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Abstract

This research starts from the comparison between warranty and insurance in their cov-

erages, policies, data and, particularly, policy optimisation techniques. Based on abun-

dant literature in related areas, the result of this comparison indicates that warranty policy

optimisation can be improved by considering the application of the portfolio theory, de-

pendence modelling and risk measures that are widely used in the actuarial science and

the financial discipline. In the following chapters, Chapter 1 introduces the Importance

of this research and lists its aim and objectives. Chapter 2 mainly conducts a critical

and comprehensive literature review relating to warranty management and actuarial sci-

ence and summarised the knowledge gaps identified. Chapter 3 establishes a collective

warranty policy optimisation framework, with the benefits of the modern portfolio theory

borrowed from the actuarial and financial disciplines and copulas from the probability and

statistics. With progressing of this research, the disadvantage of the symmetric risk mea-

sure, variance, is uncovered in dealing with the extreme events. Chapter 4 proposes using

two of the downside risk measures used in the financial discipline, Value-at-Risk and

Conditional Value-at-Risk, into the optimisation of warranty policy and a new portfolio

optimisation framework of warranty optimisation based on copulas. Chapter 5 investi-

gates the interplay among the hardware, software and users of individual products under

different scenarios relating to the warranty claims. Considering such an interplay, it then

develops a more comprehensive framework for warranty policy optimisation. This fits the

trend that that more and more products can be considered as a system composed of three

subsystems: hardware, software and user subsystems and considers that the existing war-

ranty policy optimisation methods in the literature merely focus on products composed

of hardware systems. Even though the above chapters have developed warranty policy

optimisation frameworks collectively and comprehensively, this research can also be im-

proved in many aspects. As such, in Chapter 6, the sale volume modelling, renewing

warranty policy optimisation and copula selection are discussed. Chapter 7 wraps up the

research and discusses future research.
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Table 1: Notation table

Xk,i Cost of the ith warranty claim of product k
Nk(t) Number of warranty claims of product k within time interval (0, t)

Sk(t) Total cost of warranty claims of product k within time interval (0, t)

Pk Price of product k
Tk Warranty length of product k
P Vector of prices of products
T Vector of lengths of warranties
λk Parameter of the claim arrival process of product k
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σk Standard deviation of Xk,i

ck Fixed manufacturing cost of product k

Mk(Pk, Tk)
Sales volume of product k when the warranty price is Pk and the warranty
length is Tk

M
Vector of all sales volume, M = [M1, ...,Mn]′, where [.]′ denotes the trans-
pose of a matrix/vector,

ωk(Pk, Tk)
Profit of product k when the warranty price is Pk and the warranty length
is Tk

Ω(P,T)
Total profit of the manufacturer when the warranty prices is P =
[P1, ..., Pn]′ and the warranty length is T = [T1, ..., Tn]′.
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λ2(t) intensity function of a NHPP of software failures
M total sales volume of the product

F3(t) cumulative distribution function of NFBR claims

p1(t)
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14



Chapter 1

Introduction

Warranty plays an important role in consumer and commercial transactions. It is essen-

tially offered with most durable products to promote product sales. Warranty is a contrac-

tual obligation incurred by a manufacturer (vendor or seller) in connection with the sale

of a product (Blischke, 1993). The manufacturer should compensate customers through

offering repair or replacement service in the event of premature failures of the warranted

items or items’ inability to perform its intended function (Karim & Suzuki, 2005; Wu,

2014b). A typical warranty transaction is: a consumer pays the warranty price when pur-

chasing an item (items); then the manufacturer provides free repair or replacement service

for the failures of the item(s) that occur during the warranty period. Warranty is a tool to

assure consumers’ satisfaction with product performance over the warranty period (Liao,

2016). It can be seen as a guarantee or promise about the reliability of a product and

may be legally mandated or market driven: the European Union (EU) passed legislation

requiring a two-year warranty for all products sold in Europe (Wu, 2014b). There are also

several warranty acts enacted in the U.S. over the last 100 years (UCC, Magnusson Moss

Warranty Act, Tread Act, for example) (Wu, 2014b; Murthy & Djamaludin, 2002).

Warranty expense is an important part of the manufacturer’s operating expense. In

the manufacturing industries, warranty incurs huge amount of costs, for example, the

total cost of worldwide warranty claims of U.S.-based firms was $26.4 billion in 2015;

and the balance of their total warranty reserves was $43.35 billion at the end of 2015

(WarrantyWeek, 2016b). This is especially the case for some industries, for example,

the automotive industry is the most warranty-intensive of all: warranty claims paid by

15



the total automotive OEM (original equipment manufacturer) in the entire U.S.-based

manufacturers was $10,097 million in 2015 (WarrantyWeek, 2016b).

Warranty expense belongs to the operational expenses of the warranty provider who

needs to cover labour and parts costs for repairs within the warranty period. Hence, unan-

ticipated failures of sold items within warranty coverage may cause losses, which may

include economic losses and reputation damage, to the warranty provider. Therefore, ac-

curately forecasting the expected liability due to warranty claims is important in warranty

related modelling, which involves modelling of the claim frequency and severity (Wu,

2012).

Warranty is a type of insurance. Insurance is a tool through which the risk of a loss

can be transferred from an encountered entity to another in exchange for payment. The

principle of insurance can be explained as an insurer raising funds from a group of similar

policyholders to pay the policyholders who suffer losses within the group. The money

raised from the policyholders is called premium, and the money paid for the claims is

called claim amount/size/severity. An insurance company should hold the balance be-

tween the total premium and the total claim amount. The expected total claim amount

is always treated as the expected liability of insurance companies. Insurance companies

normally wish to forecast the expected total claim amount more accurately (Czado et al.,

2012). Warranty and insurance share commonalities in modelling. For example, the com-

pound Poisson process plays an important role in both warranty modelling and insurance

modelling.

The discipline that applies mathematical and statistical methods to assess risk and

model related issues in insurance, financial and other industries is named as actuarial sci-

ence. In this research, warranty modelling means applying mathematical and statistical

methods to model the mechanism of processes and issues in the warranty area to support

warranty data analysis, warranty policy optimisation and related activities. It has been

noticed that actuarial science has attracted more researchers and has been better estab-

lished than warranty modelling. Learning from actuarial science is a good approach to

improving warranty modelling.
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1.1 Research objectives

According to the literature in actuarial science and warranty management, one can find

that there is a bulk of research questions that has been studied in actuarial science but

not well researched in warranty management. For example, variable dependence in in-

surance data analysis, such as dependence between claim types, claim amount, and claim

frequency, has been well studied in insurance data analysis and insurance policy optimisa-

tion (Yau et al., 2003; De Jong et al., 2008; Frees & Valdez, 2008; Mikosch, 2009; Zhao &

Zhou, 2012; Shi & Valdez, 2014a), but it has less investigated in the literature of warranty

management.

As such, the research mainly aims to fulfil the following research objectives:

• To compare the advances of the actuarial science and warranty management in order

to find knowledge gaps: what can warranty researchers learn from the actuarial

science?

• To develop a collective warranty modelling method to optimise the warranty poli-

cies when the dependence among the warranty claims of the products produced by

the same manufacturer is considered;

• To improve the risk measure method applied in the collective warranty policies

optimisation framework when the downside risk is considered;

• To develop a comprehensive warranty modelling method to optimise the warranty

policies when the interplay among the subsystems, such hardware and software

subsystems, of a product are considered.

The needs for investigating the above objectives include the following reasons and are

not exhaustedly listed.

1. Avoidance of information loss. In warranty data analysis, Jung & Bai (2007); Wu

(2014a) has modelled the dependence between age and usage. However, little has

been done on modelling the dependence among the number of warranty claims,
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warranty claim cost and even warranty claims of different products, and even on

modelling the dependence among the warranty claims of the products produced

by the same manufacturer. While in the current competitive market, it has always

been vital to improve model performance. Hence there is a need to include the

dependence in warranty modelling to avoid information loss.

2. Availability of modelling tools. Copulas make it possible to incorporate both con-

tinuous and discrete random variables in a joint probability distribution. It is also

well known that it is easy to develop models with copula as it separates the mod-

elling procedures into two steps: (1) modelling marginal distributions, and (2) in-

tegrating the marginal distributions with copula. These are copula’s advantages. In

this research, the number of failure modes is limited and the occurrence of failure

modes in warranty claims therefore are modelled with a discrete probability distri-

bution, whereas the other random variables such as age, usage (typically mileage

for automobile), and claim amount should be modelled with continuous probability

distributions. The advantages of copula enable us to do such research.

1.2 Thesis structure

This thesis focuses on collectively and comprehensively optimising warranty policies with

consideration of dependence among the products produced by the same manufacturer and

the interplay among the software and hardware subsystems and the user of a product.

The rest of this thesis consists of 6 chapters: literature review, a mean-variance ap-

proach to jointly optimising warranty pricing for a portfolio of products, a value-at-risk

approach to optimisation of warranty policy, warranty cost analysis considering the inter-

play of product subsystems, discussion and conclusion and future work.

In Chapter 2, due to the commonalities shared by warranty modelling and actuarial

science, this chapter compares existing modelling approaches to insurance and warranty

with regard to modelling of claim frequency, modelling of claim size, policy pricing and

policy optimisation. The potential aspects to improve warranty policy optimisation are
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summarised.

In Chapter 3, a real world issue is considered that a manufacturer commonly produces

more than one product, or a portfolio of products, and provides warranty servicing for

them. However, many researchers have attempted to optimise warranty policy to max-

imise the profit or minimise the cost of each individual product. Warranty claims of the

products produced by the same manufacturer, however, may be due to common causes,

since the products may be designed by the same engineer team or using the same type

of components. This implies that the numbers of warranty claims of different products

may be related, and optimisation of warranty policies for each individual product may

therefore cause biased decisions. To overcome this disadvantage, this chapter aims to

collectively optimise a manufacturer’s total profit for a portfolio of different products by

using a mean-variance optimisation approach. A tool from the probability theory, the

copula, is used to depict the dependence among the warranty claims of different products.

Numerical examples are provided to illustrate the application of the proposed methods.

Chapter 4 takes a further development on the basis of Chapter 3. The dependence

among the warranty claims of different products produced by the same manufacturer is

also considered and a real world issue is used to illustrate the situation. Furthermore, this

chapter also collectively optimises warranty policy for a set of different products whose

failures are statistically dependent. However, according to the literature in the financial

literature, even though the variance of a random variable is applied as a risk measure by

the overwhelming influential models of portfolio selection, the symmetry of this measure

cannot reflect the risk comprehensively. In this chapter, the downside risk measures,

borrowed from financial mathematics, such as Value-at-Risk and Conditional Value-at-

Risk, are employed. Then, the existences of the optimal solutions for different scenarios

are proved . Numerical examples are used to validate the applicability of the proposed

methods.

In Chapter 5, the products consisting of software and hardware are considered. The

causes of warranty claims of such products may be attributed to software specific fail-

ures, hardware specific failures, software-hardware interaction failures and human errors.
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This chapter investigates warranty costs incurred due to those three subsystems with a

main focus on their interactions. It estimates the costs due to different causes, develops

integrated warranty cost models and optimises warranty policies considering the above

possible combinations. Numerical examples are given to illustrate the proposed models.

Chapter 6 discusses the potential improvements of this research in three aspects in-

cluding the forms of sales volume functions, the optimisation of renewing warranty pol-

icy, and the selection of copulas.

Finally, Chapter 7 concludes the findings of this thesis and proposes the future re-

search that can be proceeded from both warranty data analysis and warranty policy opti-

misation perspectives.
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Chapter 2

Literature review

Warranty shares commonalities with insurance in many aspects. Research on actuarial

science has attracted much more attention than on warranty modelling. This chapter com-

pares existing modelling approaches to insurance and warranty with regard to claim fre-

quency, claim size, policy pricing and policy optimisation. The suggestions for improving

warranty optimisation are summarised.
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2.1 Comparison

2.1.1 Comparison of general features of warranty and insurance

Although warranty can be treated as a type of insurance from a mechanism aspect, war-

ranty and insurance still have some differences in their general fractures including cover-

ages, policies and data.

Coverages

Warranty can be classified as two types, base warranty and extended warranty. Base

warranty is provided when a product is sold, whereas extended warranty is purchased

separately and voluntarily by the buyer as a service contract. That is, base warranty

covers the early period of a product, starting from the first day when an item is put in use,

whereas extended warranty covers a certain period after the base warranty has expired.

Warranty can be one-dimensional or two-dimensional. A one-dimensional warranty is

characterised by an interval which is defined by time or usage, and a two-dimensional

warranty is characterised by a region in a two-dimensional plane which consists of the

time axis and the usage axis (Blischke et al., 2011). Warranty covers the period set by the

warranty provider and regulated by the market authority.

Insurance can be classified as life insurance and non-life insurance by the perils they

insured. The peril insured by life insurance is death, and non-life insurance typically

protects the insured from loss or damage caused by specific risks. Non-life insurance

is a concept used in continental Europe which covers all insurance products except life

insurance, but the same concepts used in the UK and the US are general insurance and

property and casualty insurance respectively (Wüthrich & Merz, 2008). Insurance covers

the period that both the insurer and the insured agree on.

The coverage of warranty is similar to the coverage of non-life insurance. To improve

warranty modelling, the investigation of actuarial science methods and techniques should

be focused on the regime of non-life insurance.

22



Policies

A warranty policy is characterised by both duration and scope (full/limited, labor/parts,

which parts, replacement/repair, etc). There are four commonly used types of warranty

policies for consumer goods: renewing free-replacement warranty, renewing pro-rata war-

ranty, non-renewing free-replacement warranty, and non-renewing pro-rata warranty. Un-

der a renewing warranty policy, an item that fails within its warranty period is repaired

and the warranty is also renewed. Under a non-renewing warranty, the original warranty

is not altered by a failed item and the warranty provider only guarantees satisfactory ser-

vice on the item within the original warranty period. Under a free replacement policy,

the warranty provider agrees to provide free repair services within the warranty period.

However, if an item that fails during its warranty period is repaired at a certain cost to the

consumer, the policy is a pro-rata warranty policy.

Figure 2.1: Warranty policy classification

An insurance policy is a legal document which confers the policyholder the right to

make claims and obliges the policy issuer to accept claims when covered events occur

(Czado et al., 2012). In life insurance, during the coverage period of one policy, the

number of claims may not be greater than one (i.e., one can only die once). However,

in warranty policy or non-life insurance, it is common that the number of claims is more

than once during the coverage period. Figure 2.1 and Figure 2.2 present the classifications
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Figure 2.2: Insurance policy classification

of insurance policy and warranty policy. The range of the insured subjects of insurance

policy is much wider than that of warranty policy. The not involving product development

warranty policy is similar to some non-life insurance policies, for instance, car warranty is

similar to auto-mobile insurance which belongs to property/casualty insurance. Hence, in

this research, comparison is conducted between warranty and general insurance (non-life

insurance).

Data

Warranty data consist of claims data and supplementary data. Warranty claims data are

lifetime data and collected during the servicing of warranty claims (Wu, 2013), which

commonly include manufacture date, manufacture volume, sales date, sales volume, claims

date and claims cost. Warranty claims data are the data collected when warranty claims

happen. The supplementary data are additional data, which are not always collected. Such

data may be from those unfailed items whose warranty has not been claimed, even though

such data may be analysed (Wu, 2012).

General insurance data are normally recorded by the insurer as a two-way array in-

cludes cases and variables. In general insurance, a claim is a demand for payment of

damages covered under an insurance policy (Weke & Ratemo, 2013). The claim size is

the severity of the effect associated with claims and may be referred to in the literature

of actuarial science as severity, loss, size or amount of damage and cost of a claim. The

policies, claims, policyholders, accidents, etc. can be denoted as cases, while the level of

injury, gender, claim amount, etc. can be recorded as variables (De Jong et al., 2008).
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In insurance, variables in claim reports can be quantitative or qualitative. For example,

in the datasets used by (De Jong et al., 2008), the variables recorded in personal injury

insurance include claim amount, injury type, accident date, reporting date and finalisation

date. Variables recorded in one-year vehicle insurance may include policyholder’s age

and gender, area of residence, vehicle value, vehicle age, vehicle type, claim occurrence

and claim amount. Sometimes, the original records of insurance policies contain more

detailed information. For instance, in the study of (Frees & Valdez, 2008), the data col-

lected from an insurance company in Singapore include vehicle and driver characteristics,

insurance coverage and annual claims experience. Insurers normally record detailed in-

formation about policies and claims for accounting and premium rating purposes. The

original data are tedious, the distribution of claim size and other data can be estimated

through data pre-processing. Moreover, the claims data are often limited as data may be

missing or corrupted (Cizek et al., 2005).

Compared with warranty data, insurance data may contain more information such as

information of the policyholders and they are normally panel data (Zhao & Zhou, 2012;

Shi & Valdez, 2014a), whereas warranty data are normally not presented as panel data

format. Insurance claims occur due to one of the specific perils agreed in the policy

whereas warranty claims occur due to product failures. Insurance data provide longer

term information than warranty data, for example, car owners may need to purchase car

insurance annually, even after the car’s warranty has expired.

As a summary, Table 2.1 presents the comparison between insurance and warranty

claims data.

Table 2.1: Comparison between insurance and warranty claims data

Insurance Warranty
Number of variables many (including the) few (only including product

characteristics of policyholders) and repair data)
Occurrence usually once maybe recurrently

Claim amount maybe large normally small
Causes perils (accidents) failures

Covered interval may cover the whole life of a product the early life of a product

Warranty claims data and insurance claims data may contain basic information of
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claims such as claim size and occurred date. However, insurance claims data may have

more variables/covariates than warranty claims data, for example, insurance data may in-

clude policy holders’ information such as the driver’s gender, age and other characteristics

whereas warranty data do not contain such detailed information. It should be noted that

the quality of warranty data, which are normally collected from field, may not always be

perfect, as they may be aggregated, delayed and censored.

2.1.2 Comparison of modelling techniques in actuarial science and
warranty

Warranty is a good instrument for the manufacturer to enhance sales and a good protection

for the customer from poor quality of products; but warranty also leads additional costs

to the manufacturer, these costs depend on the warranty parameters, such as warranty

periods, repairing method and costs, etc., which are stated by warranty policies. In this

research, the warranty policy optimisation is conducted from a manufacturer’s perspec-

tive, and aims to find the optimal warranty policy settings to maximise the manufacturer’s

expected total profit.

Fig. 2.3 states the mechanism of the warranty policy optimisation in this research.

To maximise the total profit, the warranty cost and sales volume/demand of product, in-

fluenced by warranty policy, should be investigated; and such investigation is carried out

based on proper modelling techniques, which are raised from warranty data analysis in

the literature of warranty management involving modelling of number of warranty claims,

warranty claim cost, etc.

The aim of warranty data analysis is to extract useful information and help in decision

making by analysing warranty data with either statistical or computer algorithms (Wu,

2012). Warranty data analysis services in five areas presented in Figure 2.4. The first two

areas, early detection of reliability problems and suggestion on design modification all

aim to detect abnormalities of products from warranty data. However, the perils covered

in insurance policy are not “produced” by the insurance company, hence we do not con-

sidering these two areas in this project. The purposes of warranty data analysis in the last
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Figure 2.3: Warranty policy optimisation

Figure 2.4: Warranty data analysis (Wu, 2012)
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three areas are: estimating product reliability for deciding on warranty policy and appro-

priate maintenance policy, predicting future claims and warranty cost, and estimating and

explaining the costs of warranty claims. It should be noted that warranty claim estima-

tion is for a hypothetical infinite population of items, of which those sold are considered

a random sample, whereas in warranty claim prediction, the population of items that is

eventually sold is finite (Wu, 2012). The modelling techniques raised from warranty data

analysis are also used to support warranty policy optimisation.

Considering the similarities between warranty and insurance, warranty modelling

technologies can be improved referring to insurance modelling technologies, which are

also originated from insurance data analysis. Insurance data analysis primarily service

two purposes, ratemaking and total reserves prediction and estimation. Ratemaking aims

to price insurance policy based on individual’s characteristics and claim history, in which

the policyholder’s related risk level and expected claims will be estimated, and the price

and coverage of the insurance policy will be determined based on the estimation. Total

reserves prediction or estimation is predicting or estimating the total cost caused by re-

lated insurance claims. Figure 4 presents the components of insurance data analysis and

the relationship between them.

Figure 2.5: Insurance data analysis

Field reliability estimation and ratemaking all service in policy level, while claim/cost

prediction or estimation and total reserves prediction or estimation involve processing

claims data collected from a specific period. All of them involve modelling of claim
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counts, and modelling of claim size. Table 2 presents the similarities between insurance

and warranty data analysis from the aspect of application.

Table 2.2: Similarities between insurance and warranty data analysis application

Warranty Field reliability estimation Claim/cost prediction or estimation
Insurance Ratemaking Total reserves prediction
Purpose service the pricing of policies predicting the total cost of claims

The reserving modelling and premium rating are the two major areas of insurance

modelling. Reserving modelling aims to forecast claims reserve, which is an insurer’s

future obligation and equals to the present value of an insurance policy’s future cash

flows. The insurer’s total liability is the sum of the claims reserves of all individual

policies issued. Premium rating is a process within which the amount that policyholder

should pay the insurer for an insurance policy is determined. In this process, various

properties of the insured object and the policyholder are taken into consideration.

Reserving modelling in both warranty and general insurance data analyses involves

three components, modelling of number of warranty claims, modelling of claim size or

severity and modelling of total claim amount. The claim frequency is the number of

claims during a given period; the claim size or severity is the monetary amount of each

claim and the total claim amount is the sum of the monetary losses of all claims.

Modelling of number of warranty claims

In general insurance modelling, the Poisson distribution and the Poisson process are

benchmark models in modelling claim counts data, and the variants of those models are

widely used (Mikosch, 2009). For example, when the interarrival times between claims

are independent and identically distributed according to the exponential distribution, with

parameter λ, then the probability that there are k claims is given by

P{N(t) = k} =
(λT )ke−λT

k!
(2.1)

where N(T ) = cumulative number of failures from time 0 to time T .
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In order to improve the performance of the modelling, one may also use other mod-

elling techniques such as those reviewed below.

In the research of Yau et al. (2003), a generalised linear mixed model (GLMM) is

applied to analyse repeated insurance claim frequency data. A conditionally fixed effect

vector is incorporated into the linear predictor to model the inherent correlation. The

study is based on a motor insurance dataset. The authors argue that the Poisson regres-

sion model is not proper for modelling the dependence between the observations from the

same policyholder and they then extend the Poisson regression to a random effects model,

in which a random effect vector is used for modelling the shared effects of repeated ob-

servations for the same policyholders.

Boucher et al. (2006) discuss fixed and random effects models used on longitudinal

data in insurance claim modelling, with a case study based on three consecutive year data

of a motor’s third party liability insurance portfolio in Belgium. The data include the

annual number of claims and the characteristics of the insured, such as sex and age of

drivers, power of the vehicle and the size of city. The number of claims per year is as-

sumed to follow the Poisson distribution with specific parameter for each policyholder.

The parameter of the Poisson distribution is treated as a linear combination of the ob-

servable characteristics multiplying a static factor. In the random effects model, the static

factor is expressed as a random variable with unit mean, and in the fixed effects model,

the static factor is expressed as an estimated parameter of each individual. The parameters

are estimated through the maximum likelihood. The static factors (i.e. heterogeneity pa-

rameters) are modelled by the Poisson-Gamma model, the Poisson-log normal model and

the Poisson-inverse Gaussian model, respectively. They conclude that in a short period or

with a few observations, the random effects model is better than the fixed effects model.

However, in the data of the motor’s third party liability insurance portfolio, the hetero-

geneity is not identically distributed across the insured, which can lead to inconsistency

in the random effects model. Then they relax the assumption that the heterogeneity term

is i.i.d., and use a regression on the individual heterogeneity terms to link the fixed effects

model to the random effects model.
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In the research of Shi & Valdez (2011), the Frank copula is used to jointly model

the type of coverage and the number of accidents, in which the dependence parameter of

the copula depicts the relationship between the frequency of accidents and the choice of

coverage. Based on the copula model calibrated by one-year cross-sectional claims data

collected from a major Singaporean automobile insurer, they find a significant positive

coverage-risk relationship. This method is able to help derive the pure premium through

demonstrating the effect of coverage choice on the incidence of accidents. Similarly, Zhao

& Zhou (2014) use copulas to model the dependence between the class occupied by the

insured and the claim frequency, and take the zero-excess phenomenon into account.

Zhao & Zhou (2012) investigate longitudinal data models of claim counts with excess-

zeros and consider the dependence between claims from two successive periods. Copula

is used to model the dependence. They discuss two models: The first one is a discrete mar-

gin copula model, which is applied to fit the time series data of longitudinal observations.

The second one uses a copula to model the time-dependent unobservable random effects.

In the first model, they use the Poisson distribution to model the number of claims with

a mean claim frequency that incorporates the covariate information. Considering that the

insured may not claim on the two successive periods, they use the zero-inflated Poisson

model. In the second model, the residual heterogeneity in tariff cells is considered and

modelled by a random effect, which is presented as a random effect variable in the mean

of the Poisson distribution with excess zeros.

Shi & Valdez (2014a) provide a copula-based method to model the number of claims

within a longitudinal context. The authors aim to predict the number of claims in a sub-

sequent period based on the data in the previous periods. In order to reduce the compu-

tational difficulties, the claim amount is converted to a continuous random variable by a

technique called jittering and then the joint distribution of the number of claims in succes-

sive periods is modelled through copulas. Jittering is a method in which an independent

continuous random variable is subtracted from each component of the multivariate dis-

crete data, aiming to convert discrete variables to continuous ones.

Matsui (2014) introduces a non-homogeneous Poisson cluster model to cope with the
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reducing property of payment processes. The Poisson cluster process is used to model

the total number or amount of payments for the claims arriving in a year and being paid

in the interval [0, t] (t ≥ 1), with different clusters. The paper aims to predict the claims

occurring in a future interval (t, t + s], t ≥ 1, s > 0. The author considers a model

with additive Levy processes, non-homogeneous Poisson clusters and non-homogeneous

negative binomial clusters.

Modelling of claim size

In general insurance modelling, the exponential-inverse Gaussian distribution, which has

a shorter tail than the Pareto distribution and allows for incorporating covariates, is intro-

duced in Frangos & Karlis (2004) to model claim size. In their model the claim size is

assumed to follow the exponential distribution, whose parameter is θiti, where θi follows

the inverse Gaussian distribution and the logarithm of ti has a linear relationship with

covariates. This model can be treated as an exponential regression model with random

effects, in which the random effects are related to the inverse Gaussian distribution.

Albrecher & Teugels (2006) consider the possible dependence between the claim size

and the waiting time for a claim in an insurance portfolio, which differs from the con-

ventional assumption in which time between claims and claim sizes are independent. The

authors assumed inter-claim time and its subsequent claim size to be dependent according

to an arbitrary copula structure.

Frees & Valdez (2008) propose a Bayesian hierarchical approach to estimating joint

multivariate distributions that model claim amounts of various claim types. The hierarchi-

cal model is decomposed to three components related to the frequency, type, and severity

of claims, respectively. In this research, initially, a negative binomial regression model is

used to assess claim frequency. The main contribution of this research lies in their intro-

duction of a multivariate claim distribution to handle long-tailed, correlated claims with

covariates.

Resti et al. (2010) also investigate the independent assumption between claim types,

and then apply the Gaussian, Frank and Clayton copulas to model the dependence between
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claim types. This research is based on a motor insurance claim dataset from Malaysia.

In order to estimate the loss reserves for incurred but not reported (IBNR) claims

through individual claim loss models instead of aggregated claim loss models, Zhao &

Zhou (2010) use the semi-survival copula and the semi-competing risk copula to model

the dependence between the event times with delays in the individual claim loss model.

The performances of their proposed methods are evaluated through simulation. In this

research, the assumption, that relationship between the event time and the delay is inde-

pendent, is relaxed; and the dependence structure between the event time and the delay is

characterised by a copula with the margins of the event times and the delays.

Czado et al. (2012) discard a crucial assumption that the number of claims and the

claim sizes are independent. A mixed copula approach is provided to model the depen-

dence between the number of claims and the average claim size through the Gaussian

copula. The number of claims in a group of characterised policyholders is modelled by

Poisson regression, and the average claim size of the group is modelled through Gamma

regression. They then construct the joint distribution of the two marginal distributions

through the Gaussian copula. They find that this model performs well overall, but the ex-

treme values are not presented very well. This may be caused by copula selection which

is suggested for future study.

To estimate the size of claim reserving, Peters et al. (2014) develop a type of hierarchi-

cal Bayesian-based claim models that considers claims payments and incurred losses in-

formation. Their method extends the claims reserving models of Hertig (1985) and Gogol

(1993). They also use a data-augmented mixture Copula paidincurred claims model.

2.2 Policy pricing and optimisation

The policy pricing, basically, means to find an optimal price of a specific insurance policy

based on the policy content. The policy optimisation is more likely to policy designing,

which aims to find an optimal combination of policy elements including policy pricing,

policy period, compensation method, etc.

Premium rating or ratemaking in insurance, is the core activity in general insurance
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policy pricing. The key principle in ratemaking is cost-based pricing of individual risks.

The price charged to the policyholders for the coverage in an insurance policy is the

estimated present value of the future costs incurred by the covered peril. In the pure

premium approach, the price of an insurance policy is defined as the ratio of the predicted

costs of all future claims against the insurance policy coverage. The price is in effect to the

risk exposure and expenses (Denuit et al., 2007). Additionally, the property ratemaking is

based on the distributions of claim frequency and loss, which is similar to estimating the

total reserves (Mikosch, 2009). That is, ratemaking aims to price insurance policy based

on individual’s characteristics and claim history, in which the policyholder’s related risk

level and expected claims will be estimated, and the price and coverage of the insurance

policy will be determined based on the estimation.

Denuit et al. (2007) state that actuaries have to design a tariff structure to fairly al-

locate the burden of claims among policyholders in a competitive market. The policies

are categorised into classes. The policyholders in the same class are charged the same

premium. In practice, property and vehicle insurers use risk classification plans to create

classes. The classification variables are priori variables as those values are determined

before the policyholder starts to use their property. Premiums for motor liability coverage

are often set based on territory the vehicle garaged in, the use of the vehicle, and driver’s

individual characteristics such as age, gender, occupation, etc. A priori classification can

be achieved with generalised regression models.

