight

et al. (1998), we deduce that θ is also the minimizer of function

`n(θ) =

n∑
i=1

{
ρτ

(
εiτ − ζi −Zi>θ/

√
n
)
− ρτ (εiτ − ζi)

}
=

{
1√
n

n∑
i=1

riZi

}>
θ +Rn(θ), (9)
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where Rn(θ) =
∑n
i=1

∫ ζi+Z>
i θ/

√
n

ζi
{I(εiτ ≤ t)− I(εiτ ≤ 0)}dt. Now we consider the conditional expectation

of Rn(θ). It follows that

E {Rn(θ)|Z, X} =
1

2
θ>

(
n∑
i=1

1

n
fτ (0|Z, X)ZiZi

>

)
θ +

(
1√
n
fτ (0|Z, X)

n∑
i=1

ζiZi

)>
θ + op(1).

Using similar calculations, we have Var {Rn(θ)|Z, X} = op(1). Thus, we deduce that

Rn(θ) = E {Rn(θ)|Z, X}+ op(1) =
1

2
θ>Dnθ +

(
1√
n
fτ (0|Z, X)

n∑
i=1

ζiZi

)>
θ + op(1), (10)

where Dn = 1
n

∑n
i=1 fτ (0|Z, X)ZiZi

>. Combining (9) and (10), we have

`n(θ) =
1

2
θ>Dnθ +

(
1√
n
fτ (0|Z, X)

n∑
i=1

ζiZi

)>
θ +

{
1√
n

n∑
i=1

riZi

}>
θ + op(1),

By using (8), we can get

1√
n
fτ (0|Z, X)

n∑
i=1

ζiZi

= − 1√
n
fτ (0|Z, X)

n∑
i=1

Zi
(
1,0>

) 1√
nφ(h0)

{
E
{
K(h−10 d(X,Xi))E

[
fτ (0|Z, X)Z∗Z∗

>|X
]}}−1

√
φ(h0)

n

n∑
j=1

Z∗jrjK(h−10 d(Xi, Xj)) +Op

 1

φ(h0)

√√√√ψSF

(
logn
n

)
n

+
hα0√
φ(h0)


= − 1√

n

n∑
j=1

rjAτ (Xj ,Zj) + op(1),

Thus,

`n(θ) =
1

2
θ>Dnθ +

{
1√
n

n∑
i=1

ri {Zi −Aτ (Xi,Zi)}

}>
θ + op(1) =

1

2
θ>Dnθ + S>n θ + op(1), (11)

where Sn = 1√
n

∑n
i=1 ri {Zi −Aτ (Xi,Zi)} . It is easy to show that Dn = EDn + op(1) = M τ + op(1).

Substitute it to (11), we have `n(θ) = 1
2θ
>M τθ + S>n θ + op(1). Following from basic corollary of Hjort

and Pollard (2011), the minimizer of `n(θ) can be written as θ̂ = −M−1
τ Sn + op(1). By the Cramér-Wold

Device, it is quite easy to show that the central limit theorem for Sn holds. Furthermore, we have

Var (Sn) = τ(1− τ)E {Z −Aτ (X,Z)} {Z −Aτ (X,Z)}> = τ(1− τ)N τ .

According to the central limit theorem, we have
√
n(β̂τ − βτ )

L−→ N
(
0, τ(1− τ)M−1

τ N τM
−1
τ

)
.

Proof of Theorem 2. By using the method similar to that used in Lemma A.2, we can show the conclusion
similar to (8) holds, that is

θ̂ = −Q̂
−1
Ŝ1 +Op


√√√√ψSF

(
logn
n

)
nφ(h)

+ hα
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uniformly for any x ∈ SF , where θ̂ =
√
nφ(h)(âτ − m(x)), ζi = mτ (x) − mτ (Xi) and si = I{εiτ ≤

ζi +Z>i (β̂τ − βτ )} − τ , Ŝ1 = 1√
nφ(h)

∑n
i=1K(h−1d(Xi, x))si. Thus,

sup
x∈SF

|âτ −m(x)| = sup
x∈SF

|Q̂
−1
Ŝ2|+Op


√
ψSF

(
logn
n

)
nφ(h)

+
hα√
nφ(h)

 (12)

where Ŝ2 = 1
nφ(h)

∑n
i=1K(h−1d(Xi, x))si,Q̂ = 1

φ(h)E
{
K(h−1d(X,x))E [fτ (0|Z, X)|X]

}
. By using condition

C9 and Fubini’s Theorem, we have

Q̂ =
1

φ(h)
E
{
K(h−1d(X,x))E [fτ (0|Z, X)|X]

}
� −E [fτ (0|Z, X)|X = x] . (13)

Moreover, we have

Ŝ2 =
1

nφ(h)

n∑
i=1

K(h−1d(Xi, x))ri +
1

nφ(h)

n∑
i=1

K(h−1d(Xi, x))(si − ri) = Ŝ3 + Ŝ4, (14)

where Ŝ3 = 1
nφ(h)

∑n
i=1K(h−1d(Xi, x))ri, Ŝ4 = 1

nφ(h)

∑n
i=1K(h−1d(Xi, x))(si − ri). Consider the condi-

tional expectation of Ŝ4, we have

E
{
Ŝ4|Z, X

}
= E

{
1

nφ(h)

n∑
i=1

K(h−1d(Xi, x))(si − ri)|Z, X

}
= Op(h

α)

uniformly for any x ∈ SF . Using similar calculations, we have Var
{
Ŝ4|Z, X

}
= op(h

2α). Thus, we have

Ŝ4 = Op(h
α) (15)

uniformly for any x ∈ SF . By Lemma A.1, we can obtain

sup
x∈SF

|Ŝ3| = EŜ3 +Op


√√√√ψSF

(
logn
n

)
nφ(h)

 = Op


√√√√ψSF

(
logn
n

)
nφ(h)

 (16)

According to condition C1, C3 and C9 and combining (12)-(16), we deduce that

sup
x∈SF

|âτ−mτ (x)| = Op

hα +

√√√√ψSF

(
logn
n

)
nφ(h)

+

√
ψSF

(
logn
n

)
nφ(h)

+
hα√
nφ(h)

 = Op

hα +

√√√√ψSF

(
logn
n

)
nφ(h)

 .
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