Citation for published version

DOI

https://doi.org/10.1016/j.jhevol.2018.05.004

Link to record in KAR

http://kar.kent.ac.uk/67213/

Document Version

Author's Accepted Manuscript

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact: researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html
Accepted in May 2018 at the Journal of Human Evolution

Trabecular bone patterning across the human hand

Nicholas B. Stephens a,*, Tracy L. Kivell b, a, Dieter H. Pahr c, Jean-Jacques Hublin a, Matthew M. Skinner b, a

a Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany

b Skeletal Biology Research Centre, School of Anthropology and Conservation, University of Kent, Canterbury CT2 7NZ, United Kingdom

c Institute for Lightweight Design and Structural Biomechanics, Vienna University of Technology, Getreidemarkt 9, A-1060 Vienna, Austria

* Corresponding author

E-mail address: nick_stephens@eva.mpg.de (N. B. Stephens)

Keywords: Hand evolution; Trabecular bone; Functional morphology; Biomechanics; Behavioral reconstruction; Histomorphometry
Abstract

Hand bone morphology is regularly used to link particular hominin species with behaviors relevant to cognitive/technological progress. Debates about the functional significance of differing hominin hand bone morphologies tend to rely on establishing phylogenetic relationships and/or inferring behavior from epigenetic variation arising from mechanical loading and adaptive bone modeling. Most research focuses on variation in cortical bone structure, but additional information about hand function may be provided through the analysis of internal trabecular structure. While primate hand bone trabecular structure is known to vary in ways that are consistent with expected joint loading differences during manipulation and locomotion, no study exists that has documented this variation across the numerous bones of the hand. We quantify the trabecular structure in 22 bones of the human hand (early/extant modern *Homo sapiens*) and compare structural variation between two groups associated with post-agricultural/industrial (post-Neolithic) and foraging/hunter-gatherer (forager) subsistence strategies. We (1) establish trabecular bone volume fraction (BV/TV), modulus (E), degree of anisotropy (DA), mean trabecular thickness (Tb.Th) and spacing (Tb.Sp); (2) visualize the average distribution of site-specific BV/TV for each bone; and (3) examine if the variation in trabecular structure is consistent with expected joint loading differences among the regions of the hand and between the groups. Results indicate similar distributions of trabecular bone in both groups, with those of the forager sample presenting higher BV/TV, E, and lower DA, suggesting greater and more variable loading during manipulation. We find indications of higher loading along the ulnar side of the forager sample hand, with high site-specific BV/TV distributions among the carpals that are suggestive of high
loading while the wrist moves through the ‘dart-thrower’s’ motion. These results support the
use of trabecular structure to infer behavior and have direct implications for refining our
understanding of human hand evolution and fossil hominin hand use.
Introduction

Interest in primate hand morphology and function is longstanding (e.g., Jones, 1916; Ashley-Montagu, 1931; Napier, 1960; Lewis, 1969; Susman, 1979; Diogo et al., 2012; Boyer et al., 2013), as the hand interacts with substrates during locomotion (e.g., Doran, 1993; Daver et al., 2012; Congdon and Ravosa, 2016) while also facilitating dexterous manipulation during social grooming (Whiten et al., 1999; Brand et al., 2017), food acquisition (Hunt, 1991; Boesch and Boesch, 1993; Visalberghi et al., 2009), communication (Hopkins et al., 2005; Zlatev, 2008), and complex object manipulations (Marzke and Wullstein, 1996; Viaro et al., 2017). Among primates, humans are often cited as the most dexterous (Napier, 1960; Vereecke and Wunderlich, 2016), possessing a suite of morphological features that allow for a wide range of wrist movements, power ‘squeeze’ grips (Marzke et al., 1992), and the formation of stable precision grips via the forceful opposition of the thumb and finger-pads (Napier, 1956; Marzke 1997; Susman, 1998). Early interpretations favored a view that human dexterity was derived, with researchers drawing strong causal links with hominin bipedal locomotion, the emergence of stone tool use, and/or increased carnivory (Young, 2003; Wood, 2014; Lemelin and Schmitt, 2016). Although most researchers still agree that the distinct aspects of human hand morphology are related to the selective pressures of at least three million years of tool-related behaviors (e.g., Napier, 1956; Washburn, 1960; Marzke, 1997; Harmand et al., 2015), there is less certainty about which features reflect a conserved ancestral state and which are derived (Tocheri et al., 2008; Rolian et al., 2010). This shift in our evolutionary understanding is the direct result of improved comparative techniques (Boyer et al., 2013; Almécija et al., 2015a; Boyer et al., 2015), new fossil discoveries (Kivell et al., 2011a, 2015; Lorenzo et al., 1999, 2015;
Alméciya et al., 2012) and more comprehensive observational studies of non-human primate
hand use (Hopkins et al., 2011; Marzke et al., 2015; Proffitt et al., 2016; Neufuss et al., 2017),
which suggest that human-like hand morphology and use is more generalized and deep-rooted
than previously appreciated (Alba et al., 2003; Alméciya et al., 2010; Alméciya and Alba, 2014;
Rolian, 2016).

Thus, a greater understanding of how hand function may be reflected in hand
morphology is needed. Variation in hand morphology has been key to informing hypotheses
about not only manipulative behaviors and technological abilities in the human past (Leakey et
al., 1964; Musgrave, 1971; Vlček, 1975; Susman, 1991, 1994; Niewoehner et al., 2003; Eren and
Lycett, 2012; Wood, 2014), but also locomotor habits (Ricklan, 1987; Alba et al., 2003;
Shrewsbury et al., 2003; Green and Gordon, 2008; Kivell, 2016), and—more indirectly—human
neurological evolution and language acquisition (e.g., Falk, 1980; Hopkins, 2013; Putt et al.,
2017). Interpreting hand function in the past is further complicated by the tendency for
hominin fossil hand-remains to be recovered in isolation or as unassociated collections (Bush et
al., 1982; Schmid and Berger, 1997; Venkataraman et al., 2013; Ward et al., 2014; Domínguez-
Rodrigo et al., 2015; Lorenzo et al., 2015; Stratford et al., 2016; Daver et al., in press). As such, it
is useful to explore methods with the potential to provide additional functional information
about how manual behavior may have varied in the past that can also be applied to isolated
hand bone elements.

Bone functional adaptation
Traditionally, researchers have compared the external shape of fossil hominin hand bones to generate hypotheses about hand function and grip capacity. For example, the potential for forming the precision and power grips observed during tool manufacture/use tend to be inferred from the hand proportions (i.e., thumb length relative to finger length) and shape of the trapezium-first metacarpal joint (e.g., Napier, 1962; Trinkaus, 1989; Godinot and Beard, 1991; Susman, 1994; Alba et al., 2003; Tocheri et al., 2003; Marzke et al., 2010). These morphological associations are established through observational studies focusing on wild and captive primate manipulative habits (e.g., Pouydebat et al., 2009, 2011, 2014; Bardo et al., 2015, 2016; Marzke et al., 2015; Orr, 2017), which provide the basis for understanding if extinct taxa with similar morphologies had similar manipulative capacities (e.g., Almécija et al., 2010; Almécija and Alba, 2014; Kivell et al., 2015; Orr, 2018). However, as external morphology only allows inferences about manipulative capacity, and not necessarily actual behavior, many researchers have begun to quantify epigenetic changes to bone that result from repetitive loading (e.g., compression, tension, and shear; Frost, 1987). This phenomenon, commonly referred to as bone functional adaptation, has been experimentally observed to alter the structure in ways that improve the mechanical competence of repeatedly-loaded bone (Lanyon and Rubin, 1985; Pontzer et al., 2006; Ruff et al., 2006; Barak et al., 2011; Schulte et al., 2013; Christen et al., 2014; Cresswell et al., 2016; Christen and Muller, 2017; Ritter et al., 2017). For instance, cortical bone adjusts in thickness for improved resistance to bending forces, while trabecular bone alters the thickness, spacing, and orientation of struts adjacent to loaded regions in a way that enhances the transfer of kinetic energy away from joint surfaces (Cowin et al., 1985; Keaveny et al., 2001; Sugiyama et
al., 2010; Currey, 2011; Barak et al., 2013; Reznikov et al., 2015; but see Demes et al., 1998; Ozcivici and Judex, 2014; Wallace et al., 2015a, b; Fairfield et al., 2017). In general, many regions of the primate skeleton exhibit evidence of adaptive modeling, with structural variation aligning with hypothesized loading differences (e.g., Rafferty and Ruff, 1994; Ryan and Ketcham, 2002; Stock, 2006; Marchi and Shaw, 2011; Ryan and Shaw, 2012; Su et al., 2013; Chirchir, 2015; Fabre et al., 2017; Reznikov et al., 2017; Stieglitz et al., 2017), and hand bone variation reflecting known locomotor, postural, and manipulatory habits (e.g., Marchi, 2005; Patel and Carlson, 2007; Lazenby et al., 2008a, b, 2011a; Zeininger et al., 2011; Tsegai et al., 2013; Barak et al., 2017; Chirchir et al., 2017b).

For hand trabecular bone, there are some studies that have reported ambiguous results between inferred loading and structure (e.g., Lazenby et al., 2011a; Schilling et al., 2014; Stephens et al., 2016a; Reina et al., 2017), with overlapping or unanticipated levels of bone volume fraction (BV/TV) and trabecular strut alignment (degree of anisotropy; DA). Explanations for such inconsistencies are found in well-controlled experiments, which utilize animal models to highlight how bone modeling may be influenced by genetic, systemic, or hormonal variation (e.g., Wallace et al., 2010, 2015a; Schlecht et al., 2014; Smith et al., 2014; Fairfield et al., 2017; see Wallace et al., 2017b for a recent review). Among humans, these factors are best understood as they relate to bone’s role in maintaining homeostasis, with differences in bone structure arising from nutritional stress (e.g., anemia, pregnancy) or advanced age (e.g., menopause, osteoporosis; Agarwal, 2016). For trabecular bone these changes are documented in modern and archaeological contexts, with shifts from high BV/TV and low DA (more isotropic) to relatively low BV/TV and high DA (more anisotropic), which
prioritizes resistance to load along a singular axis (Singh et al., 1970; Agarwal et al., 2004; Christen et al., 2014; Beauchesne et al., 2017). Much of this understanding has come from the ability to perform more comprehensive quantitative analyses, which better characterize local micro-structural changes in bone (Poole et al., 2012; Gee and Treece, 2014; Gross et al., 2014; Hermann and Klein, 2015; Phillips et al., 2015). This is especially evident in trabecular studies, which have moved from single volume of interest (VOI) analyses to the simultaneous analyses of multiple VOIs (Su and Carlson, 2017; Sylvester et al., 2017) or the whole-bone/epiphysis (Gross et al., 2014; Taghizadeh et al., 2017).