Currently, in motor insurance, a popular approach is using experience rating to link

premium amounts to individual’s past claims experience. In this approach, the insured

drivers who are responsible for accidents are penalised by premium surcharges (or maluses),

and the claim-free policyholders are rewarded by discounts (or bonuses). The systems

applying this approach are called Bonus-Malus systems, experience rating, no-claim dis-

counts, or merit rating (Denuit et al., 2007). Shi & Valdez (2011) also state that in general

insurance ratemaking is a classical actuarial problem. In principle, the distribution of

insurance claims is the basis for determining pure premiums.

All in all, the ratemaking approaches in insurance can be divided into two categories;
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the first one determines the risk classification of the policyholders based on the policy-

holders’ supplementary information (covariates) and historical data of the similar policy,

and the premium will be computed according to the risk classification. The second one is

the experience rating which determines the premium based on the policyholder’s individ-

ual past claims experience. These two approaches can also be applied together when the

first one determines the basement of the premium and the second one makes correction

on the basement.

N. Frangos & Vrontos (2001) introduce an optimal Bonus-Malus System (BMS) in au-

tomobile insurance which considers the frequency and severity of a policyholder’s histor-

ical accidents simultaneously instead of the major BMS designed based on the frequency

of accidents and disregarding the incurred severity. In their optimal BMS the frequency

of accidents and the severity of accidents are assumed independent. They model the fre-

quency component of optimal BMS with the negative binomial distribution, which is a

gamma-Poisson mixture distribution, and model the severity component with the Pareto

distribution, which is a conjugated distribution of exponential and inverse-gamma distri-

butions.

i Morata (2009) applies the bivariate Poisson regression model in priori ratemaking.

Priori ratemaking is conducted based on the priori variables, which are used to segment

the insurance policies portfolio in homogeneous classes. i Morata (2009) relaxes the

assumption that the number of claims of different types are independent and uses bivariate

Poisson regression to model the number of claims for third-party liability and the number

of claims for other guarantees. The result shows the independence assumption between

claim types should be rejected.

According to Shi & Valdez (2011), insurance claim data have the unique semi-continuous

feature in the sense that a positive continuous component is associated with a significant

fraction of zeros. In the actuarial practice, two methods are widely used as standards:

the Tweedie generalised linear model (GLM) and the frequency-severity model. The for-

mer incorporates a percentage of zeros into a continuous distribution through a compound

Poisson process, where the resulting Tweedie distribution is featured with a mass prob-
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ability at zero and thus is suitable for modelling the semi-continuous claim data. The

latter decomposes the total claims amount into frequency and severity parts. An insur-

ance policy usually provides multiple types of coverage. The unique contract is designed

for each type such as deductibles or coverage limits, insurers must deal with the payment

separately. Plus, the insurers can obtain additional insights by decomposing aggregated

claims into different categories and investigating their joint behaviour (Shi, 2016).

Bermúdez & Karlis (2011) find the independent assumption of different types of

claims is not realistic in automobile insurance. They point out that in the classical priori

tariff system not all risk factors are identified: the tariff classes can be heterogeneous and

the unobserved heterogeneity and serial dependence may lead to over dispersion. Hence

they apply a multivariate Poisson regression model such as the zero-inflated model. As

their model has computational difficulties, they introduce Bayesian inference based on

Markov chain Monte Carlo (MCMC) method to solve it.

Zhao & Zhou (2014) discuss the Bonus-Malus system in posteriori ratemaking. As an

innovation, they use a bivariate copula function to model the dependence between claim

frequency and policyholder’s risk class. The marginal distribution of the number of claims

is modelled with Poisson regression. The distribution of the classes is represented through

a matrix and the joint distribution is modelled by the Clayton copula.

Antonio & Valdez (2012) review statistical tools used in risk classification for ratemak-

ing. They state that, in general insurance, a priori ratemaking is used to build the basis

when a policyholder is new and insufficient information is available, and a posteriori

ratemaking is used to correct and adjust the priori premium when the historical informa-

tion about policyholder becomes available.

However, an insurance company, normally, sells more than one policy and even more

than one type of policies, i.e. the company has to deal with a bunch/portfolio of policies.

Alyakina & Khisamova (2014) indicate a methodology for rating of insurance portfolio

allowing the insurance company to ensure the financial stability and solvency. The meth-

ods to assess the insurance portfolio are divided into mathematical methods, economic

analysis and subjective characteristics analysis of the portfolio. Boyko (2011) takes the
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reinsurance operations in to the economic and mathematic model to optimize the pol-

icy portfolio structure of an insurance company. Oliynyk (2015) investigate the optimal

structure of insurance portfolio on the basis of nonlinear programming and allows the

insurance company to reach maximal profit with minimal risk by choosing the specific

optimal structure of insurance portfolio. Buerle & Blatter (2011) optimize proportional

reinsurance and investment policies in a multidimensional Lvy-driven insurance model

to maximize exponential utility, with the consideration of the dependencies of the risk

reserves in different business lines. The dependence is modelled through Archimedean

Lvy copula.

2.3 Current and Future Developments: suggestions for
warranty modelling and policy optimisation

To improve warranty modelling and support efficient warranty policy optimisation, some

techniques applied in insurance modelling, such as dependence modelling, random effects

and other policy pricing and optimisation approaches, should be considered.

2.3.1 Dependence modelling

In the development process of insurance claim modelling, a conventional assumption is

the independence of claims Yau et al. (2003) on the ground of the fact that the insurance

claims in a group of policies are caused by independent accidents. However, many re-

searchers find that, in practice, the independence assumption is too restrictive and may

not hold. As such, dependence between claims in different periods claimed by a poli-

cyholder is considered, based on which many modelling approaches are developed, see

De Jong et al. (2008); Zhao & Zhou (2012); Shi & Valdez (2014a); Mikosch (2009); Yau

et al. (2003); Rolski et al. (2009), for example.

According to Wu (2012), most literatures on warranty claim data analysis for products

with one-dimensional warranty policies do not consider the dependences within claims

data. When analysing one-dimensional warranty data, existing approaches include esti-

mating mixed distributions (Majeske, 2003), fitting the Weibull distribution (Ion et al.,
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2007), considering sales delay (Wilson et al., 2009), etc. Those approaches do not con-

sider any dependence within basic claims data, such as the dependence between claims

and failure modes, which may cause the loss of information and result in biased decision

making.

When analysing two-dimensional warranty data, some types of dependence are con-

sidered, for example, Lawless et al. (1995), Davis (1999) and Baik & Murthy (2008) dis-

cuss modelling the dependence of failures on age and mileage, which directly estimates

a joint bivariate distribution depicting the dependence between age and usage (Singpur-

walla & Wilson, 1993; Moskowitz & Chun, 1994; Jung & Bai, 2007; Wu, 2014a), the

dependence between failures and age/usage (Lawless et al., 2009), and the dependence

between recurrent events and usage (J. Lawless & Crowder, 2010).

Having reviewed the existing papers in warranty data analysis and insurance data anal-

ysis, we find that copula-based approaches are widely used in insurance data analysis, but

barely applied in warranty data analysis.

Copula is a tool that models the dependence structures between random variables.

It was first introduced by Sklar (1959) and has attracted considerable attention in theo-

retical and application aspects in recent years. In insurance data analysis, copula-based

approaches are used to model the dependence between different claim types (Frees &

Valdez, 2008; Shi & Valdez, 2014b), between accident date and reported date (Zhao &

Zhou, 2010), between policy coverage and number of claims (Shi & Valdez, 2011; Zhao

& Zhou, 2014; Bolancé et al., 2014), between claim counts in successive periods (Zhao

& Zhou, 2012; Shi & Valdez, 2014a), between claims in different business lines (Diers

et al., 2012; Zhang & Dukic, 2013), between number of claims and average claim size

(Czado et al., 2012), and between time-to-claim and claim size (Weke & Ratemo, 2013).

In warranty data analysis, however, there is only one article using copulas to model

dependence (Wu, 2014a), in which a new method of constructing asymmetric copulas is

introduced, and the asymmetric copulas are used to capture the tail dependence between

the pair of age and usage in two-dimensional reliability data.

In general, the existing methods of warranty data analysis lack a systematic research

38



on the dependence between warranty claims of different products and within warranty

claims of the same products. Learnt from insurance data analysis, warranty data analysis

can be improved by applying copula-based modelling approaches.

2.3.2 Policy pricing and optimisation

Warranty policies are extensively studied in the literature of warranty management, but

most of them are based on assumptions such as “warranted items being repaired mini-

mally” or “being repaired minimally”, which are very much concepts widely used in re-

liability and maintenance engineering, see Bouguerra et al. (2012); Settanni et al. (2014),

for example. As mentioned above, different from base warranty, extended warranty is pur-

chased separately and voluntarily by the buyer as a service contract. This suggests that

the price of the extended warranty may be optimised on the basis of operating condition,

usage intensity, consumers’ information, etc, which may be collected from a variety of

sources in the era of big data. Based on such information, warranty providers will be able

to sale extended warranties with different prices to different consumers. For this reason,

modelling techniques of risk classification in policy pricing in insurance may be adapted

to warranty data analysis.

In the literature, as an insurance company may issue more than one insurance pol-

icy, the pricing and optimisation of insurance policies portfolio are investigated by re-

searchers. In warranty area, the similar situation, that one manufacturer may produce

more than one product and provide warranty service with them, also should not be ig-

nored in warranty modelling and warranty policy optimisation.

2.4 Summary

This chapter investigate the techniques, approaches and theories applied in insurance

modelling, and compares those to warranty modelling from different aspects.

• dependence modelling

• modern portfolio theory with
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– the mean-variance approach, and

– the value-at-risk (VaR) and conditional value-at-risk (CVaR) approaches,

• copulas

It finds that

• little research on the dependence between warranty claims of different products and

their interactions has been conducted;

• different warranty policies provided by one manufacturer are investigated on the

basis of individual products, little research on warranty policy optimisation for a

portfolio of products has been conducted; and

• copulas are becoming more widely used in insurance modelling than in warranty

modelling; but they are seldom used in warranty policy optimisation.

To fulfil knowledge gaps, in the rest of this thesis, the warranty policies of the prod-

ucts produced by an individual manufacturer are optimised integrally through the Modern

Portfolio Theory; the dependence among the policies are modelled through copula in the

optimisation; and, furthermore, the effects of subsystems’ interplay on product warranty

are also investigated to make the optimisation framework comprehensive.
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Chapter 3

A mean-variance approach to jointly
optimising warranty pricing for a
portfolio of products

Warranty policy can influence the profit and cost of a product. In practice, a manufac-

turer commonly produces more than one product, or a portfolio of products, and provides

warranty servicing for them. Many authors have attempted to optimise warranty policy

to maximise the profit or minimise the cost of each individual product. Warranty claims

of the products produced by the same manufacturer, however, may be due to common

causes, since the products may be designed by the same engineer team or using the same

type of components. This implies that the numbers of warranty claims of different prod-

ucts may be related, and optimisation of warranty policies for each individual product

may therefore cause biased decisions. To overcome this disadvantage, this chapter aims

to collectively optimise a manufacturer’s total profit for a portfolio of different products

by using a mean-variance optimisation approach. A tool from the probability theory, cop-

ula, is used to depict the dependence among the warranty claims of different products.

Numerical examples are provided to illustrate the application of the proposed methods.
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3.1 Introduction

3.1.1 Background

A typical warranty transaction is: a consumer pays the warranty price when purchas-

ing the product and the manufacturer (or dealer) provides repair or replacement service

for product failures occurring during the warranty period. A good warranty policy will

raise a firm’s brand image and reputation among consumers. The assurance of warranty

can reduce the costs associated with failure of the product purchased from a consumer’s

perspective. Warranties highlight product reliability and quality: a longer warranty can

send out a strong signal about the products and service quality (Liao, 2016). However,

warranty providers should be aware of two major uncertainties in warranty management:

Uncertainty of warranty cost. The demands for repairs or replacements always come

out unexpectedly, and the number of warranty claims received during the warranty

period normally appears only as probability-based forecasts (Yenipazarli, 2014).

Uncertainties of sales volume. The sales volume of most goods may increase with the

decrease of warranty price. It is true that high sales price of a product may increase

the profit per item; but it may become less attractive to its consumers and there-

fore reduce the product total demand. Meanwhile, from a consumer’s perspective,

longer warranty length, which implies higher warranty price for the manufacturer,

indicates better product quality and reliability. It is reported that longer warranties

bring more unnecessary cost to manufacturers Aggrawal et al. (2014) than short

ones. A manufacturer should consider its total cost and profit comprehensively.

The total profit is determined by the total revenue and cost, where the total revenue

is product price multiplying sales volume, and the total cost is the sum of production

cost, warranty cost and other operation costs multiplying sales volume.

Both product price and warranty length are normally set by the manufacturer to reflect

the current market. The goal of most manufacturers is to maximise profit, which may be

achieved by optimally pricing the warranty policy of their products. Meanwhile, warranty
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cost can be treated as a random negative cash flow which depends on the sales volume and

the length of warranty period. By random, it means uncertainty, presenting the manager

the expected warranty cost, which is difficult to forecast. As such, accurately forecasting

warranty cost is vitally important.

In existing publications relating optimisation of warranty policies, researchers have

introduced many methods to maximise profit through optimising product price and war-

ranty length in different scenarios. For example, Yazdian et al. (2016) jointly optimises

the acquisition price, remanufacturing degree, selling price and warranty length of re-

manufacturing products, assuming there are linear and non-linear demand functions. Wei

et al. (2015) investigates the optimal strategies on product price and warranty length of

two complementary products from two manufacturers in a two-stage game theoretic per-

spective. Yeh & Fang (2015) introduces a model to optimise product price and warranty

length considering the manufacturer’s production capacity and preventive maintenance

program. Aggrawal et al. (2014) present a method to optimise price and warranty length

for a product based on a two dimensional innovation diffusion model. Wu et al. (2009)

develop a decision model to determine the optimal price, warranty length and the produc-

tion rate of a product to maximise profit based on the pre-determined life cycle in a static

demand market. Similar to these articles, all of the other existing research, including Lin

et al. (2009); Matis et al. (2008); Ladany & Shore (2007); Huang et al. (2007), etc., only

maximises the profit of each individual product for a manufacturer.

3.1.2 Motivation and novelty

The numbers of warranty claims of products produced by the same manufacturer may not

be statistically independent because they may be designed by the same team of engineers,

manufactured on the same production lines and share same types of components. As a

result, they may have common causes. For example, Ford’s turbocharged and direct in-

jection gasoline engines, belonging to the EcoBoost family, are applied on many different

types of Ford cars, including Focus, Fiesta, Mondeo, etc. If any design or quality prob-

lems happened on the EcoBoost, warranty claims from different products will crop up

43



during a short period.

As can be seen from the above literature review, however, existing literature has been

concentrated on warranty reserve optimisation for each individual product separately. Lit-

tle attention has been paid to collectively optimising warranty policies and reserves for a

portfolio of different products. To maximise the total profit for a manufacturer that sells a

number of products, the prices of all products should be optimised collectively, which is

the aim of this chapter.

This chapter is the first attempt that collectively optimises the prices of a portfolio of

products for a manufacturer, which creates novelty. It proposes to use an approach bor-

rowed from the modern portfolio theory, which is widely applied in the financial sector. It

develops a novel method that collectively optimises warranty reserves for a set of different

products, considering the dependence of the numbers of warranty claims. The warranty

prices of the set of products are then optimised under the mean-variance optimisation

framework.

This chapter uses a tool from the probability theory, copula, to depict the depen-

dence among warranty claims of different products, which can reduce the bias that may be

caused in modelling a complicated dependence with a simple method such as covariance

estimation. This is because the covariance matrix can only reflect the linear correlation

whereas copula can model more complicated non-linear dependence

3.1.3 Overview

The other sections of this chapter are structured as follows. Section 3.2 formulates the

problem. Section 3.3 investigates the existence of the optimal values for different scenar-

ios and uses copulas to depict the dependence among warranty claims of different prod-

ucts. Section 3.4 offers numerical examples to illustrate the proposed methods. Section

3.5 concludes this chapter and proposes future work.
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3.2 Formulation of the problem

Assume a manufacturer offers non-renewing free replacement warranty (NFRW) policies.

Under a NFRW policy, the manufacturer provides its customers with repair or replacement

at no cost within the warranty period, the original warranty is not altered upon a failed

item, and the manufacturer only guarantees satisfactory service on the item within the

original warranty period. We also assume the repair time is negligible. The items are

new at t = 0 when they are sold. The number of claims follows the homogeneous Pois-

son process (HPP). The numbers of warranty claims and the claim cost are statistically

independent.

In practice, warranty policies can be categorised into one- and two-dimensional (1-D

and 2-D). A 1-D policy is characterised by an interval, such as age or usage, as warranty

limit and a 2-D policy is characterised by a region in the 2-D plane (Ye & Murthy, 2016),

such as age and usage. In the literature, many methods are used to deal with the 2-

D situations, for example, some authors use a so-called composite scale approach that

integrates the two scales (age and usage) to create a single composite scale and model the

claim arrival process (Wu, 2012). In this chapter, only one scale, the length of warranty,

noted by Tk, is considered in modelling. Of course, one mat regard Tk as the usage in 1-D

warranty or the composite scale in 2-D warranty.

3.2.1 The expected number of warranty claims and cost

Suppose a manufacturer produce n products. The aggregated warranty cost of product k

follows a stochastic process {Sk(t)}t≥0 over the time interval (0, t), which is expressed

by the following equation,

Sk(t) =

Nk(t)∑
i=1

Xk,i. (3.1)

In Eq. (3.1), the cost of claim i of product k is described by the random variable Xk,i and

the counting process Nk(t), which is the number of claims during (0, t) and is assumed to

take a form of a homogeneous Poisson process (HPP) with intensity λk > 0, P (Nk(t) =

i) = (λkt)
ie−λkt

i!
. For a given k, Xk,i are independent and identically distributed random

45



variables which have finite values on the positive half-line R>0 with the probabilities

P (Xk,i). The frequency Nk(t) and severity Xk,i are assumed to be independent.

Then, the expected value of Sk(t) is given by

E[Sk(t)] = E[Nk(t)]E[Xk] = λkµkt, (3.2)

and the variance of Sk(t) is given by

Var [Sk(t)] = E[Nk(t)]Var[Xk] + Var[Nk(t)]E[Xk]
2

= λkt(Var[Xk] + E[Xk]
2)

= λkt(σ
2
k + µ2

k), (3.3)

where µk and σk are the mean and variance of Xk, respectively.

3.2.2 The sales volume and profit

In the literature, the sales volume of a product is mainly assumed to be non-random and

static. The models may be expressed in a linear (Yazdian et al., 2016; Lin et al., 2009) or

non-linear form (Ladany & Shore, 2007; Xie et al., 2014; Huang et al., 2007), depending

on different scenarios. For simplicity, this chapter uses the linear form proposed by Yaz-

dian et al. (2016). However, in the real world, the sales volume of a product is changing

with time randomly. This fact should be considered by future research.

In this research, the linear relationship among the length of warranty coverage, war-

ranty price and sales amount of a product is assumed as following:

Mk = Ak − βkPk + ηkTk, (3.4)

where Pk is the warranty price, Tk is the warranty period of product k, Mk is the sales

volume of product k, respectively. Ak,βk and ηk > 0 are positive real numbers. The profit

of one item of product k is

rk = Pk − Sk(Tk)− ck, (3.5)

where ck is the fixed cost of one item of product k, including manufacturing cost, man-

agement expenditures, etc.
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Then, the profit of product k is

ωk(Pk, Tk) = Mk[Pk − Sk(Tk)− ck], (3.6)

the expected value of ωk(Pk, Tk) is

E[ωk(Pk, Tk)] = (Ak − βkPk + ηkTk)(Pk − Tkλkµk − ck), (3.7)

and the variance of ωk(Pk, Tk) is

Var[ωk(Pk, Tk)] = M2
kVar[Sk(t)] = M2

kTkλk(σ
2
k + µ2

k).

For the n products, the total profit of the manufacturer is

Ω(P ,T ) =
n∑
k=1

ωk(Pk, Tk). (3.8)

Ω(P ,T ) can be re-written as

Ω(P ,T ) =
n∑
k=1

ωk(Pk, Tk)

=
n∑
k=1

(Ak − βkPk + ηkTk) [Pk − Sk(Tk)] . (3.9)

The mean and variance of Ω(P ,T ) are

E[Ω(P ,T )] =
n∑
k=1

E[ωk(Pk, Tk)]

=
n∑
k=1

(Ak − βkPk + ηkTk)(Pk − Tkλkµk − ck), (3.10)

and

Var(Ω(P ,T )) = M ′VM , (3.11)

respectively, where

M ′ =
[
M1,M2, . . . ,Mn

]
, (3.12)

and

V =


Var(S1(T1)) Cov(S1(T1), S2(T2)) . . . Cov(S1(T1), Sn(Tn))

Cov(S2(T2), S1(T1)) Var(S2(T2)) . . . Cov(S2(T2), Sn(Tn))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cov(Sn(Tn), S1(T1)) Cov(Sn(Tn), S2(T2)) . . . Var(Sn(Tn))

 .
(3.13)
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A manufacturer may wish to optimise P and T in the quantity Ω(P ,T ) in Eq. (3.8)

to achieve the maximum profit.

Each Tk in T may be either a commonly agreed quantity or an endogenous variable:

If it is an endogenous variable, Tk may be determined by the warranty provider; if it is a

commonly agreed quantity, Tk may be served as an exogenous variable. Since in reality,

the length of warranty is pre-specified and it can be from a small number of discrete

positive integers, 12 months, 24 months, 30 months, etc, for example. In this chapter,

each Tk in T is regarded as a commonly agreed quantity. In other words, we mainly

focus on optimally pricing warranty policies for a given T , that is, to seek P so that the

expected profit E[Ω(P ,T ] can be maximised.

3.3 Optimisation of the profit

For a manufacturer, Ω(P ,T ) in Eq. (3.8)can be maximised through seeking the optimal

values of P . Another idea is to use the mean-variance approach: since the variance of

Ω(P ,T ) can be regarded as a risk measure, one may integrate this risk when optimising

Ω(P ,T ). These two ideas are discussed in the following two sub-sections, respectively.

3.3.1 Maximising the expected profit

For the convenience of further discussion, this subsection gives the optimisation objective

function and does not consider the risk (i.e., the variance) of the portfolio of the warranty

claim costs of the n products and merely aims to optimise Ω(P ,T ), which is a commonly

used setting.

The profit of product k can then be derived and expressed by

E[ωk(Pk, Tk)] = (Ak − βkPk + ηkTk)(Pk − Tkλkµk − ck), (3.14)

which is a bivariate quadratic function with respect to Tk and Pk.

Hence, we have the following proposition.

Proposition 1. If both P and T are vectors of decision variables and there are no other

constraints, the optimum solution that maximises the expected profit, E[Ω(P ,T )] does
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not exist.

Proof. In this case, the expected profit of product k is

E[ωk(Pk, Tk)] = (Ak − βkPk + ηkTk)(Pk − Tkλkµk − ck)

= −βkP 2
k − ηkλkµkT 2

k + (Ak + βkck)Pk − (Akλkµk + ηkck)Tk

+(βkλkµk + ηk)PkTk − Akck,

which is a bivariate quadratic function with respect to Tk and Pk, respectively and can be

denoted as,

E[ωk(Pk, Tk)] = AP 2
k +BT 2

k + CPk +DTk + EPkTk + F,

the discriminant for the existence of a bivariate quadratic function’s minimum and maxi-

mum is ∆ = 4AB − E2. Then, we have

∆ = 4AB − E2

= 4(−βk)(−ηkλkµk)− (βkλkµk + ηk)
2

= −(βkλkµk − ηk)2 ≤ 0.

When ∆ < 0, i.e. βkλkµk 6= ηk, E[ωk(Pk, Tk)] dose not have maximum nor minimum.

When ∆ = 0, i.e. βkλkµk = ηk, because 4AB−E2 = 0, DE−2CB = 2AD−CE = 0,

and A < 0, E[ωk(Pk, Tk)] has a constant maximum with regardless of Tk.

�

Proposition 1 is raised because the sales volume is modelled by a linear function.

Obviously, the existence of optimal solution is affected by the form of sales volume func-

tion. As higher price can lead to higher unit profit but lower sales volume, and longer

warranty period can lead to higher sales volume but lower unit profit, optimization is to

find a proper trade off between. The location of this trade off is determined by the form

of sales volume function. To support practice and further research, varying sales volume

functions referring to the literature are discussed in the Discussion chapter of this thesis.

In practice, the warranty length T is normally a discrete variable in a finite range, such

as 24 months, 30 months, etc. If T is given, it is easy to prove that there is a maxima in

E[Ω(P ,T )].
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Proposition 2. If T is known and P is a vector of decision variables, there exists an

optimum solution that maximises the expected profit E[Ω(P ,T )].

Proof. If T is known,

E[Ω(P )] =
n∑
k=1

E[ωk(Pk)],

to optimise E[Ω(P )] is equivalent to optimise E[ωk(Pk)].

By expanding E[ωk(Pk)], we have

E[ωk(Pk)] = (Ak − βkPk + ηkTk)(Pk − Tkλkµk − ck)

= −βkP 2
k + (Ak + βkck + βkλkµkTk + ηkTk)Pk − ηkλkµkT 2

k

−(Akλkµk + ηkck)Tk − Akck.

Let
dE[ωk(Pk)]

dPk
= −2βkPk + Ak + βkck + βkλkµkTk + ηkTk = 0,

then,

Pk =
Ak + βkck + βkλkµkTk + ηkTk

2βk
.

Because −2βk < 0, then, when Pk = Ak+βkck+βkλkµkTk+ηkTk
2βk

, E[Ω(P )] is maximised. �

In the following section, we assume T is known, and investigate the existence of the

optimum solutions of P when considering the risk against profit.

3.3.2 Mean-variance approach to pricing warranty policies

In this section, we use the mean-variance optimisation approach to pricing warranty poli-

cies.

When both profits and risk are taken into consideration, manufacturers may have the

following options:

Option 1. to maximise a combination of the profit and the risk of the estimated profit;

Option 2. to maximise the profit and meanwhile to limit the risk of the estimated profit;

and
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Option 3. to minimise the risk of the estimated profit subject to the constraint that the

lower bound of the profit is greater than a pre-specified value.

The above three options are equivalent to the following three optimisation problems,

respectively.

Option 1. Maximise E[Ω(P ,T )]−SD[Ω(P ,T )], subject toM ≥ 1, where SD[Ω(P ,T )]

is the standard deviation of total profit and M ≥ 1 means the sale volume of each

product should not be less than 1 unit. 1 is the unit matrix with the same dimensions

as those ofM .

Option 2. Maximise E[Ω(P ,T )], subject to Var[Ω(P ,T )] ≤ ϕ, and M ≥ 1, which

implies maximising the expected total profit at a given risk level.

Option 3. Minimise Var[Ω(P ,T )], subject to E[Ω(P ,T )] ≥ ψ, and M ≥ 1. It implies

minimising the risk at a given expected total profit.

On Option 1, we have the following Propositions 3 and 4.

Proposition 3. For product k, if the warranty length Tk is known and the price Pk is

a decision variable, there exists an optimum solution that maximises E[ωk(Pk, Tk)] −

SD[ωk(Pk, Tk)].

Proof. The optimisation problem is

max E[ωk(Pk, Tk)]− SD[ωk(Pk, Tk)],

s.t. Ak − βkPk + ηkTk ≥ 1,

Pk ≥ 0,

where Tk is known.

The second-order derivatives of E[ωk(Pk, Tk)]− SD[ωk(Pk, Tk)] respect to price Pk is

d2{E[ωk(Pk, Tk)]− SD[ωk(Pk, Tk)]}
dP 2

k

= −2βk < 0,
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means E[ωk(Pk, Tk)] − SD[ωk(Pk, Tk)] is concave. Hence, the optimisation problem is

equivalent to:

min −E[ωk(Pk, Tk)] + SD[ωk(Pk, Tk)],

s.t. − Ak + βkPk − ηkTk + 1 ≤ 0,

−Pk ≤ 0.

Let

L = −E[ωk(Pk, Tk)] + SD[ωk(Pk, Tk)]− h(Ak − βkPk + ηkTk − 1)− uPk

= (Ak − βkPk + ηkTk)

[
−(Pk − Tkλkµk − ck) +

√
Tkλk(σ2

k + µ2
k)− h

]
+ h− uPk,

where, h ≥ 0 and u ≥ 0 are Lagrange multipliers.

The KKT (Karush-Kuhn-Tucker) conditions of this problem are

∂L

∂Pk
= 2βkPk − (βkλkµk + ηk)Tk − βk

√
Tkλk(σ2

k + µ2
k)− βkck − Ak + βkh− u = 0,

h(Ak − βkPk + ηkTk − 1) = 0,

uPk = 0, h ≥ 0, u ≥ 0,

−Ak + βkPk − ηkTk + 1 ≤ 0,

−Pk ≤ 0.

Then, when

(βkλkµk + ηk)Tk + βk
√
Tkλk(σ2

k + µ2
k) + βkck + Ak

2βk
≤ Ak + ηkTk − 1

βk
,

the solution is

Pk =
(βkλkµk + ηk)Tk + βk

√
Tkλk(σ2

k + µ2
k) + βkck + Ak

2βk
;

when

(βkλkµk + ηk)Tk + βk
√
Tkλk(σ2

k + µ2
k) + βkck + Ak

2βk
>
Ak + ηkTk − 1

βk
,

the solution is

Pk =
Ak + ηkTk − 1

βk
.
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As mentioned above, the warranty claims of different products could be dependent,

which implies the variance-covariance matrix of the portfolio includes non-zero covari-

ance.

