
Downloaded from
https://kar.kent.ac.uk/68748/ The University of Kent's Academic Repository KAR

The version of record is available from
https://doi.org/10.1021/acs.jpclett.8b01915

This document version
Author's Accepted Manuscript

DOI for this version

Licence for this version
UNSPECIFIED

Additional information

Versions of research works

Versions of Record
If this version is the version of record, it is the same as the published version available on the publisher's web site. Cite as the published version.

Author Accepted Manuscripts
If this document is identified as the Author Accepted Manuscript it is the version after peer review but before type setting, copy editing or publisher branding. Cite as Surname, Initial. (Year) 'Title of article'. To be published in Title of Journal, Volume and issue numbers [peer-reviewed accepted version]. Available at: DOI or URL (Accessed: date).

Enquiries
If you have questions about this document contact ResearchSupport@kent.ac.uk. Please include the URL of the record in KAR. If you believe that your, or a third party's rights have been compromised through this document please see our Take Down policy (available from https://www.kent.ac.uk/guides/kar-the-kent-academic-repository#policies).
Tuning Antisite Defect Density in Perovskite-BaLiF₃ via Cycling between Ball Milling and Heating

Andre Düvel⁽¹⁾*, Lucy M. Morgan⁽¹⁾, Giannantonio Cibin⁽²⁾, David Pickup⁽¹⁾, Alan V. Chadwick⁽¹⁾, Paul Heitjans⁽³⁾, Dean C. Sayle⁽¹⁾*

⁽¹⁾ School of Physical Sciences, University of Kent, CT2 7NH, U.K.
⁽²⁾ Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, U.K.
⁽³⁾ Institute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstr. 3-3a, 30167 Hannover, Germany.

ABSTRACT:
The defect density of a material is central to its properties. Here, we show, employing EXAFS measurements and MD simulation, how the Ba-Li antisite defect density of perovskite-structured BaLiF₃ nanoparticles can be tuned. In particular, we show that ball milling reduces the defect content. Conversely, thermal annealing increases the defect density. The work represents a first step towards tailoring the properties of a material, via defect tuning postsynthesis.

For example, antisite defects influence the magnetic properties of materials such as double perovskite-structured Sr₂FeMoO₆⁽⁶⁻⁹⁾, or the Li ion conductivity in LiFePO₄⁽¹⁰,¹¹⁾. It is known that the preparation method influences the antisite defect density of a material⁽⁷,¹⁰,¹¹⁾. However, the preparation of materials with a low antisite defect density can be challenging.⁽⁶⁻⁹⁾

The properties of a functional material are controlled by its defect density⁽¹⁻⁵⁾.

The formation of cation antisite defects was recently investigated in case of perovskite-type Ba₁₋ₓSrₓLiF₃ using molecular dynamics (MD) simulations⁽¹²⁾. It was found that the growth of perovskite-structured BaLiF₃ goes along with Ba ions commonly crystallizing onto Li sites and Li ions onto Ba sites. The next crystal layer only grows if most of the wrongly crystallized cation species are replaced by the correct one, which is possible only on the crystal surface (crystallization front). However, a few
Figure 3. Atom level model and F ion mobility of a BaLiF³ nanoparticles with Ba-Li antisite defects at 900 K. (a) Image of the whole nanoparticle; snapshots of the atom positions, during the MD simulation, are superimposed to reveal the mobility which is highest near the surface of the nanoparticle and also deep within the nanoparticle around the antisite defects. (b) Enlarged segment of (a) showing more clearly the mobility of the F ions in the vicinity of antisite defects. (c) Segment of the nanoparticle showing the atomistic structure of the complex defect structure and ionic relaxation. (d) Segment showing Li located at Ba sites (positions indicated by white arrows). (e) Segment showing Ba located at Li sites. Barium is colored blue, fluorine is red and lithium is yellow.

wrongly crystallized cations become trapped in the crystal, creating Ba-Li antisite defects.¹²
Ball milling is a simple solvent free method of preparing functional materials, with different defect structures compared to thermally synthesized materials.¹³,¹⁴ It can be used to prepare materials that cannot be prepared thermally, such as solid solutions within miscibility gaps. For example, Ba₁₋ₓCaₓF₂ (0.04 ≤ x ≤ 0.97) segregates to BaF₂ and CaF₂ under thermal annealing but can be synthesized using ball milling.¹⁵,¹⁶ Clearly, the mechanisms underpinning ball-milling and thermal annealing are different, which can be exploited as an additional tool for defect-tuning functional nanomaterials.

Here we report extended X-ray absorption fine structure (EXAFS) measurements on BaLiF³ nanoparticles, treated post-synthesis, using either ball milling or thermal heating. We find that the two methods lead to different defect densities enabling postsynthesis defect-tuning.