For hand bones, such methods have documented differences in the distribution of trabeculae in the primate third metacarpal (Mc3) that align with predicted joint loading during locomotion and manipulation (Tsegai et al., 2013; Chirchir et al., 2017b; Barak et al., 2017). Other studies have identified similar distributions of BV/TV in human and fossil hominin metacarpals, which suggests a shared pattern of joint loading that may be related to opposition on the thumb during the use of precision grips (Skinner et al., 2015a, b; Stephens et al., 2016a; but see Almécija et al., 2015b). Such results establish the value of trabecular bone analysis to examine aspects of extant and fossil primate manual behavior, which we explore here through the quantification of trabeculae from the articulated elements of the wrist, metacarpus, and phalanges of human \textit{(Homo sapiens)} hands (excluding the pisiform and distal phalanges).

To assess if trabecular architecture of the hand is related to differences in manipulatory loading, we follow previous analyses of other skeletal regions (e.g., Ryan and Shaw, 2015; Scherf et al., 2016; Stieglitz et al., 2017), and compare two groups of humans broadly defined by subsistence strategy and assumed behavior (i.e., community dwelling post-Neolithic.
agriculturalists/industrialists and mixed foraging/hunter-gatherers; hereafter ‘post-Neolithic’ and ‘forager’, respectively). While these categories are reductionist given the temporogeographically disparate sample (see methods), our aim here is to establish a generalized view of trabecular distribution among the interrelated regions of the human hand. If there are morphological differences attributable to variation in manipulative loading, then these results should be useful in examining more refined questions about individual or group differences in hand use (e.g., between males and females or across occupations; Macintosh et al., 2014, 2017; Sládek 2016; Karakostis 2017), or joined with studies utilizing cortical mapping and/or geometric morphometric techniques to address questions about skeletal variation in complete, incomplete, or unassociated fossil hand remains (e.g., Ward et al., 2014; Domínguez-Rodrigo et al., 2015; Lorenzo et al., 2015; Stratford et al., 2016). Predictions for how human hand trabecular structure may vary follow after a brief review of human hand and wrist kinematics.

Although the interactions at the base of the metacarpals are complex, a simplified understanding may be reached by dividing the hand into radial, ulnar, and thumb portions, according to their movement. The radial portion is rendered relatively immobile by a tight binding of ligaments at the Mc2–Mc3 bases and CMC joint congruence (predominantly the trapezoid and capitate; Brand and Hollister, 1993; Lazenby et al., 2008b; Tocheri et al., 2008). The Mc4–Mc5 in the ulnar portion, however, share a complimentary articular surface with the hamate, which allows these bones to rotate and translate as they flex up to 15 and 30º, respectively (El-Shennawy et al., 2001; Lazenby et al., 2008a; Halilaj et al., 2014; Drapeau, 2015). Thumb opposition is a complex movement facilitated by the saddle-shaped TMC.
articulation. Specifically, opposition of the thumb causes the Mc1 base to abduct, flex, rotate, and translate ulnarly across the trapezial surface (Halilaj et al., 2015), while the thenar musculature appears to prevent dislocation under load by locking it in place (Brand and Hollister, 1993; D’Agostino et al., 2017).

Potential loading differences

As with previous research, here we assume that variation in trabecular structure between the post-Neolithic and forager samples will be related to differences in activity levels (Polk, 2002; Rhodes and Knusel, 2005; Barak et al., 2011; Shaw et al., 2012; Rabey et al., 2015; Stieglitz et al., 2017; Wallace et al., 2017b). Similar inferences have been drawn in relation to skeletal variation within the lower and upper body, with highly mobile groups demonstrating a generally more robust skeletal structure as a result of repeated and higher loading than more recent humans (Trinkaus et al., 1994; Stock, 2006; Chirchir et al., 2015, 2017a; Ryan and Shaw 2015; Friedl et al., 2016; Scherf et al., 2016). The external morphology of *H. sapiens* hand bones has remained fairly stable from ~100 ka onward, with a notable reduction in morphological features associated with intense, repetitive loading being explained by humans shifting to more mechanically-advantaged technologies (e.g., TMC/Mc5 base; Niewoehner, 2001, 2006; Trinkaus, 2016). In this vein, Stock et al. (2013) reported low levels of right-side bias in the hunter-gatherer Mc2 cortical bone thickness (62.5%), relative to that of the humerus (83.6%), which contrasted with the fairly consistent right-side bias for both skeletal elements in the medieval and industrial samples. This result suggests more equally dispersed bimanual loading for the hunter-gatherer sample, which is consistent with hand use experiments documenting
Following from this, variations in hand loading will most likely be related to grips and hand postures that invoke different levels of loading. For instance, less strenuous precision tasks tend to involve the pads of the fingers and only the dominant hand (e.g., low force, tip-to-tip pinch), while more strenuous tasks tend to involve stable grips (e.g., high force, key-grips and/or power grips) utilizing one or both hands (Marzke et al., 1998; Bullock et al., 2010; Williams et al., 2010; Key and Lycett, 2011, 2016; Borel et al., 2016). From these grips the muscle co-contraction and joint reaction forces are uniformly displaced into the radius and ulna during manipulation, with the radial side of the hand displacing most of the force (Gislason et al., 2009, 2010; Pataky et al., 2012; Chen et al., 2014; Márquez-Florez et al., 2015). Even so, high loading is present even during banal manipulations (e.g., pinch force during pipetting; Wu et al., 2015) and—given the physiological limits to modeling (Lambers et al., 2013; Cresswell et al., 2016; Yang et al., 2017)—this may result in generally similar trabecular parameters in the bones along the radial side of the hand (e.g., phalanges, Mc1, Mc2, trapezium, trapezoid). Instead, differences in loading may be more evident along the ulnar side of the hand, where kinetic energy is dissipated during strenuous manual activities that invoke the use of a power grip and involve wrist movements typified by the ‘dart-thrower’s’ motion (e.g., throwing or hammering; Iwasaki et al., 1998; Young, 2003; Majima et al., 2008; Varga et al., 2013; Gabra and Li, 2016; Liu et al., 2016b; Rainbow et al., 2016). Aside from this, subtle differences in the distribution of
site-specific BV/TV may be discernable in various anatomical regions, with higher values indicating areas of localized modeling from frequent joint loading.

Predictions

Given the overall (presumed) similarity in hard and soft tissue morphology across all _H. sapiens_, we predict that the pattern of loading interpreted from the trabecular structure will be broadly similar between the two groups, i.e., (1) reflecting flexion at the interphalangeal joints; (2) flexion and adduction/abduction at the metacarpophalangeal joints; and (3) similar patterns of movement and loading at the TMC and intercarpal joints. However, previous research suggests that the trabecular structure of the hand in the forager sample should be consistent with greater levels of loading in the upper body and more variable hand use when compared to the post-Neolithic sample. Thus, we predict that (4) foragers will have on average higher BV/TV and elastic modulus (E) than the post-Neolithic sample, but lower DA due to more varied loading of the hand. Finally, we predict that (5) these differences in hand use will be reflected in how the trabeculae are distributed—e.g., higher site-specific BV/TV in functionally relevant locations, such as palmoulnar concentrations in the Mc2–Mc5 heads (Skinner et al., 2015a, b) and the palmaradial region of the Mc1 (Stephens et al., 2016a).

Materials and methods

Skeletal sample
Table 1 shows all manual skeletal elements of post-Neolithic and forager *H. sapiens* analyzed in this study. While sample sizes for some bones are small, this reflects the paucity of archaeological/paleontological remains with (relatively) complete hands available for microtomographic (µCT) scanning. The post-Neolithic sample is composed of 26 individuals, including associated hand skeletons of 10 Nubian Egyptians (6th–11th century; Strouhal and Jungwirth, 1979; Paoli et al., 1993), 10 individuals from a cemetery in Inden, Germany (18th–19th century), four from Medieval Canterbury, UK (11th–15th century; Hicks et al., 2001), and two from Syracuse, Sicily (20th century). The forager sample is composed of 16 individuals, including associated and isolated remains of eight individuals from Tierra del Fuego (19th century; Marangoni et al., 2011), eight individuals from Věstonice/Pavlov (~23 ka; Sládek, 2000), Arene Candide 2 (9900–10,850 uncal BP; Sparacello et al., 2015), one individual from Lapa do Santo, Brazil (~9.2 ka; Strauss et al., 2015), Barma Grande 2 (~24 Ka; Formicola et al., 1990; Churchill and Formicola, 1997), Ohalo II (~19 ka; Hershkovitz et al., 1995), and Qafzeh 8 and 9 (~80–130 ka; Schwarcz et al., 1988).

As pointed out by Friedl et al. (2016), the grouping of individuals from such a broad temporal range certainly obscures some subtle osteological differences, which should be kept in mind here. Still, a recent study of long-bone cross-sectional geometry likens the upper-limb activity patterns/levels of early *H. sapiens* (e.g., Qafzeh, Ohalo 2, and Gravettian) to contemporary forager samples (e.g., Khoesan), as opposed to Neanderthals (Pearson and Sparacello, 2017), which suggests that the manual loading among the forager sample would be similar enough for the main purposes of this analysis. Similarly, while some variation in manual loading and bone modeling may be related to sex and the sexual division of labor (e.g., Agarwal
260 2016; Macintosh 2014, 2017; but see Chirchir et al., 2017a), there are also issues with
261 confidently attributing sex to early modern *H. sapiens* based on morphology alone (Mittnik et.
262 al., 2016). Here the pooled sample is used to establish a general overview of trabecular
263 variation that may then be subdivided into samples where there is higher confidence in the age,
264 sex, occupation, and cultural affinity of the individuals.
265
266 **MicroCT scanning**
267 Microtomographic scans of the samples were obtained using either a SkyScan 1173 at
268 100–130 kV and 90–130 µA, a SkyScan 1176 scanner at 70 kV and 278 µA, a BIR ACTIS 225/300
269 scanner at 130 kV and 100–120 µA, or a Diondo d3 at 100–140 kV and 100–140 µA at an
270 average isotopic voxel size of ~29 µm (range = 24–38 µm). Scans were reconstructed as 16-bit
271 TIFF stacks, and each bone was isolated and reoriented to its approximate anatomical position
272 in Avizo® 9.0 (FEI Visualization Sciences Group, Hillsboro, USA). During this process, the internal
273 microstructure was visually assessed on a slice-by-slice basis and pathological or heavily
274 damaged skeletal elements were removed from the sample. In the event that heavy
275 sedimentation was present, manual removal was performed using a Wacom board (Coleman,
276 2003) and the Avizo paint-brush tool in the labels-field. In instances where the contrast
277 between bone and sediment was impossible to distinguish, the entire section (e.g., the head or
278 base of a metacarpal) was excluded from analyses (see Supplementary Online Material [SOM]
279 Table S1).
The methods employed in this study are described in detail elsewhere and are only briefly summarized here. An illustration of the workflow, along with the specific software packages, may be found in the SOM S1. In short, each bone was segmented using the Ray Casting Algorithm (Scherf and Tilgner, 2009) and then the script-based whole bone/epiphyseal approach Medtool v4.0 (Dr. Pahr Ingenieurs e.U, 2017; see below) was used to extract the cortical bone from the trabecular bone and generate a fine tetrahedral mesh representing the morphology of both tissues (Gross et al., 2014). Quantification of BV/TV, E, and DA of the trabecular mesh was performed in 3D by moving a 5 mm spherical VOI along a background grid with 2.5 mm spacing for each scan (Pahr and Zysset, 2009b), while mean trabecular thickness (Tb.Th, mm) and mean trabecular spacing (Tb.Sp, mm) were calculated following Hildebrand and Ruegsegger (1997). For further details see SOM S1 and SOM Figure. S1.

