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ABSTRACT

Clauses and subgoals in a Datalog program can be given in any
order without affecting program meaning. However, practical ap-
plications of the language require the use of built-in or external
predicates with particular dataflow requirements. These can be
expressed as input or output “modes” on arguments. We describe
a static analysis of moding for Datalog which calculates how to
transform an ill-moded program into a well-moded program by
reordering clause subgoals to satisfy dataflow requirements. We de-
scribe an incremental algorithm which efficiently finds a reordering
if it exists. This frees the programmer to focus on the declarative
specification of a program rather than implementation details of
external predicates. We prove that our computed reorderings yield
well-moded programs (soundness) and if a program can be made
well-moded, then we compute a reordering to do so (completeness).
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1 INTRODUCTION

Declarative languages aim to free the programmer from implemen-
tation details, allowing them to focus on the essence of a problem.
However, in practice, implementation details often creep back in.
In logic programming, one such implementation detail is subgoal
ordering which rears its head once we start introducing external
functions into pure logic programs or when performance becomes
a concern. The aim of this paper is to move the implementation
concern of subgoal ordering from the programmer back to the lan-
guage. We consider Datalog, a syntactic subset of Prolog which
has recently been (re)growing in popularity. Among other things,
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it is used for managing enterprise data [1] and as a language for
concisely and efficiently expressing program analyses [10, 14].

Sentences in pure Datalog are Horn clauses, hence subgoals
can be specified in any order since any ordering is trivially safe
to invoke. However, this is not true in practice. Many systems
require external functionality such as arithmetic, comparison, and
input/output functions. For example, a function for printing to the
console might choose not to print unbound values or an external
hashing function may require its first parameter to be an input and
its second to be an output. In large systems, ordering can also have
performance implications, e.g., a database query might make more
efficient use of an index if an argument is ground.

The concept of moding [12] allows us to specify the dataflow
requirements of predicates. For example, a programmer can specify
via moding that a particular argument of a clause must be bound
before the clause is executed (as supported inMercury [16]). An
invocation error occurs if this moding requirement is not met.Well-
moded programs do not give invocation errors in the same way
that well-typed programs do not go wrong.

We describe a few examples of ill-moded programs which can
be fixed using the information from our analysis. Consider the
followingDatalog clause with moding annotations as superscripts:
1 auth(U) :- hash+?(P,H), password(U,P), valid(U,H).

The superscript +? specifies that an invocation of hash is safe
when the first argument is bound and the second is free or bound.
Therefore, this example is not well-moded since P is not bound in
the context of the first subgoal (it would need to be bound by the
clause head). However, in the absence of side-effects, it is sound to
reorder the subgoals to meet the moding constraints by swapping
the first and second subgoals so that password is invoked first,
binding P under the usual left-to-right semantics.

As an alternative, one might write our example as two clauses:
1 auth(U) :- check(U,P), password(U,P).
2 check(U,P) :- hash+?(P,H), valid(U,H).

The hash subgoal in check is ill-moded because P is unbound in
the invocation of check on line 1 in auth. The reordering to fix this
is therefore non-local: one must reorder the body of auth to make
the invocation of hash in check safe. Searching for valid orderings
amongst all permutations of subgoals in all clauses of a program is
infeasible. We instead propagate moding constraints to the callers.

We also provide information that can be used in conjunction
with clause cloning. Imagine an interactive system with client- and
server-side facilities for checking password strength:
1 client_check(P) :- weak(P,H).
2 server_check(H) :- weak(P,H).
3 weak(P,H) :- hash+?(P,H), rainbow+?(H,P).

The client side does not have access to the hash and the server
side does not have access to the plaintext password. However both
parties want to check if the password is compromised by looking
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up the hash in a rainbow table1 and confirming it is indeed the
password corresponding to the hash. There is no reordering of
weak’s subgoals that satisfy moding requirements of both hash
and rainbow. If we generate two versions of weak with different
subgoal orderings and use the appropriate one according to the
binding pattern at the call site, then queries involving both client-
and server-side checks can be well-moded:
1 client_check(P) :- weak1(P,H).
2 server_check(H) :- weak2(P,H).
3 weak1(P,H) :- hash+?(P,H), rainbow+?(H,P).
4 weak2(P,H) :- rainbow+?(H,P), hash+?(P,H).

Cloning arises as a by-product of a program transformation called
adornment [17] (Section 3.2) which generates versions of each
clause annotated with a variable binding pattern. Ordering infor-
mation calculated by our analysis guides the adornment procedure
and ensures that the subgoals used in the generated clauses are
ordered such that they are safe to invoke.

In this paper, we show how to statically verify that Datalog
programs are well-moded. Furthermore, we give an algorithm that
computes orderings of subgoals that satisfy the moding constraints
of programs, if such an ordering exists. This is valuable because it
frees the programmer to focus on the specification of the higher-
level goals rather than their syntactic order. Although orderings
are computed statically, we do not prescribe a time of use: they can
be used to transform the Datalog program statically (suitable for
bottom-up or top-down evaluation) or to reorder subgoals dynami-
cally as they are evaluated (suitable for top-down evaluation).

The key contributions of this paper are:
• a natural formalisation of well-modedness for Datalog in
terms of the adornment program transformation;

• a sound and complete incremental analysis algorithm for
finding suitable subgoal orderings of program clauses and
verifying the well-modedness of programs.

The rest of the paper is structured as follows. We first state our
assumptions and notation (Section 2) and then formalise well-
modedness in terms of the adornment program transformation for
Datalog (Section 3). This leads us to our mode analysis algorithm
establishing well-modedness and producing subgoal orderings for
binding patterns. This is presented in intra-clausal (Section 4) and
inter-clausal (Section 5) stages along with properties of the algo-
rithm. We modify the intra-clausal analysis to accommodate some
Datalog extensions (Section 6). Finally, we discuss previous ap-
proaches to mode analysis (Section 7) and conclude (Section 8).
Proofs omitted from the main text are given in Appendix A.

2 NOTATION AND ASSUMPTIONS

Definition 2.1 (Datalog program structure). A Datalog program
is a set of clauses of the form p :- s1, . . . , sn., where:

• p is called the clause head;
• si collectively forms the body of the clause, where each si is
individually called a subgoal;

• the clause head and subgoals are atomic formulae;
• an atomic formula is a predicate symbol applied to a tuple of
terms, e.g., p(X,Y).

1A pre-computed reverse lookup table from hashes to plaintext.

We assume subgoals are executed left-to-right and variables are
bound to their values whenever possible. Binding a variable is the
same as grounding it as there are no function symbols in Datalog.

We consider programs that come with a query. A query is of the
form ?- s1, . . . , sn . Internally, this expands into a normal clause
with a head predicate that does not appear elsewhere, and whose
head parameters are all the variables that appear in the query.

We use a function vars to map the syntax of a logical formula
or clause to a set of its variables. Functions head and body map a
clause to its head and the set of its subgoals respectively.

Traditionally a predicate symbol and its arity uniquely identify
a predicate however, for presentation purposes, we assume a predi-
cate symbol alone uniquely identifies a predicate. A predicate may
appear many times in a clause body, e.g., p(X) :- q(X), q(X).
has two distinct subgoals invoking the same predicate. The function
pred maps a subgoal to its predicate and arity maps a predicate to
its arity. If p is a predicate and Pr is a program, then Prp is the set
of clauses that have p as their head.

Throughout, the “min” operator refers to the minimal elements
of a set of subsets under the partial order defined by subset relation.
For example, min{{1, 2}, {2, 3}, {1}, {1, 2, 3}} is {{1}, {2, 3}}.

The family of unary operators, πi , projects the ith component of
appropriately-sized tuples.

We assume that the mode requirements of predicates are avail-
able and do not give a syntax for their declarations. This information
may be hard-coded in the case of built-in predicates or supplied
through mode declarations akin to type declarations.

3 ADORNMENT ANDWELL-MODEDNESS

Informally, a well-moded program does not produce runtime errors
arising from insufficient variable binding. In this section, we intro-
duce the definitions needed to formalise this notion for Datalog.

3.1 Mode annotations and constraints

Each variable only ever needs one of two modes in Datalog. The
mode + indicates that the argument should be bound at the time of
invocation and ? indicates it can either be bound or free.

As in the introduction, we use mode vectors written as super-
scripts to indicate the mode requirements of a predicate. Though
these superscripts are placed on subgoals in our examples, they
should be considered as global specifications for the predicate in
the whole program. If a subgoal has no superscripts, then the un-
derlying predicate has no mode requirements (equivalent to having
? for all argument positions). If a predicate is annotated with a set
of mode vectors, e.g., p{+?,?+}(X,Y), then any one of them can be
used to satisfy the dataflow requirements of the predicate. This set
may arise from multiple implementations backing the predicate or,
as we explore below, due to different orderings of subgoals leading
to different moding requirements for user-defined predicates.

Invocation safety is based upon bound arguments, so instead of
working with mode vectors directly, we use constraints.

Definition 3.1 (Constraint). For a predicate, p, any subset of its
argument positions, 1 ≤ i ≤ arity(p), forms an atomic constraint. A
set of atomic constraints which is minimal under the subset relation
is a constraint. Thus, the domain of constraints for a predicate p is
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Dp = {min S | S ⊆ P({i | 1 ≤ i ≤ arity(p)})}. Throughout this text
C is used to range over constraints and AC over atomic constraints.

Definition 3.2 (Mode requirement semantics). A mode vector is
translated into an atomic constraint by taking the set of indices
for which the mode is +. A set of mode vectors is converted to a
constraint by translating each mode vector and removing all super
sets. This translation is done by J−K. For example, J{++?, ?++}K is
{{1, 2}, {2, 3}}. Given a mode function, mv, from predicates to a set
of mode vectors, J−KF produces a constraint function from predi-
cates to constraints and is defined as J−K◦mv. Throughout the text,
mv and f range over mode and constraint functions respectively.

Definition 3.3 (Ill constraint). A constraint denotes alternative
moding requirements and if this set is empty, then there are no
alternatives that can be used for safe predicate invocation. Hence,
∅ for any constraint domain is the unique ill constraint.

Definition 3.4 (Trivial constraint). For any constraint domain, the
trivial constraint, {∅}, contains an atomic constraint that does not
require any variables to be bound.

3.2 Adornments and ordering

Program adornment [17] annotates the atomic formulae in clauses
with binding patterns. This nicely formalises well-modedness. We
use a generalised form of adornment which relies on a subgoal
reordering function. This generalisation allows different binding
patterns to be produced for subgoals depending on the ordering
and allows us to derive a versatile well-modedness definition. We
give a high-level definition of adornment transformation.

