
Model Checking Transactional Sapphire

Tomoharu Ugawa
Kochi University of Technology

ugawa.tomoharu@kochi-tech.ac.jp

Richard Jones
University of Kent
r.e.jones@kent.ac.uk

May 29, 2018

Introduction

This report describes how we verified major aspects of the Transactional Sap-
phire garbage collector for Java. Sapphire uses replication-based copying. The
heap is divided into two semispaces, and the collector constructs a replica in
tospace of the live object graph in fromspace. It is an on-the-fly collector. Mu-
tator and collector threads operate concurrently, without any stop-the-world
pauses. The original Sapphire algorithm was due to Hudson and Moss [4, 5].
Transactional Sapphire adds faster copying with transactional memory [8], par-
allel GC, sound processing of reference types by the collector [9] and a simpler
yet sound treatment of volatile fields, within a general framework for on-the-
fly, concurrent and parallel garbage collection for the widely used Java virtual
machine, Jikes RVM/MMTk (http://jikesrvm.org).

In this report, we describe how we use the SPIN bounded model checker [3]
to verify our implementation, on Intel’s x86 relaxed memory architecture, of
key aspects of our Sapphire implementation, including its more complicated
GC phase changes.

Section 1: Concurrent copying, with either atomic CAS operations or software
transactional memory;

Section 2: The change of phase from no collection to marking;

Section 3: The change of phase from copying to flipping semispaces;

Section 4: Reference object processing.

Section 5: Object hashing.

Model checking

Model checking is a verification technique for finite state systems. The model
checker will visit all possible states reachable from the initial state of the system,
checking whether a given property holds in every state. Since the model checker

1

http://jikesrvm.org

visits all possible states, models must be small for verification to complete within
reasonable time and space. The SPIN model checker accepts a model written in
the Promela language, describing a state transition system as a form of sequen-
tial processes communicating via channels. We express properties as assertions
injected into the model.

Typically, each of our models comprises a collector thread process and one or
more mutator thread processes. In addition, the model for concurrent copying
has a memory process that models the x86 relaxed memory architecture. Note
that these are processes in the modelling language, and not to be confused with
the operating systems concept of a process.

1 Concurrent Copying

The Sapphire heap is divided into two semispaces, and collector constructs a
replica in tospace of the live object graph held in fromspace. Sapphire operates
in a number of phases. In the Copying phase, the mutator operates on the
fromspace version of live objects, before switching to the tospace version in the
Flip phase. It is essential that these two replicas are eventually consistent. This
means that, in Sapphire, the mutator is required to propagate any update to a
fromspace object to its tospace replica by writing to both. In Sapphire, the cost
of dealing with races between the mutator and collector is borne by the collector.
Our implementation supports two concurrent copying algorithms: using CAS
operations to copy, or using software transactional memory (STM).

The Promela models for SPIN in this section check both algorithms. Here,
we want to verify that, in the Copying phase, the mutator observes a consistent
view of the heap regardless of any action by the collector. This model checks the
property that, when a mutator repeatedly writes to and reads from a field of an
object while the collector is copying the object (and no other mutator accesses
the field), the value that the mutator reads is the value that it has most recently
written.

The model is kept as small as possible. There is a single mutator and a
single collector in the model. A single object holds a single field that is accessed
by the mutator while it is copied by the collector. We consider all possible low-
level types of field: a single-word scalar, a double-word scalar, and a reference.
Because the STM version algorithm depends on the memory model of the x86
CPU, we model not only the collector and the mutator but also the store buffers
of the CPU, which cause reordering.

1.1 Configuration

This model contains six configurations; combinations of two versions of copying
algorithm and three types of the field. When STM is defined, the model uses
the STM version. Otherwise, it uses the CAS version. The type of the field is
selected by defining macros; its type is:

• a reference type if REFERENCE is defined,

2

• a double-word scalar type if DOUBLE_WORD is defined, or

• a single-word scalar type if neither is defined.

1.2 Abstraction

The mutator and collector threads perform reads and writes that access a single
word. Each word is assigned a distinct address. We assume conservatively
that single-word scalar and pointer values are dealt with by single read/write
instructions while a double-word value needs two read/write instructions.

Reads and writes to shared memory are abstracted by the following macros,
which we define later when we show how to handle the x86 relaxed memory
model.