BV/TV is expressed as a percentage (bone voxels/total voxels), while DA is scaled between 1-0 (anisotropic-isotropic). We focus our analyses on these measures because previous studies show that they are not correlated with body mass (Doube et al., 2011; Barak et al., 2013; Ryan and Shaw, 2013) and are informative in regards to fracture resistance and relative arrangement (Maquer et al., 2015; Pahr and Zysset, 2009a, 2016). E is estimated using a reference tissue of $E_0 = 10 \text{ GPa}; v_0 = 0.3; \mu_0 = 3 \text{ GPa}$ based on the Zysset-Curnier model (Zysset, 2003), which produces a more accurate measure by accounting for both BV/TV and fabric (Haïat et al., 2009; Latypova et al., 2017). This parameter identifies a material’s mechanical ability to resist deformation under load (Zysset, 2003; Currey, 2011).
We compare these parameters for the whole carpal (capitate, hamate, lunate, scaphoid, trapezoid, trapezium, and triquetral), the heads (distal) and bases (proximal) of the metacarpals (Mc1–Mc5) and phalanges, including all proximal (PP1–PP5) and intermediate phalanges (IP2–IP5), and the distal phalanx (DP1) of the thumb. We exclude the pisiform and non-pollical distal phalanges due to the variable and miniscule trabeculae observed in the µCT scans, which was considered insufficient to allow for a robust calculation of the trabecular parameters (Pahr and Zysset, 2009a; Gross et al., 2012).

Due to shape variation among metacarpals and phalanges, each head/base segment was manually defined prior to analysis. To explore how trabecular structure may reflect differences in joint loading, each metacarpal head/base segment was subdivided into four regions at the radioulnar and dorsopalmar midlines (i.e., dorsoulnar, dorsoradial, palmoulnar, and palmoradial regions) and each phalangeal head/base segment was subdivided into two regions at the radioulnar midline (i.e., radial and ulnar regions). Trabecular parameters for each region were quantified using a Medtool script containing the dimensions of each bone segment.

Statistical analyses

Because of the interdependence of bones and muscles within the hand, we assume that many trabecular measurements may not be independent (e.g., BV/TV in the head of the metacarpal and the base of the articulating proximal phalanx). As such, we statistically tested our hypotheses using linear mixed effect models because they are able to compensate for underlying structures within the data (i.e., varying hierarchies; Lazic, 2010) through the
inclusion of random effects within the models (Barr et al., 2013). An example of this would be including the random effect of the ‘individual’ when there is data from bones of the right and left side. Table 2 defines the terms used to describe each model, while Figure 1 illustrates the three levels of comparison (head/base or carpal, metacarpal region, phalangeal region).

To explore variation among the regions of the hand and to help address the problem of non-independence more fully (i.e., reduce type I error), we defined functional groups for certain interrelated bones (e.g., thumb and rays II–V; see SOM S2 for further details). In addition, previous research has shown that there are significant differences between the head/base trabecular architecture of the Mc1, when compared to the Mc2–Mc5 (i.e., greater BV/TV and E with lower DA in the Mc1 head relative to the base while the reverse pattern has been found in the Mc2–Mc5; Lazenby et al., 2011a; Stephens et al., 2015, 2016b). For this reason, we ran models for the thumb bones (trapezium, Mc1, PP1, DP1) separately from the other bones in the hand (carpals, Mc2–Mc5, PP2–PP5, IP2–IP5). Violin plots were generated with the Seaborn v0.8.0 statistical data visualization package to compare distributions between variables (Waskom et al., 2017). All other statistical figures were generated with R v3.3.2 (R Core Team, 2016).

Model implementation

Six separate model setups were used to test for trabecular structure differences across regions of the hand. Each model was fitted using a Gaussian error structure and maximum likelihood (Bolker, 2008) using the `lmer` function within the `lme4` package (Bates et al., 2014) for R. Each of the six model setups contained two models – a ‘hand’ subtype and ‘thumb’
subtype – for each trabecular parameter compared (i.e., the response variables BV/TV, E, and DA).

Models in type 1 were run on data at the level of the bone and bone segment (i.e., metacarpal or phalangeal head and base, or carpal). Models in type 2 were run on data at the level of the metacarpal region (e.g., dorsoradial or palmoulnar regions of the Mc head and base) while models in type 3 used data at the level of the phalangeal region (i.e., radial and ulnar regions of the head and base). Each of these model types were further divided into two subtypes, based on data from the hand (i.e., not including the thumb; subtype a), and data from the thumb only (subtype b). Finally, two models were run for each subtype, one with BV/TV as the response variable and one with E as the response variable. Following Barr et al., (2013), all possible random slopes were included for these models. The specific steps followed for inclusion or rejection of each model are described in SOM S3. In all models, our primary aim was to test specifically for sample differences (post-Neolithic vs. forager) and, where applicable, differences by anatomical region. This included the potential for such differences to vary depending on the combination of sample, segment, and region being considered. In the same models, we also tested for whether there were any patterns across samples and segments or regions that differed based on the functional group being considered, but as these tests did not address our primary aim, the results are presented in SOM S4.

Type 1 model setup segment-level models. The type 1 models included data from bone segments (complete carpals, and metacarpal/phalangeal heads and bases). Subtype 1a included data derived from all bones of the hand, excluding those of the thumb. The two models in subtype 1a, each with a response variable of BV/TV or E, contained the predictors sample (post-
Neolithic vs. forager), segment (head, base, or carpal), side (left or right), and the sample-segment interaction. Additionally, we included random effects of functional group, skeletal element, specimen, hand ID (e.g., Qafzeh9-Left, or Arene Candide2-Right), and specific ID (i.e., identifying the specific bone; Table 2). The two models in subtype 1b included data from the bones of the thumb only, and all test predictors were the same as those in subtype 1a, aside from functional group as a random effect. The test predictors (i.e., the predictors of interest) for all four models in type 1 were sample and the sample-segment interaction. The secondary test predictors (i.e., those involving functional groups) were tested in subtype 1a models only and are described in the SOM S4 for model subtype 1a.

Type 2 model setup metacarpal region-level models. These models included data from the head/base regions of the metacarpals (dorsoulnar, dorsoradial, palmoulnar, palmoradial), with subtype 2a including data from Mc2–Mc5 and subtype 2b including data from Mc1 only. Both models in subtype 2a contained the predictors sample, segment, region (i.e., dorsoradial, dorsoulnar, palmaradial, or palmoulnar), side, and all two- and three-way interactions among sample, segment, and region. The random effects included were functional group, skeletal element, specimen, hand ID, specific ID, and region group (e.g., Qafzeh9-Left-Mc2-Base). The predictors for models in subtype 2b were identical to those in subtype 2a except for the exclusion of functional group and hand ID as random effects. Test predictors were all three- and two-way interactions, sample, and region for all models in type 2. All secondary test predictors from subtype 2a are described in SOM S4.

Type 3 model setup phalangeal region-level models. These included data at the level of the phalangeal head/base regions (ulnar and radial). Subtype 3a incorporated data from PP2–PPS
and IP2–IP5, while subtype 3b incorporated data from PP1 and the base of DP1. Subtype 3a
models included as predictors sample, segment, region (i.e., radial or ulnar), side, and all two-
and three-way interactions among sample, segment, and region. The random effects were
functional group, skeletal element, specimen, hand ID, specific ID, and region group. Subtype
3b models were the same as those in subtype 3a, aside from functional group as a random
effect. The test predictors for all type 3 models were identical to those for type 2. The
secondary test predictors are described in SOM S4 for model subtype 3a.

Visual analysis

To compare sample differences in the distribution of site-specific BV/TV with
morphologies that most closely approximate the actual shape variation between the post-
Neolithic and forager bones, we used a custom Python 3.5 (Python Software Foundation) script
to chain together slightly modified versions of the methods described in detail previously
(Boyer et al., 2015; Gee et al., 2015; Tsegai and Stephens et al., 2017). A detailed illustration of
the workflow, along with the specific software packages, is described in SOM S5 and SOM
Figure S2. In short, we used modules within Medtool to interpolate and map site-specific BV/TV
to the nearest elements of the mesh representing the trabecular volume (spacing 0.6 mm).
Hereafter, each individual mesh was globally aligned and registered to a representative mesh
for each bone (e.g., hamate). The deformation from the registration was then used to generate
a statistical shape model (spacing 0.3 mm), which represents the ‘mean-mesh’ (Cootes and
Graham, 1995; Joshi et al., 2016). We then registered the mean-mesh to each individual mesh,
and the corresponding site-specific BV/TV values at each vertex were then averaged for each sample (e.g., all hamates in the forager sample) and mapped onto the mean-mesh.

Results
SOM Table S2 contains the carpal, metacarpal head/base, and phalangeal head/base mean values and standard deviations for all of the trabecular parameters related to mechanical properties (BV/TV, E, DA) and architecture (Tb.Th, Tb.Sp). The sample means for BV/TV, E, and DA are illustrated by skeletal element in Figure 2, while those of Tb.Th and Tb.Sp are illustrated in Figure 3. A heatmap depicting individual variation for BV/TV, E, and DA by bone and segment is available in SOM Figure S3.