The covariance between the aggregated warranty costs of product k and l is:

Cov[Sk(Tk), Sl(Tl)] = E[Sk(Tk)Sl(Tl)]− E[Sk(Tk)]E[Sl(Tl)]

= E[E[(

Nk(Tk)∑
i=1

Xk,i)(

Nl(Tl)∑
i=1

Xl,i)|N(Tk), N(Tl)]]− λkµkTkλkµlTl

= E[Nk(Tk)Nl(Tl)]E[XkXl]− λkµkTkλkµlTl

= Cov[Nk(Tk), Nl(Tl)]µkµl (3.15)

This result is derived under the assumption that the costs of individual warranty claims

of product k and l are independent, i.e. Xk and Xl are independent. The dependence

among the warranty claims of products produced by one manufacturer relies on the de-

pendent failure rates or time-to-failure caused by the common causes in manufacturing

process. Regarding the costs of individual warranty claims, different products have vary-

ing requirements of repairing, these can lead to varying and independent costs. Hence,

the covariance between the aggregated warranty costs of product k and l is derived under

the assumption that the numbers of claims Nk(Tk) and Nl(Tl) are dependent and the costs

of individual warranty claims Xk and Xl are independent. Then we have the following

Propositions 4, 5 and 6.

Proposition 4. If P is a vector of decision variables and T is known, there exists an

optimum solution that maximises the combination of the profit and the risk of the estimated

profit E[Ω(P ,T )]− Var[Ω(P ,T )].

Proof. The optimisation problem is

max F (P ,T ) = E[Ω(P ,T )]− Var[Ω(P ,T )],

s.t.M ≥ 1,

P ≥ 0,
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where T is known.

Because T is known, E[Ω(P ,T )] and Var[Ω(P ,T )] can be denoted as

E[Ω(P ,T )] =
n∑
k=1

(Ak − βkPk + ak)(Pk − bk),

and

Var[Ω(P ,T )] =
n∑
k=1

(Ak − βkPk + ak)
2dk + 2

n−1∑
1≤k≤l≤n

MkMlσ
2
k,l,

where ak = ηkTk, bk = Tkλkµk + ck, dk = λkTk(σ
2
k +µ2

k) and σ2
k,l = Cov[Sk(Tk), Sl(Tl)]

all are constants.

Then,

F (P ,T ) = E[Ω(P ,T )]− Var[Ω(P ,T )]

=
n∑
k=1

(Ak − βkPk + ak)(Pk − bk)−
n∑
k=1

(Ak − βkPk + ak)
2dk

−2
n−1∑

1≤k≤l≤n

MkMlσ
2
k,l.

The partial derivative of F (P ,T ) with respect to Pk is

∂F

∂Pk
= −2βkPk + βkbk + Ak + ak + 2βk(Ak − βkPk + ak)dk + 2βk

n−1∑
1≤k≤l≤n

Mlσ
2
k,l,

the second order derivatives are

∂2F

∂P 2
k

= −2βk(1 + βkdk),

and
∂2F

∂Pk∂Pl
= −2βkβlσ

2
k,l.
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The Hessian matrix is

H =


∂2F
∂P 2

1

∂2F
∂P1∂P2

. . . ∂2F
∂P1∂Pn

∂2F
∂P2∂P1

∂2F
∂P 2

2
. . . ∂2F

∂P2∂Pn

. . . . . . . . . . . .
∂2F

∂Pn∂P1

∂2F
∂Pn∂P2

. . . ∂2F
∂P 2

n



= −2


β1(1 + β1d1) β1β2σ

2
1,2 . . . β1βnσ

2
1,n

β2β1σ
2
2,1 β2(1 + β2d2) . . . β2βnσ

2
2,n

. . . . . . . . . . . .
βnβ1σ

2
n,1 β2β2σ

2
n,2 . . . βn(1 + βndn)



= −2




Var[S1(T1)] Cov[S1(T1), S2(T2)] . . . Cov[S1(T1), Sn(Tn)]
Cov[S2(T2), S1(T1)] Var[S2(T2)] . . . Cov[S2(T2), Sn(Tn)]

. . . . . . . . . . . .
Cov[Sn(Tn), S1(T1)] Cov[Sn(Tn), S2(T2)] . . . Var[Sn(Tn)]



+


1
β1

0 . . . 0

0 1
β2

. . . 0

. . . . . . . . . . . .
0 0 . . . 1

βn




= −2(V +B),

where V is a covariance matrix, and B is a positive definite matrix; hence H is negative

definite and F (P ,T ) is concave.

Let ∂F
∂Pk

= 0, then, we have:

−2βkPk + βkbk + Ak + ak + 2βk(Ak − βkPk + ak)dk + 2βk

n−1∑
1≤k≤l≤n

Mlσ
2
k,l = 0,

Pk =
βkbk + Ak + ak + 2βk(Ak + ak)dk + 2βk

∑n−1
1≤k≤l≤nMlσ

2
k,l

2βk(1 + βk)

It means the solution, which maximises the objective function F (P ,T ) exists.

�

Proposition 5. If P is a vector of decision variables and T is known, there exists an

optimum solution that maximises E[Ω(P ,T )], subject to Var(Ω(P ,T )) ≤ ϕ.

Proof. The optimisation problem is

max E[Ω(P ,T )],

s.t. Var[Ω(P ,T )] ≤ ϕ,
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where T is known.

According to the proof of Proposition 2, E[Ω(P ,T )] is a concave function on P .

Then, this optimisation problem is equivalent to

min −E[Ω(P ,T )],

s.t. Var[Ω(P ,T )] ≤ ϕ,

where T is known.

Similar to the proof of Proposition 4, E[Ω(P ,T )] and Var[Ω(P ,T )] can be rewrote

as

E[Ω(P ,T )] =
n∑
k=1

(Ak − βkPk + ak)(Pk − bk),

and

Var[Ω(P ,T )] =
n∑
k=1

(Ak − βkPk + ak)
2dk + 2

n−1∑
1≤k≤l≤n

MkMlσ
2
k,l,

where ak = ηkTk, bk = Tkλkµk + ck, dk = λkTk(σ
2
k +µ2

k) and σ2
k,l = Cov[Sk(Tk), Sl(Tl)]

all are constants.

However,

∂Var(Ω(P ,T ))

∂Pk
= −2βk(Ak − βkPk + ak)dk − 2βk

n−1∑
1≤k≤l≤n

Mlσ
2
k,l,

Then, {
∂2Var(Ω(P ,T ))

∂P 2
k

= 2β2
kdk

∂2Var(Ω(P ,T ))
∂Pk∂Pl

= 2βkβlσ
2
k,l.

The Hessian matrix,

H =


∂2Var(Ω(P ,T ))

∂P 2
1

∂2Var(Ω(P ,T ))
∂P1∂P2

. . . ∂2Var(Ω(P ,T ))
∂P1∂PN

∂2Var(Ω(P ,T ))
∂P2∂P1

∂2Var(Ω(P ,T ))

∂P 2
2

. . . ∂2Var(Ω(P ,T ))
∂P2∂PN

. . . . . . . . . . . .
∂2Var(Ω(P ,T ))

∂PN∂P1

∂2Var(Ω(P ,T ))
∂PN∂P2

. . . ∂2Var(Ω(P ,T ))

∂P 2
N



= 2


σ2

1 σ2
1,2 σ2

1,3 . . . σ2
1,n

σ2
2,1 σ2

2 σ2
2,3 . . . σ2

2,n

σ2
3,1 σ2

3,2 σ2
3 . . . σ2

3,n

. . . . . . . . . . . . . . .
σ2
n,1 σ2

n,2 σ2
n,3 . . . σ2

n

 ,
is positive-definite, means Var(Ω(P ,T )) is a convex function, and the Var(Ω(P ,T )) ≤

ϕ is a convex set.
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The Lagrange function is

L = −
n∑
k=1

(Ak−βkPk+ak)(Pk−bk)+ρ[
n∑
k=1

(Ak−βkPk+ak)2dk+2
n−1∑

1≤k≤l≤n

MkMlσ
2
k,l−ϕ],

where, ρ > 0 is Lagrange multiplier ϕ is a positive constant.

Take the partial derivative respect to Pk and ρ, and let them equal 0, we have

∂L

∂Pk
= 2βk(1 + ρdk)Pk − 2ρβk(Akdk + akdk +

n−1∑
1≤k≤l≤n

Mlσ
2
k,l)− βkbk − Ak − ak = 0,

where k = 1, 2, 3 . . . n, and

∂L

∂ρ
=

n∑
k=1

(Ak − βkPk + ak)
2dk + 2

n−1∑
1≤k≤l≤n

MkMlσ
2
k,l − ϕ = 0.

Hence, the optimal solution is the solution of the following equation set,

2β1(1 + ρd1)P1 − 2ρβ1(A1d1 + a1d1 +
∑n−1

l 6=1,l≤nMlσ
2
1,l)− β1b1 − A1 − a1 = 0

2β2(1 + ρd2)P2 − 2ρβ2(A2d2 + a2d2 +
∑n−1

l 6=2,l≤nMlσ
2
2,l)− β2b2 − A2 − a2 = 0

. . . . . . . . . . . . . . . . . . . . . . . .

2βn(1 + ρdn)Pn − 2ρβn(Andn + andn +
∑n−1

l<n Mlσ
2
n,l)− β2b2 − A2 − a2 = 0∑n

k=1(Ak − βkPk + ak)
2dk + 2

∑n−1
1≤k≤l≤nMkMlσ

2
k,l − ϕ = 0

.

This set of equations consists of n + 1 equations with n + 1 variables, it is complex to

provide the proof of the existence of the set’s solution in this research. In practice, the

number of equations and number of variables are limited, this set of equations can be

resolved through numeric simulation. In the numeric example section of this chapter, the

optimal set of prices for a portfolio of three products is solved through simulation.

�

Proposition 6. If P is a vector of decision variables and T is known, there exists an

optimum solution that minimises Var(Ω(P ,T )), subject to E[Ω(P ,T )] ≥ ψ.

Proof. According to the proof of Proposition 5, when P is the decision variables,

and T is known, the Var(Ω(P ,T )) is a convex function, and −E[Ω(P ,T )] is a convex

function. Hence, -E[Ω(P ,T )] ≤ −ψ is a convex set; and there exists an optimum solution

that minimises Var(Ω(P ,T )), subject to E[Ω(P ,T )] ≥ ψ. The optimum solution can be

obtained through the method of Lagrange multipliers.

�
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3.3.3 Methods of estimating E[Ω(P ,T )] and Var(Ω(P ,T ))

For a given set of warranty claim data, one must estimate E[Ω(P ,T )] and Var(Ω(P ,T ))

for the three options discussed in Section 3.3.2 before any optimisation problems may be

discussed. One may estimate them with two methods:

Method 1. The non-parametric method, for example, the method of moments estimation,

with which there is no need to assume a probability distribution.

Method 2. The parametric method, for example, the maximum likelihood estimation

method. With this method, one needs to estimate a joint distribution of the num-

bers of warranty claims and then derive E[Ω(P ,T )] and Var(Ω(P ,T )) from the

distribution.

Similar to the fact that the Pearson correlation coefficient can only describe the linear

relationship between two random variables, the covariance can merely measure a linear

correlation. As such, one should note, Method 1 may not be able to capture the nonlinear

relationship among the numbers of warranty claims. In such cases, Method 2 may be ad-

vocated. Given the difficulty of estimating a joint multivariate probability distribution, a

tool, copula, which is a widely studied topic in recent years and can be used to depict non-

linear relationships between random variables, is borrowed to model the joint distribution

of the numbers of warranty claims.

Copulas are widely used in constructing multivariate distributions and formalising the

dependence structures between random variables, whatever discrete or continuous. Abe

Sklar first introduced the notion of copula in 1959, in recent years copula has attracted

considerable attention in both theoretical and application aspects. The Theorem of Sklar

states that any cumulative distribution function of a random vector can be written in terms

of marginal distribution functions and a copula that describes the dependence structure

between the variables (Wu, 2014a).

Assume (X1, ..., Xd) is a given vector of random variables, its cumulative distribution

function is H(x1, ..., xd) = P (X1 ≤ x1, ..., Xd ≤ xd)), and its marginals are Fk(xk) =

P (Xk ≤ xk), where k = 1, ...d. Sklar proved that H(x1, ..., xd) = C(F1(x1), ..., Fd(xd)),
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where C(.) is defined as a copula. Copulas are useful in statistical applications because

they allow one to model the marginals and the copula separately when modelling and

estimating the distribution of a random vector (Wu, 2014a).

Similar to its work in modelling the dependence among continuous random variables,

copula can also be used in constructing the joint probability distribution of discrete vari-

ables (Nikoloulopoulos & Karlis, 2010). In this area, Joe & Hu (1996) introduce mul-

tivariate parametric families of copulas which are mixtures of max-infinitely divisible

(max-id) bivariate copulas. Nikoloulopoulos & Karlis (2010) show this class of copulas

has superiority to others, because it allows flexible dependence among the random vari-

ables and has a closed form cdf (cumulative distribution function) and thus computations

are rather easy.

In our case, the claim arrival process of product k follows a homogeneous Poisson

process, i.e. Nk ∼ Pois(λktk). Assume that Mk items of product k have been sold to

the market and the claim processes of a given product’s items are mutual independent.

Denote uk(nk) = P (Nk ≤ nk), the joint distribution of each products’ number of claim

is

H(n1, n2, . . . , nk) = C(u1(n1), u2(n2), . . . , uk(nk)), (3.16)

where C is a copula. Then, the joint probability mass function is,

h(n1, n2, . . . , nk) =
∑

yj∈{nj ,nj−1}
1≤j≤k

(
H(y1, y2, . . . , yk)

k∏
i=1

sgn(yi)

)
, (3.17)

where yj is equal to nj or nj − 1, and

sgn(yj) =

{
1, yj = nj

−1, yj = nj − 1.
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Apparently,
∑

yj∈{nj ,nj−1}
1≤j≤k

has 2k elements in total. For example,

h(n1, n2, n3) =
∑

yj∈{nj ,nj−1}
1≤j≤3

[H(y1, y2, y3)
3∏
i=1

sgn(yi)]

= H(n1, n2, n3)−H(n1 − 1, n2, n3)−H(n1, n2 − 1, n3)−H(n1, n2, n3 − 1)

+H(n1 − 1, n2 − 1, n3) +H(n1 − 1, n2, n3 − 1) +H(n1, n2 − 1, n3 − 1)

−H(n1 − 1, n2 − 1, n3 − 1).

The expected total number of warranty claims of the manufacturer is

E[N ] =
m∑
j=1

[h(n1,j, n2,j, . . . , nk,j)(n1,j + n2,j + · · ·+ nk,j)],

where m is an integer determined by the sampling frequency in calculation. The expected

total profit is

E[Ω(P ,T )] =
m∑
j=1

{h(n1,j, n2,j, . . . , nk,j)[M1(P1−n1,jµ1−ci)+· · ·+Mk(Pk−nk,jµk−ck)]}.

(3.18)

The variance of total expected profit is

Var[Ω(P ,T )] =
n∑
k=1

(Ak − βkPk + ηkTk)
2λkTk(σ

2
k + µ2

k)

+2
n∑

1≤k<l≤n

MkMlµkµlCov[Nk(Tk), Nl(Tl)], (3.19)

where Cov[Nk(Tk), Nl(Tl)] can be calculated according to the joint probability mass func-

tion h(n1, n2, . . . , nk).

Furthermore, the joint distribution of the total profit can also be estimated based on

the joint probability mass function h(n1, n2, . . . , nk),

P {(A1 − β1P1 + η1T1) [P1 − S1(T1)] = z1, ..., (An − βnPn + ηnTn) [Pn − Sn(Tn)] = zn}

= h(n1, n2, . . . , nn)

n1∏
i=1

P (X1,i =
z1

n1

)

n2∏
i=1

P (X2,i =
z2

n2

) · · ·
nn∏
i=1

P (Xn,i =
zn
nn

). (3.20)

In this section, the estimation of the joint distribution of the numbers of warranty

claims of the products produced by a manufacturer is demonstrated based on a copula

approach. The covariance among the products’ profits and the variance of the total profit

of the manufacturer are calculated based on the joint distribution.
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3.4 Numeric example

Assume a manufacturer produces 3 products. The numbers of warranty claims follow

homogeneous Poisson processes with intensity functions λ1, λ2, and λ3, respectively.

The warranty claim costs of the three products follow normal distributions with means

µ1, µ2, µ3, respectively; and standard deviations σ1, σ2, and σ3, respectively.

The related parameters of these products are presented in Table 3.1. A, β, and η are

the parameter vectors of sales volume function; λ is the intensity vector of the HPPs; µ

and σ are the mean and standard deviation of claim cost; and c is the fixed cost vector.

Table 3.1: Parameters

A β η λ µ σ c

Product 1 A1 = 8000 β1 = 80 η1 = 5 λ1 = 0.08 µ1 = 6 σ1 = 1 c1 = 40

Product 2 A2 = 9000 β2 = 85 η2 = 6 λ2 = 0.09 µ2 = 5 σ2 = 0.8 c2 = 50

Product 3 A3 = 6000 β3 = 60 η3 = 10 λ3 = 0.1 µ3 = 7 σ3 = 1.5 c3 = 30

In this section, the unit of warranty length is assumed to be month and the unit of cost

is assumed to be GBP (Great Britain Pound).

3.4.1 Maximising the expected profit

The maximum expected total profit is the sum of all products’ maximum expected profit.

However, if Pk and Tk both are decision variables, the function, E[ωk(Pk, Tk)] = (Ak −

βkPk + ηkTk)(Pk − Tkλkµk − ck), does not have a maximum value.

Based on Proposition 1, Fig. 3.1 shows the relationship between the maximised ex-

pected profit Max{E[ωk(Pk, Tk)]} and the warranty length Tk of product k. For each

given Tk, Max{E[ωk(Pk, Tk)]} exists.

Based on Proposition 2, Fig. 3.2 presents the case that when Tk = 24 (k = 1, 2, 3),

the expected-profit against price curves are parabolic. There exists an optimal value Pk

to maximise E[ωk(Pk, Tk)] for each product. If the warranty length of the products is 2

years, i.e. 24 months, Table 3.2 presents the optimal prices and the maximised expected

profits, i.e. the values at peak points of the curves in Fig. 3.2.
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Figure 3.1: Max{E[ωk(Pk, Tk)]} (on the Y -axis) against Tk (on the X-axis).

Figure 3.2: E[ωk(Pk, Tk)] (on the Y -axis) against Pk (on the X-axis).
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Table 3.2: Maximum profits of products with given warranty length, 2 years.

Warranty length T1=24 T2=24 T3=24
Optimal price P1=76.51 P2=84.19 P3=75.40

Maximised expected profit 49,960.01 46,495.81 49,077.60

3.4.2 Mean-variance optimisation approach

Based on Proposition 4, the manufacturer’s profit can be optimised when the risk is taken

into consideration. For product k, Fig. 3.3 presents the results of Option 1, as discussed in

Section 3.2, in which the manufacturer tries to maximise E[ωk(Pk, Tk)]− SD[ωk(Pk, Tk)]

when Tk = 24 (k = 1, 2, 3). This figure shows there exists an optimal Pk which maximise

E[ωk(Pk, Tk)]− SD[ωk(Pk, Tk)] for each product.

Figure 3.3: E[ωk(Pk, Tk)]− SD[ωk(Pk, Tk)] (on the Y -axis) against Pk (on the X-axis).

For Option 2 mentioned in Section 3.2, the covariance V shown in Eq. (3.13) should

be estimated. In this case, instead of estimating V , we simply assume its correlation

matrix, as shown in the following:

ρ =


1 0.3 0.4

0.3 1 0.5
0.4 0.5 1

 . (3.21)

Table 3.3 shows the result of Option 2, which agrees with Proposition 5 that there exists

an optimal solution. Under the assumption that the manufacturer’s goal is to maximise

profit when the variance of the profit should be less than 100,000. Table 3.3 presents the
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optimal prices when T are varying within 24-month and 36-month. If the dependence

Table 3.3: Maximum profits with different T at given variance, where Var[Ω(P ,T )] ≤
100, 000.

Warranty length
T1=24, T2=24 T1=36, T2=24 T1=36, T2=36 T1=36, T2=36

T3=24 T3=24 T3=24 T3=36

Optimal price
P1=98.37 P1=102.25 P1=100.62 P1=98.71
P2=100.63 P2=99.66 P2=106.00 P2=105.30
P3=104.00 P3=102.46 P3=100.73 P3=106.00

Maximised expected profit 35,235.27 31,303.88 24,449.68 22,106.10

among the products are ignored, i.e. use identity matrix I instead of the correlation ma-

trix ρ in computing, the optimal results under the same assumption are presented in Table

3.4. The differences between the contents of Tables 3.3 and 3.4 indicate that if the depen-

Table 3.4: Maximum profits with different T at given variance ignoring dependence,
where Var[Ω(P ,T )] ≤ 100, 000.

Warranty length
T1=24, T2=24 T1=36, T2=24 T1=36, T2=36 T1=36, T2=36

T3=24 T3=24 T3=24 T3=36

Optimal price
P1=92.92 P1=100.95 P1=99.80 P1=96.65
P2=96.98 P2=95.20 P2=102.93 P2=101.02
P3=103.81 P3=99.85 P3=98.53 P3=106.00

Maximised expected profit 61,632.49 53,951.25 42,455.64 39,544.61

dence among products are ignored, the manufacturer may misprice individual products

and overvalue the expected total profit.

Similarly, when the same ρ in Eq. (3.21) is used, Table 3.5 shows the result of Op-

tion 3, which agrees with Proposition 6 that there exists an optimal solution. Under the

assumption that the manufacturer’s goal is to minimise the variance of the profit when the

expected profit should not be less than 50,000, Table 3.5 presents the optimal prices when

T are varying within 24-month and 36-month. When the dependences among products

are ignored, the optimal results under the same assumption are presented in Table 3.6.

The results in Table 3.5 and 3.6 indicate if the manufacturer does not recognise the de-

pendences among the products, the total risk level will be undervalued.
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Table 3.5: Minimum variance with different T at given expected profit level, where
E[Ω(P ,T )] ≥ 50, 000.

Warranty length
T1=24,T2=24 T1=36, T2=24 T1=36, T2=36 T1=36, T2=36

T3=24 T3=24 T3=24 T3=36

Optimal price
P1=94.33 P1=100.22 P1=97.85 P1=94.70
P2=100.36 P2=98.14 P2=103.52 P2=100.86
P3=103.65 P3=99.89 P3=97.36 P3=104.26

Minimised variance 147,995.66 176,226.69 218,509.72 258,176.05

Table 3.6: Minimum variance with different T at given expected profit level ignoring
dependence, where E[Ω(P ,T )] ≥ 50, 000.

Warranty length
T1=24,T2=24 T1=36, T2=24 T1=36, T2=36 T1=36, T2=36

T3=24 T3=24 T3=24 T3=36

Optimal price
P1=95.29 P1=101.45 P1=98.89 P1=94.43
P2=98.83 P2=95.46 P2=102.22 P2=98.75
P3=104.00 P3=100.43 P3=97.48 P3=106.00

Minimised variance 76,432.03 90,178.34 120,554.13 134,952.03

3.4.3 Measuring dependence with copulas

In case more complicated dependence is assumed, as discussed in Section 3.3, the copulas

can be applied. Here, we assume that the multivariate Gumbel copula is applied. The

multivariate Gumbel copula can capture strong upper tail dependence and can be used in

the case, for example, there is a design problem on a type engine used on different types

of car, many similar failures, which causes warranty claims, may occur in the early life

period, or the premature period. The multivariate Gumbel copula is,

C(u1, u2, u3; θ1, θ2) = exp{−([(−lnu1)θ2 + (−lnu2)θ2 ]
θ1
θ2 + (−lnu3)θ1)

1
θ1 }. (3.22)

Assume θ1 = θ2 = 2 in this case. In practice, these parameters may be estimated by

Table 3.7: Optimal solution based on trivariate Gumbel copula, where T ′ = {24, 24, 24}
.

Option 1 Option 2 Option 3

Constraint
Var[Ω(P ,T )] ≤ 100, 000 E[Ω(P ,T )] ≥ 1, 000

M ≥ 1 M ≥ 1 M ≥ 1

Optimal price
P1=83.76 P1=83.75 P1=101.49
P2= 113.53 P2= 107.56 P2= 107.57
P3= 85.81 P3= 85.80 P3= 103.98

Optimised E[Ω(P ,T )]− SD[Ω(P ,T )] E[Ω(P ,T )] Var[Ω(P ,T )]
objective value =301,582.62 =299,770 =12,031
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empirical data. It is easy to obtain Eq. (3.20) by substituting θ1 = θ2 = 2 into Eq. (3.22).

Then, the three options mentioned in Section 3.2 can be solved. The results are shown in

Table 3.7 and interpreted below.

• In the 2nd column, the objective function E[Ω(P ,T )]−SD[Ω(P ,T )] is maximised

with the constraints that T ′ = {24, 24, 24} andM = A− βP + ηT ≥ 0.

• In the 3rd column, the objective function E[Ω(P ,T )] is maximised with the con-

straints that T ′ = {24, 24, 24}, Var[Ω(P ,T )] ≤ 100, 000 andM ≥ 1.

• In the 4th column, the objective function Var[Ω(P ,T )] is minimised with the con-

straints that T ′ = {24, 24, 24}, E[Ω(P ,T )] ≥ 1, 000 andM ≥ 1.

3.4.4 Remarks

In this section, the optimal prices of the three products with various warranty lengths

are illustrated with numerical examples. Section 3.4.1 demonstrates the traditional war-

ranty analysis method, which does not consider the risk caused by the uncertainty of

warranty claim. Sections 3.4.2 and 3.4.3 demonstrate the optimisation problems with

a consideration of risks represented by variance. Compared with the traditional meth-

ods, the proposed new methods have two advantages: firstly both the expected profit and

corresponding risk are considered in warranty policy optimisation, which can help the

manufacturer to manage its operational risk in an efficient manner; secondly, the warranty

risk of a manufacturer are estimated collectively, which means the warranty policies are

optimised under more meaningful and accurate constraints than those of the traditional

methods.

3.5 Summary

This chapter optimally prices warranty policies when the dependence among warranty

claims of different products is taken into consideration. Such optimisation is performed

using the mean-variance optimisation approach, which considers the profit of a portfolio

of different products with correlated numbers of warranty claims. The variance of the
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total profit of the portfolio of products is calculated based on a copula-based discrete joint

distribution of the number of warranty claims of the products produced by a manufacturer.

This chapter provides a collective warranty policy optimisation method when the ex-

pected profit and corresponding risk are taken into consideration. From a practical and

applicable perspective, this method emphasizes the risk and potential dependence in war-

ranty management and provides decision makers with a new approach to optimising the

trade-off between the profit and risk in operation.

In the discussion in this chapter, the process of warranty claims is assumed to be the

homogeneous Poisson process (HPP). In addition to HPP, other processes, including the

non-homogeneous Poisson process, the doubly Poisson process, and the like, may be used

to model the numbers of warranty claims. In real application, one may analyse warranty

claim data and then decide which a stochastic process should be used.

Our future research will aim to answer the following questions:

(1) the mean-variance optimisation approach to the situation that the compound non-

homogeneous Poisson process is applied;

(2) the selection of a proper copula to construct the joint distribution;

(3) the modelling of the varying dependence in case that the dependences among the

products are varying.

67



Chapter 4

A value-at-risk approach to
optimisation of warranty policy

This chapter is developed from Chapter 3. The dependence among the warranty claims

of different products produced by the same manufacturer is also considered a real world

issue is considered; and this chapter also collectively optimises warranty policy for a set

of different products whose failures are statistically dependent. However, according the

literature in financial area, even though the variance of a random variable is applied as a

risk measure by the overwhelming influential models of portfolio selection, the symmetry

of this measure cannot reflect the risk comprehensively. In this chapter, the downside risk

measures, borrowed from financial mathematics, such as Value-at-Risk and Conditional

Value-ar-Risk are employed. The distributions of the warranty costs of a single product

and the portfolio of products are provided. Then, the existences of the optimal solutions

for different scenarios are proved on copula-based models. Numerical examples are used

to validate the applicability of the proposed methods.
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4.1 Introduction

4.1.1 Background and literature review

To improve a manufacturer’s operating expense management, an efficient warranty policy

management supported by warranty data analysis and modelling is necessary. It is known

that the number of warranty claims and the associated cost are uncertain, and products

with longer warranty periods may attract more buyers than those with shorter warranty

periods. From a manufacturer’s perspective, however, providing a longer warranty period

implies more resources that are needed to handle warranty claims. Hence, there is a need

to develop approaches to optimising the warranty price and the warranty length.

In the literature, many methods aiming to optimise the warranty price and the warranty

length of an individual product have been proposed. Fig. 4.1 illustrates the evolution of

the research in warranty policy optimisation, which shows that the research evolves from

simple and unrealistic assumptions to more complex and realistic ones.

Figure 4.1: Evolution of warranty policy optimisation

At the early stage, many researchers attempt to find the optimal price and warranty

length, assuming that the product is composed of only one component. At the same time,

some other factors, such as production rate, market competition and demand, etc., are

also considered. Ladany & Shore (2007) address a method to determine the optimal war-

ranty period with considering the products lifetime and market demand. Lin et al. (2009)

optimise the price, warranty length and production rate of a one component system dy-
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namically. Wu et al. (2009) develop a decision model to determine the optimal price, the

length of warranty and the production rate to maximise profit based on the pre-determined

life cycle in a static demand market. Aggrawal et al. (2014) present a method to optimise

warranty price and the length of warranty for a product based on a two-dimensional in-

novation diffusion model, and estimate the overall maximum profit for the manufacturer.

Wei et al. (2015) investigates the optimal strategies on product price and the length of

warranty of two products produced by two manufacturers and sold by one dealer. Yaz-

dian et al. (2016) jointly optimises the acquisition price, re-manufacturing degree, selling

price and the length of warranty of re-manufacturing products under linear and non-linear

demand functions.

The one-component assumption of a single product may be too unrealistic. Re-

searchers then consider the assumption that a product is composed of multiple compo-

nents. Huang et al. (2007) develop a model to determine the optimal product reliability,

price and warranty strategy to achieve the maximum total integrated profit for a general re-

pairable multi-component product sold under a free replacement-repair warranty strategy.