• thread_READ(a, x), and

• thread_WRITE(a, v),

where thread is either MUTATOR or COLLECTOR, a is an address, x is a local variable,
and v is a value. The READ macro reads from the address a and stores the value
to the local variable x. The WRITE macro writes a value v to the address a. In
addition, the model uses the thread_MFENCE macro as a memory barrier.

The mutator and collector threads obtain addresses of words in the field of
the object by the following macros.

• FROM_SPACE_ADDR(i) and

• TO_SPACE_ADDR(i),

where i is an offset of a word from the beginning of the field of the object. For
a single-word configurations, i is zero, and for a double-word configuration, i is
either zero or one. These macros yield the address of the word in the field of
the fromspace and tospace copies, respectively.

In the model with a reference type field, the values are either NULL or an
address of either copy of the object. The address of a copy of the object can be
obtained by the macros

• FROM_SPACE_OBJECT and

• TO_SPACE_OBJECT.

In addition, the model uses the FORWARD(r) macro that updates r with the other
copy of the object referred to by r.

1.3 Mutator for Single-Word, Scalar-Field Configuration

Model 1 shows the model of the mutator for the single-word, scalar-field con-
figuration. The mutator uses Promela’s do construct to repeatedly choose non-
deterministically to perform one of the following actions (both guards of the do

statement are true so both cases are always enabled).

3

Model 1: Concurrent copying: Mutator model for the single-word, scalar-field
configuration.

1 proctype mutator() {

2 byte x, r, a, v;

3 do

4 ::true ->

5 if

6 ::true -> x = 0

7 ::true -> x = 1

8 fi;

9 r = x;

10 MUTATOR_WRITE(FROM_SPACE_ADDR(0), r);

11 MUTATOR_WRITE(TO_SPACE_ADDR(0), r);

12 r = 0;

13 ::true ->

14 if

15 ::!flipped ->

16 MUTATOR_READ(FROM_SPACE_ADDR(0),r)

17 ::else ->

18 MUTATOR_READ(TO_SPACE_ADDR(0),r)

19 fi;

20 assert(r == x);

21 r = 0;

22 od

23 }

• The mutator chooses zero or one arbitrarily (lines 5–8), and writes this
value to the field (line 10). The mutator’s Copy phase write barrier re-
quires the mutator to write to the fromspace copy and then to the tospace
copy (line 11).

• The mutator reads from the field and checks if the value read is the one
that the mutator has most recently written. During the Copy phase, the
mutator reads from the fromspace copy (line 16) but it reads from the
tospace copy after the stack is flipped in the Flip phase (line 18).

1.4 Mutator for Double-Word, Scalar-Field Configuration

Model 2 shows the model of the mutator for the double-word, scalar-field con-
figuration. The model is similar to the one for the single-word, scalar-field
configuration, but it writes either [0,1] or [1,0] to the two words. It is important
that there is a chance for the collector to work between two writes.

4

Model 2: Concurrent copying: Mutator model for the double-word, scalar-field
configuration.

1 proctype mutator() {

2 byte x, r0, r1, a, v;

3 do

4 ::true ->

5 if

6 ::true -> x = 0

7 ::true -> x = 1

8 fi;

9 r0 = x; r1 = 1 - x; /∗ [r0,r1] = [0,1] or [1,0] ∗/
10 MUTATOR_WRITE(FROM_SPACE_ADDR(0), r0);

11 MUTATOR_WRITE(FROM_SPACE_ADDR(1), r1);

12 MUTATOR_WRITE(TO_SPACE_ADDR(0), r0);

13 MUTATOR_WRITE(TO_SPACE_ADDR(1), r1);

14 r0 = 0; r1 = 0;

15 ::true ->

16 if

17 ::!flipped ->

18 MUTATOR_READ(FROM_SPACE_ADDR(0),r0);

19 MUTATOR_READ(FROM_SPACE_ADDR(1),r1);

20 ::else ->

21 MUTATOR_READ(TO_SPACE_ADDR(0),r0);

22 MUTATOR_READ(TO_SPACE_ADDR(1),r1);

23 fi;

24 assert(r0 == x && r1 == 1 - x);

25 r0 = 0; r1 = 0;

26 od

27 }

5

Algorithm 1: The collector’s word copying algorithm using CAS

1 copyWord(p, q):

2 loop

3 currentValue := *q;

4 toValue := *p $
5 if isPointerField(toValue)

6 toValue := forwardObject(toValue)

7 if toValue == currentValue

8 return

9 if ! CAS(q, currentValue, toValue) $
10 return

1.5 Mutator for Reference-Field Configuration

Model 3 shows the model of the mutator for the reference-field configuration.
The model is similar to the one for the single-word, scalar-field configuration,
but there are the following differences.