Definition 3.5 (Adornment). An adornment associates to an ar-
gument/parameter of an atomic formula either f or b indicating
the binding status of the argument/parameter: free or bound. An
adornment vector (or a binding pattern) for an atomic formula is
a vector of adornments whose size matches the predicate’s arity.
Throughout, a, b range over adornment vectors which we index
with natural numbers, i.e., ai is the ith adornment in the vector.

For some subgoal, sub, of an adorned clause, we denote the
adornment vector of sub as adornment(sub).

Definition 3.6 (Ordering). An ordering is a bijection between two
lists of subgoals. When applied to a list of subgoals it permutes
them. We use σ to range over orderings.

Definition 3.7 (Generalised clause adornment). Let adorn be a
function that takes a clause cl, a binding pattern a, an ordering σ
for the clause, and returns the adorned and reordered (according to
σ ) version of the clause.

We calculate adorn(cl, a,σ ) as follows: first, the clause head is
assigned the binding pattern a. Next, the body of the clause cl is
reordered using σ . Finally, the list of subgoals is traversed left-to-
right and adorned. For each argument that is a literal or a variable
that is known to be bound, the argument receives the adornment b,
otherwise it is given the adornment f. For each processed subgoal,
we add its variables to the list of known bound variables. Initially,
only the variables bound in the head pattern are known to be bound.

Example 3.8. Let cl be the clause:
1 p(X,Y) :- q(Y,Z), r(X,Y).

Given an adornment a = bf and a local ordering σ (q, r) = r, q, then
adorn(cl, a,σ ) produces:
1 p(X,Y)bf :- r(X,Y)bf, q(Y,Z)bf.

where Y is bound in the invocation of q by the preceding invocation
of r, which at runtime computes and binds a value to Y.

Definition 3.9 (Reordering functions). A local reordering function
for a particular clause is a function mapping binding patterns (for
the clause head) to orderings for that clause. A global reordering
function maps clauses to local reordering functions.

We use r to range over local orderings and gr for the global ones.

The purpose of this is to allow different binding patterns of the
clause head to imply different reorderings for the clause. In Section 4
and Section 5, we compute reordering functions so that, given a
head binding pattern, adorning the reordered clause left-to-right
with respect to this pattern yields subgoal binding patterns that are
consistent with mode requirements.

Definition 3.10 (Generalised program adornment). Let the func-
tion adornProgram take a program Pr , a query clause clq , and a
global reordering function, gr . The adorned version of the program
is generated by invoking adorn on clq with a binding pattern (adorn-
ment vector) comprising f (free) for each parameter of the clause
head, and with the reordering function gr(clq ).

For each subgoal in the adorned query clause, we generate an
adorned version of the subgoal’s predicate by applying adorn to the
predicate’s clauses using the binding pattern given to the subgoal
along with the corresponding local reordering from gr . This process
is repeated for newly generated adorned clauses until no more
clauses can be generated.

An adorned program is equivalent to the original program in
the answers it computes [2]. When all the local reordering func-
tions are the identity function (preserving source ordering), then
adornProgram is the traditional adornment transformation [17].

Example 3.11. Consider the following program Pr where q is the
query, hash is a built-in hash function, and password is an external
database predicate to look up a user’s password.
1 q(H) :- hashByUser("Rebecca",H).
2 hashByUser(U,H) :- password(U,P), hash(P,H).

The adorned program is given by adornProgram(Pr, clq, identity),
where identity is the trivial global reordering function, mapping
every clause to itself for every binding pattern. The output is:
1 qf(H) :- hashByUserbf("Rebecca",H).
2 hashByUserbf(U,H) :- passwordbf(U,P), hashbf(P,H).

The head adornment of the second line matches the adornment of
hashByUser in q’s body as it generates this clause.

3.3 Well-modedness

We define well-modedness of clauses and programs in terms of
adornment and a notion of consistency between mode constraints
and adornment vectors.

Definition 3.12 (Mode & adornment consistency). An adornment,
a, is consistent with an atomic constraint, AC , when AC is a set of
indices into a indicating bound adornments alone.

a ◀ AC ≜ ∀i ∈ AC. ai = b
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The function findAC selects all atomic constraints in a constraint
that are consistent with a given binding pattern:

findAC(a,C) ≜ {AC ∈ C | a ◀ AC}

A binding pattern, a, is consistent with a constraint, C , when there
are some atomic constraints in C consistent with a.

a ◁C ≜ findAC(a,C) , ∅

Definition 3.13 (Clause well-modedness). A clause cl iswell-moded
with respect to a constraint function f (mapping predicates to con-
straints), a binding pattern a, and a local reordering σ , if adornment
procedure assigns to each subgoal of cl a binding pattern which is
consistent with the moding constraints given by f , i.e.:

wellModed(cl, a, f ,σ ) ≜
∀sub ∈ body(adorn(cl, a,σ )). adornment(sub) ◁ f (pred(sub))

Definition 3.14 (Program well-modedness). A program Pr with a
goal clause clq iswell-moded with respect to a constraint function f
and a global reordering function gr , if every subgoal in the adorned
program has a binding pattern consistent with the constraints in f :

wellModedProgram(Pr, clq , f , gr) ≜
∀cl ∈ adornProgram(Pr, clq , gr),

∀sub ∈ body(cl). adornment(sub) ◁ f (pred(sub))

This definition of well-modedness permits ordering-based trans-
formation of clauses as well as retaining multiple versions of the
same clause (with different subgoal orderings).

Somogyi [15] noted that modes generalise adornments. This is
indeed the case for Prologwhich was the subject of their work. For
Datalog, however, adornment precisely formaliseswell-modedness
because Datalog does not deal with function symbols as Prolog
does. Hence, a variable can only be instantiated to a value at the
time of subgoal invocation or not at all, whereas in Prolog context,
it is possible to partially instantiate variables, e.g. a list of variables,
which calls for finer-grained moding instead of binary adornments
to fully express the dataflow behaviour of predicates.

3.4 Properties of consistency

We briefly cover several results on the definition of mode consis-
tency which will be of use in later results.

Lemma 3.15 (Ill and trivial constraints). The trivial con-
straint, {∅}, is consistent with all binding patterns whilst the ill con-
straint, ∅, is consistent with none.

We define a partial order on constraints and functions that output
constraints (constraint functions). Later, we establish monotonic-
ity of various functions and operators to prove termination and
incrementality of the analysis in Theorem 5.11 and Theorem 5.15.

Definition 3.16. Let C1 and C2 be two constraints for the same
predicate. We define a relation ≤ and say C1 is less restrictive
than C2, if every binding pattern that is consistent with C2 is also
consistent with C1. The relation ⪯ is the pointwise extension of ≤
for constraint functions, thus:

C1 ≤ C2 ≜ ∀a. a ◁C2 =⇒ a ◁C1 f ⪯ д ≜ ∀p. f (p) ≤ д(p)

e.g., {{1}, {2}} ≤ {{1, 2}} since the left constraint indicates either
the first or second argument needs to be bound, but the right con-
straint indicates both must be bound (more restrictive).

Lemma 3.17. For a fixed predicate, ≤ is a bounded partial order
with ∅ as the top element (most restrictive) and {∅} as the bottom
element (least restrictive). For a fixed domain, ⪯ is also a bounded
partial order with constant functions returning ∅ and {∅} as top and
bottom elements respectively.

The partial order defined by binding pattern consistency implies
a subset relation between atomic constraints of two constraints.

Lemma 3.18. If a constraint C2 is more restrictive than C1, this
means C1 has a less restrictive atomic constraint for each atomic
constraint in C2. That is:

∀C1,C2. C1 ≤ C2 =⇒ ∀AC ∈ C2 ∃AC ′ ∈ C1. AC ′ ⊆ AC

4 INTRA-CLAUSAL ANALYSIS

We start mode analysis by considering the individual clauses of a
predicate in isolation, deriving a moding constraint (Def. 3.1) for a
clause in terms of its body and the constraints of its subgoals alone.

One aim of this analysis is to perform better than brute-force
search. We do this by following the path of least resistance, that is:
as soon as we find some subgoal that can be scheduled without any
constraints, we commit to it. This may discard some valid orderings
of clauses but always calculates at least one valid ordering that
makes the program well-moded, if such an ordering exists. This
analysis is performed by a graph construction.

Before explaining this construction, we first characterise a more
general graph structure and explain how orderings are stored in it.

4.1 Scheduling graphs

A scheduling graph encodes orderings of a clause’s subgoals. We
work towards its formal definition and then explain how orderings
can be retrieved from it. We introduce scheduling graphs prior
to the specific construction used in the analysis for two reasons.
First, it assists in our proof of completeness (Lemma 4.31). Second, it
provides a framework that abstracts most details of the construction
and allows us to focus on subgoal choices alone.

Fig. 1 shows an example scheduling graph for a clause r. Paths
of a scheduling graph capture possible orderings of subgoals in a
clause. For example, the path ABC represents two subgoal orderings
f, h, g and h, f, g. Nodes comprise the subgoals yet to be scheduled
with their dataflow requirements and a set of variables to be re-
solved at the call site, e.g., node B contains the unscheduled subgoal
g and X to be resolved by the caller of the clause. We refer back to
this example in the following definitions, explaining its details.

A B
C

D
{(f, {X}), (h, ∅)}

{(g, {Z})}

{(g, {Y})}

A = ({(f, {{X}}), (g, {{X, Z}, {Y}}), (h, {})}, ∅)

B = ({(g, {{Z}, {Y}})}, {X}) C = (∅, {X, Z}) D = (∅, {X, Y})

Clause: r(X,Y,Z) :- f+(X), g{+?+,?+?}(X,Y,Z), h(W).

Figure 1: Example scheduling graph for a clause of r
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Part of the construction requires a way to translate between
constraints, given in terms of argument positions of predicates, and
a clause context which contains variables.

Definition 4.1 (Obligation). An obligation (as opposed to a con-
straint) is a set of variables that a subgoal is constrained upon. The
empty set is the trivial obligation.

In Fig. 1, the subgoal g(X,Y,Z) is constrained in either its first and
third arguments or just its second argument therefore {{1, 3}, {2}}
is its constraint and {X, Z} and {Y} are the corresponding obliga-
tions. We use two functions to translate between sets of obligations
and constraints: for an atomic formula p, osToCp maps a set of obli-
gations to a constraint and cToOsp maps in the opposite direction.

Definition 4.2 (Scheduling graph). A scheduling graph д for a
clause cl and a constraint function f (over predicates in cl) is a
directed acyclic graph with a set of vertices V(д) and edges E(д).

An edge is a triple of a source vertex, label, and destination
vertex. The label is a non-empty set of pairs of a subgoal from the
body of cl and a discharged obligation. In Fig. 1, the edge between
B andC has the subgoal g in its label along with the obligation {Z}.

We assume helper functions src, label, and dst to access compo-
nents of edges. The paths function give paths of the graph.

