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Abstract: This paper demonstrates that the complex master slave interferometry (CMSI) 
method used in spectral domain interferometry (SDI) can efficiently be used for accurate 
refractive index and group velocity dispersion measurements of optically transparent samples. 
For the first time, we demonstrate the relevance of the phase information delivered by CMSI 
for dispersion evaluations with no need to linearize data. The technique proposed here has 
been used to accurately measure the group refractive index and the group velocity dispersion 
of a strong dispersive sample (SF6 glass), and a weak dispersive one (distilled water). The 
robustness of the technique is demonstrated through the manipulation of several sets of 
experimental data. 
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1. Introduction 

Spectral (or Fourier) domain Interferometry (SDI) is widely spread in many fields of 
biomedical optics and sensing. SDI is at the core of the modern Optical Coherence 
Tomography (OCT) [1,2] technology and of group refractive index measurement methods 
[3]. The measurement of group refractive index of optically transparent samples can be 
carried out in various ways, very often by using a low-coherence Michelson interferometer 
[4–9], in which case two measurements are performed: with the sample inserted within one of 
the interferometer arms and without, or by a single measurement in a common-path 
interferometer [10,11] for thin samples. 

These techniques are based on recovering the spectral phase from the electrical signal at 
the interferometer output. The electrical signal delivered by the spectrometer is termed in 
what follows as channeled spectrum, i.e. the electrical version of the optical spectrum read by 
a camera incorporated within a spectrometer. The channeled spectrum is usually chirped due 
to: (i) the nonlinear dependence of the pixel position in the camera versus the optical 
frequency and (ii) the unbalanced dispersion between the arms of the interferometer. Before 
decoding the modulations in the channeled spectrum via a Fourier transform (FT), the 
chirping has to be canceled out. 

Faultless calibration of the spectrometer is crucial, especially when handling a large 
number of fringes in the spectrum, where calibration errors are amplified. Hence a calibration 
precision far superior to the instrument optical resolution is required [12]. Indeed, it was 
shown that calibration accuracy better than one-tenth of the spacing between two consecutive 
pixels on the camera is often required to achieve the best possible accuracy in the measured 
spectral phase. 

To decode the channeled spectrum and recover the spectral phase, SDI uses methods to 
resample and organize the data linearly along the optical frequency axis from the knowledge 
of the measured chirp, and apply FTs to the signal. Such decoding algorithms are based on the 
phase interpolation [13,14] or on more sophisticated data processing methods based on 
fractional Fourier transform, non-uniform fast Fourier transform and wavelet-transform 
analysis [15–17]. 

Master-Slave Interferometry (MSI) [18] (and its improved version, Complex Master Slave 
Interferometry (CMSI) [19–21]) represent novel approaches to SDI, useful in OCT signal 
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processing. For the scope of this study, the more efficient algorithm of the CMSI will be 
employed. This proceeds in two stages. In a first stage (Master), several experimental 
channeled spectra are acquired by using a mirror as sample. These spectra are affected by the 
nonlinearity in transducing the optical spectrum into an electrical signal and dispersion in the 
interferometer, making the electrical output signal chirped. Then, digital local oscillations 
(named masks in this paper) are generated for as many depths (optical path differences) as 
required. As the algorithm employs the set of experimentally collected channeled spectra, the 
masks incorporate the chirp due to nonlinearity in reading the spectra and dispersion in the 
interferometer. In the second stage (Slave), the sample replaces the mirror. The stored masks 
are mixed with the channeled spectrum Isample acquired from the sample. It has been 
demonstrated [21] that, by applying CMSI, irrespective of how chirped the Isample signal is, the 
A-scan profile obtained is identical to that delivered by a Fourier transform of Isample for a 
perfectly dispersion-compensated interferometer and perfectly linearized decoder (no 
nonlinear dependence on the pixel position). Thus, there is no need for data resampling and 
the procedure is free from errors otherwise resulting from the interpolation of the 
experimental data. Finally, in a previous report [20] we demonstrated that a CMSI instrument 
can produce axial reflectivity profiles faster than the FFT-based conventional methods 
employing data resampling. This was made possible by harnessing efficient algorithms of 
manipulating matrices that can be implemented on computer processing units (CPU). 