Models with BV/TV and E as the response variable successfully met all the model assumptions, while those for DA were rejected because they did not meet the criteria for normality and homogeneity of residuals (SOM Fig. S4). Therefore, we averaged the right/left DA values for bones belonging to the same individual and performed a Mann-Whitney U pairwise comparison between the post-Neolithic and forager samples for each bone or segment. The significant results for the final models are summarized below, while the results for each of the model comparisons are available in SOM Table S3.

Sample differences in anisotropy
SOM Table S4 contains the results of the Mann-Whitney U comparisons. Significant differences were found for the lunate (post-Neolithic = 0.12, forager = 0.03; p = 0.043) and
triquetrum (post-Neolithic = 0.10, forager = 0.04; \(p = 0.028 \)). A trend (i.e. marginal significance) was also identified for the Mc2 base (post-Neolithic = 0.17, forager = 0.12; \(p = 0.057 \)) and Mc3 base (post-Neolithic = 0.17, forager = 0.10; \(p = 0.067 \)). In each case this was the result of the post-Neolithic sample being more anisotropic than the foragers, which was the general pattern across the hand in all but the PP1 head, Mc5 head/base, and PP5 head/base. In general, DA was much more variable (i.e., high standard deviations; see SOM Table S2 and SOM Fig. S5) across the hand in both samples, compared with BV/TV and E (see below).

Sample differences in the segments for hand (1a) and thumb (1b) models

Model 1a investigated sample differences in BV/TV and E in bone segments of the hand (scaphoid, lunate, triquetral, hamate, capitate, trapezoid, and Mc2–Mc5, PP2–PP5, and IP2–IP5 head/base segments), while model 1b focused on the bone segments of the thumb (trapezium, Mc1 and IP1 head/base segments, and DP1 base segments). In all four models, we found a significant interaction between sample and segment (hand - BV/TV: \(p = 0.045 \); E: \(p = 0.030 \); thumb - BV/TV: \(p = 0.048 \); E: \(p = 0.026 \)), indicating that the difference between the two samples varies depending on which segment is being considered (e.g., the difference in the Mc1 is different from that in the trapezium).

The model type 1 results are illustrated in SOM Figure S6. For both BV/TV and E, the forager sample has higher values than the post-Neolithic overall. However, while the differences are similar for the heads and bases, the differences in carpal BV/TV and E are more pronounced (Fig. 2; see also SOM Fig. S3). Figure 2 shows the respective distributions of BV/TV,
E, and DA for each carpal in each sample and—while both samples share a pattern of comparatively high BV/TV and E in the lunate, scaphoid, and capitate—the mean values for foragers are greater throughout the carpus. The greatest difference between the mean BV/TV and E for two samples is in the lunate, followed by the triquetral, capitate, and trapezium (see SOM table S2). The violin plots of each carpal illustrate the distributions for BV/TV, E, and DA for each of the two samples (Fig. 4). Given the similarity in mean trabecular spacing between the samples (Fig. 3), the identified interactions for BV/TV and E appear to be driven by generally thicker and more isotropic trabeculae in the carpus of the foragers, which is particularly pronounced in the lunate, capitate, triquetral, and trapezium.

Sample differences in the metacarpal regions for hand (2a) and thumb (2b) models

SOM Table S5 summarizes mean regional values of each sample by respective metacarpal or phalangeal head/base segment. For the models of the hand metacarpal regions (subtype 2a, head/base of Mc2–Mc5: dorsoradial, dorsoulnar, palmoradial, palmoulnar), we found a significant region-sample interaction for both response variables (BV/TV: $p = 0.002$, E: $p = 0.002$) as well as a significant region-segment interaction for BV/TV ($p = 0.013$). In the model of thumb metacarpal regions (subtype 2b, head/base Mc1: dorsoradial, dorsoulnar, palmaradial, palmoulnar), with BV/TV as the response variable we found a significant two-way interaction between sample and region ($p = 0.001$), as well as region and segment ($p < 0.001$), with a trend for the sample-segment interaction ($p = 0.074$). With E as the response variable, there was a trend for the three-way interaction between sample, region, and segment ($p = 0.076$).
Model type 2 results are illustrated in SOM Figures S7 and S8, while the mean BV/TV, E, and DA by head/base region are illustrated in Figure 5. For both samples, the head/base region pattern for BV/TV was very similar across the metacarpals (e.g., greater values in the Mc1 palmoradial region and Mc2–Mc4 palmoulnar region), and there was a tendency for the values in the Mc2 and Mc3 to be comparatively higher. Still, the forager sample showed consistently higher mean values, with the notable exception of the dorsoulnar and dorsoradial regions of the Mc1 base. Between the two samples, the differences were most marked in the palmoradial and palmoulnar regions of both head/base segments of the Mc1–Mc5 when compared to the dorsal regions, and this difference was exaggerated in the Mc2–Mc5 heads (SOM Fig. S7). The pattern for E across regions was, again, fairly similar between the samples for both the metacarpal heads and bases (Fig. 5) with the most striking differences appearing at the palmoulnar and palmoradial regions of the Mc1–Mc5 heads, where the forager sample showed much higher values (see also SOM Fig. S8). Again, there was a notable difference in the Mc1 dorsoulnar region of the base, with the post-Neolithic sample having greater values of E than the foragers.

Most differences between the two samples were related to the disparity between the various metacarpal regions. Architecturally (Fig. 3), there was little difference in mean Tb.Sp between the two samples while mean Tb.Th was notably thicker for the foragers at the base of the Mc3. The most marked differences between the two samples were in the distribution of mean DA among the metacarpal regions, which is relevant because E takes into account the fabric (i.e., the DA) as well as the BV/TV when it is calculated. Interestingly, for both samples the anisotropy pattern between the head/base segments of Mc5 was more similar to that of
the Mc1, with the head being more anisotropic than the base. The mean differences in DA by region (Fig. 5) show the foragers being more isotropic in the two palmar regions of the Mc1/Mc5, and two dorsal regions of the Mc3, but all Mc2 regions being anisotropic. At the base of the metacarpals, the forager sample was generally more isotropic in the Mc1–Mc4, but more anisotropic in the two ulnar regions of the Mc5. Taken together, the differences between the two samples were most pronounced in the Mc3 base, the palmar region of the Mc4 head/base, the palmaradial regions of the Mc5 base, and the palmoulnar/dorsoulnar regions of the Mc5 head.

Sample differences in the phalangeal regions for hand (3a) and thumb (3b) models

For hand models in subtype 3a (PP2–PP5 and IP2–IP5 head/base segments), we found that the forager sample had significantly higher BV/TV ($p = 0.018$) and E ($p = 0.016$) in the phalangeal bones of the hand. For thumb models in subtype 3b (PP1 head/base segments, and DP1 base segments), there was a trend for the difference between the samples in BV/TV ($p = 0.059$) and E ($p = 0.059$), with those of foragers being greater for both measures. Further, in thumb model 3b, we found a significant region-segment interaction for BV/TV ($p < 0.001$) and E ($p < 0.001$), where the values in the radial region were found to be higher than those in the ulnar region for both measures, with the variation in head being the most pronounced.

Model type 3 results are illustrated in the SOM Figure S9. Figure 5 shows the regional BV/TV, E, and DA means for each sample by skeletal element and segment, while violin plots comparing the regional differences in BV/TV and E are presented in the SOM Figures S10 and S11. Like the metacarpal regions above, the two samples were similar in that the higher BV/TV
and E values, along with lower DA values, were found in the central rays of the hand (rays II–IV). There was also similarity in how BV/TV and E were distributed within the thumb, as suggested by the interaction identified in the pollical phalanges. Here, the values on the radial side were greater than the ulnar side in both samples, which appeared to be driven by the greater E and BV/TV values in the head (SOM Figs. S10 and S11). As in the other bones, the regional means for BV/TV and E were generally greatest in the forager sample, with those in the heads of the various phalanges being the most different between the two samples, while those of the PP1, DP1, and IP5 base were very similar. The greatest disparity between the samples was in rays II, III, and V, particularly the heads of the intermediate phalanges. Architecturally, the two samples share similar Tb.Sp throughout the hand (Fig. 3) and high DA at the base of PP5 and IP2 (Fig. 3). Foragers had greater mean Tb.Th and lower DA in the heads of PP4 and MP4, as well as the PP1 base radial region.

Visualized site-specific BV/TV

Figure 7 presents a palmar and dorsal comparison for each sample of the average surface site-specific BV/TV for each bone analyzed in this study, while an interactive mesh is available in the online version or as a downloadable PLY file (SOM Model S1). There was a general similarity between the two samples, but the forager sample differed in having higher values (darker orange/red), which also tended to encompass a greater surface area than the post-Neolithic sample (the extent of the orange/red borders). Differences between the two samples were particularly marked in the carpals, along ray III, and in the heads of all the phalanges. This is consistent with the statistical analyses reported above, with the forager
sample demonstrating significantly greater overall BV/TV and E, with values for DA being significantly different for the lunate and triquetral.

The color map of site-specific BV/TV across the phalanges is consistent with model results 3a and 3b (Fig. 7; also see above and Fig. 6). Both samples showed similarly high BV/TV values and distribution in the pollical phalanges and there was also a similar BV/TV distribution among the non-pollical phalanges, with greater values in the heads relative to the bases. Site-specific BV/TV values were greater in the forager sample overall, with the largest differences between the two samples found at the bases of the phalanges on the dorsal (PP2–PP4 and IP2–IP5) and palmar aspects (PP2–PP4), as well as the heads (PP3 and PP5 head ulnar region).

Figure 8 isolates the articular surfaces of the metacarpal heads and bases, showing patterns of site-specific BV/TV that are generally consistent with the results of metacarpal models 2a and 2b (see above), and the regional averages (Fig. 5). In both samples, the concentrations in the Mc1 were greatest in the radial regions of the head and base, while the heads of the non-pollical metacarpals showed a tendency towards higher values in the palmar-ulnar region. Although BV/TV mean values were, again, generally higher in the foragers, the pattern of BV/TV distribution was similar between the two samples. Compared with the post-Neolithic sample, foragers showed particularly high concentrations of BV/TV at the base of the Mc2 and Mc3, the palmar-radial portion of the Mc1 head, and the palmar-ulnar region of the Mc3 head.