A vertex is a tuple of the form (Alt,Acc). The set Alt stores alter-
natives: tuples of the form (s,Obg)where s is a subgoal of the clause
and Obg is a set of obligations. The alternatives represent what can
be scheduled after a given point in the graph. The set of obligations
Obg, associated with the subgoal, represent the variables that can
be bound to satisfy the moding constraints. To put it another way,
they are the cost of scheduling the subgoal as the caller of the clause
must bind these variables. In the running example, at vertex A all
subgoals can be scheduled and f and h get scheduled first.

The second component of the vertex, Acc, is an accumulated
obligation, keeping track of the variables that have to be bound at
the head of the clause. In other words, it keeps track of the total
cost for the path. In Fig. 1, this cost is {X} at vertex B because the
preceding edge is labelled with f, which constrains X. As the head
of the clause needs to bind these variables, the accumulator has to
be a subset of the head variables, i.e., Acc ⊆ vars(head(cl)).

Every edge in a scheduling graph is of the form:

(Alt,Acc)
l
−→ (Alt ′,Acc′)

and the vertices and the edge satisfy the following properties which
are jointly referred to as the valid scheduling property:
(1) The accumulator of the target vertex extends that of the source

with the obligations in the label:

Acc′ = nextAcc(Acc, l)

where nextAcc(Acc, l) ≜ Acc ∪
⋃

obgs(l)

with obgs(l) ≜ {o | (s,o) ∈ l}. Thus scheduling adds a binding
requirement to be resolved in the head of the clause.

(2) Alternatives in the target are computed from source alternatives:

Alt ′ = nextAlt(Alt, l)

where nextAlt(Alt, l) ≜ {(s,Obg) ∈ Alt | s < subs(l)} ⊖
⋃

s ∈subs(l )

vars(s)

with subs(l) ≜ {s | (s,o) ∈ l}. The set of alternatives in the
target has the labelling subgoals removed and variables in the
subgoals that are marked as discharged by the label are released,
by the operator ⊖:

A ⊖ Vars ≜ {(s,min {o \ Vars | o ∈ Obg}) | (s,Obg) ∈ A}

The release operator removes the variables Vars from the obliga-
tions of the alternatives inA, andminimises the set of obligations
to remove any redundancies.
Consider the edge betweenA andB in Fig. 1. The only alternative
subgoal in B is g as f and h appear in the edge label. Further,
at A, the set of obligations for g includes {X, Z}, but at B the
corresponding set of obligations contains only {Z} because X is
an argument of f which was scheduled before B.

(3) Edge labels are picked from the preceding vertex’s alternatives:

∀(s,o) ∈ l , ∃(s ′,Obg) ∈ Alt. s = s ′ ∧ o ∈ Obg

Finally, a scheduling graph has a root vertex, Rootcl,f . It is a tran-
scription of the predicate constraint into the clause context coupled
with an empty accumulator.

Rootcl,f ≜ ({({(s,min cToOss (f (pred(s)))) | s ∈ body(cl)}, ∅)

Although the constraints being translated are minimal by defi-
nition (Def. 3.1), we minimalise the sets of obligations in the al-
ternatives after translation because two argument positions may
point to the same variable, hence creating a subset relation that
did not exist between atomic constraints. For example, a constraint
{{1, 2}, {2, 3}} for a subgoal p(X,X,Y) produces the alternative
obligation min{{X}, {X, Y}}, thus {{X}}.

If a path in a scheduling graph has labels covering every subgoal
of a clause, then the path represents a clause ordering. Such paths
are characterised by having a terminal vertex:

Definition 4.3 (Terminal vertex). A terminal vertex is of the form
(∅,Acc) for some Acc . We can check if a path has such a vertex:

terminal(p) ≜ ∃Acc. (∅,Acc) ∈ V(p)

A terminal vertex must be the last vertex on a path since the
alternative set size is strictly decreasing. Consequently, all subgoals
are scheduled in a path with a terminal vertex.

Paths from the root vertex to a terminal vertex represent subgoal
orderings. Since edge labels may have multiple subgoals, paths
in the graph form compact orderings. Each edge expands to all
permutations of its members. Concatenating the resulting ordering
fragments leads to full clause orderings. For example, a sequence
of subgoals in labels {p}, {q, r}, {s, t} leads to orderings mapping
the syntactic order of the subgoals to the following:

p, q, r, s, t p, r, q, s, t p, q, r, t, s p, r, q, t, s

Using these definitions, we define well-modedness of paths.

Definition 4.4 (Well-moded path). A path p in a scheduling graph
constructed for clause cl is well-moded with respect to a binding
pattern a and a constraint function f when all orderings in the
path make the clause well-moded. The path must be terminal as the
adornment procedure needs to know where to place every subgoal.

wellModedPath(p, cl, a, f ) ≜

terminal(p) ∧ ∀σ ∈ orderings(p). wellModed(cl, a, f ,σ )
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In Fig. 1, the path ABC is well-moded with respect to the binding
pattern bfb as all orderings stored in this path require the first and
the third arguments of the head to be bound. However, ABD is not
well-moded with respect to the same pattern as the path requires
the second argument to be bound but the pattern marks it as free.

4.2 Minimal obligation graphs

A valid scheduling graph is determined solely by the subgoal sched-
uling choices at each edge. Here, we describe the construction of
a particular scheduling graph (for some clause) referred to as a
minimal obligation graph (MOG). Such a graph is greedy (Def. 4.10)
by construction, meaning it schedules subgoals with trivial obli-
gations as soon as possible. It is minimal because it stores just
enough information to derive from each path a minimal set of obli-
gations with respect to subset inclusion. These minimal sets are the
dataflow-requirement summaries arising from subgoal orderings.

Definition 4.5 (Minimal obligation graph). For a clause, cl, and a
constraint function, f , over predicates in cl, let aminimal obligation
graph, mogcl,f , be a scheduling graph.

We construct mogcl,f in a breadth-first manner. We start with a
complete example of a MOG construction and use this to expand
on the algorithm.

Example 4.6. Consider the following mode-annotated clause clr :
r(Y,Z) :- f+(X), g{++?,+?+}(X,Y,Z), h+(Z), i(X), j(X,W).

The moding annotations induce a constraint function f mapping
predicate names to constraints defined:

f (f)= {{1}} f (g)= {{1, 2}, {1, 3}} f (h)= {{1}} f (i)= f (j)= {∅}

Fig. 2 then shows the MOG constructed by mogclr ,f .

MOGs are constructed iteratively starting from a root node. We
write mogicl,f for the ith step of this process.

Base case. All MOGs stem from a graph of a root vertex (as in
Def. 4.2) and no edges, defined:

V(mog0cl,f ) = Rootcl,f E(mog0cl,f ) = ∅

Thus mog0cl,f initiates the construction of the graph by adding no
edges and one root. In the running example,A is the root vertex. The
alternatives set of the root is a translation from predicate constraints
to the clause context (Def. 4.2). For example, д has the constraint
{{1, 2}, {1, 3}} and thus g(X,Y,Z) is represented by {{X, Y}, {X, Z}}.
The accumulator component of the vertex is empty.

Inductive step. We expand the MOG one unit distance at a time.
At distance n + 1, vertices come from the destination of the edges
at the same distance. Edges are added for each vertex at distance n.

V(mogn+1cl,f ) = {dst | (src, l , dst) ∈ E(mogn+1cl,f )}

E(mogn+1cl,f ) =
⋃

v ∈V(mogncl, f )
{mkEdge(v, l) | l ∈ pickLabelcl(π1 v)}

wheremkVertex is defined using scheduling graph primitives (Def. 4.2):

mkEdge(src, l) ≜ (src, l ,mkVertex(src, l))

mkVertex((Alt,Acc), l) ≜ (nextAlt(Alt, l), nextAcc(Acc, l))

A B C F

D

E

G

H
{(i, ∅), (j, ∅)} {(f, ∅)}

{(h, {Z})}

{(g, {Y})}

{(g, {Z})}

{(h, ∅)}

{(g, ∅)}

{(h, ∅)}

A = ({(f, {{X}}), (g, {{X, Y}, {X, Z}}), (h, {{Z}}), (i, {∅}), (j, {∅})}, ∅)

B = ({(f, {∅}), (g, {{Y}, {Z}}), (h, {{Z}})}, ∅)

C = ({(g, {{Y}, {Z}}), (h, {{Z}})}, ∅)

D = ({(h, {∅})}, {Y}) E = ({(h, {∅})}, {Z}) F = ({(g, {∅})}, {Z})

G = (∅, {Y}) H = (∅, {Z})

Clause:
r(Y,Z) :- f+(X), g{++?,+?+}(X,Y,Z), h+(Z), i(X), j(X,W).

Figure 2: Minimal obligation graph for a clause of r

From a given vertex, we decide which subgoals to schedule (which
edge label to generate) using pickLabel. We give preference to sched-
uling of “natural” subgoals within the alternative set over the others.
We explain what each case of these label choices means.

pickLabelcl(Alt) ≜

{
{nats(Alt)} nats(Alt) , ∅

nonNatscl(Alt) otherwise

Case 1: Extending the graph with natural edges. The natural sub-
goals at a vertex are those subgoals in the alternatives set that are
paired with a singleton set of the trivial obligation. This means that
the binding requirements of this subgoal are satisfied at this point.

nats(Alt) ≜ {(sub, ∅) | (sub, {∅}) ∈ Alt}

In the example, applying nats to π1 A yields {(i, ∅), (j, ∅)}. This set
is collectively used by mkEdge as a label. Thus, the subgoals i and
j are scheduled between the nodes A and B.

One consequence of natural subgoals all having the trivial obliga-
tion in the edge label is that nextAcc does not add new obligations to
the accumulator in the generated destination vertex. In the example,
this is why the accumulator of B remains as the empty set.

Subgoal naturality is contextual. In the example, f is not natural
at vertex A, but it becomes natural at B due to edge AB releasing
the variables in i and j. Thus, BC schedules f as a natural subgoal.

Case 2: Extending the graph with non-natural edges. If there are
no natural subgoals to schedule, the pickLabel function tries alter-
natives with non-trivial obligations. Unlike the natural case, labels
picked in this manner comprise a single subgoal-obligation pair,
formally expressed as follows:

nonNatscl(Alt) ≜ {{(s,o)} | (s, os) ∈ Alt,o ∈ os,o ⊆ vars(head(cl))}

To select a label this way, we check if the obligation is a subset of
the head variables. This makes binding the variables in the head
possible and satisfies the valid scheduling property (Def. 4.2).

In the example, all edges from C are created in this manner as
all the alternatives in C have non-empty obligations.
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Unlike the natural case, nextAcc may augment the accumulator
in the destination vertex since labels of this kind have non-empty
obligations; the caller must satisfy these obligations. In the example,
vertices D, F , and E are generated using this function and since at
C the accumulator is empty, the accumulator in these three vertices
is the single obligation specified by the label of the incoming edge.