• The values the mutator may write to a field of the object are NULL or a
reference to the object itself.

• If the value was a reference, the mutator writes the address of the fromspace
copy to the fromspace copy and that of the tospace copy to the tospace
copy.

• After reading a reference, the mutator checks if the reference read is se-
mantically the same as the reference that it last wrote. Because x holds the
address of the fromspace copy and the tospace copy should have a tospace
address, we convert the address read from tospace to its fromspace equiv-
alent before the comparison.

1.6 The Collector

Models 4 and 5 show the models of the CAS version and the STM version of the
collector. Each copies the field of the object according to their copying protocol.
The CAS version collector copies each word according to the protocol shown in
Algorithm 1.

For the double-word configuration, where N_WORDS=2, the collector copies
word by word, modelled with the do-loop in Model 4. The offset i (from the
start of the object) indicates the word to copy. If the field is a pointer field,
that is, REFERENCE is defined, the model needs to forward the toValue read from
fromspace using the FORWARD macro.

If the fromspace and tospace replicas hold the same value (line 10), the collec-
tor moves to the next word (the mutator must have updated both). Otherwise,
the collector attempts to update atomically (using a CAS) the value held in the

6

Model 3: Concurrent copying: Mutator model for the reference-field configura-
tion.

1 proctype mutator() {

2 byte x, r, a, v;

3 do

4 ::true ->

5 if

6 ::true -> x = NULL

7 ::true -> x = FROM_SPACE_OBJECT

8 fi;

9 r = x;

10 MUTATOR_WRITE(FROM_SPACE_ADDR(0), r);

11 FORWARD(r);

12 MUTATOR_WRITE(TO_SPACE_ADDR(0), r);

13 r = 0;

14 ::true ->

15 if

16 ::!flipped ->

17 MUTATOR_READ(FROM_SPACE_ADDR(0),r);

18 assert(x == r);

19 ::else ->

20 MUTATOR_READ(TO_SPACE_ADDR(0),r);

21 FORWARD(r);

22 assert(x == r);

23 fi;

24 r = 0;

25 od

26 }

7

Model 4: Concurrent copying: Model of the CAS part of the collector.

1 i = 0;

2 do

3 ::(i < N_WORDS) ->

4 COLLECTOR_READ(TO_SPACE_ADDR(i), currentValue);

5 COLLECTOR_READ(FROM_SPACE_ADDR(i), toValue);

6 #ifdef REFERENCE

7 FORWARD(toValue);

8 #endif

9 if

10 ::(toValue == currentValue) -> i++

11 ::else ->

12 atomic { /∗ CAS ∗/
13 COLLECTOR_MFENCE;

14 COLLECTOR_READ(TO_SPACE_ADDR(i), tmp);

15 if

16 ::(currentValue == tmp) ->

17 COLLECTOR_WRITE(TO_SPACE_ADDR(i), toValue)

18 ::else -> i++

19 fi;

20 COLLECTOR_MFENCE;

21 }

22 fi

23 ::else -> i = 0; break

24 od;

25 SUCCESS: /∗ This label is used in Model 5. ∗/
26 COLLECTOR_MFENCE;

27 flipped = true;

tospace replica. The CAS instruction is modelled with an atomic block (lines
12–17). If the word is copied successfully, the collector moves to the next word
by incrementing i. Otherwise, it tries again.

The STM version of the collector first copies the entire field and then checks
that the two replicas are semantically equivalent. The protocol is shown in
Algorithm 2. The Promela model is shown in Model 5. The first do-loop copies
the field word by word, and the second verifies. If any word of the tospace copy
does not match its fromspace copy, control passes to FAIL to fallback to the CAS
version.