BaLiF³ is first synthesized using either ball milling or a thermal synthesis route. The samples are then characterized using X-ray powder diffraction (XRPD) (see Figure S2) and EXAFS. A post-synthesis step is then performed; the ball milled sample is annealed thermally and the thermally prepared sample is ball milled. The so treated samples were also investigated with EXAFS, to determine how each post processing step changes their crystallinity, i.e. the degree of structural order in the crystallites, and hence the defect density. In parallel, a model BaLiF³ nanoparticle was generated with 1% Ba-Li antisite defects and simulated using MD. The crystallinity of the perfect and defective (model) nanoparticles were then compared. Full details of the experimental and computational methods can be found in supporting information.

The Fourier transform of the Ba LIII edge data (done in a range from 2.3 – 9.5 Å⁻¹), thus, the radial distribution function (RDF) from the viewpoint of Ba, of the various BaLiF³ samples is shown in Figure 1. The ball-milled BaLiF³ samples show narrow lines of high intensity. Conversely, the thermally treated samples exhibit broadened lines with lower intensity. This indicates that ball-milled BaLiF³ is more crystalline than BaLiF³ prepared thermally and is consistent with a lower Ba-Li antisite defect density in the crystallites of ball-milled BaLiF³.

To provide stronger evidence that the crystallinity is influenced by the antisite defect density, the RDF of the model BaLiF³ nanoparticle, with 1% Ba-Li antisite defects, was compared with a perfect (defect free) BaLiF³ model nanoparticle, Figure 2. In accord with our experimental findings, the defective nanoparticle was less crystalline as evidenced by broader and less intense peaks, Figure 2. We also observe an increase in the lattice parameter, which can be attributed to geometric frustration associated with antisite defects expanding the crystal.
Such subtle differences in inter-atomic distances are too small to be measured by EXAFS. This demonstrates the value of computer simulation as a complementary technique. The MD simulations also revealed that Ba-Li antisite defects increase the mobility of the F ions in the BaLiF₃ nanoparticle, Figure 3. The defect free BaLiF₃ reveals no ion mobility at all, in agreement with the work of Zahn et al.¹⁷ who reported a decrease of the Frenkel defect formation energy due to the formation of Ba-Li antisite defects. Figure 3 also shows the structural disorder close to the Ba-Li antisite defects.

To determine whether the defect density of BaLiF₃ nanoparticles can be controlled postsynthesis, we ball-milled thermally prepared BaLiF₃, and annealed BaLiF₃ prepared by ball-milling (see Supporting Information for details).

The variance of the absorber-scatterer distances, σ², extracted from the EXAFS data, is shown in Figure 4a for the F ions in BaLiF₃, postprocessed either thermally or ball-milled; we note that a lower c(F) indicates higher crystallinity and therefore lower defect density. Additional data and information can be found in Supporting Information, Figure S3.

The data shows that ball milling BaLiF₃ reduces its defect density. Conversely, thermal annealing, increases its defect density and confirms that the Ba-Li antisite defect density can be tuned postsynthesis: we can increase antisite defects by processing the material thermally or we can reduce the defect density by ball-milling. A schematic describing this process is shown in Figure 4b). A plausible mechanism of the defect repair by ball milling is the exposure of the Ba-Li antisite defects to the crystallite surfaces due to the mechanical treatment, where the wrongly crystallized cation is able to leave the site to be replaced by the correct cation species (see Supporting Information for further discussion).

It seems likely that an antisite defect reduction by ball milling can also be observed in other materials which should be investigated in the future.

ASSOCIATED CONTENT

Supporting Information. XRPD patterns of the samples and further σ² data and structural information determined from EXAFS data of all samples (PDF)

The Supporting Information is available free of charge on the ACS Publications website.
AUTHOR INFORMATION

Corresponding Author
Andre Düvel
a.duvel@kent.ac.uk

ORCID: 0000-0002-2393-5453

Dean Sayle
D.C.Sayle@kent.ac.uk

ORCID: 0000-0001-7227-9010

Author Contributions
All authors contributed equally.

ACKNOWLEDGMENT

We like to thank A. Feldhoff, J. Caro and E. McCabe for access to their X-Ray diffractometers. We thank Diamond Light Source for the award of beam time on B18 as part of the Energy Materials Block Allocation Group under proposal SP14239. A.D. is grateful for financial support by the German Research Foundation (DFG), DU 1668 1-1/2. We would also like to thank the UK Materials and Molecular Modelling Hub for computational resources which are partially funded by EPSRC (EP/P020194).

REFERENCES