Matis et al. (2008) explore the optimal price and pro rate warranty length for a multi-

component product with considering the different repair options on the components. Bai

& Pham (2006) investigate optimisation of warranty policies for single products com-

posed of multiple components. Liu et al. (2015) also investigate the warranty cost for

a single product consisting of multiple components; meanwhile, as an improvement, the

failure interactions between the components are considered. Ahmadi (2016) addresses

an optimal replacement problem for complex multi-component systems by determining

an optimal operating time which balances income and cost to maximizes the expected

profit over a cycle. Adkins & Paxson (2017) construct a general replacement model for

a multi-component product with considering the salvage value and depreciation in oper-

ating. Chen et al. (2017) seek to maximize the total profit per item of a multi-component

product through optimally determine the production run length and the warranty period.

All of the literature mentioned above solely maximises the profit of individual prod-

ucts produced by a manufacturer. Little research, however, has been devoted to optimising
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warranty policy of a set of products collectively. However, in real world, a manufacturer

may assemble different types of product by sharing some key components; then, the man-

ufacturer has to deal with the warranty policies for multiple products considered as multi-

component systems, which is the third stage of warranty policy optimisation research (see

the third rectangle in Fig. 4.1 and investigated in this chapter.

4.1.2 Motivation and our approach

The warranty claim arrival processes of products may not be statistically independent

because the claims may have common causes such as similar design, same production

lines and same types of components installed in the products. For example, Apple, iPhone

6, iPhone 6 Plus and iPad Mini 4, have the same type of CPU. If any design or quality

problems happen on one of the products, warranty claims of the other products will crop

up during a short period.

As can be seen from the above literature review, however, little attention has been

paid to collectively optimise warranty policies for a portfolio of different products. This

motivates us to develop novel approaches to filling in the knowledge gap.

We propose to optimise warranty policy through maximising product profit. The

method collectively optimises the warranty price and the warranty length of a set of dif-

ferent products whose warranty claims are statistically dependent, considering the uncer-

tainty of the product profit. The value-at-risk theory is borrowed to manage the uncer-

tainty. The dependence is modelled by copula, a tool from the probability theory. The

use of copula provides a more flexible tool to model more complicated dependence than

a simple method such as covariance estimation.

The novelty of this chapter lies in the fact that it is the first attempt to collectively op-

timise the warranty policies of a portfolio of products from a manufacturer’s perspective.

4.1.3 Overview

The rest sections of the chapter are structured as follows. Section 4.2 lists the assump-

tions of the optimisation problems. It also formulates the profits and warranty costs of
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individual products and portfolio of products, respectively. Section 4.3 investigates the

existence of the optimal solutions for the different optimisation problems and uses copula

to model the dependence among warranty claims of different products. Section 4.4 offers

numerical examples to illustrate the proposed methods and to validate the applicability of

the proposed methods. Section 4.5 concludes this chapter and proposes our future work.

4.2 Formulation of the problem

Assume a manufacturer offers non-renewing free replacement warranty (NFRW) policies.

Under an NFRW policy, the manufacturer provides its customers with repair or replace-

ment at no cost within the warranty period; the original warranty is not altered upon a

failed item; and the manufacturer only guarantees satisfactory service on the item within

the original warranty period. Assume that repair time is negligible and the repair is mini-

mal repair. Products are new at t = 0 when they are sold. The number of claims follows

the non-homogeneous Poisson process (NHPP). The numbers of warranty claims and the

claim cost are statistically independent.

4.2.1 The sales volume and profit

For a product, there are two critical marketing variables: the selling price and the warranty

length (Chen et al., 2017). The sales volume of a product is negatively related to its selling

price and positively related to its warranty length. Denote Pk and Tk as the selling price

Pk and the warranty length Tk of product k, respectively. Both Pk and Tk can influence the

sales volume, Mk, and profit, ωk. In what follows, the profit of product k is the revenue

deducting the warranty cost, i.e. ωk = MkPk − Sk(Tk), where Sk(Tk) is the aggregated

warranty cost of product k within Tk.

In the literature, the sales volume of product k, Mk, is expressed by a function of

product price Pk and length of warranty Tk in different forms, including linear Lin et al.

(2009); Yazdian et al. (2016) and non-linear ones (Huang et al., 2007; Ladany & Shore,

2007; Xie et al., 2014). For simplicity, a linearity form, introduced by Yazdian et al.
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(2016), is used in this chapter. The sales volume is defined by

Mk = Ak − βkPk + ηkTk, (4.1)

where Ak(> 0) is a constant relating to the market size of product k, and βk(> 0) and

ηk(> 0) are the price and length of warranty elasticities, respectively.

4.2.2 The distribution of the aggregated warranty cost

Suppose a manufacturer produces n products. The aggregated warranty cost of product

k follows a stochastic process {Sk(Tk)}Tk≥0 over the warranty period (0, Tk), which is

expressed by the following equation,

Sk(Tk) =

Nk(Tk)∑
j=1

Xk,j, (4.2)

where Xk,j is the cost of the j-th claim of product k and Nk(Tk) is the number of claims

during (0, Tk). {Xk,1, Xk,2, . . . , Xk,j} are independent and identically distributed random

variables which have finite values on the positive half-line R>0 with the probabilities

P (Xk,j). The cost of claims is assumed to follow the log-normal distribution. The count-

ing process Nk(Tk) is assumed to take a form of the NHPP with cumulative intensity

MkΛk(Tk), and P (Nk(Tk) = n) = (MkΛk(Tk))n

n!
e−MkΛk(Tk). Nk(t) and Xk,i, are assumed

to be statistically independent.

The expected value of Sk(Tk) is given by

E[Sk(Tk)] = E[Nk(Tk)]E[Xk] = MkΛk(Tk)µk, (4.3)

and the variance of Sk(Tk) is given by

Var [Sk(Tk)] = E[Nk(Tk)]Var[Xk] + Var[Nk(Tk)]E[Xk]
2

= MkΛk(Tk)(Var[Xk] + E[Xk]
2)

= MkΛk(Tk)(σ
2
k + µ2

k), (4.4)

where µk and σk are the mean and the variance of Xk, respectively.

Denote FSk and fSk as the probability density function (pdf) and the cumulative

distribution function (cdf) of Sk(Tk), respectively. The characteristic function of Xk
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is ϕXk(t) =
∫∞
−∞ fXk(x)eitxdx, where i is a unit imaginary number. Denote ϕSk(t)

as the characteristic function of Sk. The probability generation function of Nk(Tk) is

ψk(s) =
∑∞

n=0 s
npk,n, where pk,n = Pr{N(Tk) = n}. According to the Levy-Khintchine

formula, one can obtain

ϕSk(t) =
∞∑
n=0

(ϕXk(t))
npk,n = eMkΛk(Tk)(ϕXk (t)−1). (4.5)

Then, the density of Sk(Tk) can be calculated through the inverse Fourier transform, that

is

fSk(x) =
1

2π

∫ ∞
−∞

ϕSk(t)e
−itxdt =

1

2π

∫ ∞
−∞

eMkΛk(Tk)(ϕXk (t)−1)−itxdt.

Apparently, Sk(Tk) is non-negative. According to Luo & Shevchenko (2009), the proba-

bility density and cumulative distribution function of Sk(Tk) are given by

fSk(z) =
2

π

∫ ∞
0

Re[ϕSk(t)]cos(tz)dt, (4.6)

and

FSk(z) =
2

π

∫ ∞
0

Re[ϕSk(t)]
sin(tz)

t
dt, (4.7)

respectively, where z ≥ 0.

In practice, computing the density and cumulative distribution through the Fourier

transform requires high computing power to deal with the underflow and overflow prob-

lems. Another popular approach is to use an approximating distribution to avoid direct

calculation of Eq. (4.7) and Eq. (4.6)). According to Bee (2016), if the distribution of Xk

is subexponential, the compound Sk(Tk) inherits the subexponentiality property from Xk.

In this case,Xk is assumed to follow the log-normal distribution, which is subexponential.

Hence, Sk(Tk) is also subexponential, and Xk and Sk(Tk) are tail equivalent. For details

about the definition of tail equivalent, the reader is referred to (Bee, 2016).

To make this chapter concise, we use the log-normal distribution to approximate

Sk(Tk).

4.2.3 Product profit

In this subsection, we derive the profit of products for different scenarios.
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The profit of one product

The profit of product k is given by

ωk = MkPk − Sk(Tk). (4.8)

Denote Fωk and fωk as the cdf and pdf of ωk, respectively. Then

Fωk(z) = P [ωk ≤ z]

= P [MkPk − Sk(Tk) ≤ z]

= P [Sk(Tk) ≥MkPk − z]

= 1− FSk(MkPk − z), (4.9)

which can be calculated on the basis of Eq. (4.7)).

The expected value of ωk is

E[ωk] = Mk[Pk − Λk(Tk)µk], (4.10)

and the variance of ωk is

Var[ωk] = Var[Sk(t)] = MkΛk(Tk)(σ
2
k + µ2

k). (4.11)

The profit of a portfolio of products

The total profit of a portfolio consisting of N products is given by

Ω =
N∑
k=1

ωk =
N∑
k=1

[MkPk − Sk(Tk)]. (4.12)

The distribution of the profit of product portfolio can be expressed by

FΩ(z) = P{Ω ≤ z} = F (N)(z), (4.13)

where F (N)(z) is the N -fold convolution of the distribution of ωk. The expected total

profit is

E[Ω] =
N∑
k=1

E[ωk] =
N∑
k=1

Mk[Pk − Λk(Tk)µk]. (4.14)

As we mentioned in Section 1.2, the warranty claim arrival processes of the products

produced by the same manufacturer may be correlated. Hence the variance of the portfolio
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profit is related to the correlation among the products. If the claim arrival processes of

different products are linearly correlated, the variance of Ω can be calculated based on the

covariance matrix of the portfolio, which is

Var[Ω] = ITV I, (4.15)

where IT = [1, 1, . . . , 1] and

V =


Var(S1(T1)) Cov(S1(T1), S2(T2)) . . . Cov(S1(T1), Sn(Tn))

Cov(S2(T2), S1(T1)) Var(S2(T2)) . . . Cov(S2(T2), Sn(Tn))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Cov(Sn(Tn), S1(T1)) Cov(Sn(Tn), S2(T2)) . . . Var(Sn(Tn))

 ,
(4.16)

where Cov(Sk(Tk), Si(Ti)) = ρk,i
√

Var(Sk(Tk))Var(Si(Ti)), and ρk,i is the Pearson cor-

relation coefficient. The warranty costs of different products may have different types of

dependence such as a rank correlation or a tail-dependence. In such cases, the metrics that

can only measure a linear correlation may be inappropriate in the case where the relation-

ship of the variables is not linear. As such, we employ a powerful tool, copula, to model

the dependence among the products. According to Boubaker & Sghaier (2013), Kendall’s

tau and copula parameters, especially the parameters of the Archimedean copulas, can be

used as substitutes (and more comprehensive metrics) for measuring both the linear and

the nonlinear relationships in the covariance matrix in portfolio optimisation.

4.3 Mean-risk optimisation

In this chapter, the mean-risk optimisation is used to maximise the expected profit under

an acceptable risk level. The objective functions are illustrated in Eq. (4.10) and Eq.

(4.14) for one product and multiple products scenarios, respectively. The constraints of

optimisation problems are given for different risk measures.

In the one product scenario, the manufacturer aims to maximise the following func-

tion:

E[ωk] = Mk[Pk − Λk(Tk)µk].

Suppose in this case, the NHPP following the cumulative intensity Λk(Tk) = akT
bk
k
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(where bk > 1) are used. Then, the objective function is defined by

E[ωk] = AkPk −AkµkakT bkk − βkP
2
k + βkµkPkakT

bk
k + ηkPkTk − ηkµkakT bk+1

k . (4.17)

In case both of Pk and Tk are decision variables, based on the properties of this function,

we have Proposition 7.

Proposition 7. Depending on whether Pk and Tk are known, one can prove the following

results.

• If both of Pk and Tk are decision variables, the global maxima of E[ωk] does not

exist.

• If Tk (or Pk) is the decision variable and Pk (or Tk) is known, the global maxima of

the function E[ωk](Tk) (or E[ωk](Pk)) exists.

Proof. The Hessian matrix of E[ωk] is

Hf(Pk,Tk) =

[
−2βk akbkβkµkT

bk−1
k + ηk

akbkβkµkT
bk−1
k + ηk −akbkµkT bk−2

k [(bk − 1)(Ak − βkPk + ηkTk) + 2ηkTk]

]
,

and the eigenvalues ofHE[ωk] are

x1 = −{2βk + akbkµkT
b−2[(bk − 1)Ak − (bk − 1)βkPk + (bk + 1)ηkTk]}

+
√
{2βk − akbkµkT b−2[(bk − 1)Ak − (bk − 1)βkPk + (bk + 1)ηkTk]}2 + 4(akbkβkµkT b−1 + ηk)2

,

and

x2 = −{2βk + akbkµkT
b−2[(bk − 1)Ak − (bk − 1)βkPk + (bk + 1)ηkTk]}

−
√
{2βk − akbkµkT b−2[(bk − 1)Ak − (bk − 1)βkPk + (bk + 1)ηkTk]}2 + 4(akbkβkµkT b−1 + ηk)2

,

respectively. It can be seen that x1 > 0 and x2 < 0. As such, the Hessian matrix is

indefinite. As a result, the global minima of E[ωk] does not exist.

Similarly, the Hessian matrix of Var[ωk] is

HVar[ωk]

=

 0 −βk(σ2
k + µ2

k)akbkT
bk−1
k

−βk(σ2
k + µ2

k)akbkT
bk−1
k

akbk(σ
2
k + µ2

k)

×[2ηkT
bk−1
k +(Ak − βkPk + ηkTk)(bk − 1)T bk−2

k ]

 ,
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and the eigenvalues of HVar[ωk] are x1 = akbkT
bk−1
k (σ2

k + µ2
k)ηk + akbkT

bk−1
k (σ2

k +

µ2
k)
√
η2
k + β2

k > 0 and x2 = akbkT
bk−1
k (σ2

k +µ2
k)ηk−akbkT

bk−1
k (σ2

k +µ2
k)
√
η2
k + β2

k < 0,

which implies that the Hessian matrix is indefinite and the feasible region of (Pk, Tk)

defined by the constraint is therefore infinite.

Consequently, the global maxima of the objective function does not exist.

�

In a multiple product scenario, the objective function to be maximised is

E[Ω] =
N∑
k=1

Mk(Pk − Λk(Tk)µk).

Since the prices and sales volumes are assumed to be mutually independent in this chapter,

Proposition 7 is also valid in the multiple products scenario. The dependence among the

warranty claims of the products is reflected in the constraints of optimisations.

4.3.1 The risk measure

In the financial discipline, Artzner et al. (1999) define risk as the variability of the future

value of a position due to uncertain events. Babaei et al. (2015) point out that risk is used

to characterise the situation in which a portfolio is exposed to vulnerabilities and enforces

losses to the institutions. Risk measures are introduced for the requirement of quantifying

the losses that may be incurred. The variance of a random variable is considered as a

risk measure by the overwhelming influential models of portfolio selection. However,

since the variance is a symmetric risk measure, researchers turn to using downside risk

measures, such as Value-at-Risk (VaR) and Conditional VaR (Expected Shortfall), which

can reflect a better notion of risk (Babaei et al., 2015). Furthermore, the variance as a risk

measure is normally applied under the assumption that the correlation is linear. Such an

assumption is not imposed in the VaR and CVaR theories. In this chapter, we focus on

maximising the profit under the mean-risk framework, in which the risk may be measured

by the variance, VaR or CVaR.
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4.3.2 One product scenario

In the one product scenario, the manufacturer aims to maximise the expected profit of

one product at an acceptable risk level. The optimisation problems with different risk

measures are discussed in the following subsections.

Mean-variance framework

A mean-variance framework aims to maximise the expected profit of product k under a

given/acceptable value of variance. The optimisation problem is defined by

max E[ωk] = Mk[Pk − Λk(Tk)µk],

s.t. Var[ωk] = MkΛk(Tk)(σ
2
k + µ2

k) ≤ ψ,

Mk = Ak − βkPk + ηkTk ≥ 0,

Pk ≥ 0, Tk ≥ LT ,

where ψ is the acceptable risk level of the manufacturer, andLT is the legal minimum limit

of the length of warranty, e.g. the manufacturers should provide at least 2-year warranty

in Europe. According to Proposition 1, only one variable, either Pk or Tk, is treated as the

decision variable in optimisation. Regarding this mean-variance optimisation, for exam-

ple, if Pk is the decision variable, the constraint is Pk ≥ 1
βk

(
Ak + ηkTk − ψ

akT
bk
k (σ2

k+µ2k)

)
,

and the objective function can achieve the global maxima at Pk =
Ak+βkµkakT

bk
k +ηkTk

2βk
.

If 1
βk

(
Ak + ηkTk − ψ

akT
bk
k (σ2

k+µ2k)

)
<

Ak+βkµkakT
bk
k +ηkTk

2βk
, the objective function is max-

imised at Pk =
Ak+βkµkakT

bk
k +ηkTk

2βk
, otherwise, the objective function is maximised at

Pk = 1
βk

(
Ak + ηkTk − ψ

akT
bk
k (σ2

k+µ2k)

)
. Then, we have Proposition 8.

Proposition 8. If Tk (or Pk) is the decision variable, Pk (or Tk) is known and the power

law parameter bk > 1, then the optimal solution, which maximises the expected profit of

product k under a given variance level, exists.

Proof. If Pk is known, the first order derivative of the objective function E[ωk](Tk) is

given by

dE[ωk](Tk)

dTk
= −ηkµkak(bk + 1)T bkk − (Ak − βkPk)µkakbkT bk−1

k + ηkPk,
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and the second order derivative of E[ωk](Tk) is given by

d2E[ωk](Tk)

dT 2
k

= −akbkµkT bk−2
k [(bk − 1)(Ak − βkPk + ηkTk) + 2ηkTk] < 0,

as a result, the function E[ωk](Tk) is concave for Tk ≥ 0.

If Pk is known, the first order derivative of Var[ωk](Tk) is

dVar[ωk](Tk)

dTk
= ak(σ

2
k + µ2

k)[ηkT
bk
k + (Ak − βkPk + ηkTk)bkT

bk−1
k ] > 0,

and the second order derivative of Var[ωk](Tk) is

d2Var[ωk](Tk)

dT 2
k

= akbk(σ
2
k + µ2

k)[2ηkT
bk−1
k + (Ak − βkPk + ηkTk)(bk − 1)T bk−2

k ] > 0,

which implies that the function Var[ωk](Tk) is convex and monotonously increases for

Tk ≥ 0 and that the feasible range of Tk defined by Var[ωk](Tk) ≤ ψ is finite. Hence,

when Pk is known. As a result, the solution of the optimisation problem exists.

If Tk is known, the first order derivative of the objective function E[ωk](Pk) is given

by
dE[ωk](Pk)

dPk
= Ak − 2βkPk + βkµkakT

bk
k + ηkTk;

and the second order derivative of the objective function E[ωk](Pk) is given by

d2E[ωk](Pk)

dP 2
k

= −2βk < 0.

The fact that the second order derivative is negative implies: the objective function E[ωk](Pk)

achieves the global maxima at Pk =
Ak+βkµkakT

bk
k +ηkTk

2βk
. If Tk is known, the constraint is

Pk ≥
Ak+ηkTk− ψ

akT
bk
k

(σ2
k
+µ2

k
)

βk
. Hence, the optimal solution exists if Tk is known.

�

Mean-VaR framework

In general, value-at-risk is the α-quantile of a distribution, where α is a given confidence

level. In this case, ωk is the profit of product k, we defined the VaRα(ωk) as the minimum

profit at the (1 − α) level, i.e. there is a (1 − α) probability that the profit of product k

will be greater than VaRα(ωk). The VaRα(ωk) can be expressed as

VaRα(ωk) = F−1
ωk

(α). (4.18)
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According to Eq. (4.9)),

VaRα(ωk) = MkPk − F−1
Sk

(1− α). (4.19)

Then, the optimisation problem can be defined by

max E[ωk] = Mk(Pk − Λk(Tk)µk),

s.t. VaRα(ωk) = MkPk − F−1
Sk

(1− α) ≥ φ,

Mk ≥ 0, Pk ≥ 0, Tk ≥ LT ,

where α is a given confidence level, and φ is the minimum profit at the (1−α) confidence

level set by the manufacturer. If φ < 0, the maximum loss should be less than −φ at the

(1 − α) confidence level. If Pk is the decision variable and Tk is known, then MkPk in

VaRα(ωk) = MkPk − F−1
Sk

(1 − α) ≥ φ is a parabola with a negative coefficient on the

quadratic term, and F−1
Sk

(1−α) can be derived from the distribution of warranty cost Sk. If

Tk is known, the mean and the variance of Sk are (Ak−βkPk+ηkTk)Λk(Tk)µk and (Ak−

βkPk+ηkTk)Λk(Tk)(σ
2
k+µ2

k), respectively. Both of the quantities monotonously decrease

with respect of Pk. F−1
Sk

(1 − α) decreases monotonously with Pk as well. As such, the

feasible range of Pk is (max(0, Pl), Pu), where Pl and Pu are defined by VaRα(ωk) =

MkPk − F−1
Sk

(1− α) ≥ φ, respectively.

Mean-CVaR framework

Denote CVaRα(ωk) as the conditional value-at-risk, where α is a given probability. if

the profit exceeds the VaRα(ωk) on the left tail, CVaRα(ωk) is the expected profit of the

product k. In other word, CVaRα(ωk) is the expected profit of the product k in the worst

α% of cases. In this chapter, CVaRα(ωk) is expressed as

CVaRα(ωk) =
1

α

∫ VaRα(ωk)

−∞
zfωk(z)dz, (4.20)

where fωk(z) is the pdf of ωk. The distribution of ωk is determined by the distribution of

Sk. Hence CVaRα(ωk) can be calculated by

CVaRα(ωk) = MkPk −
1

α

∫ +∞

F−1
Sk

(1−α)

zfSk(z)dz, (4.21)
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where fSk(z) and F−1
Sk

(1 − α) are defined by Eq. (4.6) and Eq. (4.7)), respectively.

They can be approximated by the log-normal distribution, as shown in Section 4. The

optimisation problem can therefore be expressed by

max E[ωk] = Mk(Pk − Λk(Tk)µk),

s.t. CVaRα(ωk) = MkPk −
1

α

∫ +∞

F−1
Sk

(1−α)

zfSk(z)dz ≥ δ,

Mk ≥ 0, Pk ≥ 0, Tk ≥ LT,

where α is a given confidence level and δ is the acceptable minimum level of CVaRα(ωk)

set by the manufacturer.

Referring to Propositions 7 and 8, and the above discussions in Section 3.2.2 and

3.2.3, one can obtain the following proposition.

Proposition 9. For Tk and Pk, if one of them is the decision variable and the other is

known, then the optimal solution, which maximises the expected profit of product k under

a given value-at-risk level or conditional value-at-risk level, exists.

4.3.3 Multiple product scenario

The preceding section investigates the scenarios of the optimisation problems of individ-

ual products under a risk-informed consideration.

Assuming that a manufacturer produces N products, one can easily estimate the ex-

pected total profit through estimating and then summing the expected profit of each indi-

vidual product. Considering the uncertainty in estimation of the total profit of theN prod-

ucts, one may consider the statistical dependence among the warranty claim arrival pro-

cesses. In this section, the portfolio optimisation is investigated under the mean-variance,

mean-VaR and mean-CVaR frameworks.

Mean-Variance framework

Under the mean-variance framework for the N products, the optimisation problem is

defined by

max E[Ω] =
N∑
k=1

Mk(Pk − Λk(Tk)µk),
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s.t. Var[Ω] =
N∑
k=1

MkTkλk(σ
2
k + µ2

k)

+ 2
N∑
i 6=j

ρi,j

√
MiMjTiTjλiλj(σ2

i + µ2
i )(σ

2
j + µ2

j) ≤ ψ.

In this optimisation problem, the dependence among the warranty claims of the dif-

ferent products is measured with the Pearson correlation coefficient ρi,j , and the objective

function is the sum of the expected profits of the N products. According to Proposition 8,

one can obtain the following proposition.

Proposition 10. For T and P , if one of them is the decision variable vector and the other

is known, then the optimal solution, which maximises the expected total profit E[Ω] of the

product portfolio under a given variance level, exists.

Mean-VaR framework

Under the mean-VaR framework for the N products, the optimisation problem is defined

by

max E[Ω] =
N∑
k=1

Mk(Pk − Λk(Tk)µk),

s.t. VaRα[Ω] ≥ φ.

In practice, one may need to obtain the optimal solution. According to Babaei et al.

(2015), even though the definition of the VaR is intuitive and easy to interpret, calculating

the VaR of a portfolio is not easy. In financial mathematics, to calculate the portfolio VaR,

there are three commonly used methods, which are the variance-covariance, stochastic

simulation, and historical simulation methods. The variance-covariance method assumes

that the risk factors are jointly normally distributed. The normality assumption may not

hold in our case and therefore the variance-covariance method is not applicable. The

VaR of the total profit of the product portfolio will be calculated using the stochastic

simulation method in this research. The historical simulation method will be investigated

in our future work. To conduct an exact and efficient simulation, copula, an important

tool in the probability theory is borrowed.
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Copulas are widely used in constructing multivariate distributions and formalising

the dependence structures between random variables, whatever discrete or continuous.

Abe Sklar first introduced the notion of copula in 1959 (Sklar, 1959). In recent years,

copula has attracted considerable attention in both theoretical and application aspects.

Sklar’s theorem states that any cumulative distribution function of a random vector can be

written in terms of marginal distribution functions and a copula that describes the depen-

dence structure between the variables (Sklar, 1959). Assume (X1, ..., Xd) is a given vec-

tor of random variables, its cumulative distribution function is H(x1, ..., xd) = P (X1 ≤

x1, ..., Xd ≤ xd)), and its marginals are Fk(xk) = P (Xk ≤ xk), where k = 1, ...d. Sklar

proved that H(x1, ..., xd) = C(F1(x1), ..., Fd(xd)), where C(.) is a copula. Copulas are

useful in statistical applications because they allow one to estimate the marginals and the

copula separately when modelling and estimating the distribution of a random vector. It

has recently been used in modelling warranty claims (Wu, 2014a).

Denote the joint distribution of the products’ number of claims by

H(z1, z2, . . . , zk) = C(FN1(z1), FN2(z2), . . . , FNk(zk)), (4.22)

where C(.) is a copula, and FNk is the CDF of the number of claims of product k. The

density of the joint distribution is given by

h(z1, z2, . . . , zN) = c(FN1(z1), FN2(z2), . . . , FNk(zk))
n∏
k=1

fNk(zk), (4.23)

where c(.) is the density of copula C(.).

Then, the joint distribution of the products’ profits can be simulated based on Eq.

(4.6)), Eq. (4.7)), Eq. (4.22) and Eq. (4.23)).

Let FΩ(z) be the distribution of the total profit of the products, where Ω =
∑N

k=1 ωk.

In a copula-based model, the VaR of the total profit can be calculated through simulation.

It is clear that calculating FΩ(z) is mainly a numerical issue (Bernard & Vanduffel, 2015).

Mean-CVaR framework

Under the mean-CVaR framework, the optimisation problem is defined by

max E[Ω] =
N∑
k=1

Mk(Pk − Λk(Tk)µk),
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s.t. CVaRα[Ω] ≥ δ.

This optimisation problem implies that the manufacturer aims to maximise the total

profit under the constraint that the expected extreme profit at confidence level α is not less

than δ. This constraint can also be expressed by the copula and marginal distributions.

Based on the property of the above objective function and Proposition 9, one can

derive the following proposition

Proposition 11. For T and P , if one of them is the decision variable vector and the other

is known, then the optimal solution, which maximises the expected total profit E[Ω] of

the product portfolio under a given value-at-risk level or conditional value-at-risk level,

exists.

4.4 Numerical examples

4.4.1 One product scenario

Assume that the cost of each warranty claim of one product, X1, follows a log-normal

distribution with mean µ1 = 200 and standard deviation σ = 40; assume the warranty

claim arrival process is a Non-homogeneous Poisson process with cumulative intensity

Λ1(T1) = 0.004T 1.04
1 ; and the sales volume of this product is defined by M1 = 1, 000 −

0.2P1 + 0.13T1. In Table 4.1, Lµ1 and Lσ1 are logarithmised mean and standard deviation

Table 4.1: Parameters for one product

Log-normal
µ1 = 200 σ1 = 40 Lµ1 = 5.2787 Lσ1 = 0.1980

NHPP
a = 0.004 b = 1.04

Sales volume
A1 = 1, 000 β1 = 0.2 η1 = 0.13

respectively, and they are calculated by

Lµ1 = ln

 µ1√
1 +

σ2
1

µ21

 ,

and

Lσ1 =

√
ln

(
1 +

σ2
1

µ2
1

)
.
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Mean-Variance

Under the mean-variance framework, the optimisation problem is

max E[ω1] = (1, 000− 0.2P1 + 0.13T1)(P1 − 0.004T 1.04
1 × 200)

s.t. Var[ω1] = (1, 000− 0.2P1 + 0.13T1)× 0.004T 1.04
1 × (2002 + 402) ≤ ψ.

Suppose T1 = 720. The above objective function is parabola and has the global maximum

E[ω1] = 1, 113, 257.59 at P1 = 3, 108.70 with the corresponding sales volumeM1 = 472.

Meanwhile, the feasible range of P1 is [5, 468− 0.000032ψ, 5, 468], which means: P1 =

3, 108.70 is the optimal solution if the variance limitation ψ ≥ 147, 103, 140.52.

If P1 is known, for example, let P1 = 3, 000. The global maxima is E[ω1] =

1, 200, 600 when T1 ≈ 32. The sales volume and the variance of total profit at T1 ≈ 32

are M1 = 404 and Var[ω1] = 2, 472, 080.61, respectively. Furthermore, the function of

Var[ω1] monotonously increases with T1. Hence, if the variance of the total profit is less

than ψ with ψ ≥ 2, 472, 080.61, T1 = 32 is the optimal solution. However, in practice,

the length of warranty is regulated by the authorities, such as at least 2 years warranty is

required in Europe, this regulation may also be considered in optimisation.