8

Algorithm 2: Collector’s code for copying an object using software transactional
memory

1 copyObjectTransactional(p, q):

2 for i := 0 to words(q) /∗ copying step ∗/
3 toValue := p[i]

4 if isPointerField(p, i)

5 buf[i] := toValue

6 toValue := forward(toValue)

7 q[i] := toValue

8

9 memoryBarrier

10

11 for i := 0 to words(q) /∗ verification step ∗/
12 if isPointerField(p, i)

13 if p[i] != buf[i]

14 goto FAIL

15 else if p[i] != q[i]

16 goto FAIL

17

18 return

19

20 FAIL:

21 copyObject(p, q) /∗ fall back to copying word at a time with CAS ∗/

9

Model 5: Concurrent copying: Model of the STM part of the collector.

1 i = 0;

2 /∗ Copy ∗/
3 do

4 ::(i < N_WORDS) ->

5 COLLECTOR_READ(FROM_SPACE_ADDR(i), toValue);

6 #ifdef REFERENCE

7 buf[i] = toValue;

8 FORWARD(toValue);

9 #endif

10 COLLECTOR_WRITE(TO_SPACE_ADDR(i), toValue);

11 i++

12 ::else -> i = 0; break

13 od;

14

15 #ifndef NO_FENCE

16 COLLECTOR_MFENCE

17 #endif

18

19 /∗ Verify ∗/
20 do

21 ::(i < N_WORDS) ->

22 #ifdef REFERENCE

23 COLLECTOR_READ(FROM_SPACE_ADDR(i), currentValue);

24 if

25 ::(currentValue != buf[i]) -> goto FAIL

26 ::else -> skip

27 fi;

28 #else

29 COLLECTOR_READ(FROM_SPACE_ADDR(i), currentValue);

30 COLLECTOR_READ(TO_SPACE_ADDR(i), toValue);

31 if

32 ::(currentValue != toValue) -> goto FAIL

33 ::else -> skip

34 fi;

35 #endif

36 i++

37 ::else -> i = 0; break

38 od;

39 goto SUCCESS:

40 FAIL:

41 /∗ insert Model 4 here.
42 ∗ Model 4 has the SUCCESS label as well as the fallback routine.
43 ∗ SUCCESS:
44 ∗ COLLECTOR MFENCE;
45 ∗ flipped = true;
46 ∗/

10

1.7 Memory Model

The x86 architecture [6] implements the total store order (TSO) memory model [1].
We modelled TSO in a standard manner [7, 10].

Figure 6 models the semantics of TSO, and Figure 7 shows the mutator’s
API through which the mutator accesses shared memory. The collector’s API
is defined in the same manner.

The contents of the shared variables are stored in the shared memory, shared.
Every process (mutator or collector) has its own FIFO (mutator_queue or collector_
queue) that models the CPU’s store buffer. When a process writes a value v
to an address a, the pair of (a, v) is written to the store buffer rather than
updating the contents of the shared memory. A dedicated memory process re-
trieves the pair from the store buffers non-deterministically, and updates the
shared memory by calling COMMIT_WRITE. When a process reads from an address
a, it uses the value v of the pair (a, v) if such a pair is in the store buffer, or
otherwise it reads from the shared memory. However a process cannot observe
the contents of the store buffer because it is modelled with the channel type
of the Promela modelling language. In Promela, a construct chan?x reads a
value from a channel chan into a variable x, and chan!y sends the value of y

down the channel. Thus, the process writes v to its own local memory, mod-
elled by the arrays mutator_local_memory and collector_local_memory, indexed
by an address, at the same time as it writes to the store buffer, thus allowing
it to retrieve the value later from the store buffer. The mutator_queue_count

and collector_queue_count counters keep track of the number of pairs written
to each address in the forwarding buffer.

1.8 Results

We checked correctness of our concurrent copying algorithms, both with CAS
and STM, and found that there was no error, unless we were to omit the MFENCE

in the STM version (Model 5, line 16). Thus, this fence is essential, and we
cannot omit it. The property we checked was that, for single mutator thread
programs, the value the mutator reads from a field of an object was always the
most recently written value.

As Sapphire assumes that mutators are data-race free, we needed only a
model of a single mutator and a single collector process. As mutator or collection
actions on one object/field do not affect any other (as far as garbage collection
is concerned), we consider only a single object with a single field. It suffices
to have the single mutator write to this field many times, and the collector
copy it just once. Since our algorithms work slightly differently for different
kinds of field, we checked with every low-level type: a single-word scalar field,
a multi-word scalar field and a reference field.