Building the whole graph. The full mogcl,f graph is given as a
union of its components:

V(mogcl,f ) =
⋃
n≥0

V(mogncl,f ) E(mogcl,f ) =
⋃
n≥0

E(mogncl,f )

Lemma 4.7. MOG construction leads to a scheduling graph.

Lemma 4.8 (MOG termination). For any clause and constraint
function, the MOG construction terminates.

The only scenario in which a clause cannot lift its constraints to
the caller is if its subgoals have variables that do not appear in the
head. MOG construction gets stuck in this case, leading to a graph
with no terminal vertices.

Example 4.9 (Stuck construction). Consider the following clause
with the given moding requirements:
1 r(X) :- g+(Y), f+(X).

These moding requirements cannot be satisfied by any ordering of
subgoals as the variable Y cannot be bound by just binding X. This
is reflected by the MOG for this clause, which fails to contain any
paths that schedule all the subgoals of the clause.

The root vertex contains the alternatives: {(f, {{X}}), (g, {{Y}})}.
Since none of these are natural subgoals, pickLabel selects a non-
natural edge which requires augmenting the accumulator. Only one
edge is possible since only one obligation has all of its variables in
the head of the clause, namely f. This yields the MOG:

({(f, {{X}}), (g, {{Y}})}, ∅) ({(g, {{Y}})}, {X})
{(f, {X})}

Further edges cannot be generated (i.e., V(mog2cl,f ) = E(mog2cl,f ) =
∅) and the MOG has no terminal vertices. Hence, there are no order-
ings making this clause well-moded with respect to its constraints.

MOGs are “greedy” scheduling graphs. A path is considered
greedy if it schedules natural subgoals as soon as possible.

Definition 4.10 (Greedy paths). A path p is said to be greedy if for
all edges pi with source vertex v , whenever v has a natural subgoal
sub (denoted (sub, {∅}) in its alternatives) then (sub, ∅) is in the
label of pi , or equivalently (due to valid scheduling) the subgoal
does not appear in the alternatives of the destination vertex:

greedy(p) ≜

∀i, s . (s, {∅}) ∈ π1 src(pi) =⇒ ∀Alt. (s,Alt) < π1 dst(pi)

Proposition 4.11. All paths in a MOG are greedy.

4.2.1 Optimising MOG construction. MOG construction is de-
scribed here in a breadth-first manner. A depth-first reconstruction
is possible which, when accompanied with some global state, may
prune the graph. First, we switch to depth first-construction by
branching only when we reach a terminal vertex or there is no

possible edge to add to a path. Second, we maintain a global list of
the accumulator components of terminal vertices encountered so
far. Each time we extend a path (via natural subgoals or otherwise),
we check if the accumulator component of the newly created vertex
is a superset of any member of the global list. If so, then we do not
create that vertex at all as we already have a path that is at least as
good as the one we are about to explore.

In Example 4.6, the red edges show the edges that would not
have been constructed via this approach. If the terminal vertex G
is discovered first, the global list contains {Y}. Then, the terminal
vertex H is discovered via F , hence we add {Z} to the global list.
When we attempt to explore the third edge from C to reach E,
however, we realise the accumulator at E would be {Z} which is a
superset of one of the elements in the global list. Hence, we do not
add E and the two edges from C to H via E to the graph.

The upside of this change is that we have fewer vertices to
explore. The downside is, in the end, we will have fewer orderings
to choose from for a given binding pattern and which orderings
are retained depends on which terminal vertex is encountered first.

4.3 Extracting a clause constraint out of a MOG

The second component of a MOG vertex is an accumulated obli-
gation. Using this, we can derive a new constraint for the given
clause. Only terminal vertices contribute to constraint derivation.

Obligations in terminal vertices of a clause are viable options for a
caller to resolve. Since variable names in obligations are meaningful
only in a clause context, we convert obligations back into singleton
constraints represented in terms of parameter positions. The ⊗

operator then combines these while eliminating redundancies:

Definition 4.12. If A and B are in the constraint domain Dp , we
define A ⊗ B as min (A ∪ B).

The union retains alternative moding patterns in each constraint
and min eliminates the redundantly restrictive constraints.

Example 4.13. Consider a mode-annotated clause cls :
1 s(X,Y) :- f++(X,Y), g+?(X,Y).

Themode annotations induce a constraint function f , thenmogcls ,f :

({(f, {{X, Y}}), (g, {{X}})}, ∅)

({{(g, {∅})}, {X, Y})

({(f, {∅})}, {X})

(∅, {X, Y})

(∅, {X})

{(f, {X, Y})}

{(g, {X})}

{(g, ∅)}

{(f, ∅)}

Different subgoal orderings of s have different constraints. If f is
first (as in the source), X and Y together are the obligation, hence we
constrain both argument positions leading to {{1, 2}}. If g is first,
only X is in the obligation as the use of g binds Y and satisfies the
moding requirement of f. Thus, this ordering implies the constraint
{{1}}. The latter ordering is more favourable as it leads to a less
restrictive constraint (Def. 3.16). Hence, ⊗ eliminates the former:

{{1, 2}} ⊗ {{1}} = min({{1, 2}} ∪ {{1}}) = {{1}}

Definition 4.14 (Constraint generated from a MOG). We derive
an overall constraint for the clause of a MOG by translating the
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accumulators (obligations) of all terminal vertices into constraints,
combining these via ⊗. This operation is called extract:

extractcl(mog) ≜
⊗

(∅,o)∈V(mog)

osToChead(cl)({o})

Example 4.15. In the running example from Figure 2, the terminal
vertices are G = (∅, {Y}) and H = (∅, {Z}) therefore:

extractclr (mogclr,f ) = {{1}} ⊗ {{2}} = {{1}, {2}}

i.e., either the first or the second parameter of r should be bound.

Lemma 4.16. Composition of the extract function with the MOG
construction is monotonically increasing.

∀cl, f ,д. f ⪯ д =⇒ extractcl(mogcl,f ) ≤ extractcl(mogcl,д)

4.4 Extracting subgoal orders out of a MOG

Now that we have a constraint for the clause, we build a partial
function mapping from binding patterns to subgoal orderings of the
clause. This function is partial as, for some patterns, no ordering of
subgoals leads to a well-moded clause. Thus, we have orderings only
for binding patterns that are consistent with the clause constraint.

We define a function collectmog , parametarised by a MOG, which
maps atomic constraints to sets of subgoal orderings. Orderings are
computed in two steps. First, collectmog(AC) finds all paths from the
root to a terminal vertex whose accumulated obligation translates
to the given atomic constraint AC. Second, the compact orderings
represented by these paths are expanded into subgoal orderings.

In general, a MOG may provide multiple valid orderings for a
binding pattern as there may be multiple distinct atomic constraints
consistent with the binding pattern. We assume a function, choose,
that selects from a set of orderings. This function can be based
on a metric defined on orderings. For example, it may use a met-
ric that measures the distance from the original source ordering,
choosing the one that is closest. This is useful for preserving some
optimisations based on estimated relation sizes.

Equipped with these definitions, we build the desired ordering
(partial) function for a given clause cl and constraint function f :

reorderingcl, f (a) ≜ choose(
⋃

AC∈C
collectmogcl, f (AC))

where C = findAC(a, extractcl(mogcl,f ))

4.5 Results

We present useful properties of intra-clausal analysis: propagation
of ill constraints, soundness, and completeness. All of these are
generalised to inter-clausal analysis in Section 5.1.

Lemma 4.17. If any predicates in the body of a clause cl has the ill
constraint according to the constraint function f , the constraint for
the clause as extracted from its MOG is also ill.

∀sub ∈ body(cl). f (pred(sub)) = ∅ =⇒ extractcl(mogcl,f ) = ∅

We now formalise soundness, i.e., when a clause constraint is con-
sistent with the binding pattern of the head formula, the reordered
clause subgoals are dataflow safe.

Lemma 4.18 (Intra-clausal soundness). For a given clause,
cl, and a constraint function, f , if a binding pattern is consistent
with the constraint from the intra-clausal analysis, then the binding
patterns of all the subgoals of the adorned clause (with the reordering
function from the intra-clausal analysis) are also consistent with their
respective constraints in f .

∀a. a◁ extractcl(mogcl,f ) =⇒ wellModed(cl, a, f , reorderingcl, f (a))

Proof. Pick an arbitrary adornment a that is consistent with the
extracted constraint from the MOG, i.e., a ◁ extractcl(mogcl,f ) (see
Def. 3.12 for◁). This implies reorderingcl, f is defined at a, which can
only happen if there is a path p in mogcl,f leading to this ordering.

We proceed by establishing a contradiction if p represents an
unsound path, i.e., there is at least one subgoal on the path with a
binding pattern inconsistent with the constraint function f .

Let s(X) to be the earliest subgoal (where X is a list of variables)
that is inconsistent with its constraint after adorning the clause
with a and let pi be the edge that contains this subgoal in its label.
Let b be that inconsistent binding pattern of s andC be its constraint
from f , thenwe have ∀AC ∈ C . b ◀̸ AC by definition of consistency.
This can only happen if for each atomic constraint there is at least
one index j such that Xj is adorned free because all indices in ACs
are bound by definition of ◀. Let F be the set of all such offending
variables. Since all of F has to be free at the point s is scheduled,
none of F can appear in the head of the clause as bound or as an
argument to any subgoals before pi .

There are two ways s could have been scheduled. Either in an
edge with (possibly) other natural subgoals (extension by natural
subgoals) or by extending the accumulated obligation (extension
by non-natural subgoals).

Consider extension by natural subgoals, requiring an alternative
in the source of pi of the form (s, {∅}). At the root, the alternatives
include (s,min cToOss (C)). Each obligation in this alternative must
have at least one element from F as they are generated fromC . This
cannot be the case as none of F appeared as an argument before
pi and hence these variables cannot be released with ⊖, thus we
cannot obtain the alternative (s, {∅}) or schedule s at pi .

Consider extension by non-natural subgoals. As before we know
that the alternatives at the source of pi each contain at least one
member of F . This means regardless of which alternative is used,
the accumulated obligation at the destination of pi must contain
a member of F . Hence, the terminal vertex’s accumulator must
contain at least one member of F . All variables in this accumulator
must be bound in the head due to the fact that the reordering is
generated using a terminal vertex with an accumulated obligation
corresponding to an atomic constraint of the head. This contradicts
our assumption that the offending variable is free in the head.