Mean-VaR

Under the mean-VaR framework, given that the confidence level α = 0.05, the optimisa-

tion problem is

max E[ω1] = (1, 000− 0.2P1 + 0.13T1)(P1 − 200× 0.004T 1.04
1 )

s.t. VaR0.05(ω1) = (1, 000− 0.2P1 + 0.13T1)P1 − F−1
S1

(0.95) ≥ φ.

In this scenario, the company may aim to optimise the price and length of warranty under

the constraint that the total profit is not less than φ at 95% probability, i.e. VaR0.05 ≥ φ.

In order to resolve this optimisation problem, the effects of P1 and T1 on VaR0.05 should

be investigated. However, the closed form of the cdf of S1 is difficult to obtain, and

we cannot obtain the close form of F−1
S1

(0.95) either. Then a log-normal distribution
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with mean, E[S1] = 0.8T 1.04
1 × (1, 000 − 0.2P1 + 0.13T1), and variance, Var[S1] =

166.4T 1.04
1 × (1, 000− 0.2P1 + 0.13T1), is used to approximate the distribution FS1(x).

Initially, we focus on the situation that T1 is known. According to Section 4.1.1,

if T1 = 720, the objective function has a global maximum E[ω1] = 1, 113, 257.59 at

P1 = 3, 108.70. then we have

VaR0.05(ω1) = (1, 093.6− 0.2P1)P1 − F−1
S1

(0.95). (4.24)

If the constraint on VaR0.05(ω1) is not considered, the feasible range of P1 is [0, 5, 468].

Within this range, the relationship between P1 and the first term in Eq. (4.24)), i.e. the

revenue (1, 093.6 − 0.2P1)P1, is illustrated in Fig. 4.2. The relationship between P1 and

the second term F−1
S1

(0.95) in Eq. (4.24)), i.e. the right tail 5% VaR of warranty cost, is

shown in Fig. 4.3. The relationship between P1 and VaR0.05(ω1) is illustrated in Fig. 4.4.

Figure 4.2: Total revenue (on the Y -axis) against price P1 (on the X-axis).

Fig. 4.3 reveals that the right tail 5% VaR of warranty cost monotonically decreases

with P1 within the feasible range of P1. Then, the relationship between VaR0.05(ω1) and

P1 is determined by the total revenue which is a quadratic function of P1. Hence, with the
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Figure 4.3: Right tail 5% VaR of warranty cost (on the Y -axis) against P1 (on theX-axis).

optimal constraint, one can derive a feasible range of P1, (pl1, pu1), where pl1 and pu1 are

determined by φ.

In accordance with the market behaviour, one may set market price P1, said P1 =

3, 000. The optimal length of warranty T1 can then be determined and one can obtain

VaR0.05(ω1) = 3, 000× (400 + 0.13T1)− F−1
S1

(0.95). (4.25)

Fig. 4.5 and Fig. 4.6 reveal the effects of T1 on the right tail 5% VaR of the warranty

cost and VaR0.05(ω1). The values of T1 in these figures are discrete values from 2 years

(720 days) to 10 years (3,600 days) with half of a year step (180 days). Then the optimal

constraint gives a feasible range of T1, [720, tu], where tu is determined by φ.

Mean-CVaR

Under the mean-CVaR framework, the objective function is the same as that under the

mean-VaR framework, but the constraint is given by

CVaR0.05(ω1) = (1, 000− 0.2P1 + 0.13T1)P1 −
1

0.05

∫ +∞

F−1
S1

(0.95)

zfS1(z)dz ≥ δ. (4.26)

Eq. (4.26) implies: the company requires that the expected profit is not less than δ even

if the worst event at 5% probability occurs. The first term of Eq. (4.26) also is the total
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Figure 4.4: VaR0.05(ω1) (on the Y -axis) against P1 (on the X-axis).

revenue of Product 1, and the second term is the right tail 5% CVaR of the total warranty

cost of Product 1. fS1 can also be approximated by the log-normal distribution.

If T1 = 720 is known, the relationship between P1 and CVaR0.05(ω1) is illustrated in

Fig. 4.7. The feasible range of P1 under the constraint is [cpl, cpu], where both cpl and

cpu are determined by δ.

If P1 = 3, 000 is known and T1 = 720 + 180v (for v = 1, 2, ..., 16), the relationship

between T1 and CVaR0.05(ω1) is illustrated in Fig. 4.8. Then the feasible range of T1

under the constraint is [720, ctu] where ctu is determined by δ.

4.4.2 Three product scenario

Assume 7 types of components are installed in 3 products, each of which is composed

of 4 or 5 components, as illustrated in Table 4.2. The components in each product are

structured in series, which implies: if a component in an product item fails, the item fails.

Assume that the claim arrival processes of the components are NHPPs with a cumu-

lative failure intensity, Λ(t) = atb. The parameters in the claim arrival process models
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Figure 4.5: Right tail 5% VaR of warranty cost (on the Y -axis) against T1 (on theX-axis).

Table 4.2: Components of products

Components
Product C1 C2 C3 C4 C5 C6 C7

Product1 X X X X X
Product2 X X X X
Product3 X X X X

and the warranty claim costs of the components are presented in Table 4.3. Then, the

claim arrival processes of the products are NHPPs. As such their intensities are given by

Λ1(t) = a1t
b1 + a2t

b2 + a4t
b4 + a5t

b5 + a6t
b6 , Λ2(t) = a1t

b1 + a3t
b3 + a5t

b5 + a6t
b6 and

Λ3(t) = a1t
b1 + a4t

b4 + a6t
b6 + a7t

b7 , respectively.

According to the above setting, one can generate three data sets, each of which con-

tains claim times and cost of claims of Mk items of product k. These three data sets are

correlated, based on which we can estimate the correlation parameters of our model.

Initially, we investigate the model if T1, T2 and T3 are known. Assume all products

have 2-year (720 days) warranty, i.e. T1 = T2 = T3 = 720. The products’ sales volume

and warranty cost parameter are then given in Table 4.4.

The expected warranty cost of the three products are, E[S1] = 879.73 × (1, 093.6 −

0.2P1), E[S2] = 601.65 × (2, 079.2 − 0.5P2) and E[ω3] = 572.91 × (2, 672 − 0.6P3),
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Figure 4.6: VaR0.05(ω1) (on the Y -axis) against T1 (on the X-axis).

Table 4.3: Parameters of Components

Components a b Cost of each claim
C1 0.0037 1.02 100
C2 0.0037 1.01 120
C3 0.0028 1.02 80
C4 0.0028 1.02 90
C5 0.0024 1.03 65
C6 0.0019 1.03 60
C7 0.0014 1.04 50

respectively. The variances of the warranty costs of the three products are Var[ω1] =

83, 376.02× (1, 093.6−0.2P1), Var[ω2] = 49, 020.67× (2, 079.2−0.5P2) and Var[ω3] =

48, 238.49×(2, 672−0.6P3), respectively. Based on these expected values and variances,

the warranty cost distributions, FS1(z1), FS2(z2) and FS3(z3), can be approximated.

To model the dependence among the products, one may construct a trivariate cop-

ula. In practice, there are many different copula families existing, a suitable copula can

be constructed or selected in two steps. In the first step, referring to the physical situ-

ation of the products or the features of empirical operating, a proper copula family can

be selected. For example, if the dependence is linear, a copula from the elliptical fam-

ily can be selected; and if a rank correlation is found in the data, a copula from the
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Figure 4.7: CVaR1 (on the Y -axis) against P1 (on the X-axis).

Table 4.4: Parameters of 3 products

Parameters of sales volume Parameters of warranty cost
Ak βk ηk µk σk

Product 1 1,000 0.2 0.13 89.36 21.99
Product 2 2,000 0.5 0.11 78.22 15.95
Product 3 2,600 0.6 0.10 79.04 20.20

Archimedean family can be selected. Additionally, the form of marginal distribution, the

tail-dependence, etc. all can influence copula selection. In the second step, the goodness-

of-fit of the initially selected copula can be compared by mean squared errors, Akaike

Information Criterion (AIC) and Bayesian Information Criterion (BIC). The details of

copula selection in warranty data analysis will be investigated in future research.

In this case, the numerical examples are demonstrated by simulation, considering the

non-elliptical marginal distributions and the potential upper tail-dependence, a trivariate

Gumbel copula is simply constructed as an example. Then the joint distribution of the

number of claims is

H(z1, z2, z3) = C(u1, u2, u3; θ1, θ2)

= exp{−[(−lnu1)θ1 + [(−lnu2)θ2 + (−lnu3)θ2 ]
θ1
θ2 ]

1
θ1 }, (4.27)
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Figure 4.8: CVaR0.05(ω1) (on the Y -axis) against P1 (on the X-axis).

where u1 = FN1(z1), u2 = FN2(z2) and u3 = FN3(z3). With simulation, θ1 = 1
1−0.59

≈

2.44 and θ2 = 1
1−0.71

= 3.45.

The density of the joint distribution is given by

h(z1, z2, z3) = c(u1, u2, u3)fN1(z1)fN2(z2)fN3(z3). (4.28)

The cumulative distribution function of the total number of claims of the three products,

N = N1 +N2 +N3, of the manufacturer is given by,

FN (z) =
z∑

z1=0,z2≤z−z1

h(z1, z2, z − z1 − z2) (4.29)

Let P1 = 3, 173.86, P2 = 2, 380.02 and P3 = 2, 513.12, then the maximum expected

profits can be obtained, E[ω1] = 5, 263, 057, E[ω2] = 3, 162, 622 and E[ω3] = 3, 764, 428.

At the same time, the VaR and the CVaR of the total profit Ω can be determined based on

Eqs. (4.27), (4.28), and (4.29). In Table 4.5, the VaR0.05 and the CVaR0.05 of the total

profit Ω with different values of θ2 and θ1 are presented. θ2 represents the correlation

between the profits of Products 2 and 3; θ1 represents the correlation between the profit

of Products 1 and the profit of Products 2 and 3. Larger θ1 and θ2 indicates a stronger

correlation. θ1 = θ2 = 1 implies that the profits of the three products are not correlated.
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According to Table 4.5, the VaR0.05 and the CVaR0.05 of the total profit Ω are increasing

when the correlations among the products becomes stronger, which implies: if a manu-

facturer ignores the dependence among warranty claims of products, it will underestimate

the upcoming total warranty cost. Such ignorance may cause bias in decision making.

Table 4.5: The VaR and CVaR of Ω with different dependences

P1 = 3, 173.86, P2 = 2, 380.02, P3 = 2, 513.12
Copula parameter θ1 = 1, θ2 = 1 θ1 = 2.44, θ2 = 3.25 θ1 = 2.44, θ2 = 4 θ1 = 3, θ2 = 4
VaR0.05(Ω) 4,884,922 4,859,833 4,859,018 4,858,978
CVaR0.05(Ω) 4,873,141 4,855,315 4,854,950 4,853,788

4.5 Summary

In the real world, a manufacturer normally produces many different products that have

common components installed. Consequently, the frequencies of warranty claims of

different products are statistically dependent, which conflicts the fact that the existing

methods in the literature of warranty management solely focus on individual product and

ignore the claim dependence.

This chapter proposes a method to collectively optimise warranty policy for a portfolio

of different products. Using the value-at-rick theory, it attempts to maximise the total

profit of a set of products through optimising the warranty price and the warranty length.

The numerical example shows that the dependence problem can be properly addressed

with the proposed method.

The chapter only investigates the optimisation of warranty policy for a portfolio of

products covered by a one-dimensional warranty policy. That is, the warranty only covers

one dimension, which can be either the usage or the age dimension, but not both. For

some products (see Ye & Murthy (2016), for example), however, a warranty policy may

cover both age and usage (e.g., the warranty of a car may cover both age and mileage),

which is called a two-dimensional warranty policy. Our future work aims to investigate

the optimisation problem for products with a two-dimensional warranty coverage.
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Chapter 5

A comprehensive analysis of warranty
claims and optimal polices

Nowadays many products, such as 3C products (Computer, Communication and Con-

sumer Electronics) and cars, consist of software and hardware. The causes of warranty

claims of such products may be attributed to software specific failures, hardware spe-

cific failures, software-hardware interaction failures and human errors. Apparently, those

causes may be dependent. For example, one may claim warranty due to the malfunction

of the embedded software in a product item and then the entire item may be replaced.

Nevertheless, the existing research on warranty management studies mainly concentrates

on warranty analysis of hardware subsystems, assuming that the warranty claims are sta-

tistically independent of those caused by the failures of software subsystems or human

factors, that is, the interactions between those causes are neglected.

This chapter investigates warranty costs incurred due to those three subsystems with

a main focus on their interactions. It estimates the costs due to different cause, develops

integrated warranty cost models and optimises warranty policies considering the above

possible combinations. Numerical examples are given to illustrate the proposed models.
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5.1 Introduction

A warranty is a contractual obligation incurred by a manufacturer in connection with the

sale of a product. In broad terms, the purpose of warranty is to establish liability in the

event of a premature failure of an item or the inability of the item to perform its intended

function (Blischke & Murthy, 1992). For products sold with warranty, manufacturers bear

additional cost incurred due to warranty servicing. Such cost, often referred to as war-

ranty servicing cost, is generally substantial. For example, according to WarrantyWeek

(2016a), Apple paid $1.25 billion or more for warranty claims during a single quarter in

the second half of 2015; and during the same time period, HP Inc. paid around $300

million per quarter. Therefore, accurately estimating warranty cost is indispensable to the

manufacturers.

Nowadays, many products, such as 3C products (Computer, Communication and Con-

sumer Electronics) and cars consist of two subsystems, hardware and embedded software.

The designed functions of the products are performed based on the reliable collaboration

of their hardware and software subsystems. That is, a hardware failure or/and a soft-

ware failure may cause a warranty claim. For example, the failure of the control software,

which is embedded in the control panel, may cause the entire control panel to be replaced.

It should also noted that warranty claims are not always triggered by the failures

of product items, some users’ behaviours (human factors) may also contribute warranty

claims (Wu, 2011).

5.1.1 Related work
Warranty policy optimisation

In the literature, many methods aiming to optimise the warranty price and the warranty

length of an individual product have been proposed. Fig. 5.1 illustrates the evolution of

the research in warranty policy optimisation, which shows that the research evolves from

simple and unrealistic assumptions to more complex and realistic ones.

At the early stage, many researchers attempt to find the optimal price and warranty
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Figure 5.1: Evolution of warranty policy optimisation

length, assuming that the product is composed of only one component. Some other fac-

tors, such as production rate, market competition and demand, etc., may also be consid-

ered. Ladany & Shore (2007) address a method to determine the optimal warranty period

with considering the products lifetime and market demand. Lin et al. (2009) optimise the

price, warranty length and production rate of a one component system dynamically. Wu

et al. (2009) develop a decision model to determine the optimal price, the length of war-

ranty and the production rate to maximise profit based on the pre-determined life cycle

in a static demand market. Dai et al. (2012) indicate warranty costs are incurred by both

the supplier and the manufacturer, and provide the structural properties of the equilibrium

strategies with considering warranty length in warranty management. Ding et al. (2014)

investigate the relationship between the sales revenues and the repair costs under warranty

coverage with considering the partial information about product reliability. Yazdian et al.

(2016) jointly optimises the acquisition price, re-manufacturing degree, selling price and

the length of warranty of re-manufacturing products under linear and non-linear demand

functions.

The assumption that a product is composed of only one component is too simplistic

and even unrealistic. Researchers then consider the assumption that a product is composed

of multiple components. Huang et al. (2007) develop a model to determine the optimal

product reliability, price and warranty strategy to achieve the maximum total integrated

profit for a general repairable multi-component product sold under a free replacement-

repair warranty strategy. Matis et al. (2008) explore the optimal price and pro rate war-

ranty length for a multi-component product with considering the different repair options

on the components. Ahmadi (2016) addresses an optimal replacement problem for com-

plex multi-component systems by determining an optimal operating time which balances
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income and cost to maximizes the expected profit over a cycle. Chen et al. (2017) seek

to maximize the total profit per item of a multi-component product through optimally

determine the production run length and the warranty period.

All of the work mentioned simply considers hardware subsystems. However, cur-

rently, as many product consists of hardware and software components, the difference

and interplay between these two different types of components should be considered in

warranty policy.

Hardware failures under warranty are usually rectified by the manufacturer, with no

fee or partial fee to the consumer, based on the type of warranty policy used (Murthy &

Djamaludin, 2002).

Software subsystems plays a vitally important role in many products. In this chap-

ter, we chiefly discuss software subsystems embedded in hardware subsystems. In spite

of great advancements in software reliability/quality assurance, potential faults may still

be introduced into the software during its development process (Kimura et al., 1999;

Williams, 2007). Software failures are usually caused by incorrect logic, incorrect state-

ments, incorrect input data, and what not. In order to satisfy the reliability requirement

and/or reduce the operating cost, software testing actions are normally performed to de-

tect and remove software faults before the software is released. Software reliability can

be improved by increasing the testing effort and by correcting detected faults. There-

fore, in terms of software management, the determination of the optimal software release

time, i.e. the optimal testing time, may be an important decision problem, which is called

the optimal software release problem in the literature related to software operation. The

reader is referred to Kimura et al. (1999) for more details on this problem.

In addition to hardware and software subsystems, product users, may be considered as

another essential sub-system in many situations. Warranty claims are not always triggered

by hardware or software failures, they may also be due to human factors. According

to Wu (2011), there are at least two types of human factors in the context of warranty

management: (1) consumers might not be bothered to claim warranty for failed items that

are still under warranty, which is called failed-but-not-reported (FBNR) phenomenon; (2)
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consumers may conduct a fraudulent warranty claim, or claim failure due to misuse or

many other human factors, which is referred to as non-failed but reported (NFBR) claims.

The first type of human factor relaxes a common assumption in warranty literature — all

failures may cause warranty claims whereas the second type relaxes the assumption — all

claims reported are due to product failures. Furthermore, after the updates of the software

released by the manufacturer, whether and when to download and install the updates are

decided by the customers. This implies the software update adoption rate, which can

affect the software’s reliability, may also be influenced by human factors.

Apparently, a product with lower price can enhance its sales volume; but reduce the

unit profit of the product. Regarding the effect of warranty on manufacturer’s profit, Wu

et al. (2009) state that, in practice, consumers may predict the quality of a product based

on its warranty, and a satisfactory warranty will certainly enhance consumers’ purchase

willingness, which is the well-known warranty’s signalling theory. Products with longer

warranty length may increase the total warranty cost to the manufacturer (Dai et al., 2012).

Hence, it is important to trade-off the price and warranty length of a product in practice.

According to the literature, the failures of a product item consisting of hardware and

software subsystems can be divided into three categories: hardware specific, software

specific and hardware-software interaction failures (Fernandez & Stol, 2017; Roy et al.,

2015; Teng et al., 2006). In order to estimate the warranty cost more accurately, this

chapter proposes a new model that considers hardware and software failures of a product

and even its user’s behaviour integrally.

The sales volume

The sales volume of a product is affected by two critical marketing variables: the selling

price and the warranty length (Chen et al., 2017). For example, these two variables, selling

price P and warranty length T , can influence the sales volume, M , and profit, ω. The

sales volume of a product is negatively related to its selling price and positively related to

its warranty length. The profit of product k in this chapter is the revenue deducting the

warranty cost, i.e. ω = MP − S(T ), where S(T ) is the aggregated warranty cost of the
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product within T .

In the literature, the sales volume M , is expressed by a function of product price P

and length of warranty T in different forms. For simplicity, a linearity form, introduced

by Yazdian et al. (2016), is used in this chapter. The sales volume is defined by

M = A− βP + ηT, (5.1)

where A(> 0) is a constant relating to the market size of the product, and β(> 0) and

η(> 0) are the price and length of warranty elasticities, respectively.

5.1.2 Novelty and contributions

The existing research on warranty management focuses on hardware subsystems (Xie &

Ye, 2016; Ye & Murthy, 2016), software subsystems (Pham & Zhang, 1999) or human

factors (Wu, 2011) separately. Little research, however, has been devoted to investigate

the warranty claims due to the interplay of those three sub-subsystems.

This is the first research that takes a holistic consideration of warranty claims caused

by different factors: hardware failure, software failure and user behaviours. The interplays

between hardware and software failures are investigated for five different aspects.

This chapter has important managerial implications. In warranty management, opti-

mising warranty policy and forecasting warranty claims are two of the most important

activities. This requires analysts to understand the interplay of different warranty claim

causes in order to make a precise forecasting and warranty optimisation. The methods

proposed in this chapter, offers a better way than existing ones. The methods therefore

advance the state-of-the-art in warranty claim forecasting and policy optimisation, and of-

fer warranty managers theoretically established methods that can be used in their projects.

5.1.3 Summary

The rest part of this chapter is structured as follows. Section 5.2 gives assumptions and

notations that will be used in this chapter. Section 5.3 categories the routes of warranty

claims into different situations, derives warranty cost models assuming that warranty
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claims due to hardware and software failures are statistically independent, and optimises

the warranty policies through maximising the expected total profit from a manufacturer

perspective. Section 5.4 derives cost models when the interplay of different subsystems

is considered. Section 5.5 integrates the cost models derived from its preceding sections.

Section 5.6 gives numerical examples illustrating the derived models. Section 5.7 con-

cludes the chapter.

5.2 Assumptions

In this chapter, we analyse warranty cost from a manufacturer’s perspective. The follow-

ing assumptions are made:

(i) Products are new at t = 0 when they are sold.

(ii) Non-renewing free replacement warranty (NFRW) policy is offered to protect hard-

ware failures. Under this policy, the manufacturer provides its customers with repair

or replacement on hardware failures at no cost within the warranty period, the origi-

nal warranty is not altered upon a failed item, and the manufacturer only guarantees

satisfactory service on the item within the original warranty period.

(iii) Hardware failures require rectification to restore the products to an operating state.

(iv) Repair on hardware failures is assumed to be minimal repair, i.e. an item with a

hardware failure is restored to the operating state that is exactly before it failed. The

repair time is assumed so short that it is negligible.

(v) Software failures can be fixed through the removal of problems by debugging errors.

(vi) When a software failure occurs, the manufacturer can detect the fault which and

remove it, failures due to this error may not occur again. No new fault is introduced

in this process.

(vii) An individual consumer makes at most one non-failed but reported (NFBR) claim.

Upon a NFBR claim, only administration cost is incurred to the manufacturer.
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(viii) The number of claims follows the non-homogeneous Poisson process (NHPP).

(ix) The hardware and software of a product have the same warranty period.

5.3 Independent profit analysis

5.3.1 Possible warranty claim routes

A typical warranty claim process is shown in Figure 5.2. This process starts from the time

when the item is thought to be failed and ends in five different routes.

Route 1 If a user reports a failure to the manufacturer (or the warranty servicing agent of

her area), and the failure is diagnosed as a hardware failure covered by the warranty

policy, the manufacturer may offer the user free repair or replacement of the item.

Then, the process ends (End 1 in Figure 5.2). The cost of the manufacturer on this

event consists of the hardware repair/replacement cost and the related management

cost.

Route 2 If a user does not report a failure to the manufacturer, this process ends (End 2

in Figure 5.2). This phenomenon is called as the failed-but-not-reported (FBNR)

event, which may be due to various reasons, for example, an item is not expensive

so that the user is not bothered to claim warranty (Wu, 2011). This event does not

incur any cost to the manufacturer.

Route 3 If a user reports a failure to the manufacturer, and the failure is not covered

by the warranty policy or the item is not really failed, this process ends (End 3 in

Figure 5.2). This phenomenon is named as not-failed-but-reported (NFBR) claim,

which may be due to misuse, fraud, etc (Wu, 2011). The manufacturer may pay the

related management cost, such as diagnosis fee, caused by this event.

Route 4 If a user reports a failure to the manufacturer, and the failure is diagnosed as

a software failure covered by the warranty policy, the manufacturer should offer

the user free repair of the software system. If the software is not connected to the

internet, this process ends (End 4 in Figure 5.2). The cost of the manufacturer
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on this event consists of the software debugging and repairing cost and the related

management cost.

Route 5 If a user reports a failure to the manufacturer, and the failure is diagnosed as a

software failure covered by the warranty policy, the manufacturer should offer the

user free repair of the software system. If the software is connected to the internet,

the manufacturer may develop and release the related update/patch on-line. Then,

this process ends (End 5 in Figure 5.2). The cost of the manufacturer on this event

consists of the software debugging and repairing cost, the update/patch developing

and releasing cost and the related management cost.

Figure 5.2: Warranty claim process

The above five routes and their associated costs should be considered by the manufacturer

to support precise warranty management. Sometimes, Route 3 and Route 4 or Route

5 may occur concurrently, because some interactions may exist between hardware and

software subsystems. This chapter aims to optimise warranty policies comprehensively
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to maximise the manufacturer’s profit with considering the issues related to the hardware,

software and user of a products.

5.3.2 Warranty claims due to hardware failure

A hardware failure during the operating phase may be rectified through repair or replace-

ment, and the warranty may be non-renewing or renewing. More specifically, hardware

failures under warranty are usually rectified by the manufacturer, with no fee or partial

fee to the consumer, based on the type of warranty policy used (Murthy & Djamaludin,

2002).

Suppose the manufacturer takes non-renewing warranty policy, minimal repair on

hardware failures is performed and the time on repair is negligible. Thus, the arrival pro-

cess of warranty claims due to hardware failures following a Non-Homogeneous Poisson

Process (NHPP). The expected warranty cost on pure hardware failures is

E[Ch(T )] = ch1Λ1(T ) = ch1

∫ T

0

λ1(t)dt, (5.2)

where T is the length of warranty, ch1 is the expected cost of each warranty claim due to

hardware failure.

Assuming the NHPP follows a power law intensity in this chapter, the intensity and

cumulative intensity functions of a product are λ1(t) = Ma1b1t
b1−1 and Λ1(t) = Ma1t

b1 ,

where M is the sales volume of the product, a1 > 0 indicates the initial intensity and

b1 > 1 means that the hardware reliability is decreasing over time.

According to Eq. (5.2)), the expected profit of a hardware product is

ωh = MP − E[Ch(T )] = (A− βP + ηT )(P − ch1a1T
b1). (5.3)

Then we have the following result.

Proposition 12. If P (or T ) is decision variable and T (or P ) is known, the optimal

solution, which maximizes the expected profit of a hardware product ωh, exists.

Proof. The expected profit of a hardware product is

ωh = MP − E[Ch(T )] = (A− βP + ηT )(P − ch1a1T
b1).
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If T is known, the first order derivatives of ωh is dωh
dP

= A− 2βP + ηT + βch1a1T
b1 ,

and the second order derivatives of ωh is d2ωh
dP 2 = −2β < 0. Then, ωh is maximised at

P = A+ηT+βch1a1T
b1

2β
.

If P is known, the first order derivatives of ωh is dωh
dT

= −ηch1a1(b1 + 1)T b1 + (βP −

A)ch1a1b1T
b1−1 + ηP, and the second order derivatives of ωh is

d2ωh
dT 2

= −ηch1a1(b1 + 1)b1T
b1−1 + (βP − A)ch1a1b1(b1 − 1)T b1−2.

Because M = A− βP + ηT ≥ 0, T ≥ 0 and b1 > 1, then, d
2ωh
dT 2 < 0 and the optimal

solution of T , maximising ωh, exists.

2

5.3.3 Warranty claims due to software failure

Potential faults or causes of failures are introduced into the software during its develop-

ment process. Once a fault is diagnosed and removed, some of the software’s errors may

be debugged and the total number of potential faults may be reduced, which results in a

growing reliability of software. In recent times, there is a trend that software patches are

provided during early software release and updating. To satisfy customers concern of re-

liable software, manufacturers may provide warranty on the embedded software. Within

the warranty period, the manufacturer provides assurance to the customers that the soft-

ware may work properly and if any defect is found, the manufacturer may either repair

or replace the software without charging the customer (Kansal et al., 2016; Singh et al.,

2015).

The software warranty policies can be divided into two types:

Type I The consumer is entitled to return the software, and the manufacturer should pro-

vide support to bring the software back up to its operating mode. Every product is

repaired independently under this type of warranty policy.

Type II The manufacturers may collect error reports via the internet, and then debug the

errors and release updates or patches online according to the reports. All consumers

who buy the products can download and install the updates free of charge.
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Denote a counting process representing the cumulative number of software failures

detected at time t by {N(t), t ≥ 0}. The software reliability growth model (SRGM)

based on the NHPP can be formulated as: P (N(t) = n) = Λ2(t)n

n!
exp[−Λ2(t)], where

Λ2(t) =
∫ t

0
λ2(t)dt is the cumulative intensity.

If the manufacturer takes Type I software warranty policy, the expected warranty cost

on software failures is

E[Cs1(T )] = cs1Λ2(T ) = cs1

∫ T

0

λ2(t)dt, (5.4)

where cs1 is the expected warranty cost of each claim on software failure under Type I

software warranty policy, and the intensity, λ2(t) = Ma2b2e
−b2t, and cumulative intensity,

Λ2(t) = Ma2(1 − e−b2t), where a2, b2 > 0, are constructed according to the most well-

known NHPP-based SRGM, Goel-Okumoto (G-O) model (Wang et al., 2015).

If the manufacturer takes Type II software warranty policy, to model the warranty cost

we have the following assumptions:

(i) if a software system failure occurs before the corresponding update is executed, the

software is brought back to the operating mode as the same version, i.e. the error

isn’t removed; and

(ii) the manufacturer releases the updates/ patches based on a pre-specified time sched-

ule, for example, releasing updates online in every 6 months.