For the hand and thumb models (1a and 1b), the significant differences were the result of variance in the carpals, with the forager sample demonstrating greater overall mean BV/TV and E. This difference was echoed in site-specific BV/TV color maps that highlight the sample
variation in the carpals from different anatomical views (Figs. 9 and 10). Along the distal carpal row (trapezoid, capitate, hamate) there were similarities in the distribution of site-specific BV/TV (i.e., ulnar aspect of the trapezoid, capitate head, and the triquetral and capitate facets of the hamate), but the values for the foragers were much higher and more extensive, particularly the radioulnar banding along the capitate head and the trapezoid-capitate articulation (Fig. 10). These high BV/TV patterns correspond with those seen in distal view at the midcarpal joint (Fig. 9), where high values were found in both samples along the dorsal aspect of the lunate and ulnar aspect of the scaphoid articular surfaces, where they cup the capitate head, but the patterns were more pronounced in the forager sample. In proximal view, there were also BV/TV concentrations along the scaphoid and lunate at the radiocarpal joint in both samples (Fig. 9), but with these patterns being much more pronounced in the proximal and palmar surfaces of the lunate, as well as higher BV/TV in the triquetrum, compared with the post-Neolithic sample. The forager sample also had a higher and more extensive BV/TV distribution at the palmoulnar aspect of the trapezium’s Mc1 facet, the capitate’s Mc3 facet, and the trapezoid’s scaphoid facet (Figs. 7 and 9).

Visualized across joint patterns

Figure 11 shows a sagittal cross-sectional image of site-specific BV/TV through the lunate, capitate, and bones of ray III (Mc3, PP3, IP3) for two post-Neolithic males from differing locations but the same time period (19th century). Here the comparison is between individuals with comparatively low (Fig. 11A) and high (Fig. 11B) BV/TV throughout the hand (see SOM Fig. S12 for a comparison of trapezoids from multiple individuals). Along this articular chain there is
a good correspondence between the concentrations of relatively high site-specific BV/TV across each joint. Overall the BV/TV distributions between the individuals are similar (e.g., high BV/TV at the palmar metacarpophalangeal joint or dorsal lunate and central capitate head), but the individual with high BV/TV differs in having high concentrations at the palmar capitate-Mc3 joint and in the palmar lunate.

Discussion

We examined the trabecular architecture within 22 of the 27 bones of the human hand from a temporogeographically diverse collection of individuals with the aim of assessing if the structural patterns across the joints were consistent with hand biomechanics. Additionally, we categorized and compared individuals from a post-Neolithic and forager sample to see if the variation between the two samples differed according to presumed differences in manipulative loading. Given the comparable external morphology of recent H. sapiens (see Trinkaus, 2016), we predicted that the general trabecular structure and site-specific BV/TV distributions would be consistent with loading during flexion of the interphalangeal joints, flexion with abduction at the metacarpophalangeal joints, and thumb opposition at the metacarpophalangeal and TMC joints. In relation to sample differences, we predicted that the forager sample would have a pattern consistent with higher and more variable manipulatory loading, which would be reflected in higher average BV/TV, E, and lower average DA among the regions of the hand. Furthermore, we predicted that these differences would be reflected in the distribution of site-specific BV/TV, with higher values in the forager hand being consistent with areas of joint contact observed during finger flexion, thumb opposition, and typical wrist movements.
Because previous studies have focused on hand bone trabecular architecture in isolated elements (e.g., the Mc3 head) or limited regions of the hand (e.g., metacarpals; Lazenby et al., 2011a; Zeininger et al., 2011; Schilling et al., 2014; Matarazzo, 2015; Skinner et al., 2015a; Barak et al., 2017; Reina et al., 2017), we first summarize the general trabecular patterns across the hand, and then present results on the non-pollical phalanges, metacarpals II–V, carpals, and thumb. Following this, we discuss the interplay between hand loading, development, demography, and individual variation across our samples.

General pattern

We found support for the predictions of similar hand use and wrist motion in the shared distribution of trabeculae in the carpals, metacarpals, and phalanges of both the post-Neolithic and forager samples. These similarities are suggestive of comparable joint contact and loading as well as overall hand postures during manipulation, which is supported by studies of modern humans showing that a limited number of hand grips are used for most daily tasks (Bullock et al., 2010; Vergara et al., 2014; Liu et al., 2016b). More specifically, both samples demonstrated a general pattern of high BV/TV and E in the heads of the Mc1 and the phalanges, when compared to bases, and in the Mc2–Mc5 bases, when compared to the heads. Both samples also shared a tendency to have relatively high BV/TV and E with lower DA throughout the central portions of the hand (capitate, lunate, scaphoid, Mc2–Mc3, PP2–PP4, IP2–IP4). The site-specific BV/TV for the post-Neolithic and forager samples, as well as the individual meshes (Fig. 11), also showed a good correspondence between concentrations of relatively high BV/TV and areas of expected contact across joints (Figs. 7–11, SOM Fig. S12).
When the forager trabecular structure is compared to that of the post-Neolithic sample, the higher BV/TV, E, Tb.Th, site-specific BV/TV, and lower DA support our prediction that the forager sample would reflect a pattern of higher and more varied loading during hand use. BV/TV and E were significantly higher across the hand, the metacarpal/phalangeal segments, and the metacarpal/phalangeal regions, while DA was significantly lower for the lunate and triquetral (Figs. 2 and 3, SOM Figs. S6–S9). Variation in site-specific BV/TV was consistent with these significant differences, with the forager sample showing higher overall values, with the borders of the high BV/TV extending further across the joint surfaces. These differences were most pronounced in the carpals (scaphoid, lunate, capitate, triquetral, and trapezium), metacarpals (Mc1–Mc5 heads, Mc2–Mc3 bases), and phalanges (heads, and dorsal aspect of bases). These results are generally consistent with previous studies documenting more robust bone structure in upper and lower limb bones in active versus less active human samples (e.g., Stock, 2006; Ryan and Shaw, 2015; Scherf et al., 2016).

Finger phalanges

There is support for our prediction that the phalangeal trabecular structure would reflect flexion at the interphalangeal joints in both samples and that the forager sample would show evidence of greater loading overall. Both samples shared a pattern of relatively high BV/TV and E with low DA in the phalangeal heads when compared to the bases (Figs. 2 and 6, SOM Fig. S5), particularly in the central rays of the hand (II–IV). Higher BV/TV in the palmar regions of the proximal phalanges and dorsal regions of the intermediate phalanges in both samples is consistent with flexion of the interphalangeal joints. In each case, the forager sample
had lower DA overall, with significantly higher BV/TV and E throughout the phalanges. Taken
together, these results suggest general similarities in finger positioning during loading, but the
pattern for the forager sample hints at greater and more varied loading of the fingers, on
average. This may be related to variation in finger recruitment strategies, with the higher DA in
the post-Neolithic PP4–PP5 and IP2 bases signifying a consistency not present in the forager
sample (Fig. 2).

As far as we are aware, no other study has investigated human phalangeal trabecular
architecture (for African apes, see Matarazzo, 2015), but in both samples mean BV/TV and E
were generally greater in the distal segments of the phalanges (i.e., IP head > PP head; see SOM
Fig. S5). Overall this agrees with biomechanical studies measuring higher force and contact
pressures in the distal segments of the fingers during manipulation (Williams et al., 2012),
power grasping (Kargov et al., 2004; Goislard de Monsabert et al., 2012), and simulated
grasping (Chamoret et al., 2016). However, it conflicts with biomechanical modeling and
validation studies that report increasingly higher internal joint forces moving distal to proximal
along the phalanges (i.e., IP head < PP head < Mc head; Cooney and Chao, 1977; An et al., 1983,
1985). Thus, the head > base distribution of trabecular bone here is seemingly in conflict with
the distal < proximal joint force pattern. A partial explanation for this inconsistency may be
found in the force attenuation provided by soft tissues and variation in the articular surface
areas of the fingers (Rafferty and Ruff, 1994; Ruff, 2002; Diogo et al., 2012; Marzke, 2013;
Roberts and Konow, 2013; Hu et al., 2014). Studies quantifying the stiffness and compliance of
the fingers have shown how the joint capsules and musculotendon network of the hand act to
dissipate mechanical energy during impact to enhance grip stability while preventing injury
(Höppner et al., 2013, 2017; Fujihira et al., 2015; Deshpande et al., 2017). Qiu and Kamper (2014) have also demonstrated that greater joint contact forces occur with more extreme flexion (e.g., 60–90º), and that this force is greater in the distal joints due to the relative reduction in tendon mass towards the fingertips (i.e., the proximal interphalangeal joint > metacarpophalangeal joint). In other words, among the phalanges, manipulative activities that require flexed fingers (i.e., power and precision grips) result in greater force than those with straight fingers. Thus, the inconsistency between higher predicted load but lower trabecular BV/TV and E throughout the phalanges is likely attributable to variation in joint angles during manipulation and, in particular, the relatively large joint surface areas and more massive soft tissue structures towards the proximal portions of the fingers that act to dissipate the higher loads.

Metacarpals II–V

As with the phalanges, we found support for our prediction that both samples would demonstrate similar loading patterns at the metacarpophalangeal and carpometacarpal joints, but with more intense and varied loading in the forager sample. Both post-Neolithic and forager samples generally showed greater mean BV/TV and E in the Mc2–Mc5 bases, when compared to the heads (SOM Fig. S5). They also tended to have greater BV/TV, E, and Tb.Th but lower DA in the central metacarpals (Mc2–Mc3; Figs. 2 and 5). The palmar regions of the Mc1–Mc5 heads and bases had higher BV/TV and E, specifically the palmomu lar regions of Mc2–Mc5, which is consistent with a flexed and adducted joint position of the proximal phalangeal bases as the fingers and thumb rotate towards one another during opposition (Brand and Hollister,
Again, the forager sample showed significantly higher BV/TV and E compared to the post-Neolithic sample, consistent with higher loading. These differences were most pronounced in the palmar regions of the Mc2–Mc4.

Our results are in keeping with previous studies that report an agreement between predicted loading history and metacarpal trabecular structure using VOI (Lazenby et al., 2008b; Chirchir et al., 2017b) and whole bone/epiphyseal methods (Tsegai et al., 2013; Skinner et al., 2015a). Our results contrast with Wong et al. (2017), who found that the dorsal, rather than palmar, region of the Mc2–Mc3 bases had generally higher trabecular bone mass and the Mc4–Mc5 showed a more homogeneous distribution across the base. However, this contradiction likely reflects the differing methodologies; whereas Wong et al. (2017) analyzed single tomographic slices using peripheral quantitative CT, we characterize the entire epiphyses. In the discussion, Wong et al. (2017) suggested that the more homogenous densities were likely related to the force attenuation provided by the tight articulation of the metacarpal bases and supportive ligaments. This interpretation is supported here with our finding of high concentrations of site-specific BV/TV between the Mc2/Mc3 and Mc4/Mc5 (Fig. 8), as well as concentrations along the dorsal surfaces of metacarpal bases that correspond to ligament attachment sites (Fig. 7).