Since having an inconsistent subgoal in the path contradicts the
formation of the path, all subgoals must be consistent with their
constraints when the head is adorned with a. □

Intra-clausal completeness is more involved. It states that:

∀a. (∃r . wellModed(cl, a, f , r (a))) =⇒ a ◁ extractcl(mogcl,f )

(full statement in Lemma 4.31). That is, if there exists a local ordering
r that makes a clause well-moded with respect to head binding
pattern a, then a is consistent with the constraint computed by



Automatic reordering for dataflow safety of Datalog PPDP ’18, September 3–5, 2018, Frankfurt am Main, Germany

our analysis. We prove completeness by showing than an arbitrary
ordering r is captured (in some way) by our MOG construction, i.e.,
that mogcl,f is complete. This involves first converting arbitrary
orderings to scheduling graphs, and showing that paths in such a
graph can be transformed into effectively equivalent paths in our
MOG. Key to this is Proposition 4.11: that MOG paths are greedy.

Definition 4.19 (Ordering to scheduling graph). Given a clause, cl,
with n subgoals, a constraint function, f , defined for all predicates
invoked in cl, a binding pattern a, and an ordering σ of cl giving
an adorned and reordered clause cl′ = adorn(cl, a,σ ), then there is
a scheduling graph д = schedule(cl, a, f ,σ ), where:

V(д) =
⋃

0≤i<n
Vi E(д) =

⋃
0≤i<n

Ei V0 = Rootcl,f E0 = ∅

Vi = dst(Ei )

Ei = {mkEdge(v, {(s,o)}) | v ∈ Vi−1, (s, obgs) ∈ π1 v, s = cl′i ,

o ∈ obgs, adornment(s) ◁ osToCs ({o})}

Lemma 4.20 (Well-moded ordering to terminal path). For a
constraint function, f , clause, cl, binding pattern, a, and ordering, σ ,
where wellModed(cl, a, f ,σ ), a scheduling graph schedule(cl, a, f ,σ )
has a terminal path p.

Definition 4.21 (Conversion). We next convert scheduling graph
paths, where each edge has a singleton set label, into greedy paths.

Find the earliest vertex, v , that has a subgoal with the trivial
obligation in its alternatives. For all such subgoals, use the swap
operation (below) to place these subgoals in adjacent edges starting
from v in any order. Use merge repeatedly to merge all such edges.
Repeat this process until the path cannot be changed anymore.

Definition 4.22 (Swap). The swap operation on a path p in a
scheduling graph takes an index i and assuming pi and pi+1 exist,
produces a new path where the subgoals in the edgepi comes before
the subgoals in the edge pi+1. The operation is applied when all
the subgoals in the edge pi+1 have trivial obligations in src(pi) and
consequently are natural subgoals scheduled by pi+1.

Let L be the edge label at pi and R be the edge label at pi+1. The
new path produced by swap is called q, defined as follows:

∀j < i . qj = pj

qi = mkEdge(src(pi),R)

qi+1 = mkEdge(dst(qi ), {(s,o \
⋃

(s ′,o)∈R

vars(s ′)) | (s,o) ∈ L})

∀j > i + 1. qj = mkEdge(dst(qj−1), label(pj ))

Lemma 4.23 (Trivial obligation consistency). If a scheduling
graph vertex v has a subgoal s with obligation {∅} in its alternative
set, any ordering with a partial ordering derived from the root to v
makes the predicate s consistent with respect to any binding pattern.

Lemma 4.24 (Swap preservation). If a scheduling graph path is
well-moded, performing a swap on this path preserves well-modedness
and the path still belongs to some scheduling graph.

Definition 4.25 (Merge). Let p be a path in a scheduling graph, a
merge of edges pi and pi+1 removes them both and replaces them

with a single edge with a label that is the union of all the labels.
The operation is applied if every subgoal in both of these edges has
the trivial obligation at the source of pi . Let q be the resulting path
with the following specification:

∀j < i . qj = pj

qi = (src(pi), label(pi ) ∪ label(pi+1), dst(pi+1))

∀j > i . qj = pj+1

Lemma 4.26 (Merge preservation). If a scheduling graph path is
well-moded, performing amerge on this path preserves well-modedness
and the path still belongs to some scheduling graph.

Lemma 4.27 (Conversion preservation). If a scheduling graph
path is well-moded, its conversion is also a well-moded path of some
scheduling graph.

Lemma 4.28 (Conversion greed). If a path is in a scheduling
graph, then its conversion produces a greedy path.

Thus, we have shown that conversion creates greedy scheduling
paths, and preserves well-modedness of paths. We then show such
paths are in the MOG of the clause (Lemma 4.29) and are consistent
with adornment (Lemma 4.30), finally leading to completeness.

Lemma 4.29 (Greedy path completeness). For a clause cl, every
greedy scheduling path for cl ending in a terminal vertex and con-
forming to a constraint function f is present in the MOG determined
by cl and f . That is:

∀p, a. greedy(p)∧wellModedPath(p, a, cl, f ) =⇒ p ∈ paths(mogcl,f )

Lemma 4.30 (Path extract connection). For a fixed binding
pattern a, existence of a well-moded path in aMOG implies consistency
of a with the constraint extracted from the MOG.

∀a p. wellModedPath(p, a, cl, f ) ∧ p ∈ paths(mogcl,f )
=⇒ a ◁ extractcl,f (mogcl,f )

Lemma 4.31 (Intra-clausal completeness). For a given clause,
cl, a constraint function, f , and an adornment a for the head of cl, if
there is a local reordering that makes the adornment of the subgoals
consistent with their constraints, the head adornment is consistent
with the constraint extracted from the MOG. That is:

∀a. (∃r . wellModed(cl, a, f , r (a))) =⇒ a ◁ extractcl(mogcl,f )

Proof. Fix an arbitrary adornment a and assume the antecedent.
We need to show thatmogcl,f contains a path that ends in a terminal
vertex leading to an atomic constraint consistent with a.

By Def. 4.19, we convert the ordering for a into a scheduling
graph, i.e.д = schedule(cl, a, f , r (a)). Since,wellModed(cl, a, f , r (a)),
there exists at least one path p which is terminal in д (Lemma 4.20).
From Def. 4.21 (with Lemma 4.28) we convert this path p into a
greedy path p′, which is terminal and well-moded (Lemma 4.27,
Lemma 4.28). Since the path p′ is well moded and terminal we have
that, wellModedPath(p, a, cl, f ) (Def. 4.4).

Using Lemma 4.29 (greedy path completeness), it then follows
that p′ ∈ paths(mogcl,f ), i.e., that p′ is constructed by our MOG-
based analysis. Combined with Lemma 4.30 (well-moded MOG path
implies extract consistency) then a ◁ extractcl,f (mogcl,f ). □
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5 INTER-CLAUSAL ANALYSIS

Having defined how to determine a moding constraint for a given
clause, we are ready to find constraints for a program.

Any clause of a predicate can be used to evaluate a subgoal
involving that predicate. Consequently, for a subgoal invocation
to be safe, the bodies of all such clauses must be safe to evaluate.
Therefore, the constraint of a predicate must jointly reflect the
constraints of its clauses, which we capture with the ⊕ operator:

Definition 5.1. If A and B are in the constraint domain Dp , we
define A ⊕ B as min {a ∪ b | a ∈ A,b ∈ B}.

This captures joint constraints because it produces an atomic
constraint for each pair of atomic constraints and union preserves
restrictions. As with the ⊗ operator, min eliminates redundancies.

Example 5.2. Consider the following clauses for a predicate r:
1 r(X,Y,Z) :- f+??(X,Y,Z).
2 r(X,Y,Z) :- g{++?,?++}(X,Y,Z).
3 r(X,Y,Z) :- h??+(X,Y,Z).

Use of rmust reflect the constraints of all these clauses. Individually,
the constraints for each clause are {{1}}, {{1, 2}, {2, 3}}, and {{3}}
respectively. The only way these three constraints are satisfied is if
all three arguments are constrained; ⊕ computes this:

{{1}} ⊕ {{1, 2}, {2, 3}} ⊕ {{3}} =
min {{1, 2}, {1, 2, 3}} ⊕ {{3}} = {{1, 2}} ⊕ {{3}} = {{1, 2, 3}}

Lemma 5.3 (⊕ consistency homomorphism). A binding pattern
is consistent with two constraints combined with ⊕ iff that binding
pattern is consistent with each constraint individually, i.e.:

∀a,C1,C2. a ◁ (C1 ⊕ C2) ⇐⇒ a ◁C1 ∧ a ◁C2

Definition 5.4 (Whole-program analysis). Whole-program anal-
ysis is a fixpoint computation over constraint functions. In each
iteration, the constraints of the clauses with a shared head are
combined with the ⊕ operator. Constraints of predicates without
clauses, i.e., Prp = ∅, (such as built-in predicates) are preserved.

analysePr (f ) ≜

{
f if f = stepPr (f )
analysePr (stepPr (f )) otherwise

stepPr (f )(p) ≜

{⊕
cl∈Prp extractcl(mogcl,f ) if Prp , ∅

f (p) otherwise

In step, we use the ⊕ operator over constraints for each clause be-
longing to predicatep, extracted from theMOG by extract (Def. 4.14)
which is defined in terms of ⊗ over constraints.

We establish some monotonicity properties of inter-clausal anal-
ysis used later in termination (Theorem 5.11) and incrementality
(Theorem 5.15) proofs.

Lemma 5.5. Every constraint function generated from a moding
function gets more restrictive when step is applied to it.

∀Pr,mv. JmvKF ⪯ stepPr (JmvKF )

Lemma 5.6 (Step monotonicity). The step function is monotoni-
cally increasing (making constraints more restrictive):

∀Pr, f ,д. f ⪯ д =⇒ stepPr (f ) ⪯ stepPr (д)

Lemma 5.7. Every constraint function generated from a moding
function gets more restrictive by application of analyse.

∀Pr,mv. JmvKF ⪯ analysePr (JmvKF )

The ⊕ operation must be closed on constraints, which follows
from ⊕ and ⊗ forming a semiring:

Proposition 5.8. For each predicate p, (Dp , ⊕, ⊗, {∅}, ∅) is an
idempotent commutative semiring2 where {∅} and ∅ are the additive
and multiplicative identities respectively.

Generalised program adornment (Def. 3.10) requires a higher-
order reordering function from clauses to functions that map bind-
ing patterns to orderings. This can be constructed as an amalgama-
tion of local reordering functions produced in Section 4.4.

reorderProgramf (cl) ≜ reorderingcl, f

5.1 Results

We now show that inter-clausal analysis (our full analysis) is fast-
failing, terminating, sound, and complete.

Fast failure for ill-moded predicates is a strength of our analysis.
Ill-moded constraints quickly propagate via the step function.

Proposition 5.9 (Fast failure). After a single application of
step, the ill constraint propagates from the body of a clause to the
entire head predicate constraint.