Under this type of warranty policy, the expected warranty cost on software failures is:

E[Cs2(T )] = ncs2 + cs1

n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+ cs1

∫ T

τn

λ2,n(t)dt, (5.5)

where n = b T
∆τ
c is the number of releasing patches; M is the number of product sold at

t = 0; τi is the time of ith patches/updates release under time-based policy, τi−τi−1 = ∆τ

and τ0 = 0; λ2,i is the failures intensity after ith patches/updates released, λ2,i = θλ2,i−1

and λ2,0(t) = λ2(t); and cs2 is the expected total cost of releasing an update. In this

model, ∆τ is a pre-specified time length, such as 1 month, 6 months, etc.; and θ is the

expected percentage of software faults removed within time length ∆τ .
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Regarding the expected profit of software product, under Type I software warranty,

according to Eq. (5.4)), the expected profit of a software product is

ωs1 = MP − E[Cs1(T )] = (A− βP + ηT )(P − cs1a2(1− e−b2T )). (5.6)

If T is known as a constant, the right hand side of Eq. (5.6) becomes to a parabolic

function. On the other hand, if P is known as a constant, the first order derivative of ωs1

on T is dωs1
dT

= cs1a2e
−b2T (Ab2 + βAb2P + η− ηTb2) + ηP − ηcs1a2. Thus, we have the

following result.

Proposition 13. (1) If P is decision variable and T is known, the optimal solution, which

maximizes the expected profit of a software product ωs1 under Type I software warranty,

exists. (2) If T is decision variable and P is known, the optimal solution, which maximizes

the expected profit of a software product ωs1 under Type I software warranty, does not

exist.

Proof. The expected profit of a software product is

ωs1 = MP − E[Cs1(T )] = (A− βP + ηT )(P − cs1a2(1− e−b2T )),

If T is known, the above function becomes to a parabolic function, it means the opti-

mal P , which maximises ωs1, exists.

If P is known, the first order derivative of ωs1 on T is dωs1
dT

= cs1a2e
−b2T (Ab2 +

βAb2P +η−ηTb2)+ηP −ηcs1a2, then the second order derivative of ωs1 on T is d2ωs1
dT 2 =

b2cs1a2e
−b2T [b2(A− βP + ηT )− 2η] > 0, hence, the optimal T , which maximises ωs1,

does not exist.

2

When the manufacturer takes Type II software warranty, according to Eq. (5.5)), the

expected profit of a software product is

ωs2 = MP − E[Cs2(T )]

= MP − [ncs2 + cs1

n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+ cs1

∫ T

τn

λ2,n(t)dt], (5.7)

There are three variables in this situation, which are: product price P , warranty length T

and updating interval ∆τ . Then we have the following two propositions.
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Proposition 14. If ∆τ is pre-specified, P is decision variable and T is known, the optimal

solution, which maximizes the expected profit of a software product ωs2 under Type II

software warranty, exists.

Proof. If the manufacturer takes Type II software warranty, according to Eq. (5.5)), the

expected profit of a software product is

ωs2 = MP − [ncs2 + cs1

n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+ cs1

∫ T

τn

λ2,n(t)dt].

If ∆τ = τi − τi−1 and T are known, the number of release n is also known, then the

expected profit is

ωs2 = MP −

[
ncs2 + cs1

n∑
i=1

θi−1 [Λ2(τi)− Λ2(τi−1)] + cs1θ
n [Λ2(T )− Λ2(τn)]

]
;

it is equal to

ωs2 = (A− βP + ηT )(P −B)− ncs2,

where B = cs1a2

∑n
i=1 θ

i−1(e−b2τi−1 − e−b2τi) + cs1a2θ
n(e−b2τn − e−b2T ) is a constant.

Obviously, the above function also is a parabolic function, then the optimal P , which

maximises ωs2, exists.

2

Proposition 15. If both P and T are known and ∆τ is a decision variable, the optimal

solution, which maximizes the expected profit of a software product ωs2 under Type II

software warranty, exists.

Proof. If the manufacturer takes Type II software warranty, according to Eq. (5.5)), the

expected profit of a software product is

ωs2 = MP −

[
ncs2 + cs1

n∑
i=1

θi−1 [Λ2(τi)− Λ2(τi−1)] + cs1θ
n [Λ2(T )− Λ2(τn)]

]
.

If P and T are known, this function is equal to

ωs2 = (A− βP + ηT )(P − cs1a2D)− ncs2,

where D =
∑n

i=1 θ
i−1(e−b2τi−1 − e−b2τi) + θn(e−b2τn − e−b2T ) and −ncs2 are the non-

constant terms.
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As n = b T
∆τ
c is an integer greater than 0, and ωs2 decreases with n, then, when n = 1

t, ωs2 can be maximised. When n = 1, T
2
≤ ∆τ ≤ T . ThenD = (1−e−b2τ1)+θ(e−b2τ1−

e−b2T ), a local optimal ∆τ , which maximises ωs2, exists.

2

5.3.4 Warranty claims due to users

The NFBR and FBNR events should be considered in warranty cost analysis, however

there is another human factor, the adoption rate, which should not be ignored either.

The adoption rate is the percentage of the users who have downloaded and installed

the updates/patches of the software embedded in the product. Sometimes users may not

download and install software patches/updates immediately after they are released. The

adoption rate may be a function of time, for example, the adoption rate of the software

embedded iPhone may increase over time.

According to Wu (2011), it is reasonable to assume that a consumer makes at most

one NFBR claim. Wu (2011) proposes three models to estimate the expected warranty

cost when both NFBR claims and FBNR phenomenon are considered. Manufacturers

responses to NFBR claims may be different: (1) some manufacturers may cease the war-

ranty contract for consumers with NFBR claims, and (2) some may not cease the warranty

contract, as it is not easy to tell if a NFBR claim is intentionally or unintentionally com-

mitted. However, both responses incur costs to the manufacturers, and therefore should

be considered in estimating warranty cost. Following Wu (2011), we assume that time to

a NFBR claims is a random variable Z with distribution function H1(t) = 1− e−(t/α1)α2 ,

α1, α2 > 0. Then, we consider the following two scenarios.

(i) A NFBR claim may not cause warranty to be ceased, the manufacturer may check

and return the item. Then the expected warranty cost is given by

E[Chu1(T )] = Mchu1H1(T ), (5.8)

where chu1 is the administration cost per NFBR claim.
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(ii) A NFBR claim may cause warranty to be ceased, the manufacturer may fix and

return the item. Once the warranty ceases, there are no further costs to the manufac-

turer. Then the expected warranty cost is given by

E[Chu2(T )] = Mchu2H1(T ), (5.9)

where chu2 is the expected cost on fixing the cause of an NFBR claim.

Regarding the FBNR phenomenon, the consumers’ willingness to claim warranty may

diminish with time, then the probability of consumers being inclined to claim warranty is

assumed to be

q1(t) = e−γ1−γ2t, (5.10)

which is called a warranty execution function (WEF) (Wu, 2011), where γ1, γ2 > 0.

Regarding the effects of delayed updating behaviour on warranty cost, the proportion

of users installing the update, i.e. adoption rate, q2(∆t), increases with time after releas-

ing. ∆t = t − τi, where t is the current time and τi is the time when the ith update

is released. The delayed updating behaviour does not incur new cost directly, but it can

affect the cost E[Cs2(T )].

5.4 Comprehensive profit analysis and optimisation

In the literature, most of the researchers use the Markov process to model the interaction

between hardware and software based on the physic structures of products (Roy et al.,

2015; Teng et al., 2006), in this chapter, briefly, the hardware-software interaction failures

are modelled under two different situations.

(i) the interaction between hardware and software failures can be categorised into two

categories, hardware-failure-caused software failure and software-failure-caused hard-

ware failure; and

(ii) the causes of hardware-software interaction failures can not be determined.

Below we discuss the above two situations.
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5.4.1 The interplay between software and hardware

In this section, the cost of the ith warranty claim due to hardware failure is denoted by ch,i,

with E(ch,i) = ch1, and the cost of jth warranty claim due to software failure is denoted

by cs,j , with E(cs,j) = cs1, where ch,i and cs,j follow non-negative continuous probability

distributions. In practice, a product may be composed of many different hardware sub-

systems, which may be controlled by one or more software subsystems. To investigate

the interplay between software and hardware subsystems, we consider the following 5

scenarios.

Scenario 0 The occurrences of hardware and software failures are statistically indepen-

dent. If the software system cannot be updated online, the total warranty cost of m

sold items of a product during the warranty period is

C01(T ) =

Nh(T )∑
i=1

ch,i +

Ns1(T )∑
j=1

cs,j, (5.11)

where Nh(T ) is the total number of warranty claims of M items due to hardware

failures during the warranty period T , and Ns1(T ) is the total number of warranty

claims ofM items due to software failures during the warranty period T . Nh(T ) and

Ns1(T ) follow NHPPs with cumulative intensities Λ1(T ) and Λ2(T ), respectively.

The expected total cost in this situation is

E[C01(T )] = ch1Λ1(T ) + cs1Λ2(T )

= Mch1a1T
b1 +Mcs1a2(1− e−b2T ), (5.12)

and the expected total profit in this scenario is

ω01 = MP − E[C01(T )]

= M
[
P − ch1a1T

b1 − cs1a2(1− e−b2T )
]
. (5.13)

Assume that the software can be updated online. Once a fault is reported, confirmed

and repaired, the software that is embedded all of the sold items of this type of
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product will be repaired. Then, the total warranty cost of the of a product during

the warranty period is

C02(T ) =

Nh(T )∑
i=1

ch,i +

Ns2(T )∑
j=1

cs,j +
n∑
k=1

cu,k, (5.14)

where n is the number of software updates during the warranty period, and cu,k

is the cost of the kth debugging and updating, E(cu,k) = cs2. Ns2(T ) is more

complicated than Ns1(T ) because the intensity function of Ns2(T ) is influenced by

software updating activities.

E[Ns2(T )] =
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+

∫ T

τn

λ2,n(t)dt, (5.15)

The parameters in Eq. (5.15) are defined the same as those in Eq. (5.5)). Then the

expected total cost is

E[C02(T )] = Mch1a1T
b1 + ncs2

+cs1

[
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+

∫ T

τn

λ2,n(t)dt

]
, (5.16)

and the expected total profit in this scenario is

ω02 = MP − E[C02(T )]. (5.17)

Scenario 1 The occurrence of hardware and software failures are statistical dependent;

but no failure is due to the physical interaction of the hardware-software subsys-

tems. A software failure can lead to hardware failures of the M sold items with

probability p(t) at time t. If the software cannot be updated online, the total war-

ranty cost of the M sold items of a product during the warranty period is given

by

C11(T ) =

Nhs1(T )∑
i=1

ch,i +

Ns1(T )∑
j=1

cs,j, (5.18)

where Nhs1(T ) = Nh(T ) + Ns1(T )
∫ T

0
p(t)dt. Then, the expected total warranty

cost is

E[C11(T )] = Mch1

[
a1T

b1 + a2(1− e−b2T )

∫ T

0

p(t)dt

]
+Mcs1a2(1− e−b2T ). (5.19)
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Then the expected total profit is

ω11 = MP − E[C11(T )]

= MP −Mch1

[
a1T

b1 + a2(1− e−b2T )

∫ T

0

p(t)dt

]
−Mcs1a2(1− e−b2T ). (5.20)

If the software can be updated online, once a fault is reported, confirmed and re-

paired, all of the sold items’ embedded software will be repaired. Then, the total

warranty cost of the of a product during the warranty period is

C12(T ) =

Nhs2(T )∑
i=1

ch,i +

Ns2(T )∑
j=1

cs,j +
n∑
k=1

cu,k, (5.21)

where Nhs2(T ) = Nh(T ) + Ns2(T )
∫ T

0
p(t)dt. Then, the expected total warranty

cost is

E[C12(T )] = Mch1a1T
b1 + ch1

[
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+

∫ T

τn

λ2,n(t)dt

]∫ T

0

p(t)dt

+cs1

[
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+

∫ T

τn

λ2,n(t)dt

]
+ ncs2, (5.22)

and the expected total profit in this scenario is

ω12 = MP − E[C12(T )]. (5.23)

The updating time interval, ∆τ , is pre-specified and decided by the manufacturer.

Scenario 2 The occurrence of hardware and software failures are statistical dependent;

and the failures of the product are not only caused by pure hardware/software fac-

tors but by some design problems related to hardware-software interaction. In this

scenario, repairing the software is impossible or the software repairing cost is huge,

the manufacturer may decide to replace the hardware subsystems of all items to

reduce the failure rate of the product. Then, the total warranty cost of the M sold

items of a product during the warranty period is

C21(T ) =

Nh(T )∑
i=1

ch,i +

Nhr(T )∑
j=1

Mchr,j, (5.24)
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where chr,j is the cost of replace hardware components for the jth software-caused

hardware failure, E(chr,j) = ch2, andNhr(T ) = Ns(T )
∫ T

0
p(t)dt = Λ2(T )

∫ T
0
p(t)dt.

Then, the expected total warranty cost is

E[C21(T ) = M
{
ch1a1T

b1 +Mch2a2(1− e−b2T )
}
. (5.25)

The expected total profit is

ω21 = M
{
P − ch1a1T

b1 −Mch2a2(1− e−b2T )
}
. (5.26)

Scenario 3 The hardware and software are interplaying; and the failures of the product

are not only caused by pure hardware/software factors but by some problems related

to hardware-software interplay (eg. bad design). Different from Scenario 2, in this

scenario, it is impossible to replace a hardware system. The manufacturer may

decide to develop/improve the software to reduce the failure rate of the product.

Then, if the product cannot be updated online, the total warranty cost of m sold

items of a product during the warranty period is

C31(T ) =

Nhs3(T )∑
i=1

cs,i, (5.27)

where Nhs3(T ) = Nh(T ) +Ns1(T ) and E(cs,i) = cs1.

Then the expected cost is

E[C31] = cs3M
[
a1T

b1 + a2(1− e−b2T )
]
, (5.28)

and the expected total profit is

ω31 = M
{
P − cs3

[
a1T

b1 + a2(1− e−b2T )
]}
. (5.29)

If the product can be updated online, then the total warranty cost is

C32(T ) =

Nh(T )∑
i=1

cu1,i +

Ns2(T )∑
j=1

cs,j +
n∑
k=1

cu,k, (5.30)

where cu1,i is the cost of develop software to resolve the ith hardware failure,

Nhs3(T ) = Nh(T ) +Ns1(T ) and E(cu1,i) = cs3.
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Then, the expected total warranty cost is

E[C32(T )] = Mcs3a1T
b1 + cs1

[
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+

∫ T

τn

λ2,n(t)dt

]
+ ncs2,

(5.31)

and the expected total profit in this scenario is

ω32 = MP − E[C32(T )]. (5.32)

The updating time interval, ∆τ , is pre-specified and decided by the manufacturer.

Scenarios 4 This scenarios describes a potential situation in the near future. The Arti-

ficial Intelligence (AI) technology allows software subsystems themselves to pro-

gram automatically to deal with the dynamic state of the product, which implies that

faults may be introduced into the software not only during the developing process

before released but also during the operating phase. Then, the total warranty cost

in this scenarios is

C41(T ) =

Nhs1(T )∑
i=1

ch,i +

Nhs4(T )∑
j=1

cs,j, (5.33)

whereNhs1(T ) = Nh(T )+Ns1(T )
∫ T

0
p(t)dt andNhs4(T ) = Nh(T )

∫ T
0
q(t,M)dt+

Ns1(T ).
∫ T

0
q(t,M)dt is the probability that a hardware failure leads to software

failure at time T . Then the expected cost is

E[C41(T )] = Mch

[
a1T

b1 + a2(1− e−b2T )

∫ T

0

p(t)dt

]
+Mcs1

[
a1T

b1

∫ T

0

q(t)dt+ a2(1− e−b2T )

]
, (5.34)

and the expected total profit in this scenario is

ω41 = MP − E[C41(T )]. (5.35)

According to Proposition 12 and Proposition 13, in all of the above 5 scenarios, we

have the following two propositions.

Proposition 16. If the software cannot be updated online, P is decision variable and T

is known, the optimal solution, which maximizes the expected profit of the product, exists.
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Proposition 17. If the software cannot be updated online, P is decision variable and

T and ∆τ are known, the optimal solution, which maximizes the expected profit of the

product, exists. If ∆τ is decision variable and T and P are known, the optimal solution,

which maximizes the expected profit of the product, exists.

5.5 Integrated warranty models

The integrated warranty models are built in three situations. In the first situation, the

warranty claims of a hardware product and the human factors are integrated. In the second

situation, the warranty claims of a software product and the human factors are integrated.

In the third situation, the warranty claims of a product consisting of hardware and software

and the human factors are integrated.

5.5.1 Hardware warranty with considering human factors

If a product is pure hardware, the NFBR and FBNR phenomena can influence the total

warranty cost of it. Routes 1, 2 and 3 of warranty claim process discussed in Section 3.1

can occur.

If the NFBR may not cause warranty to be ceased, according to Eq. (5.2)), (5.8 and

(5.10), the expected total cost is

E[Cint11(T )] = E[Ch(T )]q1(T ) + E[Chu1(T )]

= Mch1a1T
b1e−γ1−γ2T +Mchu1(1− e−(t/α1)α2 ). (5.36)

Then, the expected profit of the product is

ωint11 = MP − E[Cint11(T )]

= (A− βP + ηT )(P − ch1a1T
b1e−γ1−γ2T − chu1(1− e−(t/α1)α2 ). (5.37)

If the NFBR may cause warranty to be ceased, according to Eq. (5.2)), (5.9 and (5.10),
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the expected total cost is

E[Cint12(T )] = [E[Ch(T )]q1(T ) +Mchu2]H1(T ) + E[Ch(T )]q1(T )(1−H1(T ))

= M
[
ch1a1T

b1e−γ1−γ2T + chu2

]
(1− e−(t/α1)α2 )

+Mch1a1T
b1e−γ1−γ2T e−(t/α1)α2 . (5.38)

Then, the expected profit of the product is

ωint12 = MP − E[Cint12(T )]

= MP −M
[
ch1a1T

b1e−γ1−γ2T + chu2

]
(1− e−(t/α1)α2 )

+ch1a1MT b1e−γ1−γ2T e−(t/α1)α2 ). (5.39)

5.5.2 Software warranty with considering human factors

If only the software warranty is considered and the software cannot be updated online, the

NFBR and FBNR phenomena may influence the total warranty cost of it, but the delayed

updating is not applied on this situation. Routes 1, 2 and 4 of warranty claim process

discussed in Section 3.1 can occur.

If the NFBR may not cause warranty to be ceased, according to Eq. (5.4)), (5.8 and

(5.10), the expected total cost is

E[Cint21(T )] = E[Cs1(T )]q1(T ) + E[Chu1(T )]

= Mcs1a2(1− e−b2T )e−γ1−γ2T +Mchu1(1− e−(t/α1)α2 ). (5.40)

Then, the expected profit of the product is

ωint21 = MP − E[Cint21(T )]

= M(P − cs1a2(1− e−b2T )e−γ1−γ2T − chu1(1− e−(t/α1)α2 )). (5.41)

If the NFBR may cause warranty to be ceased, according to Eq. (5.4)), (5.9 and (5.10),

the expected total cost is

E[Cint22(T )] = [E[Cs1(T )]q1(T ) +Mchu2]H1(T ) + E[Cs1(T )]q1(T )(1−H1(T ))

= M
[
cs1a2(1− e−b2T )e−γ1−γ2T + chu2

]
(1− e−(t/α1)α2 )

+Mcs1a2(1− e−b2T )e−γ1−γ2T e−(t/α1)α2 . (5.42)
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Then, the expected profit of the product is

ωint22 = MP − E[Cint22(T )]

= MP −M
[
cs1a2(1− e−b2T )e−γ1−γ2T + chu2

]
(1− e−(t/α1)α2 )

−Mcs1a2(1− e−b2T )e−γ1−γ2T e−(t/α1)α2 ). (5.43)

If the software can be updated online, the NFBR, FBNR and delayed updating phe-

nomena all can influence the total warranty cost of it. Routes 1, 2 and 5 of warranty claim

process discussed in Section 3.1 can occur.

Assume the proportion of users installed the update, i.e. adoption rate, is q2(∆t) =

1− e−d∆τ where d > 0, and the FBNR is considered then Eq. (5.5) can be modified to

E[C ′s2(T )] = ncs2+q2(∆τ)cs1

n∑
i=1

q1(τi)

∫ τi

τi−1

λ2,i−1(t)dt+q2(T−τn)q1(T )cs1

∫ T

τn

λ2,n(t)dt.

(5.44)

Take the NFBR and FBNR into account, if the NFBR may not cause warranty to be

ceased, according to Eq. (5.8)), (5.10 and (5.44), the expected total cost is

E[Cint23(T )] = E[C ′s2(T )] + E[Chu1(T )], (5.45)

then, the expected profit of the product is

ωint23 = MP − E[Cint23(T )]

= MP − ncs2 − q1(∆τ)q2(∆τ)cs1

n∑
i=1

θi−1 [Λ2(τi)− Λ2(τi−1)]

−q1(T − τn)q2(T − τn)cs1θ
n [Λ2(T )− Λ2(τn)]

−Mchu1(1− e−(t/α1)α2 ). (5.46)

If the NFBR may cause warranty to be ceased, according to Eq. (5.9)), (5.10 and

(5.44), the expected total cost is

E[Cint24(T )] = (E[C ′s2(T )] +Mchu2)H1(T ) + E[C ′s2(T )](1−H1(T )), (5.47)

then, the expected profit of the product is

ωint24 = MP − E[Cint24(T )]. (5.48)

118



5.5.3 Hybrid warranty with considering human factors

If a product is composed of hardware and software subsystems, the warranty cost of such

product is influenced by the warranty claims on both hardware and software failures,

the three human factors and the interplay between hardware and software subsystems.

In Section 4.1, 5 different scenarios of hardware and software subsystems interplay are

discussed, in this section, the hybrid model is constructed based on the interplay described

in Scenario 1, i.e. a software failure can lead to hardware failure with probability p(t) at

time t within the M sold items of a product.

If the software cannot be updated online, the NFBR and FBNR phenomenon may

affect the total warranty cost, but the delayed updating is not applied in this situation. If

the NFBR may not cause warranty to be ceased, according to Eq. (5.8)), (5.10 and (5.19),

the expected total warranty cost is

E[Cint31(T )] = E[C11(T )]q1(T ) + E[Chu1(T )]

= Mq1(T )

{
ch1

[
a1T

b1 + a2(1− e−b2T )

∫ T

0

p(t)dt

]
+ cs1a2(1− e−b2T )

}
+Mchu1(1− e−(T/α1)α2 ). (5.49)

Then the expected total profit is

ωint31 = MP − E[Cint31(T )]. (5.50)

If the NFBR may cause warranty to be ceased, according to Eq. (5.9)), (5.10 and (5.19),

the expected total warranty cost is

E[Cint32(T )] = [E[C11(T )]q1(T ) +Mchu2]H1(T ) + E[C11(T )]q1(T )(1−H1(T )).

(5.51)

Then the expected total profit is

ωint32 = MP − E[Cint32(T )]. (5.52)

If the software can be updated online, the delayed updating effect is applied. Then,
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the expected warranty cost considering delayed updating and FBNR is

E[C ′12(T )] = Mq1(T )ch1a1T
b1 + ncs2

+ch1

[
q1(∆τ)q2(∆τ)

n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt

+q1(T − τn)q2(T − τn)

∫ T

τn

λ2,n(t)dt

] ∫ T

0

p(t)dt

+cs1

[
q1(∆τ)q2(∆τ)

n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt

+q1(T − τn)q2(T − τn)

∫ T

τn

λ2,n(t)dt

]
. (5.53)

If the NFBR may not cause warranty to be ceased, according to Eq. (5.8)), (5.10 and

(5.53), the expected total warranty cost is

E[Cint33(T )] = E[C ′12(T )] + E[Chu1(T )], (5.54)

and the expected total profit in this scenario is

ωint33 = MP − E[Cint33(T )]. (5.55)

If the NFBR may cause warranty to be ceased, according to Eq. (5.9)), (5.10 and (5.53),

the expected total warranty cost is

E[Cint34(T )] = [E[C ′12(T )] +Mchu2]H1(T ) + E[C ′12(T )](1−H1(T )), (5.56)

and the expected total profit is

ωint34 = MP − E[Cint34(T )]. (5.57)

The effect of the variables P and T on then expected profits ωint31, ωint32, ωint33 and ωint34

are explored by the corresponding numerical examples.

5.6 Numeric examples

In this section, the models of product profit considering warranty costs due to hardware

failures and software failure, and the integrated models are illustrated through numeric

examples. The sales volume parameters are set: market size parameter, A = 1000, coef-

ficient of product price, β = 0.1, and coefficient of warranty length, η = 21.
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5.6.1 The expected total profit considering hardware failures and
software failures independently

If the hardware is under a non-renewing warranty, the values of the parameters of Eq.

(5.3) are set: Expected cost per hardware claim ch1 = 100, Power law parameter, a1 =

0.1, Power law parameter, b1 = 1.04.

Then, the expected total product profit only considering warranty cost due to hardware

failures is

ωh(P, T ) = (1000− 0.1P + 21T )(P − 100× 0.1× T 1.04). (5.58)

According to Proposition 12, if the warranty length is known, for example, set T =

24 months; then the expected total profit can be maximised at P = 7656.27, and the

maximum expected total profit is ωh = 5, 451, 953. The relationship between ωh and P is

reflected by the Figure 5.3. When the product is known, for example, set P = 2000; then

the expected total profit can be maximised at T = 64, and the maximum expected total

profit is ωh = 2, 667, 529. The relationship between ωh and T is showed by the Figure

5.4.

Figure 5.3: The expected total profit ωh against product price P , T = 24.

If the manufacturer takes Type I software warranty policy, the parameters of software

warranty cost and the software reliability growth model (SRGM) are set as: cs1 = 100, a2
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Figure 5.4: The expected total profit ωh against warranty length T , P = 2, 000.

= 50, and b2 = 0.05.

Then, the cumulative intensity function is

Λ2(T ) = 50(1− e−0.05T ),

and the expected total profit of a software product is

ωs1(P, T ) = (1000− 0.1P + 21T )(P − 100× 50× (1− e−0.05T )). (5.59)

When the warranty length is known, for example, set T = 24 month, then, the expected

total profit of a software product can be maximised at P = 9267.44, and the maximum

expected total profit is 3, 332, 737. The following Figure 5.5 presents the expected total

profit against the product price P .

However, if P is known and T ≥ 0, the first order derivative of Eq. (5.6) cannot be

zero, i.e. the Eq. (5.6) does not have any maxima or minima. The surface in Figure 5.6

presents the expected total profit of a software product against P and T .

If the manufacturer takes Type II software warranty policy, the related parameters are

set in the following Table 5.1. Then, the expected total profit is

ωs2(P, T,∆τ) = MP − [500n+ 100
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+ 100

∫ T

τn

λ2,n(t)dt], (5.60)
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Figure 5.5: The expected total profit of a software product when T = 24.

Figure 5.6: The expected total profit of a software product against P and T .

where n = b T
∆τ
c is the number of releasing patches; M is the number of product sold

at t = 0; τi is the time of ith patches/updates release under time-based policy, τi =

τi−1 + ∆τ and τ0 = 0; λ2,i is the failures intensity after ith patches/updates release,

λ2,i = 90%× λ2,i−1 and λ2,0(t) = λ2(t).

Then, if the warranty length is 2-year, i.e. T = 24, and the software’s update is
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Table 5.1: Parameters for software warranty under Type II policy.

Software claim cost SRGM parameter Update cost The changes after update
cs1 a2 b2 cs2 θ
100 50 0.05 500 90%

released quarterly, i.e. ∆τ = 3; the maximum expected total profit of this product ωs2 =

1, 958, 190 can be achieved at P = 10, 614.86. The Figure 5.7 presents the relationship

between the expected total profit and product price under Type II software warranty policy

if T and ∆τ are known.

Figure 5.7: The expected total profit ωs2 against P , when T = 24 and ∆τ = 3.

If the warranty length is still 2-year, and the market price of this product is P =

6500; then the optimal update releasing interval is ∆τ = 13.6 month, and the maximised

expected total profit is 2, 227, 765. The Figure 5.8 presents the relationship between the

expected total profit and the update releasing interval under Type II software warranty

policy if P and T are known. The curve in Figure 5.8 is not continuous because the times

of update releasing n = b T
∆τ
c is an integer.

5.6.2 Expected total profit considering hardware-software interac-
tions

There are 5 scenarios of hardware-software interactions discussed, in this section, the

numeric examples for Scenario 0 and Scenario 1 are provided. For the product consists
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Figure 5.8: The expected total profit ωs2 against ∆τ , when P = 6500 and T = 24.

of hardware and software subsystems, the parameters are set in the Table 5.2.

Table 5.2: Parameters for Scenario 0 and 1 of interaction.

ch1 a1 b1 cs1 a2 b2 cs2 θ
100 0.1 1.04 100 50 0.05 500 90%

Scenario 0

In Scenario 0, the product consists of hardware and software subsystems, but the failures

of these two subsystems are assumed independently. The expected total profit under the

first condition (software cannot be updated online) of Scenario 0 is

ω01 = (1000− 0.1P + 21T )
[
P − 10T 1.04 − 5000(1− e−0.05T )

]
. (5.61)

When T = 24 is known, then the expected total profit is maximised at P = 9403.55, and

the maximum expected total profit is 3, 177, 261. The curve of expected total profit ω01

against product price P is displayed in Figure 5.9.

If the software can be updated online and the pre-specified updating interval is ∆τ =
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Figure 5.9: The expected total profit ω01 against P , when T = 24.

6months the expected total profit in Scenario 0 is

ω02 = (1000− 0.1P + 21T )P − 10× (1000− 0.1P + 21T )T 1.04

+100×

[
n∑
i=1

0.9i−1 [Λ2(τi)− Λ2(τi−1)] + 0.9n [Λ2(T )− Λ2(τn)]

]
+500n. (5.62)

If the warranty length is T = 24 months, then n = 4 the expected total profit is maximised

at P = 8, 743.16 and the maximum expected profit is 7, 930, 037. The curve of expected

total profit ω02 against product price P is displayed in Figure 5.10.

If the warranty length is T = 24 months and the product price P = 8000, the maxi-

mum expected total profit is 8, 345, 104 achieved at ∆τ = 12.25. The curve of expected

total profit ω02 against the updating interval ∆τ is displayed in Figure 5.11.

