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Abstract

We propose a general strategy for generating synthetic magridiin complex lattices with non-

trivial connectivity based on lighhatter coupling in cold atomic gases. Our approach starts from an
underlying optical ux lattice in which a synthetic magnetield is generated by coupling several

internal states. Starting from a high-symmetry opticadlattice, we superpose a scalar potential with
asuper- or sublattice period in order to eliminate links between the original lattice sites. Asan
alternative to changing connectivity, the approach can also be used to create or remove lattice sites
from the underlying parent lattice. To demonstrate our concept, we consider the dice lattice geometry
as an explicitexample, and construct a dice lattice withxaensity of half aux quantum per

plaquette, providing a pathway tat bands with alarge band gap. While the intuition for our proposal
stems from the analysis of deep optical lattices, we demonstrate that the approach is robust even for
shallow optical ux lattices far from the tight-binding limit. We also provide an alternative

experimental proposal to realise a synthetic gaalgan a fully frustrated dice lattice based on laser-
induced hoppings along individual bonds of the lattice, again involving a superlattice potential. In this
approach, atoms with a long-lived excited state are trapped usiagtamagi¢wavelength of light,
allowing the desired complex hopping elements to be induced in a sjeser coupling scheme for

the dice lattice geometry. We conclude by comparing the complexity of these alternative approaches,
and advocate that complex opticalx lattices provide the more elegant and easily generalisable
strategy.

1. Introduction

The creation of synthetic gaugelds in cold atomic gases provides new opportunities for realising exotic
emergent quantum phaggs5]. Prominent target phases include vortex latjépand, at high ux density,
bosonic counterparts of the continuum fractional quantum Hall s{até$. When both gsyntheti¢ eldanda
lattice potential are present, the continuum quantum Hall states are predicted to persist for apprexiable
densities; per plaquett§9]. In addition, new classes of quantum Hall states, stabilized only due to the presence
of aperiodic lattice potential, emerge at larger valugsfing to the underlying structure the Hofstadter
spectruni10-14], and in particular owing to the presence of single-particle bands with higher Chern numbers
C 1[14,19.

Early experiments on synthetic gaugtds relied on using rotation to emulate magnesitg 1, 16].
However, in this approach itis exceedingly difit experimentally to avoid heating due to asymmetric trapping
potentials, so the strongly interacting regime of low density in the lowest Landau level remains out of reach.
Prompted in part by the exciting outlook for the creation of new phases of matter, there has been much progress
with new theoretical proposals and the experimental realizations for schemes of simulating geiigeelds
[17-25). Further impetus for synthetields stems from the prospect of realising topologiahands in
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condensed matter systemwhere spirorbit coupling may provide suitable complex hopping elementsina
tight-binding representatior-sharpening the focus on the underlying commonalityadfsingle-particle bands
with non-zero Chern numbgR6-37], and more detailed characteristics of their band georfie®rzq].
Currently no clear target systems realising synthetic maguetiave been idented in the solid state, while
cold atoms provide a range of successful realiz&tiBagy achievements include the square lattice with
staggered magnetiox[38, 39 that was generated by suitably tailored laser-induced hodgin@s)]. More
recently, experiments have achieved homogeneous magnetising related approaché$-43). The Chern
bands of the Haldane modé!l7] were also successfully engineered using a lattice shaking aggrpach
Features of the non-trivial band single band topology have been successfullg@éatit6]. Another
groundbreaking line of research has exploited spatially dependent dressed states of atomsin order to create a
Berry phase emulating the Aharor@ohm effect of charged particles moving ina magnedid{21]. The
experimental realization of this approdehi] has prompted further theoretical developments in order to
maximize the achievablex density in so-called opticalix lattice§24, 47]. These systems rely on modulating
the optical dressed states of multi-state atoms on the scale of the optical wavelength, thus accessing the smalles
possible length scales for lightatter coupled systems, and provide a viable route to observe fractional quantum
Hall physic$2, 48 49. Experimental progress has been reported on the intimately related case of emulating
spin-orbit coupling in two-dimensional systefis-52].

So far, attempts to emulate optical lattices with synthetic gaidghave focused on continuum gases or on
simple optical lattice geometries such as square and triangular [&fcéswever, optical lattices without
gauge elds have already been demonstrated for more complex geometries such as the kagdisé lattice
which is achieved by removisges$rom an underlying triangular lattice. Lattice geometry plays a particularly
importantrole in the presence of magnetitx, as it can affect the single-particle spectrum dramatically. Indeed,
the elegant Hofstadter butterseen in the spectrum of the square laftic¢gis strongly altered in other
geometries such as the triangyiz] or hexagonal latticgS7]. This provides a strong incentive to achieve
synthetic gaugeelds in a number of different lattice geometries.

Itis well understood how complex lattice geometries can be realised in scalar optical lattices by exploiting the
superposition of several optical lattice potenfiads58 59. In this paper, we explore how this design principle
can be extended to create opticax lattices with non-trivial connectivity by superposing scalar/'sub-
superlattice potentials to an opticaix lattice that generates non-trivial Berry phases from adiabatic motion
within the space of internal states of the trapped atoms. We demonstrate that a scalar potential may be used to
either removéond®r sitesrom an underlying opticalux lattice of simpler geometry, as well as to split
individual sites into multiple wells, all the while keeping the synthetttintact. The basic principle for
controlling bonds can be understood from a tight-binding picture: the dynamics of atoms in an optical lattice
arises from hopping processes between local Wannier states that are localized in the minima or wells of the
optical potentia] 6. The amplitude of hopping processes is given by the overlap of these wave functions. As the
overlap is dominated by the exponential tails penetrating the potential maxima that separate adjacent wells,
hopping is extremely sensitive to the magnitude of this potential. Therefore, hopping can be almost completely
suppressed by increasing the height of the potential maximum between two wells when a scalar potential is
added atthose locations. Generally, we wish to suppress bonds on a periodic sublattice of an underlying optical

ux lattice, so this can be implemented by superposing an additional scalar optical lattice potential which acts

equally on all internal states. In practice, optiead lattices operate in an intermediate coupling regime where
the lattice potential is su€iently shallow for atoms to occupy any position in space. One of the main results of
the currentwork is to demonstrate that complex optiaat lattices can operate in a regime of weak coupling
that remains far from the tight-binding limit: we provide a spe@xample showing that the dispersion of the
tight-binding picture is reproduced closely even in the regime of shallow lattice depth with potential depth of
order of the atomic recoil energy.