Although the relationship between functional bone adaptation and musculotendon morphology is debatable (Vickerton et al., 2014; Rabey et al., 2015; Wallace et al., 2017a), the high site-specific BV/TV concentrations along the bases of the Mc2, Mc3, and Mc5, and those along the shaft of the Mc1 and Mc5, are consistent with muscle attachment sites related to flexion and opposition (Fig. 7; Brand and Hollister, 1993; Gislason et al., 2009; Diogo and Wood,
2011). For example, those at the palmar base of the Mc3 and along the dorsoradial shaft of the Mc1 and ulnar shaft of the Mc5 correspond to the attachment sites of the oblique head of the adductor pollicis, the opponens pollicis, and opponens digiti minimi respectively, which are thought to increase the mechanical effectiveness of the thumb and fifth finger during flexion (Marzke et al., 1998; Maki and Trinkaus, 2011). Similarly, high site-specific BV/TV along the palmar region of the Mc2 and the dorsal region of the Mc2–Mc3 correspond with the attachment sites of the flexor carpi radialis, extensor carpi radialis longus, and extensor carpi radialis brevis, which are important for controlling wrist flexion-extension and radioulnar deviation (Brand and Hollister, 1993). Considering that trabecular modeling events are found adjacent to the loaded site (Sugiyama et al., 2010; Schulte et al., 2013; Christen et al., 2014; Cresswell et al., 2016) and that bone resists compressive forces better than tensile forces (Phillips et al., 2015), it may be that these site-specific BV/TV concentrations reflect modeling events initiated by tension transmitted to the bone when the muscles/ligaments work to counterbalance and stabilize the hand during manipulation. This interpretation is in line with other studies that note a relationship between attachment sites and changes in the bone microstructure of the hand (Karakostis and Lorenzo, 2016; Saffar, 2016), as well as Karakostis et al. (2017), who reported a significant relationship between human hand bone enthesis shape and occupations featuring high versus low manual loading.

Although both of our samples showed higher palmoulnar BV/TV, E, and site-specific BV/TV at the Mc2–Mc5 heads, the forager sample showed radial and dorsal expansion of these high values (Figs. 5, 7, and 8). For instance, the Mc5 of the forager sample showed relatively high site-specific BV/TV that extends along the dorsal aspect and ulnar lobe of the head. When
paired with the high DA along the dorsal region of the head and palmoulnar region of the base, this suggests a greater consistency in loading while the fifth digit is abducted, which would be consistent with wide grips involving broad/large objects (Goislard de Monsabert et al., 2014). The forager sample also had higher BV/TV, E, and site-specific BV/TV between the Mc2–Mc3 bases and, to a lesser extent, between the Mc4–Mc5 bases (Figs. 5 and 8). Along with the relatively low DA at the base of the Mc2–Mc4 and head of the Mc3, it may be that this pattern represents the distribution of high manipulative loading as the joints stabilize the hand (El-Shennawy et al., 2001; Buffi et al., 2013).

Carpals

For the carpals, both samples tended to have high values of BV/TV, E, and lower DA in the central elements (i.e., capitate, lunate, scaphoid; Fig. 2) and similar distributions of site-specific BV/TV among the radiocarpal and midcarpal joints (Figs. 9 and 10), supporting our prediction of comparable patterns of joint contact. Our prediction regarding higher and more variable manual loading for the forager sample was supported by the significantly higher BV/TV, E, and lower DA in the carpals, as well as the visibly higher site-specific BV/TV concentrations observed along the scaphoid, lunate, capitate, and triquetral (Figs. 2, 9 and 10).

In relation to the predictions of wrist movement, the concentrations of site-specific BV/TV at the radiocarpal (proximal lunate and scaphoid) and midcarpal joints (distal lunate, distal scaphoid, and capitate head) are consistent with the load transfer and kinematics observations of carpals in motion (e.g., Crisco et al., 2005; Majima et al., 2008; Gislason et al., 2009, 2010; Rainbow et al., 2013; Márquez-Florez et al., 2015). More specifically, this pattern is
consistent with the kinematics of the carpals when moving between radial-extension and ulnar-flexion as the wrist moves through the ‘dart-thrower’s’ motion, which balances the tension between the carpals in a manner that emphasizes motion at the midcarpal joint while minimizing motion at the radiocarpal joint (Moojen et al., 2002a; Edirisinghe et al., 2014; Rainbow et al., 2015). This movement characterizes the path that the wrist travels during many high load tasks, such as short swing hammering, clubbing, and hard hammer knapping (Leventhal et al., 2010; Garg et al., 2014; Williams et al., 2014), and is consistent with the pattern of extremely low DA, high BV/TV, E, and Tb.Th in the forager capitate, lunate, and scaphoid.

Following from this, the extremely low DA and high site-specific BV/TV in the forager triquetral compared with the post-Neolithic sample may stem from loads incurred while stabilizing the wrist during forceful manipulative activities. The high BV/TV on the palmoulnar aspect of the triquetrum (Figs. 7 and 9) is consistent with attachment sites of the ligaments that help to stabilize the ulnar wrist (Saffar, 2016). Similarly, the high BV/TV, E, and extremely low DA for the trapezoid, capitate, and Mc2–Mc3 bases are consistent with derived articular configuration of the *Homo* radial carpometacarpal complex, which helps distribute the high joint reaction forces from the thumb (i.e., Mc3 styloid, and reoriented Mc2/trapezoid/trapezium angles; Marzke, 1983, 1997; Tocheri et al., 2003, 2005, 2008; Ward et al., 2014). More specifically, the presence of higher site-specific BV/TV values in the forager trapezoid-capitate articulation and those through the palmar aspect of the trapezoid (Fig. 10 and SOM Fig. S12) agree with the manner in which load is suggested to pass transversely
through the expanded palmar aspect of the trapezoid during strong pinch/power grip (Tocheri et al., 2005; Marzke et al., 2010).

785

Thumb

Both post-Neolithic and forager samples showed higher relative BV/TV and E in the palmar and palmaradial regions of the Mc1, the radial regions of the pollical phalanges, and high site-specific BV/TV at the trapeziometacarpal joint (Figs. 2, 6, and 9), which together are consistent with the motion of the thumb during opposition to the other fingers (Nufer et al., 2008; Lee et al., 2013; Ladd et al., 2014; D’Agostino et al., 2017). High site-specific BV/TV in the palmar regions of the Mc1 is consistent with the area of joint contact at the TMC when the thumb is opposed (Schneider et al., 2017), as well as the results of previous studies (Skinner et al., 2015a; Stephens et al., 2016a; Wong et al., 2017). In contrast to other anatomical regions of the hand, we did not find significant differences between the samples in levels of BV/TV and E for the Mc1 or phalanges. While this suggests that thumb use was more similar for the two samples than originally anticipated, the forager sample did show significantly higher BV/TV and E in the trapezium (SOM Fig. S6). Furthermore, the high site-specific BV/TV expands further across the trapezium’s Mc1 articular surface and palmodorsally along the scaphoid articular surface (Figs. 9 and 10). This pattern is consistent with the motion described by D’Agostino et al., (2017), where the Mc1 base rotates during opposition of the thumb while the dorsoradial ligament tightens in such a way that the palmar beak of the Mc1 base locks against the palmoulnar region of the trapezium to stabilize the joint. When the higher regional BV/TV and E in the palmar regions of the Mc1 base and the greater site-specific BV/TV on the palmoradial
aspect of the Mc1 base and head (Figs. 5, 7-9) are considered together, it may reflect loading involving a widely abducted thumb (e.g., grasping a baseball as opposed to a pinch grip; Halilaj et al., 2013, 2014). Given the specialized thenar musculature of the human thumb compared with other primates (Diogo et al., 2012)—and the force-attenuating properties of soft tissue discussed above—the higher E and BV/TV in the trapezium of the forager sample may reflect higher loading of the thumb overall, with the joint contact forces ultimately being transferred into the broad trapezial Mc1 facet, through to the scaphoid, and into the radius (Marzke et al., 2010). This interpretation would be consistent with a similar transfer of kinetic energy during power grips or strong pinch grips (Tocheri et al., 2003, 2005), as well the results discussed for the remaining carpals above (e.g., the capitate-scaphoid border of the trapezoid).

Developmental patterns

Although our results are generally consistent with our predictions based on hand kinematics, there are additional factors, such as ontogeny, that can influence trabecular structure (Ryan et al., 2017). For instance, we found the metacarpal/phalangeal head and base differences for BV/TV and E to be fairly uniform across individuals (see SOM Figs. S3 and S5), which could be explained, at least in part, by development. Here the head/base distribution mirrors the position of growth plates, which are located at the base of Mc1 and phalanges and Mc2–Mc5 heads (Rolian, 2016; Perchalski et. al., 2017). Because new trabeculae are formed only within the growth plate (Schulte et al., 2011), it seems somewhat contradictory that the segments opposite the respective plates have the higher relative BV/TV, E, and Tb.Th (i.e., Mc1/phalangeal heads and Mc2–Mc5 bases; Figs. 2 and 3). For the phalanges this could
represent a biomechanical trade-off between epiphyseal cortical and trabecular bone (e.g.,
thicker PP1 base cortical bone allowing for lower BV/TV and E relative to the head). However,
Stephens et al. (2016b) found that these trabecular parameters covaried in human metacarpals,
such that higher BV/TV and E was paired with a thicker cortex in the Mc1 base and Mc2–Mc5
heads relative to their opposing segments.