Scenario 1

In Scenario 1, the occurrence of hardware and software failures are statistical dependent:

a software failure can lead to hardware failures with probability p(t) at time t. Assume

p(t) = 0.1e−0.1t in this case. If the software cannot be updated online, the expected total
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Figure 5.10: The expected total profit ωh against warranty length T , P = 2, 000.

Figure 5.11: The expected total profit ω02 against ∆τ , when T = 24 and P = 8000.

profit is Then the expected total profit is

ω11 = (1000− 0.1P + 21T )P

−(1000− 0.1P + 21T )× 100

[
0.1T 1.04 + 50(1− e−0.05T )

∫ T

0

0.1e−0.1tdt

]
−(1000− 0.1P + 21T )× 100× 50(1− e−0.05T ). (5.63)

When T = 24 is known, then the maximum expected total profit ω11 = 1, 638, 784 can be

reached at P = 10, 991.81. The curve of expected total profit ω11 against product price P

is displayed in Figure 5.12.
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Figure 5.12: The expected total profit ω11 against P , when T = 24.

If the software can be updated online, then the expected total profit is

ω12 = (1000− 0.1P + 21T )P − E[C12(T )]

= (1000− 0.1P + 21T )P − (1000− 0.1P + 21T )× 10T 1.04

−100

[
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+

∫ T

τn

λ2,n(t)dt

]∫ T

0

0.1e−0.1tdt

−100

[
n∑
i=1

∫ τi

τi−1

λ2,i−1(t)dt+

∫ T

τn

λ2,n(t)dt

]
− b T

∆τ
c × 500. (5.64)

If the software is updated online in every 6 month, i.e. ∆τ = 6, the warranty length is

T = 24 and the times of updating is n = b T
∆τ
c = 4; then, the maximum expected total

profit ω12 = 1, 336, 010 can be achieved at P = 11, 384.86. The curve of expected total

profit ω12 against product price P is displayed in Figure 5.13.

If the warranty length is T = 24 months and the product price P = 12, 000, the

maximum expected total profit is 1, 448, 997 achieved at ∆τ = 13.03. The curve of

expected total profit ω12 against the updating interval ∆τ is displayed in Figure 5.14.

5.6.3 Expected total profit considering hardware-software interac-
tions and human factors

If a product is composed of hardware and software subsystems, the warranty cost of such

product is influenced by the warranty claims on both hardware and software failures, the
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Figure 5.13: The expected total profit ω12 against P , when T = 24 and ∆τ = 6.

three human factors and the interplay between hardware and software subsystems. In this

case, the hardware and software warranty parameters are set as same as above examples

and the human parameters are set in Table 5.3.

Table 5.3: Parameters for human factors.

NFBR parameters FBNR parameters Delayed updating parameter
α1 α2 chu1 chu2 γ1 γ2 d
60 2 50 80 0.01 0.018 0.9

Off-line situation

If Scenario 1 of hardware-software interplay occurs, the software cannot be updated on-

line, the NFBR and FBNR phenomena affect the total warranty cost, and the NFBR does

not cause warranty to be ceased, the expected total profit is

ωint31

= MP − E[Cint31(T )] = MP − E[C11(T )]q1(T )− E[Chu1(T )]

= MP −

Me−0.01−0.018T

{
100

[
0.1T 1.04 + 50(1− e−0.05T )

∫ T

0

0.1e−0.1tdt

]
+ 5000(1− e−0.05T )

}
−50M(1− e−(T/60)2). (5.65)
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Figure 5.14: The expected total profit ω12 against ∆τ , when T = 24 and P = 12, 000.

If the warranty length is T = 24 months, the maximum expected total profit ωint31 =

2, 786, 918 can be achieved at P = 10, 000. The curve of expected total profit ωint31

against the price P is displayed in Figure 5.15 by the line curve; in this figure, the point-

curve, which is under the line curve, represents the total profit ωint31 against the price P

without considering the human factors. Figure 5.15 indicates that if the human factors are

Figure 5.15: The expected total profit ωint31 against P with and without considering hu-
man factors, when T = 24.

not taken into account, the expected total profit is undervalued in this case.
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If the NFBR may cause warranty to be ceased, the expected total profit is

ωint32 = MP − E[Cint32(T )]

= MP − [E[C11(T )]q1(T ) +Mchu2]H1(T )− E[C11(T )]q1(T )(1−H1(T )).(5.66)

If the warranty length is T = 24 months, the maximum expected total profit ωint32 =

2, 784, 683 can be achieved at P = 9, 999. This result indicate that whether the NFBR

event causes warranty to be ceased or not, the optimal value of price P is not influenced

significantly.

Online situation

If the software can be updated online, the delayed updating effect is applied. Mean-

while, if the NFBR may not cause warranty to be ceased, the expected total profit is

ωint33 = MP − E[Cint33(T )], where E[Cint33(T )] consists of the cost of the NFBR

event cost and the warranty cost modified with considering FBNR and delayed updat-

ing phenomena. According to Eq. (5.51)), (5.52 and (5.53), the optimal P and ∆τ

can be found by simulation. The simulation result shows that if the warranty length is

T = 24 months and the updating interval is ∆τ = 6, the maximum expected total profit

ωint33 = 1, 521, 743 can be achieved at P = 11, 139.05. The curve of expected total profit

ωint33 against the price P is displayed in Figure 5.16 by the line curve; in this figure, the

point-curve, which is under the line curve, represents the total profit ωint33 against the

price P without considering the human factors.

If the warranty length T = 24 and the price P = 12000 are known, the optimal

updating interval may also be determined by simulation. The result shows the maximum

expected total profit ωint33 = 1, 584, 178 is achieved at ∆τ = 13.03. The plot of expected

total profit ωint33 against the updating interval ∆τ is displayed in Figure 5.17 by the

points; in this figure, the stars, which is under the points, represent the total profit ωint33

against ∆τ without considering the human factors.

Figure 5.16 and 5.17 indicate that if the human factors are not taken into account, the

expected total profit is undervalued under this online situation.
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Figure 5.16: The expected total profit ωint33 against P with and without considering hu-
man factors, when T = 24 and ∆τ = 6.

5.7 Summary

The warranty cost of a product with embedded software system should be modelled in

a manner that the failure of hardware, software and users. This chapter developed the

models of warranty costs incurred by hardware specific, software specific and hardware-

software interaction failures and provided integrated models.

Future work in this area includes the form of the cumulative intensity function of

hardware-software interaction failure and the relationships among the three types of fail-

ures in the second scenario.
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Figure 5.17: The expected total profit ωint33 against ∆τ with and without considering
human factors, when T = 24 and P = 12000.
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Chapter 6

Discussion

The preceding chapters discussed optimisation of warranty policies for a portfoio of prod-

ucts and considered the effect of the interplay of hardware subsystems, software sub-

systems, and the end-users. In Chapter 3, the modern portfolio theory and copula are

borrowed from the actuarial science and financial mathematics to build a mean-variance

framework to collectively optimise the warranty policies of the products produced by

a manufacturer. In Chapter 4, the mean-VaR framework is employed to deal with the

extremal events and dependence among the warranty claims of different products. In

Chapter 5, the warranty optimisation is conducted in a more comprehensive manner than

that in Chapters 3 and 4 with a consideration of the interaction among hardware, software

and users of a product in different scenarios. These three chapters provide frameworks to

collectively and comprehensively optimise warranty policies , which have improved the

existing research and made a contribution to the existing literature. It is known that the

sales volume may be modelled in linear or non-linear forms and static or dynamic forms;

and warranty policy can be renewing or non-renewing. Furthermore, copula selection is

still a critical task in such research. These issues are discussed in this chapter.

6.1 Sales volume modelling

In the above chapters, the sales volume is modelled in a static linear form introduced by

Yazdian et al. (2016), who assumes the following linear relationship among the length of

warranty coverage, warranty price, and sales amount of a product, Mk = Ak − βkPk +
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ηkTk, where, βk > 0 and ηk > 0. However, in the literature related to warranty man-

agement and marketing research, the product sales volume can be assumed in linear or

non-linear and static or dynamic forms.

Ladany & Shore (2007) provide a non-linear expression of the sale volume as follow-

ing

Mk = αkP
−β1
k T β2k , (6.1)

where αk > 0, β1 > 0 and β2 > 0. This function means the sale volume decreases

with product price increasing and increases with warranty length increasing, however, if

warranty is not provided the demand is zero.

According to Eq. (3.7), if the sale volume is Eq. (6.1), the expected profit of a single

product is

E[ωk] = (αkP
−β1
k T β2k )(Pk − λkµkTk). (6.2)

The effects of Pk and Tk on E[ωk] can be revealed based on the derivatives. Taking the

logarithm of both sides of Eq. (6.2), we can obtain

ln(E[ωk]) = ln(αkP
−β1
k T β2k ) + ln(Pk − λkµkTk)

= lnαk − β1 lnPk + β2 lnTk + ln(Pk − λkµkTk).

According to implicit differentiation, the first order derivative of E[ωk] on Pk is

∂E[ωk]

∂Pk
= (αkP

−β1
k T β2k )(Pk − λkµkTk)(−

β1

Pk
+

1

Pk − λkµkTk
),

as (αkP
−β1
k T β2k ) > 0 and (Pk − λkµkTk) > 0, the sign of the first order derivative is

determined by (− β1
Pk

+ 1
Pk−λkµkTk

). Then, if β1 > 1, when 0 < Pk ≤ β1λkµkTk
β1−1

, ∂E[ωk]
∂Pk

≥ 0,

i.e. when Tk is known, the expected profit of a single product E[ωk] can be maximised at

Pk = β1λkµkTk
β1−1

; if 0 < β1 < 1, when Pk ≥ β1λkµkTk
β1−1

, ∂E[ωk]
∂Pk

≥ 0, it means the expected

profit of a single product E[ωk] can be minimised at Pk = β1λkµkTk
β1−1

, i.e. when Tk is known,

the optimal solution which maximised the expected profit does not exist.

Meanwhile, the first order derivative of E[ωk] on Tk is

∂E[ωk]

∂Tk
= (αkP

−β1
k T β2k )(Pk − λkµkTk)(

β2

Tk
− λkµk
Pk − λkµkTk

),
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as (αkP
−β1
k T β2k ) > 0 and (Pk − λkµkTk) > 0, the sign of the first order derivative is

determined by ( β2
Tk
− λkµk

Pk−λkµkTk
). As β2 > 0, if ( β2

Tk
− λkµk

Pk−λkµkTk
) ≥ 0, 0 < Tk ≤

β2Pk
λkµk(1+β2)

. It means that if Pk is known, the expected profit of a single product E[ωk] can

be maximised at Tk = β2Pk
λkµk(1+β2)

.

Xie et al. (2014) extends the model in Ladany & Shore (2007) to allow the demand

existing when warranty is not provided,

Mk = κ1P
−β1
k (Tk + κ2)β2 , (6.3)

where κ1, κ2 > 0, β1 > 0, and 0 < β2 < 1.

According to Eq. (3.7), if the sale volume is Eq. (6.3), the expected profit of a single

product is

E[ωk] = κ1P
−β1
k (Tk + κ2)β2(Pk − λkµkTk). (6.4)

Taking the logarithm of both sides of Eq. (6.4), then, we have

ln(E[ωk]) = lnκ1 − β1 lnPk + β2 ln(Tk + κ2) + ln(Pk − λkµkTk),

taking the first order derivative on Pk of both sides, we obtain

1

E[ωk]

∂E[ωk]

∂Pk
= −β1

Pk
+

1

Pk − λkµkTk
,

then

∂E[ωk]

∂Pk
= κ1P

−β1
k (Tk + κ2)β2(Pk − λkµkTk)(−

β1

Pk
+

1

Pk − λkµkTk
). (6.5)

As κ1P
−β1
k (Tk + κ2)β2(Pk − λkµkTk) > 0, then the sign of Eq. (6.5) is determined by

(− β1
Pk

+ 1
Pk−λkµkTk

). Similar to the result of the sale volume form Eq. (6.1) discussed

above, if β1 > 1, when 0 < Pk ≤ β1λkµkTk
β1−1

, ∂E[ωk]
∂Pk

≥ 0, i.e. when Tk is known, the

expected profit of a single product E[ωk] can be maximised at Pk = β1λkµkTk
β1−1

.

If Pk is known, the first order derivative of E[ωk] on Tk is

∂E[ωk]

∂Tk
= κ1P

−β1
k (Tk + κ2)β2(Pk − λkµkTk)(

β2

Tk + κ2

− λkµk
Pk − λkµkTk

). (6.6)

As κ1P
−β1
k (Tk + κ2)β2(Pk − λkµkTk) > 0, then the sign of Eq. (6.5) is determined by

( β2
Tk+κ2

− λkµk
Pk−λkµkTk

). Because κ1, κ2 > 0, β1 > 0, and 0 < β2 < 1, if 0 < Tk <
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β2Pk−κ2λkµk
(β2+1)λkµk

, ∂E[ωk]
∂Tk

> 0. It means that if Pk is known, the expected profit, expressed by

Eq. (6.4), can be maximised at Tk = β2Pk−κ2λkµk
(β2+1)λkµk

.

The expressions discussed above show that the optimisation of warranty policies can

also be conducted based on the non-linear sales volume functions. However, in the real

market, especially in the consumer market, the items of one product cannot be sold out

at the same time, i.e. t = 0 assumed above. The sales process is dynamic and the sales

volume normally varies with time passing.

In the literature, the dynamic sales volume, i.e. dynamic demand, of a product is no-

ticed by researchers. Huang et al. (2007) introduces a dynamic model, in which Tk(t) is

duration of warranty period for products sold at time t, Pk(t) is price at time t, Mk(t) is

accumulated sales, MM,k is maximum sales potential, and M0,k is parameter characteriz-

ing past sales of production experience.

Mk(t) = M0,k +

∫ t

0

mk(t)dt,

mk(t) = k1(Tk(t) + k2)αPk(t)
−β[1− Mk(t)

MM

]× [ψ +
Mk(t)

MM

],

Mk(0) = M0,k

where k1, k2, α, −β and ψ are positive.

As extension of Huang et al. (2007), Lin et al. (2009) gives three different dynamic

demand functions to describe log-linear, limited growth and logistic growth forms. Ac-

cording to Lin et al. (2009), the dynamic sales volume functions of one product can be

expressed as following:

• Log-linear sales volume:

m(P, T, t) = k1p(P, t)
−a(k2 + T )b; (6.7)

• Limited growth sales volume:

m(P, T, t) = k1p(P, t)
−a(k2 + T )b(M̄ −M(P, T, t)); (6.8)

and
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• Logistic growth sales volume:

m(P, T, t) = k1p(P, t)
−a(k2 + T )bM(P, T, t)(M̄ −M(P, T, t)). (6.9)

In Eq. (6.7), (6.8) and (6.9),m(P, T, t) is the sales rate at time t,M(P, T, t) =
∫ t

0
m(u)du

is the cumulative sales at time t, P is the initial price of the product at time t = 0 and T

is the non-negative warranty length variable. p(P, t) is a continuous derivable of P and

t and represents the retail price of the product at time t, p(P, 0) = P . The parameters in

these three functions are k1 > 0, k2 ≥ 0, a > 1, 0 < b < 1 and M̄ > 0 is the market

potential.

For instance, if the log-linear sales volume function is employed to model the sales

volume, assume the warranty length T is known and the selling period of the product is

also presupposed as Ts, then the total sales volume of this product is

M(P, Ts) =

∫ Ts

0

m(P, t)dt =

∫ Ts

0

k1p(P, t)
−a(k2 + T )bdt, (6.10)

the expected profit of this product is

E[ω] =

∫ Ts

0

f(P, t)dt =

∫ Ts

0

k1p(P, t)
−a(k2 + T )b[p(P, t)− λµT ]dt. (6.11)

Then, the partial derivative of E[ω] on P is

∂E[ω]

∂P
=

{∫
f(P, t)dt

∣∣∣∣t = Ts

}′
−
{∫

f(P, t)dt

∣∣∣∣t = 0

}′
=
{
p(P, Ts)

−a [p(P, Ts)− λµT ]
[
(1− a)p(P, Ts)

−a + ap(P, Ts)
−a−1λµT

]
p′(P, Ts)

− P−a(P − λµT )
[
(1− a)P−a + aP−a−1λµT

]}
k2

1(k2 + T )2b. (6.12)

In Eq. (6.12), P−a(P − λµT ) [(1− a)P−a + aP−a−1λµT ] > 0, the sign of ∂E[ω]
∂P

is

determined by p′(P, Ts). Then, if function p(P, Ts) is monotonously decreasing, i.e.

p′(P, Ts) < 0, the expected profit E[ω] cannot be maximised; if function p(P, Ts) is

not monotone decreasing, the optimal solution which maximises the expected profit may

exist.

If the limited growth sales volume function (6.8) is employed and the length of war-

ranty T is known, then the expected profit of this product is

E[ω] =

∫ Ts

0

k1p(P, t)
−a(k2 + T )b(M̄ −M(P, t))[p(P, t)− λµT ]dt. (6.13)
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However, as M(P, t) =
∫
m(P, t), Eq. (6.8) is a differential equation. To investigate the

properties of Eq. (6.5), the differential equation should be resolved initially, the solution

is shown as following

m(P, t) = k1p(P, t)
−a(k2 + T )b(M̄ −M(P, t))

dM(P, t)

dt
= k1p(P, t)

−a(k2 + T )b(M̄ −M(P, t))

1

M̄ −M(P, t)
dM(P, t) = k1(k2 + T )bp(P, t)−adt

− ln(M̄ −M(P, t)) = k1(k2 + T )b
∫
p(P, t)−adt

M̄ −M(P, t) = e−k1(k2+T )b
∫
p(P,t)−adt

M(P, t) = M̄ − e−k1(k2+T )b
∫
p(P,t)−adt, (6.14)

then

m(P, t) = k1p(P, t)
−a(k2 + T )be−k1(k2+T )b

∫
p(P,t)−adt. (6.15)

According to Eq. (6.15), the expected profit of this product is

E[ω] =

∫ Ts

0

f(P, t)dt =

∫ Ts

0

m(P, t)[p(P, t)− λµT ]dt, (6.16)

calculate through integration by parts method,

E[ω] =

∫ Ts

0

m(P, t)[Pe−ct − λµT ]dt

= M(P, t)[Pe−ct − λµT ] +

∫
M(P, t)cPe−ctdt, (6.17)

then the effects of product price P on the expected profit E[ω] can be investigated based

on the first order derivative of E[ω] on P , which is also determined by the form of function

p(P, t). Furthermore, the logistic growth sales volume function is similar to the limited

growth sales volume function discussed above. The solution of the warranty policy opti-

misation problem based on the logistic growth sales volume is also affected by the form

of p(P, t).

In the real world, the price of a product may change over time, and the market price

of the product at time t may be determined by the market participants and its initial price

P . For instance, according to the consumer electronics data based of PriceSpy (priceSpy
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(2016)), the prices of iPhone and its major competitor, Samsung, are all decreasing with

time. Fig. 6.1 and Fig. 6.2 present the price history of the products in three years after

Figure 6.1: Apple iPhone 5s 64GB price history

being published. These figures reveal that the patterns of the price movement are complex

and varying, even though the prices of both products have decreasing trend. It is necessary

to investigate the proper time-varying price model to support warranty policy optimisation

in future research.

Figure 6.2: Samsung Galaxy S6 32GB price history

Additionally, in above discussion, different static and dynamic sales volume functions

are investigated, however, in the real world, the most complex dynamic function may be

still too simple to model the sales volume change. Also according to the database of

PriceSpy, Fig. 6.3 and Fig. 6.4 present the popularity changes of these two products,

which reflect the demand of these products in the market.

According to Fig. 6.3 and Fig. 6.4, the popularities of these two products have totally
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Figure 6.3: Apple iPhone 5s 64GB popularity history

different trends, even their prices all decrease with time, which means, in practice, to

optimise the warranty policy of a particular product, the mode of its demand/sales volume

should be investigated and considered comprehensively.

Figure 6.4: Samsung Galaxy S6 32GB popularity history

6.2 Renewing warranty

In Chapters 3, 4 and 5, the warranty policies are assumed to be non-renewing, however, in

the real market, renewing warranty policies are provided to some unrepairable products

and consumer electronic products. A renewing warranty policy means under this policy

if an item fails within the warranty period, the item is replaced by a new one at the cost

of the manufacturer or at the prorated cost to the user upon failure during the warranty

period and the warranty is renewed (K. Jung et al., 2010). This process will continue until

the manufacturer decides to stop supporting the product, i.e. the length of product useful
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life has ended. According to Wu & Xie (2008), in this case, assuming that the product

is sold with renewing warranty, after being sold the occurrence of the first failure of one

item of the product has two possible cases:

Case A the product’s first failure occurs within the warranty period (0, T ), and a new

identical product replaces it; and

Case B the first failure of the product occurs after T , and it does not incur any replace-

ment cost to the manufacturer.

To discuss warranty policy optimisation under renewing warranty, we consider the pure

hardware product described in Chapter 5 for an example. The following assumptions are

applied:

A1 if an item fails within the warranty period, the item is replaced by a new item at the

cost of manufacturer, and

A2 the replacement cost of one item of a specified product, crn, is fixed. The total war-

ranty cost under renewing warranty policy is Crn = ncrn, where n is the number of

replacements.

If the item fails within its initial warranty period (0, T ), it is replaced by a new one

with warranty under the same terms, i.e. the actual warranty period is extended. If the

item survives beyond its warranty period, the actual warranty period ends at the warranty

expiration time. Denote the distribution of the time between (i − 1)th and ith failures ti

by Ft(x) with cdf ft(x). Then the actual warranty period, denoted by WT , is

WT =

{
T, if t1 > T

T +
∑n

i=1 ti, if t1 ≤ T, . . . , tn ≤ T, tn+1 > T
, (6.18)

and the distribution of the number of claims Nrn can be explained as

Nrn =



0, with 1− Ft(T )

1, with Ft(T )(1− Ft(T ))

2, with Ft(T )2(1− Ft(T ))
...
n, with Ft(T )n(1− Ft(T ))
...

. (6.19)
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Obviously, the distribution of the number of claims under renewing warranty policy is a

geometric distribution with parameter 1− Ft(T ).

Pr(Nrn = n) = Ft(T )n(1− Ft(T )) (6.20)

Then, the expected number of claims is

E[Nrn] =
Ft(T )

1− Ft(T )
, (6.21)

and the expected total warranty claim is

E[Crn] = E[Nrn]crn =
Ft(T )

1− Ft(T )
crn. (6.22)

If ti follows identical independent exponential distribution with parameter λrn, then the

expected total warranty cost is

E[Crn] =
Ft(T )

1− Ft(T )
crn

=
1− e−λrnT

e−λrnT
crn

= eλrnT crn − crn. (6.23)

Then, the expected profit of one product under a renewing warranty policy with linear

sales volume function is

E[ωrn] = M(P − E[Crn])

= (A− βP + ηT )(P − eλrnT crn − crn)

= AP − AeλrnT − Acrn − βP 2 + βPeλrnT + βPcrn

+ηTP − ηTeλrnT − ηTcrn. (6.24)

The solutions maximising the expected profit of one product under renewing warranty

can be investigated according to the derivatives of (6.24) on P and T . The first order

derivative of (6.24) on P is

∂E[ωrn]

∂P
= −2βP + A+ βeλrnT + βcrn, (6.25)
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and the second order derivative of (6.24) on P is

∂2E[ωrn]

∂P 2
= −2β < 0. (6.26)

It means if T is known, the expected profit of one product under renewing warranty can

be maximised at P = A+βeλrnT+βcrn
2β

. The first order derivative of (6.24) on T is

∂E[ωrn]

∂T
= −eλrnT [λrn(A− βP + ηT ) + η] + η(P − crn), (6.27)

and the second order derivative of (6.24) on T is

∂2E[ωrn]

∂T 2
= −eλrnTλrn [λrn(A− βP + ηT ) + 2η] < 0. (6.28)

It means when P is known, if ∂E[ωrn]
∂T

= 0 has non-negative solution, the expected profit

of one product under renewing warranty can be maximised at the non-negative solution

of ∂E[ωrn]
∂T

= 0.

6.3 Copula selection

The copula theory states that any cumulative distribution function of a random vector can

be written in terms of marginal distribution functions and a copula that describes the de-

pendence structure between the variables, no matter whether the variables are continuous

or discrete. The flourishing families of copula lead to the difficulty in copula selection

in research and practice. In the literature, the overwhelming methods are the goodness-

of-fit tests, such as the Kolmogorov-Smirnov test, the Anderson-Darling test, etc., based

on various statistics, such as Kolmogorov-Smirnov distance, Anderson-Darling distance,

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), etc. In prac-

tice, the goodness-of-fit tests can select out the proper copula, but a large amount of work

needs to be accomplished because many copulas should be tested and compared.

Besides the goodness-of-fit tests, some properties of copulas can also help in selection,

such as the dependence type, symmetry and tail dependence of copula. The researchers

and practitioners can filter out the potentially proper copulas by these properties to gener-

ate efficient works.
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6.3.1 Dependence type of copula

Elliptical and Archimedean families of copulas are the most popular copula families in

the current literature. Elliptical copulas are parametric and include the Gaussian cop-

ula and the t copula. Gaussian and t-copulas contain the dependency structure from the

multivariate normal and multivariate t-distributions respectively, and they are directly de-

rived through the Sklars theorem (Pešta & Okhrin, 2014). Archimedean copulas are an-

other associative class of copulas, different from the Gaussian copula, most common

Archimedean copulas admit an explicit formula and allow modelling dependence in arbi-

trarily high dimensions with only one parameter.

The dependence between random variables can be linear or non-linear, and different

copulas can cope with different types of dependence. For instance, the linear correlation

coefficient, Pearson’s ρ, based on the covariance of two variates is preserved by the Ellip-

tical copulas but not the Archimedean copulas. The Gaussian copula, from the Elliptical

family is constructed from a n-dimension normal distribution over a n-dimension matrix

of Pearson’s ρ through the probability integral transform. However, in the Archimedean

family, two pairs of correlated variables with the same copula can have different linear

correlation coefficient; while Kendall’s τ and Spearman’s ρ, the rank correlation coeffi-

cients are constants of the copulas, i.e. any correlated variable with the same copula will

have the Kendall’s τ and Spearman’s ρ of that copula.

Let X and Y be continuous random variables with copula C, respectively. Then,

Kendall’s tau for X and Y is

τC = 4

∫ ∫
I2
C(u, v)dC(u, v)− 1 = 4

∫ ∫
I2
C(u, v)c(u, v)dudv − 1 (6.29)

Then Spearman’s rho for X and Y is

ρC = 12

∫ ∫
I2
C(u, v)dudv − 3 = 12

∫ ∫
I2

[C(u, v)− uv]dudv (6.30)

As a summary, the dependence type of the random variables and the value of correspond-

ing correlation coefficient can guide the selection of copula in practice.
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6.3.2 Tail dependence of copula

Generally, the concept of tail dependence indicates the degree of dependence in the lower-

left-quadrant or upper-right-quadrant tails of a bivariate distribution. The degree of de-

pendence is measured by the tail-dependence coefficients in common. This measure is

widely used in the financial mathematics. Actually, in the financial market, the dependen-

cies between financial asset returns are frequently observed in the last decades. However,

common dependence measures such as the Pearsons correlation coefficient are not always

suited for a proper understanding of dependencies in the market, particularly regarding

the dependencies between extreme events such as extreme negative stock returns or large

portfolio losses. As such, an alternative dependence measures to support beneficial asset-

allocation strategies is needed (Frahm et al., 2005).

The following expression is the most common definition of tail dependence. Let

(X, Y ) be a pair of random variables with joint distribution F , andX and Y have marginal

distributions G and H , respectively. The coefficient

λU = lim
z→1−
{G(X) > z|H(Y ) > z}, (6.31)

is the upper tail dependence coefficient (upper TDC of the pair of random variables). If

λU > 0, (X, Y ) is upper tail dependent and if λU = 0, (X, Y ) is upper tail independent,

then, the coefficient

λL = lim
z→0+
{G(X) ≤ z|H(Y ) ≤ z}, (6.32)

is the lower tail dependence coefficient (lower TDC) of the pair of random variables. If

λL > 0, (X, Y ) is lower tail dependent and if λL = 0, (X, Y ) is lower tail independent,

the above definition indicates that the TDC is a conditional probability that one margin

exceeds a threshold when the other margin exceeds a threshold.

According to Sklar’s theorem of copula, the TDC can also be expressed based on

the notion of copula when the marginal distributions G and H are continuous. The joint

distribution F can be represented as:

F (x, y) = C(G(x), H(y)),
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where C is a copula. Then, the upper TDC of (X, Y ) is

λU = lim
z→1−

1− 2z + C(z, z)

1− z
, (6.33)

and the lower TDC is

λL = lim
z→0+

C(z, z)

z
. (6.34)

The TDC can help in copula selection, because different copulas have different tail

dependence properties. In the Elliptical family, the Gaussian copula does not have tail

dependence, and t copula has tail dependence depended on its degrees of freedom. In

the Archimedean family, Clayton copula is only lower tail dependent on lower TDC,

λL = 2
− 1
θC , determined by its parameter θC ; Gumbel copula is only upper tail dependent

on upper TDC, λU = 2− 2
1
θG , determined by its parameter θG; and Frank copula is both

upper tail independent and lower tail independent.