In previous MSI [18] and CMSI papers [19–21], only amplitude information was 
employed to produce OCT images without taking advantage of the information incorporated 
in the phase. 

In this paper, we experimentally validate the relevance of phase information that can be 
delivered by CMSI. Thus, we demonstrate that phase information can be used to measure the 
group refractive index and the group velocity dispersion of optical transparent samples with 
high accuracy. 

2. Phase reconstruction procedure by CMSI 
In Fig. 1, the schematic diagram of an SDI experimental set-up is shown, containing the two 
main components, an in-fiber interferometer and a spectrometer. The interferometer includes 
a beam-splitter (shown as a single mode optical fiber directional coupler), a flat reference 
mirror (Mr), and a flat sample mirror (Ms). The sample to be analyzed is inserted between the 
sample mirror, Ms, and the achromatic lens Ls. To actuate on the optical path difference 
(OPD) introduced by the addition of the sample in the sample arm of the interferometer, the 
mirror Ms is placed on a linear translation stage. 

 

Fig. 1. Block diagram of a spectral domain interferometer. Mr and Ms are respectively the 
reference mirror and the sample mirror. The mirror Ms can be moved along the optical axis by 
a linear translation stage. The positions z and z0 correspond to the positions of Ms relatively to 
the origin 0 of the linear stage. I(x,δ) is the recorded channeled spectrum versus the pixel x of 
the camera for a given OPD = δ. Ls and Lr are identical achromatic lenses. 
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The electrical signal at the output of the interferometer shown in Fig. 1 is typically 
digitized using an image acquisition board (IMAQ) connected to a linear camera via a camera 
link cable. This electrical signal can be expressed as a function of the pixel position (x) on the 
spectrometer camera and the OPD = δ in the interferometer by the following equation: 

 ( ) ( )( ) ( )( ) ( )( )( )0 0, 1 cos , ,I x I p x p x p xδ φ δ φ = + +   (1) 

where I0(p(x)) is the power spectrum of the optical source, p(x) = ω is the relationship 
between the pixel x and the optical angular frequency ω, ϕ(p(x),δ) = p(x) δ/c is the phase 
related to δ responsible for the modulation in the spectrum, and ϕ0 is the additional phase due 
to the unbalanced dispersion in the interferometer. The OPD can be expressed relatively to 
the position of the stage where OPD = 0, z0, and the position of the mirror Ms, z, by δ = 2(z-
z0). 

A widely accepted procedure to extract the phase ϕ from Eq. (1) [22] ignores the 
additional phase ϕ0 and proceeds in two sequential steps: 

(i) the function p(x) is linearized, 

(ii) a Fourier transform is applied to I(x,δ). 
CMSI is equivalent to the steps above but carried out in a single calculation with resulting 

advantages in terms of procedure simplification and speed. When employing CMSI, in a first 
stage (Master), the sample is replaced with a mirror and several experimental channeled 
spectra (CSexp) are acquired for different OPD values [19]. These experimental channeled 
spectra CSexp are chirped due to the non-linearity of the spectrometer, p(x), and due to the 
unbalanced dispersion described by ϕ0 according to Eq. (1). The purpose of the Master stage 
is to measure p and ϕ0 that are then used to build masks M(x,t), given by: 

 ( ) ( ) ( )( ) ( )( ) ( )( )( )0 0, .c c

dp
M x t Exp i p x p x t p x p x

dx
φ φ = − − + −   (2) 

M(x,t) are then generated digitally versus discrete values of x and t, and stored before being 
mixed with the channeled spectrum corresponding to the sample. In the equation above, the 
values for x vary from 1 to the number N of pixels of the camera, xc is the position of the pixel 
at the center of the linear camera. The values t are related to the OPD values where CMSI 
calculation returns a reflectivity point of the reflectivity profile in depth, A-scan. They could 
be any values within the axial range allowed by the interference process. Let us consider a 
uniformly-spaced range of t values, with an interval equal to the spatial axial resolution limit, 
2π/Δω where Δω is the spectral range of the spectrometer equal to the difference Δω = p(xN) - 
p(x1). For a camera of N pixels, according to Nyquist, only N/2 cycles in the channeled 
spectrum can be sampled. This determines a range of πN/Δω of t values along the OPD 
coordinate, to accurately represent the A-scan. For such consideration of t values, at least one 
point is provided for each axial resolution interval. 