∀f , cl, s ∈ body(cl).

f (pred(s)) = ∅ =⇒ stepPr (f )(pred(head(cl))) = ∅

Corollary 5.10. The number of step applications it takes to con-
verge to the ill constraint is bounded by the static call distance between
two predicates.

Theorem 5.11. For allDatalog programs, Pr , and mode functions,
mv, inter-clausal analysis, analysePr (JmvK), terminates.

Proof. We know that step function terminates because intra-
clausal analysis is a function of MOG construction which termi-
nates by Lemma 4.8. All there is left to show is that analyse always
reaches a fixpoint. This is the case as step forms a chain (Lemma 5.6,
Lemma 5.5) and ⪯ is bounded (Lemma 3.17). □

Theorem 5.12 (Inter-clausal soundness). Given a program Pr
containing a query clq with head predicate q and a mode function
mv, if the analysis yields the trivial constraint for q, Pr is well-moded
with respect to query clause clq and mode function mv.

∀af . af = analysePr (JmvKF ) ∧ af (q) = {∅}

=⇒ wellModedProgram(Pr, clq , JmvKF , reorderProgramaf (cl))

Proof. Fix an arbitrary af and assume the antecedent. Let f be
the constraint functions JmvKF .

We know by (Lemma 5.7) f ⪯ af , that is, for any predicate p
and binding pattern a, if a is consistent with af (p), then it is also
consistent with f (p).

Recall that {∅} is the trivial constraint with which all binding
patterns are consistent. This means under all binding patterns, there
is an ordering for the subgoals of clq , where the binding patterns
2It is known as Martelli’s semiring, originally used to compute cut-sets of a graph [11].
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derived for the subgoals are consistent with the constraints of af
and by ⪯ also with f . Otherwise, we would contradict intra-clausal
soundness (Lemma 4.18).

The predicate constraints of subgoals in the body of clq may
arise from two sources. If the predicate in question is external,
we know by assumption it is consistent with af and hence with
f . If it is an internal predicate, then it is a combination of clause
constraints via ⊕. We know by Lemma 5.3 that each of the clause
constraints are consistent with the binding pattern given to the
subgoal in clq . These clause constraints can only be generated by
intra-clausal analysis. We can apply the same reasoning recursively
to the body of these clauses to show that all constraints of the
external predicates in the body are satisfied. Hence, all external
predicate constraints according to f are satisfied as required.

The reason we need a fixpoint rather than a single application
of step is that intra-clausal soundness ensures soundness with re-
spect to the input constraint function but intra-clausal analysis
potentially produces a more restrictive constraint function due to
(mutual) recursion of clauses. At the fixpoint, the output constraint
function and the input constraint function are one and the same,
hence all dataflow constraints are satisfied. □

Theorem 5.13 (Inter-clausal completeness). Given a program
Pr containing a query clq with head predicate q and a mode function
mv, if there exists a reordering for clauses in the program that produces
a well-moded program with respect to the query, then the analysis
yields the trivial constraint for the query predicate, q ( i.e., our analysis
finds a reordering):

∃gr . wellModedProgram(Pr, clq , JmvKF , gr)

=⇒ analysePr (JmvKF )(q) = {∅}

Proof. We proceed with a proof-by-contradiction: we start by
assuming that the antecedent is true and that analysePr (JmvKF )(q) ,
{∅}. Since a query only has one clause, ⊕ is never invoked in
analysePr for q and thus each step only ever extracts a constraint
for the query from a single MOG. For the constraint to end up
non-trivial, the MOG construction for clq must on all paths gen-
erate a non-trivial obligation in the accumulator (since a trivial
obligation dominates via the definition of ⊗). Therefore, we must
need to bind a variable in the head of the query q. However, by the
antecedent and the definition of adornProgram, there is an ordering
gr such that all variables in the head of query can be adorned with
f (free) and all body clauses are consistent with JmvKF . This is a
contradiction. Therefore, the statement of completeness holds. □

Corollary 5.14 (Global reordering existence). For every
program that can be well-moded with reordering, we can construct a
global reordering function.

Our analysis algorithm preserves the work that has been done
on a program if it is extended by additional clauses.

Theorem 5.15 (Incremental analysis). For a given program,
Pr , an arbitrary clause, cl, and a mode function, mv, defined on
all predicates appearing in Pr and cl, inter-clausal analysis can be
incrementally computed by computing a constraint function for Pr
first and using this as a basis for computing constraints for Pr ∪ {cl}.

analysePr∪{cl }(JmvKF ) = analysePr∪{cl }(analysePr (JmvKF ))

Proof. By (Lemma 5.7), we have JmvKF ⪯ analysePr (JmvKF )
We also have the following inequality:

analysePr (JmvKF ) ⪯ analysePr∪{cl }(JmvKF )

This holds because if the head of cl is not a head in Pr , the constraint
of the head of cl is {∅}which is the bottom element of the constraint
domain. If it appears as a head, this means at each application of
step there will be an additional constraint that needs to be combined
using ⊕. We have C1 ≤ C1 ⊕ C2 by Lemma 5.3 and Def. 3.16.

By applying analysisPr∪{cl } to both inequalities we obtain:

analysePr∪{cl }(JmvKF )

⪯ analysePr∪{cl }(analysePr (JmvKF ))

⪯ analysePr∪{cl }(analysePr∪{cl }(JmvKF ))

Additionally, analyse reaches a fixpoint (Theorem 5.11), thus

analysePr∪{cl }(JmvKF )

⪯ analysePr∪{cl }(analysePr (JmvKF ))

⪯ analysePr∪{cl }(JmvKF )

Since ⪯ is anti-symmetric, then from the above inequality (of the
form x ⪯ y and y ⪯ x ) the equality of the lemma holds. □

We achieve a stronger incremental computation result if the clause
extending the program has a fresh head. It allows us to perform the
analysis without performing intra-clausal analysis on the original
program.

Corollary 5.16. When the head predicate of cl does not feature
in Pr , the clauses of Pr can be ignored during analysis. That is:

analysePr∪{cl }(JmvKF ) = analyse{cl }(analysePr (JmvKF ))

A stronger result still is achieved when the extending clause is
non-recursive. Despite the restrictions on the clause, this captures
queries in an interactive system. We can determine well-modedness
of a query using a single application of the intra-clausal analysis.

Corollary 5.17 (Fast convergence). If cl is also non-recursive,
then analyse converges to a fixpoint in a single step:

analysePr∪{cl }(JmvKF ) = step{cl }(analysePr (JmvKF ))

6 EXTENDING DATALOG

Our analysis so far accommodates external predicates without side-
effects. However, most implementations extend Datalog. In this
section, we explore these extensions in relation to our algorithm. In
particular, we discuss preserving effectful-predicate order, negated
subgoals, and wildcards. We do not discuss aggregates [8, Chap. 2]
as they are trivially compatible.

Preserving order of effectful predicates. Since this work is
motivated by incorporating external predicates, effectful predicate
evaluation is a natural extension. Reordering, in general, is unsound
for effectful predicates, e.g., we may reorder so that the subgoal
that reads a file precedes the one that opens it.

One solution is to use a coarse-grained effect system that marks
predicates as either pure or side-effectful. In such a coarse-grained
effect system, all effectful predicates are assumed to interfere with
each other, therefore relative order of all such predicates needs
preserving. For each clause, assume a list of its effectful subgoals, l ,
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matching their relative syntactic order. We modify edge-generation
rules for MOGs so that the order of edge labels conforms to l .

For non-natural edges, if the subgoal selected for labelling is in
l , then it has to be the head of l otherwise we do not generate the
edge. For natural edges, the set of subgoals in the label can contain
at most one element from l , particularly the head of l .

As this modification forces the edges to respect the syntactic
order of effectful subgoals, the reordering algorithm is sound again.

The coarse-grained effect system here is only an example. So
long as there is a sound partial order of effectful subgoals for each
clause, a variation on the approach described here will be sound.

Negated subgoals. Negation allows a subgoal to hold when it
is not satisfied. There are various ways of including it with radical
effects on semantics, but dataflow-wise they behave identically.

Example 6.1. Evaluating the following naïvely, outOfStock con-
sists of all finite strings but “Milk”. This compromises termination.
1 inStock("Milk").
2 outOfStock(X) :- not(inStock(X)).

Requiring variables inside a negated subgoal to be bound solves this
problem. This is easy to express within our analysis by changing the
generation of alternatives at the MOG root. Say we have a negated
subgoal n of predicate p. If p has the ill constraint (Def. 3.3), the
alternative at the root is (n, ∅) as before. Otherwise, we require all
the variables to be bound, i.e., the obligation set for n is {vars(n)}.

Wildcards. Wildcards allow the value of a subgoal argument to
be ignored. For example, p(X,_) ignores its second argument. This
is equivalent to using an existential variable, i.e., one that appears
once in the body.

If a wildcard is used as an argument to a subgoal with mode +
at that argument position, the dataflow requirement for that pred-
icate cannot be satisfied. If the wildcards are eliminated through
introduction of a fresh existential variable for each wildcard, no
modification to our analysis is needed. However, if the analysis
is performed without assigning fresh variables, we need two ad-
justments to the intra-clausal analysis. First, vars should ignore
wildcards. Second, cToOs should add a special wildcard variable
each time an atomic constraint indexes a wildcard variable in the
subgoal. Since vars ignores wildcards and clause heads cannot have
wildcards, a wildcard alternative will not be scheduled.

7 RELATEDWORK

Mellish [12] introduces mode inference through abstract interpreta-
tion for Prolog programs. Debray and Warren [6] improve on this
work by precise handling of aliasing. Both perform inference on
the programs as they are written without reordering of subgoals.

Mercury [13] and HAL [5] have mode systems that are clos-
est to ours in spirit. They both reorder subgoals to satisfy mode
restrictions and both use constraint-based analysis. Both of these
are higher-order languages and allow function symbols. Hence,
they provide more sophisticated modes that express partial instan-
tiations of variables, e.g., a list with unbound variables is more
instantiated than just a variable and less instantiated than a list
with ground elements. Much of the analysis is thus concerned with
precise aliasing tracking. By contrast, lack of function symbols sim-
plifies our mode analysis. In particular, Overton et al. [13] reports

their constraint-based analysis is 10 to 100 times slower compared
to their previous brute force search based algorithm on benchmark
programs. Additionally, HAL only reorders subgoals during mode
checking with mode specifications whereas we also do reordering
in the absence of specifications. Another difference is that both of
these are typed languages and their analyses rely on types for mode
analysis. This is not possible for untyped Datalog.

More recently, Yedalog [4] and Dyna [7] were developed, in-
spired by Datalog. They both add function symbols and face the
same aliasing problems described above. Both provide static mode
systems and refer toMercury as inspiration but without an explicit
account of the underlying algorithm.