However, the above discussion only involves the tail dependences in the lower-left-

quadrant and upper-right-quadrant, which means the upper and lower TDC can work

well in copula selection only when the copula is symmetric/exchangeable. If the cop-

ula is asymmetric, the statuses of the joint distribution in the lower-right-quadrant and

upper-left-quadrant should be considered. Wu (2014a) introduces two new tail depen-

dence measures to cope with this issue. According to Wu (2014a), the TDC in the lower-

right-quadrant, i.e. upper-lower TDC, is

λu,l = lim
z→0+
{G(X) > 1− z|H(Y ) ≤ z}, (6.35)

and the upper-left-quadrant TDC, i.e. lower-upper TDC is

λl,u = lim
z→0+
{G(X) ≤ z|H(Y ) > 1− z}. (6.36)

For a symmetric/exchangeable copula, λu,l = λl,u The 4 TDCs described above can be

considered comprehensively to select proper copulas before goodness-of-fit testing.
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Chapter 7

Conclusions and future work

7.1 Conclusions

This research started with a multidisciplinary critical and comprehensive thinking across

warranty modelling and actuarial science. At the first stage of this research, a large bulk

of literature in these two disciplines are reviewed. In the progress of literature review,

initially, the perils and events coverages, types and contents of policies and features of

data in warranty and insurance are compared generally. Then, the techniques, approaches

and theories applied in the actuarial science and warranty modelling are investigated and

compared. According to such comparison, it finds that warranty modelling, particularly,

warranty policy optimisation, may be improved referring to actuarial science with con-

siderations of dependence modelling, using the modern portfolio theory (measuring risk

through variance or VaR) and copulas. The literature review indicates that the dependence

among some variables and the interactions among the related factors are merely consid-

ered in warranty modelling. In the real world, a manufacturer normally produces many

different products that have common components installed. Consequently, the frequen-

cies of warranty claims of different products are statistically dependent, which conflicts

the fact that the existing methods in the literature in warranty modelling solely focus on

individual products and ignore the claim dependence. In addition, in the literature, a prod-

uct is normally considered as a pure hardware or software item, but the interplay between

hardware and software is also ignored. As such, two major knowledge gaps are identified

that the warranty policies of the products produced by one manufacturer are not investi-
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gated integrally; and the effects of the interplay among a product’s different subsystems,

such as hardware and software, even and its user on warranty modelling are also merely

considered in the literature of warranty management.

To fulfil the first knowledge gap, in Chapter 3, warranty policies of products pro-

duced by one manufacturer are modelled collectively through a model constructed based

on the mean-variance methods, which is a method of the Modern Portfolio Theory. This

chapter optimises warranty policies when the dependence among warranty claims of dif-

ferent products is taken into consideration. The dependence among the warranty claims

of the products produced by one manufacturer is modelled through copulas in this new

established collective warranty policy optimisation framework. Such optimisation is per-

formed using the mean-variance optimisation approach, which considers the profit of a

portfolio of different products with correlated numbers of warranty claims. The variance

of the total profit of the portfolio of products is calculated based on a copula-based dis-

crete joint distribution of the number of warranty claims of the products produced by a

manufacturer. This chapter is the first attempt to provide a method of collectively opti-

mising warranty policy when the expected profit and corresponding risks are taken into

consideration. From a practical and applicable perspective, this method emphasizes the

risk and potential dependence in warranty management and provides decision makers

with a new approach to optimising the trade-off between the profit and risk in operation.

This new framework also shows that if the dependence among the warranty claims of the

products produced by one manufacturer is ignored, this manufacturer may undervalue the

operational risk implied in the future warranty claims, and harm its operation.

However, in Chapter 3, the arrival process of warranty claims is assumed to be the

homogeneous Poisson process (HPP), which may be too simple to cope with the facts

in the real world. In addition to HPP, other processes, including the non-homogeneous

Poisson process (NHPP), the doubly Poisson process, and the like, may be used to model

the numbers of warranty claims. Furthermore, in Chapter 3, the risk, i.e. the uncertainty

of total profit, is measured by variance, a symmetric risk measure; with progress of this

research, the limits of such symmetric risk measure are uncovered in dealing with the
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extreme events. This symmetric measure cannot reflect the tail of the distribution of total

profit properly, hence some downside risk measures, such as Value-at-Risk, can be applied

to improve the model.

Then, in Chapter 4, the non-homogeneous Poisson process and the downside risk

measures, Value-at-Risk and Conditional Value-at-Risk, are introduced into the collective

warranty policy optimisation framework. In this chapter, the number of warranty claims

is modelled by NHPP with a power law intensity, and such process is compounded with

independent and identically distributed log-normal distributions to model the total war-

ranty cost, on which the total profit is derived based. This model is more complicated and

realistic than that in Chapter 3, and the existence of optimal solutions, including warranty

price and length, is also proven. To cope with the multi-product scenario, with support

from multivariate copula, the joint distribution of the profits of products is constructed and

the existence of optimal solutions in this scenario is proven. Then, another difficult task

is raised, that is how to calculate or approximate the distribution of the sum of random

variables, i.e. the distribution of the portfolio’s total profit. To overcome this difficulty,

a numerical method is introduced to calculate the aggregated distribution through Fast

Fourier Transformation and an approximation method is applied to reveal the tail prop-

erties of the aggregated distribution. Lastly, numerical examples in single-product and

multi-product scenarios are provided to contribute to the application and literature.

Chapter 3 and Chapter 4 are carried out based on an implied assumption that the prod-

ucts are composed only by hardware components. However, considering the technology

development, in the real world more and more products consist of hardware and software

subsystems, then the conventional warranty modelling and warranty policy optimisation

approaches based on pure hardware products need improving.

In Chapter 5, the hardware, software and user subsystems of a product are taken into

account together to build a more comprehensive warranty policy optimisation framework

than those in Chapters 3 and 4. The warranty cost of a product with embedded software

subsystem is modelled in a manner that the failure of hardware and software. This chapter

developed the models of warranty costs incurred by hardware specific, software specific
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and hardware-software interaction failures. The warranty policy optimisation methods

based on the comprehensive framework are demonstrated in 5 different scenarios of the

interplay between hardware and software subsystems. Then, the user’s behaviours on

warranty claiming such as FBNR and NFBR are also introduced to make the model more

complete. This is the first research in the literature of warranty management which inte-

grally considers the interactions among hardware subsystems, software subsystems and

users of a product in warranty modelling, warranty policy optimisation and even reliabil-

ity areas. This framework may contribute to the literature significantly.

The above three research chapters provide collective and comprehensive warranty pol-

icy optimisation frameworks, which have improved the research. However, some im-

provements can also be made on the models. For example, the sales volume can be

modelled in linear or non-linear and static or dynamic forms; the warranty policy can be

renewing or non-renewing; and copula selection is still a critical task in both theoretical

and application perspectives. Then, these issues are discussed in Chapter 6.

All in all, this dissertation rethinks warranty policy optimisation from the operational

perspective of a manufacturer with the consideration of risk and portfolio management.

Its novelty lies in

• it is the first attempt to collectively optimise warranty policies of products produced

by one manufacturer with a consideration of the risk of total profit,

• it is the first attempt to comprehensively optimise the warranty policy of a hardware

product with embedded software subsystem with a consideration of the interplay

between hardware and software subsystems and the effects of its user’s behaviours.

As such, this research has significantly contributed to the literature in the warranty mod-

elling.

7.2 Future work

It is noted that Chapter 5 considers the interplay of the subsystems including hardware,

software and end-users, of individual products. Apparently, one may consider using the
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mean-variance method, the VaR and the CVaR methods to optimise warranty policy for a

portfolio of products considering the interplay of the subsystems of those products, which

will be considered in the future.

Furthermoew, based on the new established collective and comprehensive frame-

works, the future research can be undertaken in many aspects, such as considering random

effects in warranty modelling, optimising two-dimensional warranty policies, optimising

maintenance policy based on the collective and comprehensive framework, optimising

group warranty policy (i.e. a warranty policy covering a group of items). Those future

research focuses are briefed in the following.

7.2.1 Random effects

In the literature, there are two existing approaches to dealing with random effects, which

are frequentist and Bayesian methods. For example, the former includes linear modelling

and the latter includes hierarchical Bayesian modelling methods. Copulas are recently

widely applied in the former category.

As discussed in the above review, in the actuarial science random effects has been

studied by many authors, see Zhao & Zhou (2012); Shi & Valdez (2014a); Yau et al.

(2003); Boucher et al. (2006) and Frangos & Karlis (2004), for example. Many re-

searchers model insurance problems with a consideration of random effects with copulas

(Yau et al., 2003; Frangos & Karlis, 2004; Boucher et al., 2006; Zhao & Zhou, 2012;

Shi & Valdez, 2014a). For example, the dependence of the claims frequency of hetero-

geneous units in successive periods is depicted by the dependence between the random

effect variables and modelled by copula (Zhao & Zhou, 2012).

In warranty modelling, random effects exist as well. For example, Akbarov & Wu

(2012) argues that random effects exist in warranty data due to the fact that products

are manufactured by different production lines and warehoused in different regions with

different environments. other researchers have also studied random effects in warranty

modelling area. For example, Fredette & Lawless (2007) use flexible non-homogeneous

Poisson processes as forecasting methods for warranty claims, where the possible hetero-
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geneity among the products is modelled through random effects; Lawless et al. (2009)

introduce a mixed Poisson process to model repeated events with both age and usage

scales, and the heterogeneity in both usage and event rates across product units are ac-

commodated with independently and identically distributed random effects.

However, in the literature of warranty management, the random effects in warranty

modelling are not considered with dependence, and a few works have been done in war-

ranty policy optimisation with a consideration of random effects. Hence there is a need to

consider the random effects within unobserved heterogeneity in warranty modelling and

warranty policy optimisation to avoid information loss. For example, one of the future

works is to develop copula-based warranty policy optimisation framework when random

effects is considered.

Such future work can be conducted with two reasons, avoidance of information loss

and availability of modelling tools. Avoidance of information loss means that, in the lit-

erature of warranty data analysis, the unobserved heterogeneity implied in warranty data

collected from the same product or the same user is dependent; hence there is a need to

consider the dependence within unobserved heterogeneity in warranty policy optimisa-

tion to avoid information loss. This work can be carried out referring to some research

in actuarial science, in which the dependence of the claims frequency of heterogeneous

units in successive periods is represented as the dependence between the random effect

variables and modelled through copula (Zhao & Zhou, 2012). Availability of modelling

tools means that, in the literature related actuarial science and warranty management, the

random effects models are well studied and applied widely, such as the Cox Poisson pro-

cess; but, it is hard to model the variables dependently via the dependence within random

effects through conventional methods; however, the advantages of copula can overcome it.

Copula makes it possible to incorporate both continuous and discrete random variables in

a joint probability distribution. It is also well known that it is easy to develop models with

copula as it separates the modelling procedures into two steps: (1) modelling marginal

distributions, and (2) integrating the marginal distributions with copula. Such advantages

of copula make it possible that one can collectively model and optimise warranty policies
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with a consideration of random effects.

7.2.2 Two-dimensional and n-dimensional warranty policies

The three research chapters in this thesis only investigate the optimisation of warranty

policy for a portfolio of products covered by one-dimensional warranty policies, and the

dimension is the age of a product. In the literature, one-dimensional warranty policy is

the mainstream; that is, the warranty only covers one dimension, which can be either the

usage or the age dimension, but not both. For some products (see Ye & Murthy (2016), for

example), however, a warranty policy may cover both age and usage (e.g., the warranty

of a car may cover both age and mileage), which is called a two-dimensional warranty

policy.

To optimise two-dimensional warranty policies, the relationship between the two di-

mensions should be modelled. Wu (2014a) proposes a new method of constructing asym-

metric copulas and applies such method to model two-dimensional reliability data with

a consideration of the dependence between the two dimensions, age and usage. Wang &

Su (2016) propose a new two-dimensional preventive maintenance strategy and identify

the optimal strategy to minimise the total expected warranty servicing cost from the man-

ufacturer’s perspective, in which the usage is treated as a random function of age. There

are also many other studies carried out on the two-dimensional scenarios, the models are

transferable for optimising warranty policies in the similar scenarios.

However, the policies discussed above are conventional, no matter if they are one-

dimensional or two-dimensional. Currently, the academia and industrial sector start to

enter the so called Big Data era with technology development. In this era, n-dimensional

warranty policies (n > 2) become realistic with support from new techniques and huge

field data.

For example, in recent years, the area of Wireless Sensor Networks (WSNs) attracts

more and more researchers’ interests. WSNs are supported by the advances in wire-

less technologies, such as the increasing miniaturisation of RF devices and microelectro-

mechanical systems (MEMS). WSNs can help collect information about parameters of
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the physical world. A WSN consists of a group of sensors integrated into a wireless net-

work. Recent advances in wireless sensor technology allow to distribute the low-cost,

low-power, multi-functional, small size sensor nodes diversely in demand for data collec-

tion in different applications scenarios. Such property has attracted a wide interest from

academia and industry.

For instance, a WSN can be embedded into a car to collect and process data of operat-

ing variables, such as speed, temperature, location, status of key components and driver’s

behaviours, such as times and force of braking. Then a dynamic picture of the actual

operating state of the car can be draw, thus, in principle, allowing for designing warranty

policy efficient with a consideration of other dimensions or variables of car in operating

except the age and mileage (usage). Furthermore, Bumblauskas et al. (2017) introduces

a smart maintenance decision support systems based on corporate big data analytics mo-

tivated by the rapidly developments on big data analytics and predictive maintenance

decision making. In which the warranty cost minimisation is considered. This research

provides another aspect in which warranty policy optimisation can be improved in the Big

Data era.

7.2.3 Maintenance policy optimisation

Maintenance policy optimisation is one of the most popular research areas in the reliability

community. Optimisation of preventive and predictive maintenance policies is useful for

real-world engineers and is also desired by them.

In the literature, there is a large bulk of maintenance policies modelling that have

been developed, see Jardine et al. (2006); Wu & Zuo (2010); Si et al. (2011); Shafiee

& Chukova (2013); Wang & Su (2016) and Wu et al. (2017). In the meantime, many

authors have considered optimisation of maintenance policy for systems under warranty,

see Bouguerra et al. (2012); Kurata & Nam (2013); Wang et al. (2015); Su & Wang

(2016). Although Wu et al. (2017) has considered using the mean-variance approach

to optimising maintenance policies for a set of systems collectively. However, they did

not consider the scenario of products produced by one manufacturer under warranty or

155



measuring the risk using VaR and CVaR approaches in maintenance policy optimisation.

Inspired by those developments conducted in this thesis, my future research may focus on

developing or optimising warranty policies with considering various maintenance policies

for a portfolio of different products produced by one manufacturer and also to develop

maintenance policies under risk-related constraints established based on VaR and CVaR

measures.

7.2.4 Optimisation of policies of cumulative warranty

According to Blischke & Murthy (1992), which has been reviewed in Chapter 2, warranty

can be on individual items and groups of items. The warranty on a group of items is called

as cumulative warranty. According to Yun et al. (2002), a cumulative free replacement

warranty covers a group of n items for a total service time, i.e. warranty length of nT ,

rather than covering only one item for a period T . If any item in the group failed before

t = nT , a free replacement item is supplied. This type of warranty policy is normally

provided with industrial and commercial equipment which is bought in batch as spares

and used one by one, for example, the mechanical or electronic modules used in military

or commercial airline equipment.

However, in the literature related to warranty and maintenance management, opti-

misation of warranty and maintenance policies has been chiefly focusing on individual

systems/products. Hence, in my future research, the approaches of the mean-variance,

VaR and CVaR to optimising warranty policies and maintenance policies in the cumula-

tive warranty scenario will be investigated. Furthermore, according to the properties of

cumulative warranty, in the consuming electronics industry, a new warranty implement-

ing method may be designed like that, the manufacturer provides cumulative warranty

policies to its retailers which may provide individual warranty policies to the consumers.
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Appendix A

Appendix

A.1 Basic modelling techniques

A.1.1 Probability Distributions

Generally, the insurance claims modelling serves for estimating the loss reserve or claims

reserve which is the provision for the future payment of incurred claims and denoted as

obligations of an insurance company. As Tse (2009) states, the model of insurance claim

losses, future payment of incurred claims, includes two components, claim frequency

and claim severity. Claim frequency indicates number of claims in a block of insurance

policies over a period of time; and claim severity is the cost of a claim, i.e. the claim size.

These two components are normally modelled separately and then are combined to derive

the aggregate loss.

In claims modelling, there are four discrete distributions, binomial, geometric, neg-

ative binomial, and Poisson distributions, applied to model claim frequency; and four

continuous distributions, exponential, Gamma, Weibull, and Pareto distributions, applied

to model claim size.

Claim Frequency

Naturally claim frequency is modelled as a non-negative discrete random variable. Basi-

cally, claim frequency can be modelled by four discrete distributions,

• Binomial distribution

• Geometric distribution
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• Negative binomial distribution

• Poisson distribution

, which only take non-negative integer values. Furthermore, some new distributions can

also be created following compound distributions and mixture distributions. For exam-

ple, the compound Poisson distribution is a compound distribution in which the primary

distribution is Poisson and the secondary distribution is arbitrary.

Binomial distribution is the discrete probability distribution of the number of suc-

cesses in a sequence of n independent and identically distributed (i.i.d.) Bernoulli ex-

periments, of which the success probability is p. n and p also are the parameters of the

binomial distribution, p ∈ [0, 1] and n is a positive integer. A random variable X fol-

lows the binomial distribution with parameters n and p, denoted as X ∼ B(n, p). The

probability mass function (pmf) of X is

fX(x) =

(
n

x

)
px(1− p)n−x, for x = 0, 1, · · · , n (A.1)

where
(
n
x

)
= n!

x!(n−x)!
. The mean and variance of X are E(X) = np and V ar(X) =

np(1− p).

Geometric distribution is the probability distribution of the number of i.i.d. Bernoulli

experiments occurred before getting one success in a experiments sequence. This distribu-

tion just has one parameter, p, which is the success probability of individual experiment,

and p ∈ [0, 1]. A random variable X follows the binomial distribution with parameter p,

denoted as X ∼ GM(p). The pmf of X is given by

fX(x) = p(1− p)x, for x = 0, 1, · · · (A.2)

The mean and variance of X are E(X) = 1−p
p

and V ar(X) = 1−p
p2

.

Negative binomial distribution is a discrete probability distribution of the number of

fails in a sequence of i.i.d. Bernoulli experiments before a specified (non-random) number
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of successes occurs. The parameters are p and r. A random variable X follows this

distribution denoted by X ∼ NB(r, p), where r is a positive integer and indicates the

number of success, and p ∈ [0, 1] is the probability of success of individual experiment.

The pmf of X is

fX(x) =

(
x+ r − 1

r − 1

)
pr(1− p)x, for x = 0, 1, · · · . (A.3)

Its mean and variance are E(X) = r(1−p)
p

and V ar(X) = r(1−p)
p2

. Comparing equation

(2.2) and equation (2.3), it is easy to find that the geometric distribution is a special case

of the negative binomial distribution with r = 1. The random variable which follows

negative binomial distribution is just the sum of r independently variates which have

geometric distribution.

Poisson distribution is one of the most widely used discrete distributions in empirical

applications. It is commonly applied to model the number of arrivals of certain events

within a period of time (such as the number of insurance claims in a year), the number

of defective items in production, and as an approximation of the binomial distribution,

among others. It is a discrete probability distribution that expresses the probability of a

given number of events occurring in a fixed interval of time if these events occur with a

known average rate and independently of the time since the last even. A non-negative dis-

crete random variable X has a Poisson distribution with parameter λ,which is the known

average occurrence rate, denoted by P (λ). The pmf of it is

fX(x) =
λxe−λ

x!
, for x = 0, 1, · · · , (A.4)

where λ > 0 and is also equal to the expected value and variance of X , E(X) =

V ar(X) = λ.

New distributions can be created through two method, compound distributions and

mixture distributions, based on these four basic discrete distribution, some new distribu-

tions.
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Let X1, · · · , Xn be i.i.d non-negative integer random variables. Denote the sum of

their random variables by S,

Sn =
n∑
i=1

Xi. (A.5)

It N is also a non-negative integer random variable and distributed independently of

X1, · · · , Xn, then S is said to have a compound distribution. The distribution of Nt is

called the primary distribution, and the distribution of X is called the secondary distri-

bution. If N follows Poisson distribution and X follows geometric distribution, S has a

Poissongeometric distribution. A compound Poisson distribution is a compound distribu-

tion where the primary distribution is Poisson, for any secondary distribution.

The mixing distributions is another method to create new distributions. LetX1, · · · , XN

be random variables with corresponding pmf or probability density function,pdf, fX1(x), · · · , fXn(x).

A new random variable X can be created with pmf or pdf fX(x) given by

fX(x) =
n∑
i=1

pifXi(x), (A.6)

where pi ≥ 0 for i = 1, · · · , n, and
∑n

i=1 pi = 1. Thus, pi form a well-defined probability

distribution. A new random variable Y by Pr(Y = i) = fY (i) = pi. Hence, X may be

regarded as a random variable which is equal to Xi with probability pi, and Y may be

interpreted as a random variable which takes value i if and only if X = Xi.

Claim Amount

Different from the claim frequency, the claim size is normally treated as a non-negative

continuous random variable. Regarding to modelling claim size, there are some standard

continuous distributions include

• Exponential distribution

• Gamma distribution

• Weibull distribution

• Pareto distribution.
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Some new distributions can also be created through transformation, mixture distribution,

and splicing methods. Additionally, the extreme values of claim size which always occur

in the upper tail of the distribution also should be considered (Tse, 2009).

Exponential distribution is used to describe the inter-arrival time of an event, such as

the breakdown of a machine. It is related to the Poisson distribution, such as if the inter-

arrival time of an event is distributed as an exponential random variable with parameter λ,

the number of occurrences of the event in a unit time interval is distributed as a Poisson

with parameter λ. It is also the continuous analogue of the geometric distribution.

A random variable X follows an exponential distribution with parameter λ, denoted

as X ∼ Exp(λ), its pdf is

fX(x) = λe−λx, for x ≥ 0, (A.7)

where λ > 0. The cumulative distribution function (cdf) of X is

FX(x) = 1− e−λx. (A.8)

The mean and variance of X are E(X) = 1
λ

and V ar(X) = 1
λ2

Gamma distribution is a two-parameter family of continuous probability distributions,

and the two parameters are positive real numbers. In this realm of insurance and warranty

claims modelling, we denote that a random variable X has a gamma distribution as X ∼

G(α, β), and the pdf is

fX(x) =
1

Γ(α)βα
xα−1e−

x
β , x ≥ 0, (A.9)

where, the function Γ(α) is the gamma function, when α > 1, the gamma function sat-

isfies the recursion that Γ(α) = (α − 1)Γ(α − 1); If α is a positive integer, we have

Γ(α) = (α− 1)!. The mean and variance of X are E(X) = αβ, and V ar(X) = αβ2.

The common exponential distribution is a special case of the gamma distribution,

because, from equation (2.15) we can find that the pdf of Γ(1, β) is the same as that of

Exp( 1
β
). Hence, the sum of i.i.d. exponential distributions follows a gamma distribution

with a positive integer-valued α.
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Weibull distribution is a continuous probability distribution, and widely used in re-

liability engineering and elsewhere, as it gives the distribution of lifetimes of objects.

Weibull distribution also has two parameters, a random variable X has a Weibull distri-

bution can be denoted as X ∼ W (α, λ). The pdf is

fX(x) = (
α

λ
)(
x

λ
)
α−1

e−( x
λ

)α , for x ≥ 0, (A.10)

where, α and λ are positive, and are shape parameter and scale parameter respectively.

The mean and variance of X are E(X) = µ = λΓ(1+ 1
α

and V ar(X) = λ2Γ(1+ 2
α

)−µ2

Pareto distribution is a power law probability distribution and initially applied eco-

nomics. A random variable X has a Pareto distribution can be denoted as X ∼ PT (α, γ).

The pdf is

fX(x) =
αγα

(x+ γ)α+1
, for x ≥ 0, (A.11)

where, the parameters α and γ are positive. The mean and variance of X are E(X) =

γ
α−1

and V ar(X) = αγ2

(α−1)2(α−2)
for α > 2.

Based on the claim frequency and size models, the aggregate loss, which is the sum of

all losses incurred in a block of insurance policies, can be modelled through the individual

risk and collective risk approaches. In the individual risk model, the aggregate loss is

treated as the sum of the losses of all individual policies which are independently and

identically distributed. However, in the collective risk model, the aggregate loss follows a

compound distribution, in which the claim frequency represents the primary distribution

and the claim size represents the secondary distribution.

A.1.2 Stochastic Processes

The process of claim arrival can be treated as a stochastic point process. The process can

be simulated through the arrival times {Ti}, or the inter-arrival times Wi = Ti − Ti−1.

The widely used stochastic process modelling techniques include

• Poisson process

• Non-homogeneous Poisson process
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• Cox porcess

• Compound Poisson process

• Renewal process.

Poisson process is the most common and best known claim arrival point process. In

this review, ’Poisson process’ denotes the classical homogeneous Poisson process, which

is different from the non-homogeneous Poisson process would be discussed later.

A continuous-time stochastic process{Nt : t ≥ 0} is a Poinsson process with intensity

λ > 0, means this process starts at 0, N(0) = 0; the expected number of claims occur

per unit time is λ; the number of claims in the time interval (Ti, Ti + τ), (N(Ti + τ) −

N(Ti)), the increments, are independent, stationary, and follow Poisson distribution with

the parameter λτ , which only depends on the length of the interval; and inter-arrival times

Wi are i.i.d. and follows an exponential distribution with parameter λ.

Non-homogeneous Poisson process is very closely related to the Poisson process, and

can be treated as as a Poisson process with a variable intensity defined by the deterministic

intensity (rate) function λ(t). It means the increments do not have to be stationary, i.e.

the intensity of the distribution of the number of claims in the time interval (Ti, Ti + τ) is

dertermined by a function and depended on the time, λ(t), instead of only depended on the

length of the interval, λτ . The homogeneous Poisson process implies that the size of the

insurance policies portfolio cannot increase or decrease is practice. For instance, it cannot

describe situations, like in motor insurance, where claim occurrence epochs are likely to

depend on the time of the year or of the week. For this situation the non-homogeneous

Poisson process suits much better than the homogeneous one (Cizek et al., 2005).

Cox process is also known as a doubly stochastic Poisson process, it is also based on the

Poisson process with some changes of the property of the intensity. This process provides

more flexibility than the non-homogeneous Poisson process by allowing the intensity to

be a stochastic process, instead of only depended on time. This process can be treated
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as a two-step randomisation procedure: an intensity process {Λ(t)} is used to generate

another process {Nt} by acting as its intensity, i.e. {Nt} is a Poisson process conditional

on {Λ(t)}. If {Λ(t)} is deterministic, then {Nt} is a non-homogeneous Poisson process.

If Λ(t) = Λ for some positive random variable Λ, then {Nt} is a mixed Poisson process

(Cizek et al., 2005).

Compound Poisson process is a continuous-time stochastic process with jumps. The

arrival process of the jumps is a Poisson process with intensity λ, and the size of the jumps

is random and follows a specified probability distribution G. This process can be denoted

by

CP (t) =

N(t)∑
i=1

Di (A.12)

where, {N(t) : t ≥ 0} is a Poisson process with intensity λ, and Di are i.i.d. random

variables with distribution G.

Renewal process can be viewed as a generalised Poisson process. Regarding to the

non-homogeneous Poisson process and Cox process, which are can also be viewed as

generalised Poisson process, where the intensity λ is make non-constant. In the Renewal

Process, the distribution of the inter-arrival times, waiting times, Wi, is made a variety of

different distributions, instead of the exponential distribution in the Poisson process; even

though the random variables Wi are still i.i.d. and positive. Additionally, the homoge-

neous Poisson process is also a special cause of renewal process.

A.1.3 Copulas

A copula is a multivariate distribution with simple marginal distribution for all the random

variables (frequently uniform on the interval [0, 1]). As Sklars Theorem states that for any

multivariate joint distribution, there exists a copula function such that the joint distribution

can be represented as a function of its marginals through this copula (Sklar, 1959).In order

to represent dependence, some researchers construct multivariate distributions through

copula, because copula is often easier to model dependency between tractable random
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variables and then to transform to the distributions of interest, rather than to start with an

arbitrary multivariate distribution (Czado et al., 2012). According to recent research, the

popular copulas applied in claims modelling are

• Elliptical copulas:

Gaussian (Normal) copula, and

t-copula

• Archimedean copulas:

Clayton copula,

Gumbel copula, and

Frank copula.

Figure A.1: Copulas (Naimy, 2012)

As Figure 6 shown, elliptical and Archimedean copulas, exhibit a certain degree of sym-

metry or are restricted to certain correlation structures (Diers et al., 2012). Regrading to

the elliptical copulas and Frank copula, they exhibit a symmetric dependence, while the

Gumbel and Clayton copula present the tail dependence which is asymmetric.

Elliptical copulas are parametric and include Gaussian copula and t copula. Gaussian

and t-copulae contain the dependency structure from the multivariate Normal and multi-
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variate t-distribution respectively, and they are directly derived through the Sklars theorem

(Pešta & Okhrin, 2014).Gaussian copula and t copula all induce symmetric dependence

structures (Diers et al., 2012).

Czado et al. (2012) employ Gaussian copula and provide a typical procedure of con-

structing a bivariate regression model for number of claims and claim sizes. Firstly, the

Poisson regression and Gamma regression are used to represent the number of claims and

corresponding average claim size respectively.

Archimedean copulas are another associative class of copulas, different from the

Gaussian copulas, most common Archimedean copulas admit an explicit formula. As

Archimedean copulas allow modeling dependence in arbitrarily high dimensions with

only one parameter; hence they are popular in practice.

A.1.4 Credibility Theory and Prediction

The claim frequency, claim size and aggregate loss all can be denoted as the random loss

variable X , and the random insurance loss in next period can be predicted. In order to up-

date the prediction of the insurance loss based recent data of claims, the credibility theory

is introduced. In the classical credibility approach, i.e. the limited-fluctuation credibility

approach, the updated prediction of the loss is a weighted average of observed loss and

predicted loss, which is based on prior information. As an improvement, Buhlmann’s

credibility updates the predicted loss based on a linear predictor using past observations

through the least mean squared error approach with the assumption that the past observa-

tions are identically distributed. In order to extend and generalize the Buhlmann theory,

this assumption is relaxed in Buhlmann-Straub credibility model, even though the obser-

vations are still assumed to be independent (Tse, 2009). In Buhlmann’s credibility model

and its generalisation, the random loss variable X , is distributed based on a parameter θ,

which varies with different risk groups, and is assumed to be unknown and fixed. How-

ever, in Bayesian approach, the random variable Θ has a statistical distribution, and the

parameter θ, which is the realisation of Θ can be estimated through likelihood function.

Under Bayesian approach, the prediction of future random losses can be formulated, and
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the Bayes prediction is the posterior mean of the future loss and has the minimum mean

squared error.
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