CMSI consists in calculating a discrete integral between the electrical signal I(x,δ), 
converting the channeled spectrum at the output of the interferometer, and the masks, M, as 
follows: 

 ( ) ( ) ( ) ( )* 1

1

, , , , ,
N

without chirp
i i

i

CMSI I x I x M x t FT Iδ δ ω δ−

=

 = =      (3) 

where the symbol * signifies complex conjugate. The result is equivalent to the inverse 
Fourier transformation (FT−1) of the complex signal created by reading the channeled spectra 
Iwithout chirp [17] expressed according to: 

 ( ) ( ) ( )0, , .without chirpI I Exp iω δ ω φ ω δ=     (4) 
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The ultimate quantity to be obtained is the phase of the signal I(x,δ). Using CMSI there is no 
need to resample the channeled spectra nor remove the uncompensated chirp because the 
channeled spectra are expressed as a combination of local oscillators (masks) according to δ, 
spectra that already contain the chirp measured at the Master stage. Thus, by calculating the 
Fourier transform and the argument of CMSI[I], it is possible to extract the phase ϕ(ω,δ) in 
Eq. (4) equal to: 

 ( ) ( ), , .Arg FT CMSI I xφ ω δ δ  =       (5) 

Equation (5) describes the phase of the signal at the output of a perfect interferometer 
(calibrated and perfectly balanced for dispersion), when the OPD between its arms is δ. In 
such a perfect interferometer, when a sample is placed in one of the arms of the 
interferometer, for the same δ, the alteration of the phase is exclusively due to the dispersion 
of that particular sample. 

3. Group index and dispersion measurement procedure 

Let us consider two channeled spectra Isample(x,δs) and Ivacuum(x,δv) recorded respectively with 
the sample to be investigated placed in the sample arm of the interferometer, and without. The 
corresponding OPDs δs and δv can be expressed as δs = 2(zs-zs0), where zs is the current 
position of the mirror Ms and zs0 is the linear stage position for OPD = 0 with the sample, and 
δv = 2(zv-zv0), where zv is the current position of the mirror Ms and zv0 is the linear stage 
position for OPD = 0 without the sample respectively. A set of masks M is built from M(x,t0) 
presenting several cycles over N pixels to the densest mask M(x,tN) whose number of cycles is 
close to N/2 (related to Nyquist frequency). As shown in Fig. 2, CMSI[Ivacuum] and 
CMSI[Isample] are defined with N values in time domain by an interval equal to 2π/Δω. All 
values of CMSI[Ivacuum] (and CMSI[Isample]) are equal to 0 except those corresponding to the 
product between Ivacuum (and Isample) with the set of masks M. The first mask does not start with 
a zero-cycle in order to remove the DC component of the channeled spectra 

The instantaneous phases ϕsample and ϕvacuum related to Isample and Ivacuum can be measured 
according to the procedure described in Section 2 and explained in Fig. 2. 

 

Fig. 2. Block diagram showing the procedure of extracting the spectral phases ϕvacuum and ϕsample 
from the channeled spectra Ivacuum and Isample respectively. Masks M, CMSI[Ivacuum] and 
CMSI[Isample] are complex quantities, only their amplitudes are represented in this diagram. 
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Due to the properties of CMSI, the instantaneous phases, free from the non-linearity of the 
spectrometer and the unbalanced dispersion of the interferometer without sample, can be 
written as: 

 ( ) ( )0, 2 ,vacuum
v v vz z

c c

ω ωφ ω δ δ= = −  (6) 

 ( ) ( )0, 2 ,sample
s s sz z

c c

ω ωφ ω δ δ= = −  (7) 

where z0s = z0v-(n(ω)-1)e due to the addition of the sample whose thickness is e and refractive 
index is n(ω). 