In order to demonstrate our general principle, we propose and analyse in detail a new realization for
synthetic elds in the dice lattio@lso known as s-lattice) where the spect uxdensityof = o 2per
plaguette yields a particularly surprising band structure with three pairs of perfedinds that conserve
time-reversal symmetf$1]. The atbands and compactly localized single-particle states found in this lattice
are caused by a phenomenon of destructive interference known as Akdohavcaging61]. This regime
would be particularly well suited to reach interesting correlation phenofé@r@], but previous proposals for
synthetic eldsinadice lattice geometry have focused on a different regime with dispersive Chefddands
Unlike most atband models achievable in cold atg6®, the atbands ofthe- uxdice lattice model are
fully gapped. Owing to theatness of the band dispersion, even weak interactions give rise to exotic phasesin the
dice lattice model, including a supeiid phase in the halflled lowest banf3 as well as highly degenerate

3We also note the successful observation of fractional Chern insulating phases in graphene-based heterostructures under strong physical
magnetic eldg37).
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vortex lattice congurations at larger densit§2, 63 that provide a playingeld for order-by-disorder
phenomen464]. Hence, akin to the physics dat band ferromagnetisi® 7, 68, the dominant phasesin the

dice lattice provide interesting alternatives to more conventional features of Bose condensation in dispersive
bandq39.

To further contrast the new proposal with more conventional techniques, we also present an alternative
design for a dice lattice with a synthetic ux based on alkaline earth atoms trapped by light near their anti-
magic wavelength. We describe a set-up creating laser-induced hoppings according to the connectivity of the
dice lattice, that can be realised using far-detuned transitions follp2d@h@ur design explicitly constructs the
tight-binding Hamiltonian within the magnetic unit cell, containing a total of six sites, which is repeated due to
the inherent periodicity of the trapping lasers. Wid that the two designs involve a similar number of laser
sources, and we argue that requirements on phase stability favour the aptiedtice approach.

The paper is organised as follows. In se@jave review how the concept of adiabatic motion in optical
dressed states enables the creation of opticdhttices, and we establish our notations. In secjare
introduce the idea of changing lattice connectivity by removing bonds from an optidaltice at the level of a
tight-binding approach, and perform an analysis of its translational symmetries. In gegéaletail how the
idea can be exploited to realize the dice lattice geometry with haifjuantum per plaquette, focusing on a
tight-binding picture. Sectiofgives the general formalism for studying opticed lattices beyond the tight-
binding limitin reciprocal space, and we use the example of the dice lattice geometry to demonstrate the role of
spin-translation symmetries of thex lattice Hamiltonian. In sectio®, we provide detailed calculations of the
band structure for realistic parameters in our dio® lattice geometry, focusing on the limit of a shallow lattice.
Sectiory provides the alternative design, based on laser-induced hoppings in a deep optical lattice, and we
conclude in sectiof.

2. Background: optical ux lattices

The optical ux lattice approach is motivated by the principle of adiabatic motion of atoms, such that they
remain in their local ground-state (r) along their trajectory(t) [24], taken here to be comed within the
two-dimensionak—y-plane. Upon completion of a closed paththe wavefunction of the atoms acquires a
geometrical Berry phadd gA - dI, given by the line integral over tfreal spaceBerry connection

gA i7 <7 (witha ctiticscharge)[21]. This geometric phase mimics the AharoABahm coupling
of acharged particle to the vector potential of a physical magredicwvhich has the same form. It also useful to
think of the correspondinguxdensityng  g/h(<  A) - es. q

The presence of vortices in the Berry connection allows one to achileglensities of order one magnetic
ux quantum per unit cell of the opticalix lattice. Here, we will consider as our starting point the explicit
example of the triangulatux lattice of24] for a two-state system with the Hamiltonian

p2
21 M@M-T, : (1)
2m

wherelisthe 2x 2identity matrix in spin-spacel  ( ,T 5, ¥isth&vector of Pauli matrices, ands the
depth of the optical lattice. We consider the triangular optical lattice potential described by

M) cof'i e cobl sr)er  cad sr)es, L ()2 L

\1vheree~. are the cartesian unit vectors, and the wave veéitprs 1,04 ILz (1/2,/3/3 Land
Ls ( 1/2,43/ 2 Larechosentoyield alattice potential with minima separated by a latticeag&owe

require L %. In our notations, we highlight constant vectors ded by externally imposed geometrical

features such alt..- in bold-face with an additional arrow, while vectors representing variabléslikelenoted
in simple bold font. Note that spea implementations of a triangular opticalx lattice such ad) may be
realised by various optical coupling schemes. Detailed implementations have been presented(ste\elgre
[47]), so we shall work with the simplest model in the current paper.

Inthe adiabatic limitn | d, itis easily checked that the Hamiltoni@hhas eigenvaluds,(r) oM,
andthe local Bloch vector forthelowerband, ~ () T (r) ,isSimply given by the directionoiM, i.e.,
n M w M/M .Thestates , a8e alsothe eigenstates for the class of Hamiltoniarzs V;, for
arbitrary scalai.e., spin-independeppotentials(r)  V4r)1. The energy landscape for the unperturbed
triangular ux lattice(1) is shown in gurel. Note that the unit cell of this lattice encloses twa quanta within
an area containing four local minima of the energy, which we can think of as four lattice sites in the tight-binding
limit of a deep optical ux lattice[24]. For our choice of units, the lattice vectors spanning the unit cell are given
by 51 (v3, Da,and !:12 (0, 24, as highlighted ingurel.