In comparison to other primates, Matarazzo (2015) found that the trabecular structure
of the extant ape and macaque ray III (Mc3, PP3, and IP3) had a similar tendency for higher
BV/TV in the metacarpal/phalangeal heads when compared to the bases. However, there was
also substantial overlap in BV/TV values, with some individuals having higher BV/TV in the
bases, rather than the heads. While this difference may reflect systemic differences in
trabecular structure between humans and non-human primates (Tsegai et al., 2018) or
methodology (i.e., whole-bone/epiphysis approach vs. VOI), it may also reflect the high
locomotor loading of non-human primate hands compared with that of humans (Marchi, 2005;
Marzke et al., 2015). Since non-human primates have the same growth plate locations as
humans, this would suggest that loading can supersede a developmental predisposition. For the
human metacarpal/phalanges here, there are some BV/TV and E values that are nearly equal
between the head/base segments, with three phalanges where the base values are greater
than those of the head (SOM Fig. S5). This may mean that loads incurred during manipulation
are not high enough to cause frequent head/base variation, or that modeling is superimposed
onto the developmental architecture because typical loading of the hand follows this particular
pattern (e.g., higher joint force at the distal phalanges; Perchalski et al., 2017; Reina, 2007). In
either case, because modeling is limited to modulating trabecular thickness, spacing, and
orientation following epiphyseal fusion (Schulte et al., 2011; Barak et al., 2017), there is, at the
very least, support for localized modeling among the differing Tb.Th, BV/TV, E, and site-specific
BV/TV values (e.g., capitate, lunate, phalangeal heads, Mc3 base; Figs. 2 and 3). Still, these
claims would be better substantiated if compared to a similar study involving an ontogenetic
sample of human and non-human primates. Comparisons with foot bone trabecular structure,
which have identical growth plate positions, could further test the influence of bone
development on adult trabecular structure.

Demography and degree of anisotropy

Regarding comparisons of trabecular structure between the two samples, the results for
DA are the most difficult to interpret because DA varies considerably compared to all other
trabecular parameters (Tables 3 and 5, SOM Fig. S3). In other studies of human trabecular
structure, the standard deviations of DA are generally low and comparable to those of BV/TV or
Tb.Th, especially in the hands (e.g., Lazenby et al., 2008a, b, 2011a; Barak et al., 2017). Because
DA characterizes the relative organization of trabeculae in 3D space—which will differ
according to the anatomical region being analyzed—the high variability of DA we report likely
relates to the methodological approach (Kivell et al., 2011b; Lazenby et al., 2011b). Namely,
those that use single VOIs (Lazenby et al., 2008a, b, 2011a; Barak et al., 2017) versus other
studies quantifying DA within the entire bone or epiphysis (Tsegai et al., 2013; Skinner et al.,
2015a; Stephens et al., 2016), where the DA variation is similarly high. Considering the DA in the
metacarpals here, where the larger bases vary more than the smaller heads (e.g., Mc2–Mc3), it
may even be that larger volumes overgeneralize the measure. Being that controlled animal
studies demonstrate how struts align with loading axes (Pontzer et al., 2006; Barak et al., 2011), it may be more informative to visualize local differences in DA along with direction of alignment, which should reflect the primary direction of loading between joints (e.g., Tsegai et al., 2013; Barak et al., 2017).

That said, the bimodal distribution in the post-Neolithic carpals suggests a tendency towards either high or low DA (Fig. 4) that requires further investigation, ideally on osteological samples with known biological and occupational information. While we excluded all pathological bones and did not knowingly include individuals of advanced age, it may be that the high DA found in some individuals reflects age or physiological stress-related bias, which is characterized by low BV/TV and high DA (Agarwal, 2004, 2016; Beauchesne, 2017). When considering the large temporal differences between individuals in both samples, and the prevalence of nutritional stress/pathology regardless of subsistence strategy (e.g., Trinkaus et al., 2001; Macintosh et al., 2016), this is likely to have influenced the trabecular structure for some of the individuals in our sample. The inability of this analysis to both control for potentially confounding effects due to a lack of specific life history data (e.g., exact age, sex, occupation), as well as run linear mixed effect models on DA further complicates parsing out these fine-grained differences.

Further limitations

Although the aim of this study was to investigate for the first time the general patterns of trabecular structure across the human hand, there are several limitations to this study, in addition to ones discussed above, that should be underscored when considering the
interpretations above. Foremost are the limitations with our sample. As discussed above, we divided up our sample into two broadly-defined groups that are temporogeographically diverse and are not associated with direct life history information. Future analyses on a contemporary sample or well-documented and temporally constrained archaeological sample would be useful to see if the general patterns found here still hold (Karakostis et al., 2017; Reina et al., 2017; Wong et al., 2017). Furthermore, one must consider bias stemming from preservation, such that there are fewer individuals to be sampled in earlier time periods. This dearth of samples complicates the number of reasonable divisions available during analysis, and we must keep in mind that the earlier individuals may not truly be ‘representative’ of a particular population or time period. For example, the forager individuals that overlap geographically, but not necessarily temporally, show similar values, with Qafzeh 8 and 9 (130–80 ka) having comparable values to the post-Neolithic means, while Arene Candide 2 (11–9 ka) and Barma Grande 2 (24 ka) do not (SOM Fig. S3). While this is interesting and may be related to similarities in terrain, culture, and/or genetic background, it is not a question that can be adequately explored with the limited amount of Pleistocene remains available.

In relation to broader comparisons, we did not explore potential sex-related differences in hand use. Bimanual humeral loading appears to have dramatically increased for females compared to males following the adoption of agriculture (Macintosh et al., 2014, 2017; Sládek et al., 2016), and it may be possible to assess if the right and left hands of females and males from this period differed in consistent ways. Similarly, the functional interpretations here would be better informed if accompanied by comparable data on non-human primate trabecular bone. Although previous studies of isolated hand elements in non-human primates (e.g.,
generally support the distinctive patterns of trabecular structure reported here for human hands, such a comparison would allow for a more direct assessment of which aspects relate to function and which relate to developmental, genetic, and/or age-related factors (e.g., Barak et al., 2013; Ryan and Shaw, 2015; Agarwal, 2016).

Methodologically, it should be noted that calculation of E in this study is based on computational simulations approximating μFE models experimentally validated using bones other than those of the hand (e.g., femurs/vertebrae; Pahr and Zysset, 2009a,b; Schwiedrzik et al., 2016). Further, while many of the trabecular patterns we found are consistent with what is known about the biomechanics of the human hand, some functional interpretations are based on simplified kinematic models due to the complexity of, for example, carpal movement (Crisco et al., 2005; Gislason et al., 2009), and many of the complex interrelationships between hard and soft tissues of the hand remain poorly understood (e.g., Landsmeer, 1955; Napier, 1960; Crisco et al., 2005; Orr et al., 2010; Kivell et al., 2013; Saffar, 2016; Orr, 2017). Additionally, we did not analyze variation in cortical bone, which has been shown to covary with trabecular variables and is critical to how load is dissipated during manipulation (Tommasini et al., 2009; Stephens et al., 2016b). While beyond the scope of this study, it would be fruitful to compare individual site-specific BV/TV distributions to overlapping maps of DA, local orientation, Tb.Sp., Tb.Th., and cortical bone thickness (e.g., Tsegai et al., 2013; Barak et al., 2017; Tsegai and Stephens et al., 2017), to gain a more holistic functional understanding of variation in bone form.
Conclusions

This study aimed to describe for the first time the general patterns of trabecular structure across the human hand skeleton. The quantitative results and trabecular patterning described here were in line with our predictions of similar hand function between the post-Neolithic and forager samples. Higher BV/TV and E but generally lower DA in the forager sample suggests more intense and varied loading of the hands, on average. Using the site-specific BV/TV maps, we found good correspondence between the articulated elements of the hand, which helped to provide more in-depth interpretations of the quantitative data. Furthermore, the high site-specific BV/TV values were also consistent with the loading expected from in vivo observations of hand use. As such, analysis of trabecular structure and visualization of site-specific BV/TV across the human hand is both useful and relevant to debates about the reconstruction of manipulative behaviors in past samples and may be useful for interpreting fossil hominin remains. However, the functional interpretations made here should be tested on contemporary or archaeological samples of known behavior, and preferably within a broader comparative context of non-human primates.

Acknowledgements

This work was supported by the Max Planck Society (N.B.S., M.M.S., T.L.K., J.J.H.) and the European Research Council Starting Grant (grant number 336301; T.L.K. and M.M.S.). We are grateful for the samples provided by the Research Centre for Palaeolithics and Palaeoethnology, Věstonice (Jiří Svoboda), Museo Nazionale Preistorico dei Balzi Rossi (Elisabetta Starnini), the Museo Archeologico del Finale (Andrea De Pascale), the Sackler School
of Medicine at Tel Aviv University (Israel Herskovitz, Alon Barash, and Yoel Rak),
Naturhistorisches Museum Wien (Maria Teschler-Nicola and Ronald Muehl), the University of Florence (Jacopo Moggi-Cecchi and Silvia Bortoluzzi), University of Kent (Chris Deter and Patrick Mahoney), and the Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie der Georg-August-Universität Göttingen (Birgit Großkopf). For scanning assistance, we thank David Plotzki and Heiko Temming. For insightful discussions, we thank Colleen Stephens, Adam van Casteren, and Zewdi Tsegai. We thank three anonymous reviewers and the editors of JHE for comments that allowed for a much more nuanced interpretation of the results.
References

Marzke, M.W., Tocheri, M.W., Steinberg, B., Femiani, J.D., Reece, S.P., Linscheid, R.L., Orr, C.M.,

Marzke, R.F., 2010. Comparative 3D quantitative analyses of trapeziometacarpal joint
surface curvatures among living catarrhines and fossil hominins. American Journal of
Physical Anthropology 141, 38–51.

Marzke, M.W., Toth, N., Schick, K., Reece, S., Steinberg, B., Hunt, K., Linscheid, R.L., An, K.N.,

1998. EMG study of hand muscle recruitment during hard hammer percussion manufacture

focus on evolutionary morphology. International Journal of Primatology 17, 117–139.

its morphological correlates in hominids. American Journal of Physical Anthropology 89,
283–298.

Mittnik, A., Wang, C.C., Svoboda, J., Krause, J., 2016. A molecular approach to the sexing of the

dimensional carpal kinematics in vivo. Clinical Biomechanics 17, 506–514.

Orr, C.M., 2017. Locomotor hand postures, carpal kinematics during wrist extension, and
associated morphology in anthropoid primates. Anatomical Record 300, 382–401.

Orr, C.M., 2018. Kinematics of the anthropoid os centrale and the functional consequences of
scaphoid-centrale fusion in African apes and hominins. Journal of Human Evolution 114,
102–117.

primate carpal kinematics in three dimensions using a computed-tomography-based
markerless registration method. Anatomical Record 293, 692–709.

Ozcivici, E., Judex, S., 2014. Trabecular bone recovers from mechanical unloading primarily by
restoring its mechanical function rather than its morphology. Bone 67, 122–129.

Pahr, D.H., Zysset, P.K., 2009b. From high-resolution CT data to finite element models:
development of an integrated modular framework. Computer Methods in Biomechanics and
Biomedical Engineering 12, 45–57.