The phase difference Δϕ = ϕsample - ϕvacuum can then be expressed as: 

 ( ) ( )( )2 1 .s vz z n e
c

ωφ ω ω Δ = − + −   (8) 

The dependence Δϕ vs ω can be fitted by a quadratic form: 

 ( ) ( ) ( )2

c c+ - + - ,φ ω α β ω ω γ ω ωΔ =  (9) 

where ωc is the angular frequency at the center of the spectrometer given by the function p 
measured during the Master stage (i.e., ωc = p(xc)). The coefficients β and γ are defined 
according to the derivatives of Δϕ with respect to ω, as: 

 ( ) ( )2 2
,

c

s v g c

d
z z e e n

d c cω

φβ ω
ω
Δ= = − − +  (10) 

 ( )
2

2

1
,

2
c

c

d
GDD

d ω

φγ ω
ω
Δ= =  (11) 

where the group refractive index ng(ωc) is defined by the derivative d(ω n)/dω, whilst the 
group delay dispersion GDD at an angular frequency ωc is defined by e c−1 d2(ω n)/dω2. 

Thus, if the thickness e is known, the group index and the group velocity dispersion 
(GVD) can be recovered employing respectively the linear and quadratic coefficients in Eq. 
(9) as: 

 ( ) / 2
1,v s

g c

c z z
n

e

βω + −
= +  (12) 

 ( ) ( )
.c

c

GDD
GVD

e e

ω γω = =  (13) 

In practice, to avoid any possible phase wrapping, Δϕ is calculated directly from the 
following equation: 

 ( ) ( ), , .sample vacuum
s vArg FT CMSI I x FT CMSI I xφ δ δ

∗       Δ = ×        
 (14) 

4. Experimental results 

The spectrometer has been designed to measure a spectral range of 70 nm with a resolution of 
0.068 nm. The camera used in the spectrometer is the line scan camera AViiVA M2 CL with 
1024 pixels that operates at its maximum speed (28 kHz). As a light source, a super 
luminescent diode (SLD, Superlum, Cork, Ireland, model Broadlighter 890) with an 890 nm 

                                                                                                Vol. 26, No. 17 | 20 Aug 2018 | OPTICS EXPRESS 21836 

abrad
Textbox



central wavelength and a 150 nm spectral bandwidth is employed. This light source uses a 
combination of 4 SLD modules. In this paper only the two shorter wavelength SLDs are 
switched on, i.e. two SLDs centered at 860 nm and 890 nm covering 70 nm of the 
spectrometer. The normalized spectrum of the two SLDs emitted by this particular source is 
shown in Fig. 3(a). The optical power is 0.4 mW in the sample arm and 0.65 mW in the 
reference arm. Sensitivity is 90 dB close to zero optical path difference, with a drop of 30 dB 
over 2 mm, which is typical for a spectrometer-based OCT system. 

 

Fig. 3. (a) SLD spectrum as seen by the linear camera. (b) Dependence of the optical angular 
frequency ω = p(x) versus pixel position on the camera x. The pixel x0 corresponds to the 
incident position of light from a 0.873 mm-line of the swept-source used for calibration. 

Because the function p measured during the Master stage is known up to an additive 
constant, the spectrometer is calibrated with a swept source covering a spectral range from 
828 to 873 nm with a wavelength adjustment step of 0.05 nm (line-width equal to 0.045 nm). 
The 0.873 mm-line of the swept-source, corresponding to an angular frequency ωcalib = 2.159 
rad.fs−1, has been used for the calibration. This has illuminated the 427th pixel x0 of the CCD 
line camera of the spectrometer (Fig. 3(b)). 

In order to demonstrate that the proposed method can be used to accurately measure the 
group refractive index and a large range of group delay dispersion values, two types of 
materials were considered, with strong and weak dispersion. Two slabs from such materials 
were sequentially placed in one of the interferometer’s arms and their dispersion evaluated 
using our approach. 