3
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Figure 1. Contour plot of the energy landscape for the triangular optigalattice with two ux quanta per unit cell 4], the
starting point for our construction. Orange arrows show the in-plane components of the local Bloch vector. The unit cell is spanned by
the vectorgl, 22, contains 4 triangular lattice sites, and enclosex2uanta. Thanks to a spin-translation symmetry, this can be

reduced to areduced unitcell of sfze /2, a,] (dotted cyan lingsIn this paper, we show how thisix lattice can be moded to yield
an optical dice ux lattice by eliminating bonds: a dice lattice is obtained by impeding tunnelling across the links which are crossed out
with blue wavy lines.

The periodicity of the energy landscape suggests that the Hamil{ayiteas a higher translational
symmetry than that by the above-mentioned lattice vedipré/hile energetically equivalent, the eigenstates at
the four energy minimain the unit cell are distinct. However, the higher symmetry of the Hamiltonian can be
revealed by generalized translation operators that incorporate a rotation in spifizgjpa®eailable spin-
translation operators are

1 il !
T e, T Te® |, T (3

with[T;,, 1 0( = 1,2,but[T, T] v 0.Nonetheless, wend that[T;, Tfﬁ 0, so we can classify the
eigenvalues of withthe quantum numbersofbofﬁ,ande2 exp(ag - <) wK(«L:lz),asthe latter reduces
to aregulartranslatiok (52) by 52. For a detailed discussion of these symmetry operations in the triangular
lattice, sef?4].

3. Changing lattice topology via scalar potentials

Inthe deep optical lattice limit, we can consider optieed lattices as tight-binding models where motion
between twésitesor local minima of the energy landscape is described by a tight-binding model with complex
hopping elements. We now examine how a change in the lattice topology emulated by optettices is
achieved either Byemoving sitéor by‘removing bondsdn this tight-binding model, as was already achieved
for scalar optical lattic¢s8, 54]. As we will demonstrate below, this idea can indeed also be realised in optical

ux lattices by applying an additional scalar optical lattice potential to either suppress lattice sites or the
connectivity between them, while the distribution ak generated by the underlying opticak lattice is kept
intact.

Some examples of cutting bonds are visualizedume?. There are already similar experimental

realisations of tuneable optical lattices obtained by superposing multiple standinpp&&/&sAn additional
consideration for ux lattices arises in the tight-binding limit, whenex through each plaquette is deed only
modulo 2 . As the elimination of links merges the two adjoining plaquettes into a single one, this construction
yields non-trivial ux lattices only if the totalux in the resulting merged plaquette is not an integer multiple of
the uxquantum . Similarly, the removal of sites also merges several adjoining plaquettes, so the same
consideration applies. For example, a hexagonal lattice can be obtained by removing a sublattice of sites of an
underlying triangular lattice. In this case, six neighbouring triangular plaquettes are joined into a hexagonal one,
so this yields non-trivial results if theix per triangular plaquette is not a multiple of 6.

4
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Figure 2 Examples of new lattice topologies that emerge by elimination of bonds from an underlying graph, where suppressed
hoppings are symbolized as open circles. The triangular I@tezn be reduced to a dice lattice. Here, the centres of eliminated

bonds form a kagome lattice. A square lattijean be reduced to a brickwork lattice which has the connectivity of a honeycomb
lattice. Here, the centres of eliminated bonds again form a square lattice. A regular honeycomb lattice can also be recovered from this
set-up by scaling theaxis by one half.

4. Case study: the dice lattice

Forthe remainder of this paper, we focus on a case study of eliminating bonds in a trianglddtice.
Alongside the elementary unit cell of thex lattice, gurelhighlights the bonds that need to be severedinthe
triangular lattice so as to reduce its connectivity to a dice lattice geometry. As shown more clgarg?(a),
we nd that mid-points of these bonds form a kagome lattice with lattice constant./3 / 2a. From gurel,
itis also clear that the pattern of eliminated bonds has a different periodicity as the leIBI'LCﬁ ofthe
triangular optical ux lattice. This will be further discussed, below.

In our cold atom realization of an optical dicex lattice, the maxima of an additional scalar optical
potential are aligned with the centre points of the bonds of an underlying triangular optidattice. As
experiments by the Stamper-Kurn group demonstrate, an attractive kagome optical lattice can be achieved by
combining a blue-detunede., regions of high intensity are repul$isteort-wavelength triangular optical
lattice with a red-detune@ttractiv@ triangular lattice of twofold lattice constdat]]. Experimentally, itis
dif cultto keep these two lattices in register, but this challenge has been successfully f6drdssed we
require aepulsivkagome lattice, which is rotated by6 with respect to an underlying triangular opticak
lattice(1), again implying that the two light potentials have to be keptin phase as in the kagome lattice realisation
of[54]. The corresponding optical potential is formed by a red-detuned short-wavelength scalar optical lattice
Vswatwave number ? 2 /./3, as well as a blue-detuned long-wavelength scalar supeNattivéth wave
number /2. The full Hamiltonian of our optical diceux lattice is then obtained by superposing all three
components

dice(r, D) [rVswr)  bViw(r)]1. (4
Here, the parametebs> 0andr < 0 give the amplitude of the scalar beams relative to the spin-dependent
elds, and the explicit form of the required short- and long-wavelength potentials are given by

?

Vaw® Isie(!y o0 siedy o sidchy ey LT (5
forthe red-detuned beam that is attractive, and that should thus contribute with an amplku@eand

| E | 2
. e . L

Viw(r . siP 2 .r St —2 -r sit —- r 6

Lw(r) > > > ©)

for the blue-detuned beam that should provide a repulsive potential with an amgiited® and

I i ? 2/\/?3% LI i throughout. Note that both thede contributions are scalar, i.e., they are diagonal in spin-
space. Inthe adiabatic lintite., disregarding kinetic enejgihe local energy eigenvalues are readily obtained as
Edce(r, b) oM 'Vsw(r)  bVLw(r), and the local eigenstates are unchanged with respect to the
triangular optical ux lattice.
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Figure 3 Contours show the adiabatic energy landscape of thealidattice(4) with r = b = 1/ 8, obtained by knocking out
bonds from the underlying triangular opticalx lattice shown in gurel. The periodicities of the lattice result from a combination of
the periodicity in the energy landscdplown as a density plot with minima in dark b)aad the local Bloch vectops y-
components shown as orange arrpWe original unitcell a;, aj is highlighted in dashed yellow lidesrows. As the scalar
potential has different periodicity than thex lattice, the elementary unit cell of the die& lattice is enlarged and contains 12 sites
The gure shows the dice unitcellinred full lines, spanned by vectors ma . Thanksto acoanJin?d symmetry of spin
rotation and translationee main teytthe unit cell can be reduced to half that size, shown as the riegion;/ 2 enclosed in
dashed greenlines.