Paoli, G., Borgognini Tarli, S.M., Klir, P., Strouhal, E., Tofanelli, S., Del Santo Valli, M.T.,
evaluation of the reliability of the results. American Journal of Physical Anthropology 92,
263–272.

Figure captions

Figure 1. Depiction of the linear mixed effect model setups in the study. Type 1 compares the segments (carpals, head/bases from the rays II–V), type 2 the regions of the metacarpals (head/base dorsoradial, dorsoulnar, palmaradial, palmoulnar), and type 3 the regions of the phalanges (head/base ulnar and radial). For each model type, ‘subtype a’ contains data from all the bones of the hand and ‘subtype b’ contains all data from the bones of the thumb. Bones are colored to help illustrate the different functional groups used in the linear models: hamatotriquetral (dark pink), capitotrapezoid (light pink), scapholunate (red-orange), thumb
group (purple), ray II (green), ray III (teal), ray IV (yellow), and ray V (orange). See text for a more detailed description.

Figure 2. Comparison of post-Neolithic and forager mean segment values. Values of BV/TV, E, and DA are all mapped onto right hands. Here the differences in the carpals and the heads of the phalanges are most obvious for BV/TV and E. Also note the extremely low DA in the carpals of the forager sample. The data pictured here pertains to model type 1.

Figure 3. Comparison of post-Neolithic and forager average Tb.Th (mm) and Tb.Sp (mm) by bone segment. Here the Tb.Sp is nearly identical between the two, with the Tb.Th differing in the carpals, metacarpal bases, and the heads of the phalanges.

Figure 4. Violin plots of each carpal bone for BV/TV, E, and DA, which show each individual value (horizontal black bars, with width defined by counts per bin) as well as the distribution by group (outer curve, defined by width multiplied by kernel of 2 standard deviations). The post-Neolithic sample is indicated by the lighter shades to the left of the vertical mid-bar, while the forager sample is indicated by darker shades to the right. Note the bimodal distribution for DA with some being very close to 0, which indicates isotropic organization. This distribution and range is the cause for the large standard deviations found in Table 3.

Figure 5. Metacarpal regional variation for the post-Neolithic and forager samples. Values of BV/TV, E, and DA are mapped onto right hands. The darkened areas in the palmar view represent the respective head/base segments. Here BV/TV and E both show a tendency for the heads to have higher relative values in the palmar/palmar-ulnar Mc2–Mc5 and palmar-radial
Mc1. Also note the variation in DA between the two samples. The data pictured here pertains to model type 2.

Figure 6. Phalangeal regional variation for the post-Neolithic and forager samples. Values of BV/TV, E, and DA are mapped onto rights hands in palmar view. Here there is little variation between the ulnar and radial regions for BV/TV and E, whereas DA varies more. Data pictured here pertains to model type 3.

Figure 7. Palmar (A) and dorsal (B) views of the average site-specific BV/TV for the post-Neolithic and forager samples. While both distributions are generally similar in the high value concentrations along the metacarpal and phalangeal head/ bases, the values for the forager sample are generally higher with the carpals and phalangeal heads being the most different.

Figure 8. Distal (A) and proximal (B) views of the average metacarpal site-specific BV/TV for the post-Neolithic and forager samples. Note how the relatively high site-specific BV/TV values in the palmoulnar Mc2–Mc5 heads and palmoradial Mc1 heads match the metacarpal regional variation for BV/TV and E (Fig. 5).

Figure 9. Proximal (A) and distal-palmar (B) view of average carpal site-specific BV/TV for the post-Neolithic and forager samples. Note the differences in high values concentrations along the radial surface of the triquetral, radiocarpal (proximal lunate and scaphoid), and midcarpal joints (distal lunate and scaphoid).

Figure 10. Ulnar-proximal (A) and radial-proximal (B) views of average hamate, capitate, and trapezoid site-specific BV/TV for the post-Neolithic and forager samples. Here both samples show high value concentrations along the capitate that correspond with those observed on the
lunate and scaphoid. Also note the correspondence of high value concentrations between the forager trapezoid and capitate that are not present in the post-Neolithic sample (B).

Figure 11. Cross-sectional views through the lunate, capitate, and ray III for post-Neolithic males with relatively low (A) and high (B) site-specific BV/TV throughout the hand. Note the similar distributions of relatively high BV/TV values at the dorsal aspect of the lunate, capitate head, palmar metacarpophalangeal joint, and dorsal interphalangeal joint.
Figure 1.

Type 1

Type 2

Type 3
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Post-Neolithic

Forager

Bone volume

Elastic modulus (GPa)

Anisotropy
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.

Cross section of capitate, lunate, and ray III

A

Dorsal

Palmar

B

Bone volume

1%

45%

40%

30%

20%

10%

Bone volume

1%

45%

40%

30%

20%

10%
<table>
<thead>
<tr>
<th>Carpal</th>
<th>Total</th>
<th>PN</th>
<th>For.</th>
<th>Mc</th>
<th>Total</th>
<th>PN</th>
<th>For.</th>
<th>PP</th>
<th>Total</th>
<th>PN</th>
<th>For.</th>
<th>IP and DP</th>
<th>Total</th>
<th>PN</th>
<th>For.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capitate</td>
<td>40</td>
<td>30</td>
<td>10</td>
<td>First</td>
<td>51</td>
<td>32</td>
<td>19</td>
<td>First</td>
<td>38</td>
<td>25</td>
<td>13</td>
<td>Distal first</td>
<td>39</td>
<td>27</td>
<td>12</td>
</tr>
<tr>
<td>Hamate</td>
<td>42</td>
<td>30</td>
<td>12</td>
<td>Second</td>
<td>55</td>
<td>32</td>
<td>23</td>
<td>Second</td>
<td>32</td>
<td>17</td>
<td>15</td>
<td>Second</td>
<td>37</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>Lunate</td>
<td>38</td>
<td>27</td>
<td>11</td>
<td>Third</td>
<td>55</td>
<td>33</td>
<td>22</td>
<td>Third</td>
<td>45</td>
<td>29</td>
<td>16</td>
<td>Third</td>
<td>44</td>
<td>31</td>
<td>13</td>
</tr>
<tr>
<td>Scaphoid</td>
<td>46</td>
<td>29</td>
<td>17</td>
<td>Fourth</td>
<td>47</td>
<td>33</td>
<td>14</td>
<td>Fourth</td>
<td>46</td>
<td>30</td>
<td>16</td>
<td>Fourth</td>
<td>37</td>
<td>24</td>
<td>13</td>
</tr>
<tr>
<td>Trapezium</td>
<td>41</td>
<td>29</td>
<td>12</td>
<td>Fifth</td>
<td>40</td>
<td>31</td>
<td>9</td>
<td>Fifth</td>
<td>42</td>
<td>29</td>
<td>13</td>
<td>Fifth</td>
<td>26</td>
<td>18</td>
<td>8</td>
</tr>
<tr>
<td>Trapezoid</td>
<td>43</td>
<td>30</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Triquetral</td>
<td>35</td>
<td>24</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: DP = distal phalanx; For. = number of bones in forager sample; IP = intermediate phalanx; Mc = metacarpal; PN = number of bones in post-Neolithic sample; PP = proximal phalanx; Total = combined number of bones within the sample.
Table 2

Summary of terms used within the linear mixed effect models and their predictions.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>Post-Neolithic or forager</td>
</tr>
<tr>
<td>Skeletal element</td>
<td>The osteological designation of each bone (i.e., capitate, first metacarpal, etc.)</td>
</tr>
<tr>
<td>Segment</td>
<td>Unit of skeletal element analyzed. Specifically, whole carpal or subdivided region of a metacarpal/phalanx (i.e., carpal, base, or head)</td>
</tr>
<tr>
<td>Region</td>
<td>Subdivided metacarpal/phalangeal head or base segment:</td>
</tr>
<tr>
<td></td>
<td>Metacarpal: dorsoradial, dorsoulnar, palmaradial, palmoulnar</td>
</tr>
<tr>
<td></td>
<td>Phalanx: radial and ulnar</td>
</tr>
<tr>
<td>Region group</td>
<td>Used to group together the region measurements belonging to the same head or base: specimen + side + skeletal element + segment</td>
</tr>
<tr>
<td>Side</td>
<td>Side of the body a bone is from (i.e., right or left)</td>
</tr>
<tr>
<td>Specimen</td>
<td>Accession or individual identification (e.g., Qafzeh 8)</td>
</tr>
<tr>
<td>Hand ID</td>
<td>Identifier to distinguish the right and left hands of the same individual: side + specimen</td>
</tr>
<tr>
<td>Specific ID</td>
<td>Unique identifier used to prevent repeated analysis of a bone (pseudoreplication): Defined as skeletal element + specimen + side</td>
</tr>
<tr>
<td>Functional group</td>
<td>A grouping of functionally related skeletal elements and their respective segments/regions:</td>
</tr>
<tr>
<td></td>
<td>Scapholunate: Scaphoid and lunate</td>
</tr>
<tr>
<td></td>
<td>Capitotrapezoid: Trapezoid and capitate</td>
</tr>
</tbody>
</table>
Hamate and triquetral: Hamatom triquetral

Thumb: Trapezium, Mc1, first intermediate phalanx and the distal phalanx

Ray II: Mc2, and the second proximal and intermediate phalanx

Ray III: Mc3, and the third proximal and intermediate phalanx

Ray IV: Mc4, and the fourth proximal and intermediate phalanx

Ray V: Mc5, and the fifth proximal and intermediate phalanx

Model type 1 Contains data from carpals, thumb, and rays II-V head/base segments:

Prediction Similar distribution patterns for both samples, but the forager values will be significantly higher for BV/TV, E, and lower for DA.

Model type 2 Contains data from Mc1-Mc5 head/base regions:

Prediction BV/TV and E distribution will reflect flexion and adduction/abduction, but the foragers’ values will be significantly higher.

Model type 3 Contains data from PP1-PP5 head/base, IP2-IP5 head/base, and DP1 base regions:

Prediction BV/TV and E distribution will reflect flexion at the interphalangeal joints, but the foragers’ values will be significantly higher.

Abbreviations: DP = distal phalanx; IP = intermediate phalanx; Mc = metacarpal; PP = proximal phalanx.

Note that the functional groups for each model contain only the relevant segments and or regions (e.g., metacarpal regions are excluded from models testing only the differences between phalanges). See SOM S2 for a detailed description of each functional group. Note that the predictions for DA are not included because the models were rejected (see SOM S3 for details).
1833