4.1 SF6 glass sample 

The glass sample SF6 is a 20 mm-flint glass whose catalogue data gives a group index ng = 
1.8205 and group velocity dispersion GVD = 173.37 fs2/mm at the central pixel of the camera 
ωc = 2.145 rad.fs−1, i.e. λc = 0.8788 mm [23]. 

The channeled spectrum Ivacuum (Fig. 4(a)) is recorded without the glass being placed in the 
sample arm of the interferometer for the position of the mirror Ms, zv = 20.1 mm. When the 
glass is placed in the sample arm, the mirror Ms is adjusted so that the main spectral 
modulation of the channeled spectrum Isample (Fig. 4(c)) is similar to that of Ivacuum (zs = 3.695 
mm). Ivacuum and Isample are recorded 10 times in order to assess the accuracy of ng and GVD 
measurements given in the form of (mean +/− 2 standard deviation). The standard deviations 
for ng and GVD are related to random noise coming from data-acquisition noise. 

The difference between the instantaneous phases Δϕ of the two spectra is calculated by 
applying CMSI to Isample and Ivacuum (Fig. 4(b) and 4(d)) and using Eq. (14). Because fringe 
visibility is very weak at the edge of the spectra, Δϕ - Δϕ(ωc) is not plotted over the all 
spectrum range (Fig. 4(e)). A fit by a quadratic polynomial centered at ωc, leads to ng = 
1.8203 +/− 0.0001 and GVD = (173 +/− 2) fs2/mm. The experimental results are in good 
agreement with the theoretical values. There is a consistent deviation between the 
experimental and theoretical values of ng. Its consistency and the fact that the difference is 
larger than the standard deviation suggest a deterministic bias and not randomness. This 
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deviation can be explained by the accuracy in measuring the thickness of the sample. For 
instance, if a 19.995 mm-sample was considered, then we would obtain a perfect match with 
the theoretical value for ng. 

 

Fig. 4. (a) Channeled spectrum Ivacuum without sample in the arm of the interferometer, after 
filtering the DC component. (b) Calculation of CMSI[Ivacuum], where its amplitude is shown 
only for t>0. (c) Channeled spectrum Isample with sample placed in the sample arm of the 
interferometer and after filtering the DC component. (d) Calculation of CMSI[Isample], where its 
amplitude is shown only for t>0. (e) From Eq. (14), Δϕ-Δϕ(ωc) is displayed in black curve 
between 2.08 and 2.2 rad.fs−1. The red curve corresponds to the fit of Δϕ-Δϕ(ωc) using as 
numerical values for the constants in Eq. (9) the values shown in the inset. 

These results have been obtained using channeled spectra measured for specific positions 
of Ms. In order to evaluate the dependence of method accuracy on positions zv and zs, GVD 
and ng have been computed for different sets of channeled spectra. Thus, channeled spectra 
were recorded, without the sample in place from zv = 20 mm to 20.4 mm in steps of 50 mm, 
and with the SF6 glass inserted, from zs = 3.545 mm to 3.945 mm in steps of 50 mm. Figure 
5(a) shows the relative error of GVD according to the position of Ms, given by a line 
corresponding to β = 0. Indeed the specific set (zv = 20.1 mm, zs = 3.695 mm), described 
above and represented by a white circle in Fig. 5(a), has a very weak linear coefficient β (Fig. 
4(e)), while the sets of positions from either side of the line (zv = 20.1 mm, zs = 3.645 mm) 
and (zv = 20.1 mm, zs = 3.745 mm) have a linear coefficient β different from 0 as shown in 
Fig. 5(b) and Fig. 5(c). The fact that β = 0 means that the OPD δs is equal to δv according to 
the shift theorem of Fourier transform, i.e. the main spectral modulation of Isample is identical 
to that obtained for Ivacuum. This condition is more general than the comparison between the 
position of the peaks in Fourier domain because it is related to the barycenter of the peaks 
under energy and it is independent from their shape. 
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Fig. 5. (a) Relative error of GVD according to the position of the mirror Ms with and without 
the sample in the interferometer’s arm. The white circle corresponds to the specific 
configuration zv = 20.1 mm and zs = 3.695 mm used at the beginning of Section 4.1. (b) Δϕ-
Δϕ(ωc) for the configuration zv = 20.1 mm and zs = 3.745 mm. (c) Δϕ-Δϕ(ωc) for the 
configuration zv = 20.1 mm and zs = 3.645 mm. 