Letus now discuss the symmetries of the optical digdattice Hamiltonian. As we noted previously, itdoes
not have the full translational symmetry of the triangular opticallattice. The resulting situation is best
discussed in terms ofjure3, which shows the energy landscégmntours; darker blue indicates minipas
wellasthe y-components of the local Bloch vecforange arrowsin the presence of the scalar potent(&)s
(6), the energy landscape contains lattice sites with three differemeprthe most prominent minima form the
‘hubs or sixfold connected sites of the dice lattice, such as the one at therorigf@, 0. They are surrounded
by six smaller minima, thie@ims’ or threefold connected sites. These are slightly triangular and can be either
pointingupwardgsuchasat  (~/3/2, 1/ da]ordownwardgasar (0, 1)a]. In addition, lattice sites
differ in terms of the spin-content of the local wavefunction. Looking at the in-plane components of the local
Bloch vectors, itis apparent that a fundamental unit cell of our optical dickattice is enclosed by the vectors
markedin gure3asv; (243, Qa,andv, ( +/3, 3a, which connect hubs with identical Bloch vectors.
Due to the distinct periodicities, this unit cells contains 12 sites of the underlying triangular lattice so itis
enlarged threefold with respect to the unit cell of the original triangular opticdhttice.

The Hamiltonian(4) contains an additional symmetry, which can be constructed in terms of the spin-
translation operator§ ; in (3). Let us construct suitable spin-translati@salong the half lattice vecto% 12

These can be expressed in termg gas:
S TE Teth b (7
S T'E iBe B M (9

We note that bott§ commute with the Hamiltonian,i.§S 5 ¢icd 0. Furthermore, their squares are
simple translations, which corms that we have chosen the unit cell correctly. For instance,
32 '['Zefz‘l"l )" 'gw , Which eqllfals apure translatitb(r(!/l) under the lattice vectob,. However, the
translationsS, andS; do not commute with each other, g8, $] v 0. Given thatS; is diagonal in spin-space,
we select this operator as our supplementary symmetry in formulating the single-particle Hilbert-space, and we
canthen use the eigenvalues of the set of commuting operatdifé and$S; to label eigenstates. This resultsin
areduced unitcellinreal space, spanne[d/é,yvz/ZJ ,asshownin green dashed linesguire3, such that
eigenstates in the remainder of the full unit cell can be recovered by agltartgeir symmetry related points
inthe reduced cell.
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5. Spin-translation symmetry in shallow ux lattices

The arguments of the preceding section can be placed on a more robust foundation by considering the full
Hamiltonian of the ux lattice beyond the tight-binding limit, i.e., including kinetic energy. In order to capture
the effect of the kinetic energy term, itis convenient to studytirdattice Hamiltonian as a tight-binding
modelinreciprocal spa¢éd. Here, we review and extend this formalism to take into account the spin-
translation symmetries, as realised by the oper&p8sidenti ed above.

5.1. General formalism

Having identi ed the periodicity of the problem in the real-space unit cell spann[?dbwlz] , we know that the
wave functions in reciprocal space arerdel on a fundamental Brillouin zoriBZ) spanned by the reciprocal
lattice vectors

L
2 P PR
I (1 2 - €
whereg; is the totally anti-symmetric tensor. The reciprocal lattice vectors thus sgtlisfy l E;. Now, letus
turn to discuss the momentum transfers, which are obtained as the matrix elements of the int&f&gtiion

the basis of plane-wave states iith, § €* B for8he spincomponenB. One nds thatthe matrix
elements depend only onthe momentumtransiér ka k

Vig % Veiah® ok, avinks § B (10)

1, 2, ©)

According to Blocts theorem, eigenstates, arg uniquely labelled by a band inageand momentungin
the rstBZ, while larger momenta canbe decomposédasy  Ginto apartlyinginthe BZ and areciprocal
lattice vectoGg; sbl th,with s tinteger. In its Bloch form the wavefunction reads

g § Ug(Na, oo 8Ggwd GuB , § oo (1)

B Bst

with expansion coef:ientsrﬂE,G. Aswas noted previouglyd, the ux lattice Hamiltonian takes the form of a
tight-binding model in reciprocal space in which the kinetic energy plays the role of a harmonieozent:

2(q G)?. VB By 12
—an cdgg ¢ (0B GaGaB,an &g LH ( )
a

q
BG 2m B BGGa

written here in terms of the annihilatiqereatior) operatorsagL forthe plane-wave basis. We should also
carefully note that all hoppings in this momentum-space tight-binding representation are relative to the wave-
vectorg, hence they represent a lattice of achievablmentum transfershile in the usual case of tight-binding
models in real space one is used to consider a latticeedfpositions.

The depth of the optical lattice potential is exted by the magnitude of the largest entries MO/E‘ Brhe
typical kinetic energy is of order of the recoil energy, which weele terms of the relevant momentum

transfer%p = k &bthe relevantlaser-beamas
~2 ok 2
B : (13
2m
The adiabatic limitisrecoveredwhBgn ., where the kinetic energy can be neglected and the problem s

solved by Fourier transform back into real space, where posifiays the role of a conserved momentum. In
the general casg,2) de nes amatrix equation for the coefentsqqgve, which can be solved numerically as
coef cients decay rapidly with the absolute value of momentum G.