In addition to the order preservation method for subgoals with
side-effects in Section 6, there is an alternative involving modes.
Henderson et al. [9, Chap. 5] reify the external world as a value to
be passed around. Use of mode constraints on external world ar-
guments establishes mode dependencies between effectful clauses
which would allow our analysis to remain sound without modifica-
tion. This is similar to use of phantom types [3] in typed languages.
The downside of this approach is that the external world has to be
shuffled manually or a variable inserting transformation is needed.

Overall, we differ from the literature by targeting Datalog in its
standard form without function symbols and types. This simplifies
the analysis and allowed us to prove soundness and completeness.
Additionally, unlike other approaches, our analysis is incremental
allowing performant mode checking in interactive systems.

8 CONCLUSIONS

We presented a static mode analysis forDatalog to allow programs
to be well-moded through reordering whenever possible. The com-
binatorial explosion of global permutation search is tackled by
exploiting dataflow restrictions within the clauses and support-
ing incremental analysis—particularly for interactive systems. We
showed that the algorithm is terminating, sound, and complete
with respect to exhaustive global order search.
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A OMITTED PROOFS

Lemma 3.15 (Ill and trivial constraints). The trivial con-
straint, {∅}, is consistent with all binding patterns whilst the ill con-
straint, ∅, is consistent with none.

Proof. The ◀ relation is universally quantified so it holds triv-
ially for the atomic constraint ∅, hencefindAC is never empty for the
trivial constraint. On the other hand, for the ill constraint, findAC
is always the empty set as there are no atomic constraints. □

Lemma 3.17. For a fixed predicate, ≤ is a bounded partial order
with ∅ as the top element (most restrictive) and {∅} as the bottom
element (least restrictive). For a fixed domain, ⪯ is also a bounded
partial order with constant functions returning ∅ and {∅} as top and
bottom elements respectively.

Proof. The fact that the relation ≤ is a partial order follows
from properties of implication. Nothing is consistent with ∅ which
confirms the top element and any adornment is consistent with
∅ which confirms the bottom element (Lemma 3.15). Pointwise
extension preserves all of these properties. □

Lemma 3.18. If a constraint C2 is more restrictive than C1, this
means C1 has a less restrictive atomic constraint for each atomic
constraint in C2. That is:

∀C1,C2. C1 ≤ C2 =⇒ ∀AC ∈ C2 ∃AC ′ ∈ C1. AC ′ ⊆ AC

Proof. Unfolding definitions of ◁ and ◀, it is readily seen that
the more restrictive constraint requires more arguments at par-
ticular locations to be bound than the less restrictive one, which
establishes the subset relation. □

Lemma 4.7. MOG construction leads to a scheduling graph.

Proof. The first two properties of the valid scheduling property
is satisfied trivially as new vertices use nextAcc and nextAlt as
defined in property statements. The edge labels are selected using
pickLabel which satisfies the third condition as it selects subgoals
from the source vertex alternatives as well as the obligation it is
coupled with.

Labels must not have obligation variables that do not appear in
the head. When scheduling natural subgoals as they have empty
obligations, that is the case. When scheduling non-natural ones, the
condition is embedded inside nonNats selector used by pickLabel,
hence that too is satisfied.

The root vertex is also chosen as it is defined in the scheduling
graph.

All conditions of a scheduling graph are satisfied. □

Lemma 4.8 (MOG termination). For any clause and constraint
function, the MOG construction terminates.

Proof. Apart from the root, the vertices are generated through
edges. So it is sufficient to show that we can only generate finitely
many edges. As a finite union of finite sets is finite, it suffices to
show there is an n such that for allm bigger than to n, E(mogmcl,f )
is empty.

This is indeed the case since the edges can only be added using
pickLabel and nextAlt from a given vertex. The pickLabel function
can only select labels from the alternatives of the preceding vertex

and nextAlt removes the subgoals involved in edge labels from the
succeeding alternative set. Hence, together they produce alternative
sets strictly smaller than the edge’s source vertex. Since we start
with finite number of alternatives, we cannot generate infinite
number of vertices. □

Proposition 4.11. All paths in a MOG are greedy.

Proof. Natural edge generation by pickLabel takes precedence
during edge generation, therefore all paths satisfy greediness. □

Lemma 4.16. Composition of the extract function with the MOG
construction is monotonically increasing.

∀cl, f ,д. f ⪯ д =⇒ extractcl(mogcl,f ) ≤ extractcl(mogcl,д)

Proof. Fix a clause cl and assume f ⪯ д for some f and д. This
implies at each point p in these functions we have f (p) ≤ д(p). It is
sufficient to show that every terminal path that can be reached via
д is also reachable with f (in the sense that it has the same number
of edges sharing the same subgoals on the edges but paired possibly
with different obligations) and the accumulator at the end of each
these paths is a subset of that of д.

By Lemma 3.18, we know for each predicate p, for all atomic
constraints of д(p), there is an atomic constraint in f (p) that is
smaller. This property trivially transfers to obligations in clause
context. This means each time we can extend a vertex using д we
can extend it with f and the obligation is at most as big as that of
come from д. Hence, the accumulated obligation yields the desired
subset property for each path.

There may be other terminal paths generated by f . If any of
those leads to smaller accumulators, then the property still holds.
If they do not, it does not matter because atomic constraints are
minimised, so the redundant atomic constraints are removed. □

Lemma 4.17. If any predicates in the body of a clause cl has the ill
constraint according to the constraint function f , the constraint for
the clause as extracted from its MOG is also ill.

∀sub ∈ body(cl). f (pred(sub)) = ∅ =⇒ extractcl(mogcl,f ) = ∅

Proof. The extract function derives constraints using terminal
vertices. However, mogcl,f cannot have a terminal vertex because
the alternatives contain a subgoal sub with empty set of obligations.
This obligation is not {∅} so we cannot schedule sub using the first
case of pickLabel for natural subgoals. We also cannot use the other
case of pickLabel which uses nonNats, as the side condition for the
new edge includes o ∈ os and os in this case is empty. Since there is
no way of scheduling sub, there is no way of reaching a terminal
vertex. □

Lemma 4.20 (Well-moded ordering to terminal path). For a
constraint function, f , clause, cl, binding pattern, a, and ordering, σ ,
where wellModed(cl, a, f ,σ ), a scheduling graph schedule(cl, a, f ,σ )
has a terminal path p.

Proof. For at least one path to be terminating, it follows that
Ei must be non-empty for every 0 ≤ i < n. By the above construc-
tion and the well scheduling properties, this would then imply that
{(∅,Acc)} ∈ En for some Acc, i.e. that terminal(p) for some path p.
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Since the root node fills all the obligations for each subgoal from
f , i.e., V0 = {{(s,min cToOss (f (pred(s)))) | s ∈ body(cl)} then each
singleton obligation {o} for a subgoal s is derived from f (pred(s)).

From well-modedness, we have that adornment(s) ◁ f (pred(s))
for each subgoal s ∈ body(adorn(cl, a,σ )), therefore, where we let
b = adornment(s):

b ◁ f (pred(s))

⇐⇒ b ◁ osToCs (cToOss (f (pred(s))))

=⇒ b ◁ osToCs ({o}) where ∃o ∈ cToOss (f (pred(s)))

⇐⇒ b ◁ osToCs ({o}) where ∃o ∈ min cToOss (f (pred(s)))

Therefore, from well-modedness, we can always satisfy the condi-
tions of the Ei set comprehension for at least one pair (s,o). Thus,
Ei , ∅ for all 0 ≤ i < n. Therefore, there is at least one terminal
path p ∈ schedule(cl, a, f ,σ ). □

Lemma 4.23 (Trivial obligation consistency). If a scheduling
graph vertex v has a subgoal s with obligation {∅} in its alternative
set, any ordering with a partial ordering derived from the root to v
makes the predicate s consistent with respect to any binding pattern.

Proof. Due to the invariants of the scheduling graph, the only
way v has s with the trivial obligation in its alternative set is if it
had it that way at its root vertex or subgoals scheduled on p before
v released variables in its obligation.

Since the variables in the obligation correspond to variables that
needs to be bound to be consistent with the predicate constraint,
any ordering that follows any one of the partial orderings up to v
has s consistent with its constraint regardless the binding pattern
of the clause head. □

Lemma 4.24 (Swap preservation). If a scheduling graph path is
well-moded, performing a swap on this path preserves well-modedness
and the path still belongs to some scheduling graph.

Proof. We first show the path is still in some scheduling graph
and then show it retains well-modedness.

(1) Structurally, swap does not change the vertices or the edges.
The vertices conform with the properties of a scheduling
path as they usemkEdge to construct the vertices. It is used in
Def. 4.5 and Lemma 4.7 establishes that the vertices produced
by it are those expected by a scheduling graph.
The edges also conform with scheduling graph requirements.
The obligations within the labels being subset of the head
variables is satisfied trivially as changing the position of the
label has no effect on this.
The final requirement is that the elements of the labels (sub-
goal obligation pairs) have to be chosen from the alternatives.
By assumption the label moved to the left, has the trivial
obligations in the alternatives of the preceding vertex, so
the requirement is satisfied. In the new intermediate vertex
the alternatives may include shrank obligations due the vari-
ables bound the subgoals moved to the left. But the label is
modified to exclude these variables from the obligations, so
the property holds for this new label as well.

(2) Let the sets of subgoals in the edges pi and pi+1 be P and
Q respectively. Consistency depends on the adornment of
the subgoal which depends on the variables bound before

adornment. We already fixed the head adornment a and that
does not change with subgoal swapping.
We proceed by considering different portions of the path:
qj<i The set of bound variables are same as before, so the
subgoal prior to this point remain consistent.

qj>i+1 When regarded atomically, P and Q together bind
the same set of variables regardless the order they are
scheduled in. Hence, the bound variables after the vertex
qi+1 remain the same.

qi+1 The set of variables there were sufficient to make sub-
goals in P remain bound when the subgoals in P are moved
to the right. They might be augmented by the addition
of variables in Q but additional bound variables do not
compromise consistency.

qi Because we have the side condition on swap that all sub-
goals ofQ must have the trivial obligation atpi , we already
know all that needs to be bound to achieve consistency is
bound at pi (Lemma 4.23).

Hence, both properties are preserved. □

Lemma 4.26 (Merge preservation). If a scheduling graph path is
well-moded, performing amerge on this path preserves well-modedness
and the path still belongs to some scheduling graph.

Proof. We first show the path is still in some scheduling graph
and then show it retains well-modedness.

(1) We start with a path in the scheduling graph and make no
modification to the vertices before and after the edges being
merged. Hence, it is enough to show that the invariants are
satisfied for the edges being merged.
Accumulator related invariants are trivially satisfied as the
obligations on the labels of both of these edges are ∅ (due to
third invariant of the valid scheduling property), hence they
do not change the accumulator (as they did not before). They
subset restriction on the label obligations are also satisfied,
as ∅ is trivially a subset of the head variables.
The alternative set of the destination of the merged edge
is also the same as before since exactly the same subgoals
are removed from the alternative set and hence the same
variables (of these subgoals) are released.