To assess the stability of the measurement, GVD has been evaluated along the line 
corresponding to δs = δv in Fig. 5(a). Figure 6 shows the results, exhibiting a constant GVD 
value, which proves the robustness of the CMSI method. GVD is not displayed for OPDs 
inferior to 300 mm because the small number of modulations does not permit to completely 
separate the DC peak from the peak associated to the modulation, which leads to a greater 
inaccuracy. Moreover, the study has been carried out until an OPD equal to 1 mm. Indeed 
GVD should be affected by the loss of fringe visibility for high OPDs due to the finite 
resolution of the spectrometer. The dependence between accuracy and modulation is the same 
as that applicable to the conventional FT based method because the sensitivity drop off is 
independent from the specific method used for signal processing, FT or CMSI. 

 

Fig. 6. Measurement of GVD for SF6 sample according to the position of the mirror Ms in the 
case δs = δv. The white circle corresponds to the specific configuration zv = 20.1 mm and zs = 
3.695 mm used in the beginning of Section 4.1. 

Figure 7(a) shows the relative error in determining ng according to the position of Ms. The 
value ng is stable irrespective of the position of the mirror Ms except for zs = 3.545 mm for 
which the modulation amplitude of the channeled spectrum Isample is not sufficient to perform 
an accurate measurement. Figure 7(b) exhibits a constant ng value, which again proves the 
robustness of the method. 
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Fig. 7. (a) Relative error of ng according to the position of the mirror Ms with and without the 
sample. The white circle corresponds to the specific configuration zv = 20.1 mm and zs = 3.695 
mm used in the beginning of Section 4.1. (b) Measurement of ng for SF6 sample according to 
the position of the mirror Ms in the case δs = δv. The thickness of the glass is assumed to be 
equal to 20 mm for the calculation of ng. 

Note that the loss of fringe visibility due to the finite resolution of the spectrometer has 
not been taken into account in the current study. In order to measure strong GDD, the loss of 
fringe visibility should be measured and compensated numerically in order to recover the 
spectral phase due to the sample only. 

4.2 Water sample 

Distilled water was used to fill in a rectangular cuvette of 10 mm in length. At the center of 
the spectrum, i.e. λc = 0.8788 mm, the theoretical value of the water group index is ng = 
1.3412 and its group velocity dispersion is GVD = 16.98 fs2/mm at 19° C [24]. 

The Master stage is performed with the empty cuvette in the sample arm so that the 
dispersion due to the cuvette material itself is taken into account. Avoiding the measurement 
or compensation procedures for the cuvette dispersion is a practical advantage for CMSI [25]. 

The channeled spectrum Ivacuum is measured 10 times with the empty cuvette for the 
position of the mirror Ms, zv = 20.1 mm. Once the cuvette is filled with water, the 
corresponding channeled spectrum Isample is recorded 10 times by adjusting the mirror Ms so 
that its main spectral modulation is identical to that obtained for Ivacuum (coefficient β = 0). 
The position of Ms associated to Isample is then zs = 16.68 mm. 

The difference between the instantaneous phases Δϕ of the two spectra is calculated from 
Eq. (14) and is fitted by a quadratic fit centered at ωc (Fig. 8), which leads to ng = 1.3416 +/− 
0.0001 and GVD = (16.8 +/− 0.7) fs2/mm, according to Eq. (12) and (13). Here again, the 
experimental results are in good agreement with the theoretical values. The difference 
between experimental and theoretical values on ng can also be explained as being due to the 
limited accuracy of the sample thickness measurement. For instance, if a 10.013 mm long 
cuvette was considered, then we would obtain a value identical to the theoretical value of ng. 