5.2. Role of spin-translation symmetries in complex opticalx lattices
The role of the spin-translation symmetries is more easily explained within an example. Let us therefore focus on
the reciprocal space picture of the dice lattice i, thatisillustrated in gure4. For the components
associated with the triangulaux lattice(1), we obtain the spin-dependent procesggs . Twith
momentumtransfel; & 24, Vi, .Bwith L, § Gandviy, . Bwith s 2§ b,
where the reciprocal lattice vectchisare dened by the lattice vectorls spanning the unit cell of the diceix
lattice according t¢4). For later reference, note that these momentum transfers are proportional to the wave
vectors of the three coupling lasers of the dice opticalattice, and are linear combinations in integer
multiples of its reciprocal lattice vectdes.

We display the momentum transfers of the underlying trian?ular opticdittice in gure4(a), which also
highlights the BZ corresponding to full the real-space unif aé,ll ag] of gure3. Following 69, the spin-
translation symmetry; of this model can be exposed bying the eigenvalue of the spin-translation operator,
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Figure 4 Representation of opticalix lattices as tight-binding models on a gridgfoints(circleg highlighting momentum
transfers, othoppings, induced by absorptidremission of photon@rrowg. We show the lattice of accessible momentum transfe
for the triangulax@), (b) and dice latticéc), (d) geometries. Note the panels are scaled differently, with the links shown in black
corresponding to the same momentum transfer through@yThe lasers of the triangular opticaix lattice(1) propagate along
directions IL1 r@o, Lr(/2,V3/2,and s r (1/2,43/ 2'. These momentum transfers induce spin-transitions given
by T, Band T, respectively, highlighted by squares, diamonds, and circles on the corresponding arrows. The fundamental Brillouin
zone is shaded in yello{) Taking into account the spin-translation symmetryi)f(2), one can assign a date spin state to the
accessiblepoints(denoted as 1 or 2 in theguré), while the corresponding enlarged Brillouin zdbleie shadgs doubled along;.

(c) The reciprocal-space representation of the optical digdattice includes the triangular lattice transitions, as well as additional
momentum transfers due to the scalar potenfigh, = rVsw+ b Vi of equationg5), (6). Thesehoppingsalong directionéLi ?
connectto additiondt-points located in the centres of the original triangular lattice, yielding a Brillouin zone for the dicérattice
shadgthatis 1 3 the size of the Brillouin zone for the triangular lat{ipellow shade The reciprocal lattice vectotg, l;z are shown
as red arrowgd) The spin-translation symmetry of the optical diee lattice again leads to a unique labelling of spin states 1, 2 for all
possible momentum transfers. This yields an enlarged Brillouin zone, which is stretcheg,@odgovers the regidm, , 2g,]
(greenshade

()

leading to a halving of the real space unit ce[lhtgi, aj, thug doubling the BZ and leaving a aéte spin state
ateach reciprocal lattice site, as showrguare4(b).

To obtain the dice opticalux lattice, we add to this picture the coupling to the scalar optical potentials
generating the kagome lattice, equati@hg6), which contribute with momentum transfers corresponding to
twicetheir wave numbers, arising from the absorption of a photon from a standing wave laser followed by

SW
stimulated emission in the opposite direction. ¥ggy we obtain momentum tr:’;\nsfeﬁ}if(i 2 ILi 7 with

amplitudeVsy r .land similarly foV \the momentum transfers ar%LiLW ILi ? with amplitude
Viw b.1l These momentum transfers are four- or twofold multiples of the reciprocal lattice vectors and their
/ 3rotations.

According to the enlarged unit cell in real space, the BZ of the dice lattice should cover one third of the area of
the BZ for the triangular opticalux lattice. The corresponding lattice of possible momentum transfersis
illustrated in gure4(c), revealing a three times denser coverage of attakgloliats. The action of the spin-
translation symmetry of the dice lattice model is again readily illustrated in this momentum-space picture.
Assume a single-particle wavefunction has a non-zero amplitude for spin state 1 and vanishing amplitude for
spin state 2 at momentum Applying momentum- and spin-transfers to this initial state according to the tight-
binding Hamiltonian(12), one can see that all related reciprocal lattice points at pogiti®n& are reached
with a de nite spin quantum number. Equivalently, the Hamiltonian does not allow one to create any loops that
return to the initial point with a different value of the spin. Choosing a spin state of 1 at the éeptial, one
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Figure 5.(a) Spectrum of the fully frustrated dice lattice model in the tight-binding limit, plotted overgi®Z. As the magnetic
unit cell has six distinct sublattices, the model results in six bands that are pairwise degenerate with éBergieg6f, E = 0,
andE /6t for the three pairs of bandg) Spectrum of the dice lattice model with system parameters2Ez,and r= b= 1/
8. The plot shows the loweste bands, of which the lowest two energy bands are near-degenerate.

obtains the spin labels shown igure4(d). An equivalent labelling is obtained by interchanging labelad'2
(or equivalently, by a translation of thgure underbz).

The spin-translation symmetry can be more formally derived from the eigenvalue equations of the spin-
translation operators, ;. We takeS, ande asthe chosen symmetry generators commuting with the
Hamiltonian, or] 512] [ .9 [ é S] 0O asdiscussedinsectirThis implies that the
Hamiltonian is block-diagonal in the subspacesfd eigenvalues Qg S. Given the unitarity of these
operators, we denote their eigenvaluelas exp(i ), with S_.LZZ 2 2 2ex®i ) 3 2a&and 2 2 8
S 12 2 2ex®i ) 1 22with 2,2 2tRe&d@responding eigenstates. Consider then the explicit action
ofthe generalised translations on momentum eigenstates

'k, § 1Y kB 8 B
Sk, § Bae kT .§ B (1)

We see that the phases are periodic under translatidns ok bl inthe phase o&z, while the action o§; is
periodic under a doubled reciprocal lattice vedtor k 2@2 when the spin state ixed. Thus, we can label
eigenstates by amomenturtakento lie in the enlarged Bq,[ 29] thatis stretched twofold alongthe

glt}z—direction, as highlighted ingure4(d). In this representation, each point of reciprocal momentum transfers
can be assigned a dste spin state, as the momentuin the enlarged BZ provides sgfent information to

encode both the spin and momentum degrees of freedom. Alternatively, one could choose to represent the full
range of possible eigenvaluesa [0, 2 ) by reducing the momentum to the fundamental Egz, sz],and

recover the full range of, by taking into account both 1 eigenvalues of the spin operafgr

6. Quantitative analysis of the - uxoptical dice ux lattice

Inthis section, we provide a numerical study of the optical diedattice introduced in sectidh Our numerics
are performed in terms of the reduced unit ¢ell, v;/2], or its reciprocal space counterpart. In other words,
ourimplementation relies on resolving eigenstates of the generalized tranSatsdiscussed above.