(2) Letp be the path in question andpi &pi+1 be the edges being
merged. Fix the binding pattern a that the path is consistent
with.
A merge only enables new orderings. We need to show each
of these new orderings are still consistent with all of the
predicate constraints when their binding patterns are derived
from a.
In the new orderings, the subgoals before pi appear in the
positions they did in the old orderings, in which they were
already consistent. The subgoals after pi+1 also appear in
the same positions as before and changing the positions
of the subgoals in pi and pi+1 do not affect the variables
bound during the adornment of these subgoals, hence they
too remain consistent.
The new locations subgoals ofpi can appear in the new order-
ings are still after the points we established their consistency,
hence their consistencies are preserved.
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Those in pi+1 can appear at locations before the points we
established their consistencies, but by assumption we only
merge if those subgoals appear with trivial obligations in-
side the source of pi . By Lemma 4.23, we know that these
predicates also retain their consistencies.

Hence, both properties are preserved. □

Lemma 4.27 (Conversion preservation). If a scheduling graph
path is well-moded, its conversion is also a well-moded path of some
scheduling graph.

Proof. Swap and merge preserves scheduling graph structure
and well-modedness by Lemma 4.24 and Lemma 4.26. □

Lemma 4.28 (Conversion greed). If a path is in a scheduling
graph, then its conversion produces a greedy path.

Proof. By construction subgoals in edges are positioned such
that they follow the trivial obligation, since a subgoal cannot appear
in more than one edge, greediness requirement is satisfied. □

Lemma 4.29 (Greedy path completeness). For a clause cl, every
greedy scheduling path for cl ending in a terminal vertex and con-
forming to a constraint function f is present in the MOG determined
by cl and f . That is:

∀p, a. greedy(p)∧wellModedPath(p, a, cl, f ) =⇒ p ∈ paths(mogcl,f )

Proof. We consider a more general property: that for a greedy,
well-moded path p, a prefix of p of length n is a prefix path of
mogcl,f , where an empty path comprises just the root vertex. We
assume a pathp satisfying the antecedent of the lemma, and proceed
by induction on the length n of the prefix path:
• n = 0. By the definition of scheduling graphs, the root node
V0 is fixed, therefore {V0} = V(mog0cl,f ) trivially; a zero-length
path comprises just the start vertex.

• n = k + 1. Let (s,o) = src(pk+1) and assume the inductive
hypothesis: the path p0 . . .pk is a prefix path of mogcl,f .
We consider then two cases:
– (nats(src(pk+1)) , ∅) therefore by greediness and the well-
scheduling property, trg(pk+1) = mkVertex({(nats(Alt), ∅)})
which is equal to the edge constructed by mogcl,f give the
vertex src(pk+1);

– (nats(src(pk+1)) = ∅) therefore by well-modedness on the
subgoal s we have that adornment(s) ◁ f (pred(s)). For the
computed adornment to be consistent with the constraints of
f , it follows that for every variable X in this clause which is
bound in subgoals adornment, its corresponding index i in the
constraint due to f . For X to be bound, it follows that it was
bound earlier on the path, or is bound in the clause head. The
former cannot be true, as if it was bound earlier on the path
it would have been released from the alternative set via ⊖.
Subsequently, it must be bound in the head and therefore its
obligation o ⊆ vars(head(cl)). Therefore, by well-scheduling,
we have a vertex which satisfies the requirements of nonNats
in pickLabel, thus the edge pk+1 is equal to that constructed
by E(mogkcl,f ) at this point given vertex src(pk+1).

Therefore, p0 . . .pkpk+1 is a prefix path of mogcl,f .
Therefore p ∈ paths(mogcl,f ). □

Lemma 4.30 (Path extract connection). For a fixed binding
pattern a, existence of a well-moded path in aMOG implies consistency
of a with the constraint extracted from the MOG.

∀a p. wellModedPath(p, a, cl, f ) ∧ p ∈ paths(mogcl,f )
=⇒ a ◁ extractcl,f (mogcl,f )

Proof. Fix a binding pattern a and a path p and assume the an-
tecedent. To show the consequent, it is enough to show a stronger
statement: the atomic constraintAC extracted from anywell-moded
MOG path p is consistent with the binding pattern a. This gener-
alisation is valid since atomic constraints are combined via ⊗ in
extract which is monotonically decreasing (getting less restrictive
wrt. consistency).

Assuming an arbitrary index i ∈ AC constraining variable X in
the head, it follows that X is in the terminal accumulator and was
scheduling at some point in the pathp by extending the accumulator
with this variable. Let s be the subgoal that causes this augmentation.
Since we know by the premise that p is well-moded with respect
to a and f , we also know the constraint of s in f is satisfied by the
binding pattern at s derived from head binding pattern a by adorn.
Since scheduling s augmented the accumulator, X could not have
appeared in the previous subgoals as the release operator ⊖ would
have eliminated X from the obligation of the alternative. Hence, X
must be bound in the head. This is exactly what is required for the
consistency with AC. As there is nothing particular about i and X,
all indices in AC are similarly bound, hence the atomic constraint
is consistent with a.

If there are no indices in the accumulator at the end of the path,
the extracted constraint has to be trivial as ⊗ takes the minimal
elements. Every binding pattern is consistent with the trivial con-
straint (Lemma 3.15), so the lemma holds. □

Lemma 5.3 (⊕ consistency homomorphism). A binding pattern
is consistent with two constraints combined with ⊕ iff that binding
pattern is consistent with each constraint individually, i.e.:

∀a,C1,C2. a ◁ (C1 ⊕ C2) ⇐⇒ a ◁C1 ∧ a ◁C2

Proof. (⇒) Assume a ◁ (C1 ⊕ C2). This means that for every
element AC of C1 ⊕ C2, we have a ◀ AC . Unfolding definition of
⊕, we have X and Y that are subsets of AC such that AC is X ∪ Y .
Unfolding definition of ◀, we have ∀i ∈ AC. ai = b. This certainly
holds for all subsets of AC, so we have ∀i ∈ X . ai = b and similarly
for Y . C1 must be a set of such X by definition of ⊕, thus a ◁ C1
holds. Same argument applies to C2 as ⊕ is commutative.

(⇐) Assume a◁C1 and a◁C2.C1 ⊕C2 is a subset ofC1 ×C2, so
it suffices to show a◁C1×C2. This requires showing a is consistent
with every atomic constraint in this set. Since each of these atomic
constraints can be represented as a union of an element from C1
and another element from C2 and that we know a is consistent
with each of these elements, it also has to be consistent with the
union. □

Lemma 5.5. Every constraint function generated from a moding
function gets more restrictive when step is applied to it.

∀Pr,mv. JmvKF ⪯ stepPr (JmvKF )
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Proof. Unfolding definition of ⪯, it is sufficient to show the
equivalent pointwise property holds:

∀mv,p. JmvKF (p) ≤ stepPr (JmvKF )(p)

By assumption mv only has mode requirements for external
predicates. Let p be an arbitrary predicate within the domain of
JmvKF . Now we consider effect of step depending on whether p is
an internal or an external predicate.

If p is an external predicate, step does nothing, so the lemma
holds by reflexivity of ≤ (Lemma 3.17).

If p is an internal predicate, by assumption JmvKF (p) is {∅},
which is the bottom for ≤ (Lemma 3.17). □

Lemma 5.6 (Step monotonicity). The step function is monotoni-
cally increasing (making constraints more restrictive):

∀Pr, f ,д. f ⪯ д =⇒ stepPr (f ) ⪯ stepPr (д)

Proof. Follows from monotonicity of extract (Lemma 4.16) and
⊕ consistency homomorphism (Lemma 5.3). □

Lemma 5.7. Every constraint function generated from a moding
function gets more restrictive by application of analyse.

∀Pr,mv. JmvKF ⪯ analysePr (JmvKF )

Proof. Observe that analyse is simply repeated application of
step. The lemma follows from Lemma 5.5 and Lemma 5.6. □

Proposition 5.8. For each predicate p, (Dp , ⊕, ⊗, {∅}, ∅) is an
idempotent commutative semiring3 where {∅} and ∅ are the additive
and multiplicative identities respectively.

Proof. Previously given by Martelli [11]. □

Proposition 5.9 (Fast failure). After a single application of
step, the ill constraint propagates from the body of a clause to the
entire head predicate constraint.

∀f , cl, s ∈ body(cl).

f (pred(s)) = ∅ =⇒ stepPr (f )(pred(head(cl))) = ∅

Proof. Fix f , cl, and s assume the antecedent. By Lemma 4.17,
we know the clause constraint has the ill constraint. By Lemma 5.3,
we know any a that is consistent with a constraint combined using ⊕
with ∅must have a◁∅. There is no such a, thus the overall constraint
for the predicate at the head of the clause is ∅ as required. □

Corollary 5.10. The number of step applications it takes to con-
verge to the ill constraint is bounded by the static call distance between
two predicates.

Proof. Follows immediately from Proposition 5.9. □

Corollary 5.14 (Global reordering existence). For every
program that can be well-moded with reordering, we can construct a
global reordering function.

3It is known as Martelli’s semiring, originally used to compute cut-sets of a graph [11].

Proof. By Theorem 5.13, we know that if a global reordering
function exists, analysis will find the trivial constraint for the head.
This means for each clause as a part of the analysis we construct
local reordering functions that are defined for all relevant binding
patterns. By combining these local reordering functions, we can
construct the desired global reordering function. □

Corollary 5.16. When the head predicate of cl does not feature
in Pr , the clauses of Pr can be ignored during analysis. That is:

analysePr∪{cl }(JmvKF ) = analyse{cl }(analysePr (JmvKF ))

Proof. Constraints of clauses are obtained by ⊕ operator and
intra-clausal analysis which is a function of the clause body and
the constraints for those subgoals. Clauses apart from cl are unaf-
fected by the constraint of cl as the head predicate for this clause by
assumption does not feature in other clauses, hence cannot affect
the overall predicate constraints. Since the step function preserves
constraints that are not mentioned in the set of clauses it is param-
etarised over, the lemma holds. □

Corollary 5.17 (Fast convergence). If cl is also non-recursive,
then analyse converges to a fixpoint in a single step:

analysePr∪{cl }(JmvKF ) = step{cl }(analysePr (JmvKF ))

Proof. We know the constraints of predicates appearing in Pr
are all stable and body of cl can only feature them and external
predicates for which the constraints do not change. Since the clause
constraint is a function of its body and the constraints at this point,
single iteration is sufficient. □