In Fig. 8 a drop in the spectral phase value can be noticed at 2.14 rad.fs−1, i.e. at the center 
of the spectral range seen by our spectrometer. This is a consequence of the fact that the light 
source employed here is actually a combination of two super luminescent emitting diodes, 
where the overall spectrum is not flat but drops at the center, which leads to a lower 
spectrometer fringe visibility. Thus, fringe visibility, as well as data acquisition noise such as 
camera noise and laser source noise can limit the sensitivity in measuring weak GDD values. 
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Fig. 8. Δϕ is displayed in black curve between 2.08 and 2.2 rad.fs−1. The red curve corresponds 
to the fit of Δϕ. 

Figure 9(a) shows the relative error of GVD according to the position of Ms and it is 
minimal on a line corresponding to β≈0, as shown in Fig. 9(b) and Fig. 9(c). 

 

Fig. 9. (a) Relative error of GVD according to the position of the mirror Ms with and without 
water. The white circle corresponds to the specific configuration zv = 20.1 mm and zs = 16.68 
mm used in the beginning of Section 4.2. (b) Δϕ-Δϕ(ωc) for the configuration zv = 20.1 mm 
and zs = 16.63 mm. (c) Δϕ-Δϕ(ωc) for the configuration zv = 20.1 mm and zs = 16.68 mm. 

For β = 0, i.e. when δs = δv, GVD and ng values, (as shown in Fig. 10(a) and in Fig. 10(b) 
respectively), are stable and agree with the theoretical values, apart from an error in ng that is 
assumed to be due to an incorrect value of 10 mm of the cuvette thickness. 

 

Fig. 10. (a) Measurement of GVD for water according to the position of the mirror Ms in the 
case δs = δv. The white circle corresponds to the specific configuration zv = 20.1 mm and zs = 
16.68 mm used in the beginning of Section 4.2. (b) Measurement of ng according to the 
position of the mirror Ms in the case δs = δv. The thickness of the cuvette is assumed to be equal 
to 10 mm for the calculation of GVD and ng. 
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5. Conclusion 

For the first time, processing of phase delivered by the newly introduced CMSI method is 
presented. Progress from the original Master Slave method to Complex Master Slave allowed 
conservation of phase in the signal captured, by employing complex instead of real masks. 
This opens several avenues for CMSI, one of them being detailed here, employed in 
dispersion evaluation. In summary, here we propose to use CMSI as a new approach to 
measure GVD and group index. Only two channeled spectra, with and without the sample 
placed in one of the arms of the interferometer have to be measured in order to retrieve the 
relative phase, followed by a quadratic polynomial fit whose first and second orders are 
related to group index and GVD respectively. In comparison with other methods, there is no 
need to linearize the data. Not needing linearization speeds up data delivery and reduces the 
sources of errors. 

In addition, compensation of dispersion bias is automatic. The robustness of this technique 
has been demonstrated on several sets of channeled spectra. It is shown that the most robust 
results are obtained when the channeled spectrum measured with the sample is adjusted to 
display a similar modulation to the channeled spectrum without the sample, adjustment that 
makes the linear coefficient β equal to zero in the relative phase. A maximum deviation of 
0.03% from the expected values was measured for the group index ng, and 1% for the GVD. 
These measurements could be improved by increasing the accuracy of the sample thickness 
measurement or by accumulating more phase within thicker samples. Another alternative 
could be to extend the spectral bandwidth within which the phase is measured [17]. A 70 nm 
bandwidth spectrum was used in the paper but the method is applicable to any bandwidth, 
including ultra wide bandwidths available by using supercontinuum sources and considering 
higher-order terms for the fit of the spectral phase. 

The measurements were made in transmission, however using a strong reflector in the 
sample similar measurements can be implemented in reflection. This may open the avenue of 
a future study on comparing the efficiency of our method with that based on the degradation 
of the point spread function from the speckle pattern [26]. 

Finally, our method, with more refinements and adaptations [27], could be used in OCT as 
an alternative to other methods based on the spectral phase, such as no-dye angiography 
based on phase methods or polarization sensitive OCT methods. These potential directions of 
applications should similarly, as shown in this study, take advantage of the CMS method: (i) 
No need for data resampling; (ii) No need for dispersion compensation. In addition, the CMS 
provides direct provision of information from multiple depths in the sample (when using a 
FT, data from outside depths of interest is discarded). 
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