In practice, we diagonalize the matrix representing the Hamiltdhidmn the basis of the plane-wave states
selected by the spin-translation symmetry, as showgtre4(d). We include basis states at wave vectors
g+ Gs,with's, t - tha We ndthatvalues df,axranging up to 16 are su€ient to achieve good
convergence for the cases shown below. Diagonalisation of the ensuing matrix yields the desired spectraand
eigenstates ; . Ve obtain these on a discrete grid of momenithin the extended BZ spanned [l:g{,l 2g].

We proceed to discuss the spectrum, which provides an excellent approximation to the tight-binding version
ofthe - uxdice lattice model. For reference, let tst review the spectrum in the tight-binding limit, shown in

gure5(a). Note that the tight-binding spectrum features only three distinct eigenvalues, each corresponding to

a pair of degenerate bands all of which are time-reversal symmetric and have Chern@umberhe overall
count of six bands corresponds to the six lattice sites in the fundamental magnetic unit cell of the fully frustrated
dice lattice.
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Figure 6 Evolution of the spectrum of the dice lattice model with system parameters as a function of the paramitterxed

r = b= 1/ 6, shown within the enlarged Brillouin zone spanneﬁgg)IIZQZ].lThe plots show the loweste energy bands, of which
the lowesttwo energy bands are near-degenerate. Valusfownaréa) . Ez,(b) . 2Bz, (c) . 4Eg,and(d) . 8Es.
Note how the gap above the pair of near-degenerate bands grows relative to the splitting of higher bands, as well as the overall increase
inthe magnitude of energy eigenvalues.

Atintermediate-depth of the optical lattice  Ez*, we nd thatthe low-energy spectrum of our proposed
dice uxlattice(4) correctly reproduces the qualitative features of the tight-binding model. FoEg, this
low-energy spectrum contains two near-degenerate bands that are well separated from higher bands. These twe
lowest bands have a very small dispersion and have only a small residual splitting. A typical spectrum, for

2Bz, and r = b= 1/8isshownin gure5(b). To display the residual dispersion of the lowest bands more

clearly, we will analyse a series of contour-plotgiire7, below. For the parameters igure5(b), the
dispersion of the two lowest bands is of the order ofek0Bhere is a small splitting to the second béamat
showr), which has the inverse dispersion relative to that of the lowest band, i.e. its minima are found at the
maxima of the lowest band and vice versa. With these parameters, the joint dispersion of these nearly degenerat
bandsis about 50 times smaller than the gap to higher excited bands.

Itis instructive to analyse how the band dispersion evolves with the streifithe optical coupling. A
series of different spectra with values ranging from Egto .  8Egisshownin gure6, including the lowest

ve bands in each case. These data were obtained with a cut-off for momektuni&t g . Itis clearly seen

thatthe near-degeneracy of the lowest two bands is realised very well for 8z, while a small splitting is
visible onthe gurefor.  Eg. Thehighefn = 3, 4,5 bands are notfound to be degenerate. However, the gap
above the near-degenerate ground-state manifold is seen to increase with the optical coupling strength. Given
these ndings, we interpret the lowest bands as corresponding to the two degenerate lowest energy bands in the
tight-binding limit, while the higher bands can be interpreted as arising from different local orbitals that can be
formed within the minima of the optical potential. Inthe limitof | d,we expectthatthe splitting to such
orbitals would become large, and a low-energy part corresponding to the single orbital physics may then emerge
from the spectrum.

We now discuss the topological nature of the low-lying bands in the didattice. The main qualitative
difference of the intermediate-depth lattice with respect to the tight-binding model is the occurrence of weak

4Here, we dene the recoil enerdsk as in(13), using the wave numbeifor the underlying triangular lattice as the reference. Although this
is not the largest momentum transfer in the set-up, itis the laser requiring the largest amplitude.
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Figure 7 Contour-plots of the properties of the lowest band in the dice lattice model with system parametels= 1/ 6inthe
unfolded rstBrillouin zond gl,I 2g) Horthe energyupper row and logarithm of the magnitude of Berry curvatlog (k) a 2
(bottomrow). Thex (y-) axes show momenkgy, in units of the inverse lattice constant’. Values are shown for magnitudes of
opticalcoupling. Eg(panelsg(e), . 1.5R(b,f), . 2E(0),(g9),and. 3Es(d),(h).

tunnelling across thiéorbidderi links of the underlying triangularnx lattice, which break time-reversal
symmetry. To analyse this statement quantitatively, we calculate the Berry curvature
(@ i« 0513 04 i ‘og forourBrodel, where is the totally anti-symmetric tensor and Einstein
[¢]

summation convention is implied. To implementcomputationally without the need to explicitly evaluate the
derivatives in this expression, we have instead evaluated the integral of the Berry curvature over small Wilson
loops on adiscretized gridkfpoints within the BZ following Fukwet al[ 7(]. We con rm that the Berry
curvature is non-zero, and has opposite signs in the two low-lying bands. The distribution$ogfjigerry
curvature in the lowest band are shown as contour-plots in the lower roguoé7 for a range of optical
coupling strengths, while the upper row shows the corresponding band dispersions. Note that there are
extended regions where the curvaturis small, while maxima are relatively localised. For example, akg,
typicalvaluesare  0.0%?(to be comparedto anaverageof 9/ QaZ  286Ca?fora Chern number
band with homogenous Berry curvature of the given B2 a#gthe location of the maxima of the band
dispersion, which can be seen as avoided crossings with the next higher stthngly peaked and as a
result, the Chern number of the band is non-zero. Depending on the spepiarameters we have found either
1or 3. Inboth cases, the cumulative Chern number of the two lowest bands is zero.

The different panels ofgure7 show the evolution of the band dispersion with increasing optical coupling,
which reveals a change of the location of minima in the dispersion, and correspondingly for the Berry curvature.
Note also how theatness of the bands improves as we go to stronger coupling. Extended regions of low Berry
curvature are also found at the highest value we show.

Itwould be interesting to study how the many-body spectrum is affected byiitedut oppositely
oriented Berry curvature in the lowest two bands. We expectthat as long as the interaction energy is larger than
the residual splitting between the two lowest bands, the system likely behaves in a qualitatively similar fashion as

11
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Figure 8lllustration of the rectangular magnetic unit cell with six inequivalent sites numbered 1to 6. The drawing includes thre
magnetic unit cells, delineated by light blue solid lines. (stk@wn in greyindicate the connectivity of the lattice, corresponding to
hopping with amplitudé. Three links in the magnetic unit cell are special and need to be chosen with negative hofghiogvn

with two red hashgsOne lasel$, is required to establish the magnetic unit cell. Hopping between the six energetically inequivalent
sites of the magnetic Brillouin zone are driven by lasers as indicated. Hopping-inducing lasers propagating perpendicular to the plane
are labelle® ;and drive transitions between sitesidj (shown as circles with crosséehe last two lasets jpropagate with anon-
zero in-plane momentum along theaxis such as to induce two distinct transitions within each magnetic unit cell, and with the
relatively opposite sign.

the time-reversal invariant system in the tight-binding lifeH]. A detailed analysis of this physics will be the
subject of a future study. In the sense that the perturbation of the bands away from the time-reversal symmetric
case is caused by small hopping elements on suppressed bonds, we can consider the time-reversal symmetry
breaking of our optical diceux lattice to béeweak.

7. Realizing the fully frustrated dice lattice in a tight-binding approach

An alternative realisation of the dice lattice pierced-bwux per plaquette can be realised in a pure tight-binding
philosophy. Let us discuss in detail the set-up for alkaline earth &ognsytterbiungYhb)) atoms trapped in an
optical lattice at the anti-magic wavelenif. In our approach, we closely follow the proposal for a square
optical lattice using anti-magic trappif#@y]. The possibility for this construction arises as the two internal
stateg'S, and 3R;) of Yb have polarisability of opposite signs for wavelength2 960nm, so they are trapped
atthe points of maximum or minimum laser intensity, respectif&l; At the anti-magic wavelength
M 1120nm, the absolute values of the polarisability are of equal magnitude. This is crucial for the square
lattice geometry. For our purposes, it may actually be more useful to choose a wavelength at which the
polarisability is stronger in magnitude for one of the fseudo)spin states: the dice lattice geometry results
from a triangular optical lattice formed by three selfaeted laser beams propagating with wave vectors
arranged atrelative angles of 3 with respect to each other. These beams should be mutually incoherent, so the
total intensity is the sum of individual intensities. The mirrors used to sedfet¢hese beams need to be
stabilised. One species of atonf'&) is then trapped at the maxima of the intengitshich are ste@pwhile the
excited®P; state is trapped at the miningahich are more shallowHence, itis favourable that the polarisability
is larger in magnitude for the excited state, implying use of awavel&hgtt®2 /kw Q*,i.e.using M
wavelengths in the far infrarégiven that the polarisablity of the excited state grows more rapidly wihr
the anti-magic wavelength,dr CPy) /@ + d (1Q)/M ). B M

In our set-up, all neighbouring sites are occupied by atoms of different internal states. Consequently,
spontaneous tunnelling processes can be neglected, and all dynamics in this lattice is driven by via laser-assiste
hopping[17, 71]. Simultaneously, this coupling enables one to imprint phases onto the hopping matrix
element$27]. Let us now explain how to achieve phases that yield the targdensity ofh; = 1/ 2. Forthe
fully frustrated dice lattice, the magnetic unit cell contains six inequivalent gtaya§], chosen here as a
rectangular cell spanned by vectéifs (v/3a, Otand 4/2 (0, @), asindicated by the different colouring of
inequivalent lattice sites igure8. However, thé¢scalaytriangular optical lattice described in the preceding
paragraph distinguishes only two types of sites. We propose to break this symmetry by shining one additional
self-re ected laser-bear§,, onto the system: this beam servesto break down the internal mirror-symmetry of

5Alternatively, asuitable triangular lattice potential can be generated by three running beams with relative phase coherence. However, thest
would additionally have to be phase stabilised to prevent this triangular lattice from drifting relative to the 4th standing w&yve, laser
discussed below.
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Figure 9.Set up of an optical dice lattice using an anti-magic optical lattice with laser-induced hopping: an underlying triangular
lattice is created by retro-rected standing wave lasers in plane. The symmetry of the magnetic unit cell is created by an additional

standing wave lasgdirected at an angle to the plane. Eight coupling lasers complete the set-up and drive transitions between sites of
different energy, as shown igure8 and discussed in the main text.

the triangular lattice unit cell to the desired periodicity. In our setSypas the same frequerieyavelength as
the triangular optical lattice. However, its in-plane wavelength is enlargé‘d to 0/ sinM) by projectingrthis
laser onto the system at a tilt angleith respect to the-axis of the plane. We tilt the laser towardsyhe
direction and require the potential to repeat on the scale of the magnetic unit ceh;gi.e., l\ﬁ/z By geometry,
we musttherefore choosethe anfle arcsif ¥ 2 Q@ 6Note the position of this laser potent{&}) needs
to maintain a xed spatial position relative to the lasersideg the optical lattice, asictuations would shift the
superlattice potential relative to the triangular lattice potential, and would alter the relative magnitudes of site
energies. However, these energies need to be precisedyldso that coupling lasers can satisfy the resonance
condition and match the binding energy differences for the links on which they induce hopping processes. Note
that a different wavelength laser could also be chosen.

To be explicit, let us write the required laser potentials. A bare triangular optical lattice of lattice aisstant
created by thewavelengld  3aofthe trapping beams:

V) o o3t 2—3;3'14 T (15)

with the unit lattice directiondly (0,1, 0%, b  ( v3/2, V2, ¢,ands  (V3/2, ¥ 2, §.The
additional self-reected lasef,, propagates along the directina (0, sin , coR)!, addingRr{in-plane
intensity distribution of

Vi (r) losir? %?hd r E  <lpsim %%/ E (16 <

Here, we need to choose a small offset of the phaszh that the maximum of intensity of the additional laser
does not align with any high-symmetry pointin the magnetic unit cell, and the intensity of the inversion
symmetry breaking lasgyis reduced with respect to the other lasers by a suitable smalldazipr, we can
choose number oftheordde 2 Q' 10ando; 0.05.

Athree-dimensional view of the overall set-up is givergure9. In the resulting potential
Vit (N Wii(r)  M4(), the six sublattices of the desired magnetic unit cell are all distinguished energetically,
i.e.their energies being detuned with respect to the triangular lattice by distinct amquints 1,K , 6.

The set-up is completed by a total of eight coupling lasers driving the respective transitions between these
sites. All of these lasers are propagating waves. Six of them are directed onto the systemin the direction
perpendicular to the lattice-plane. We denote these lag@rg,asdicating the two lattice sitgg between
which they induce aresonant transition. The six required laselfs ard> 3,P> 5,Ps 6,P4 6 @andPs g, Which
require frequencies ; ; "X ? i (“X <)), and BY defiotes the dhperturbed éhergy of the internal
state trapped at siteNote each laser drives a transition between two neighbouring sites where atoms are in their
ground/ excited state, respectively. See ajsioe8for an illustration. Four of these six lasers drive a transition
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onasingle linkinthe unit cell. However, the two lag®rs, Ps gconnectthe sixfold connected sitBsand'6’
to two neighbours with identical energy, located in the same and an adjacent unit cell, respectively. Due to the
perpendicular direction of the lasers, these transitions are driven in phase, so the hopping elements have the
same sign. All but one of the lasErs need to be in phase with each other, wR§es requires a phase-shift of
relative to the others. A daite phase relationship between these lasers of different frequencies can be achieved
by deriving them from a single light source, and detuning their frequency using an acousto-optic modulator.
The remaining coupling two lasers, which welcalkandL, ,are specialinthatthey are required to drive two
transitionglike Ps ¢), but now with a relative phase obetween these two couplings. This relative phase is
realised by virtue of an in-plane component of the respective wave vectorsc8lpgeie choose the in-plane
component of their respective wave veckakong thex-axis such thak - (v/3a/2, 0, O w QAgain, this
wave-vector can be realized by a suitable inclination of the laser beams with respect to the plane.

This concludes our discussion of the detailed set-up for a tight-binding version of fully frustrated dice lattice.
Let us briey compare this construction to the optical diaex lattice discussed in sectiérirstly, we note that
the tight-binding construction is explicitly time-reversal invariant, if all relative phases are set to match the
values 0 or . Although there may be small perturbations to the ideal dice lattice model from spontaneous
tunnelling processes between neighbouring threefold sites such as sites 1 and 4, such processes also have real
hopping elements.

The practical realisation of both schemes poses similar challenges, notably the requirement to generate
superlattice potentials whose relative position must be stabilised relative to an underlying lattice. Teustjs dif
but has already been achiey&d. However, uctuations of the geometry will affect the two proposals rather
differently. Inthe optical ux lattice set-up, the superlattice acts to suppress tunnelling by creating local maxima
in the potential. This suppression will be relatively insensitive to the precise location of potential maxima, aslong
asthey are located within the relevant bonds of the lattice. By contrast, the tight-binding approach requires the
superlattice to dene relative energies of lattice orbitals, and transitions between them are driven resonantly.
Hence, aratherne control of the stability is required to ensure that all coupling lasers remain on resonance for
their respective bonds.

8. Conclusions

We have introduced a new method for constructing opticallattices with complex geometries by combining

a simple optical ux lattice with additional scalar potentials. To demonstrate the potential of our proposal, we
have explored the optical dicex lattice as an example geometry in which bonds were eliminated from an
underlying triangular lattice. Our model yieldst bands that are a particularly interesting playground for

studying interaction-driven phases of maft&i, and can realise atness parameter ofty even for weak

optical coupling. The opticalux lattice approach results in interesting additional features with respectto a pure
tight-binding description of the dice lattice model. Atintermediate lattice depths, the model weakly breaks time-
reversal symmetry in the following sense: instead of degenerate pairs of time-reversal symmetric bands, the
approach produces time-reversal pairs of bands whose degeneracies are only weakly split.

The proposed realisation of an optical dice lattice is realistically achievable in the near future, as it
combines several elements which are already part of the current state of the art. The kagome lattice realised in th
group of Stamper-Kurn successfully demonstrates the phase-stabilised superposition of two lattices with
distinct wavelengt$4]. Our set-up requires the additional superposition of a triangular opticdittice.

While work on the rstrealisation of such systems under way, we would like to underline that related schemes
for synthetic gaugeelds have already been succe$38489, and related schemes for emulating spibit
couplingin 2D systems have also been implemdat@é 7).

We have also introduced a proposal for a tight-binding scheme which is closer to the existing technology of
the aforementioned experiments. Here, challenges relg@tuning energies and maintaining the relative
superlattice position with high accuracy. This kind of set-up requires one-by-one engineering of laser-induced
hopping between sites in the unit cell, so its complexity grows with the unit cell size.

By contrast, one of the inherent features of the lattice schemes is their tuneability. Explorations of scalar
optical lattices have already shown that a multitude of different band-structures can be realised inthe same
experimenf54, 58. Hence, one interesting direction for further study is the question of how the lattice
geometry is altered when moving the scalar lattices with respect to the underlying optiatiice.
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