As we use bounded model checking, we cannot formally prove that the algo-
rithms are correct. However, we greatly increased confidence in the algorithms,
and we found that omission of the MFENCE in the STM algorithm was a bug.

11

Model 6: Model of TSO memory.

1 #define N_ADDRS (N_WORDS*2)

2 #define N_THREADS 2

3

4 byte shared[N_ADDRS];

5

6 byte mutator_local_memory[N_ADDRS], collector_local_memory[N_ADDRS];

7 byte mutator_queue_count[N_ADDRS], collector_queue_count[N_ADDRS];

8

9 chan mutator_queue = [N_THREADS] of {byte, byte};

10 chan collector_queue = [N_THREADS] of {byte, byte};

11

12 #define COMMIT_WRITE(q, count) \

13 (len(q) > 0) -> q?a,v -> shared[(a)-1] = v; count[(a)-1]--

14

15 active proctype memory() {

16 byte a, v;

17 endmem:

18 do

19 ::atomic{COMMIT_WRITE(mutator_queue, mutator_queue_count)}

20 ::atomic{COMMIT_WRITE(collector_queue, collector_queue_count)}

21 od

22 }

12

Model 7: Mutator’s memory access macros.

1 #define MUTATOR_READ(a, v) \

2 atomic { \

3 if \

4 ::mutator_queue_count[(a)-1] == 0 -> v = shared[(a)-1] \

5 ::else -> v = mutator_local_memory[(a)-1] \

6 fi; \

7 }

8

9 #define MUTATOR_WRITE(a, v) \

10 atomic { \

11 mutator_queue!a,v; \

12 mutator_local_memory[(a)-1] = v; \

13 mutator_queue_count[(a)-1]++; \

14 }

15

16 #define MUTATOR_MFENCE \

17 atomic { \

18 do \

19 ::COMMIT_WRITE(mutator_queue, mutator_queue_count) \

20 ::else -> break \

21 od \

22 }

13

2 Phase Change: from NoGC to Mark Phase

The first GC phase of Sapphire is the Mark phase. When Sapphire starts GC, it
changes the GC phase from NoGC (NOGC) to the Mark (MARK) phase through the
two intermediate phases: PREMARK1 and PREMARK2. Each mutator holds its own
indication of the phase: the mutator’s phase dictates the mutator’s behaviour
when it writes to an object or allocates one. In each intermediate GC phase,
the mutator changes its own phase to catch up with the GC phase, and in doing
so changes its barrier.

The following table shows the mutator phases and barriers. During the
PREMARK1 phase, the mutator enables the insertion barrier, and during PREMARK2

phase, it starts allocating objects black.

mutator phase write barrier allocation colour
NOGC no barrier white
PREMARK1 ins. barrier white
PREMARK2 and MARK ins. barrier black

Our model represents the behaviour of the collector and the mutators during
the phase transition from NOGC to MARK. This model has multiple mutators so
that we can check interactions between mutators in different mutator phases.
We used two mutators (N_MUTATORS = 2).

This model demonstrates that we need at least two intermediate phases.
Strictly speaking, we cannot prove that two intermediate phases suffice because
our approach relies on bounded model checking. However, we have reasonable
confidence in the correctness and sufficiency of this phase change with two in-
termediate phases.

2.1 Abstraction and Bounding

This model has a heap in which a limited number of objects can be allocated.
Our experimentation reveals that model checking completes in a reasonable time
and with reasonable memory consumption if the number of objects (N_OBJECTS)
is three or fewer. Each object is located at a distinct address. Addresses are
represented by integers from 1 to N_OBJECTS. Each object has a colour and a
single payload field. These can be accessed through the macros

• COLOUR(x) and

• SLOT(x),

where x is the address of an object.
Colour is one of WHITE, GREY, BLACK, and NOT_ALLOCATED. The colours except

for NOT_ALLOCATED have the same meaning as the standard tricolour abstraction.
NOT_ALLOCATED means that the object is not allocated. The payload field can
hold an address of an object or NULL.

14

1 proctype mutator(int id) {

2 int root0 = 1;

3 int root1 = NULL;

4

5 end_mutator:

6 do

7 ::atomic{(g_phase != m_phase[id]) -> m_phase[id] = g_phase};

8 ::atomic{(root0 != NULL) -> read(root0, root0)}

9 ::atomic{(root1 != NULL) -> read(root1, root1)}

10 ::atomic{(root0 != NULL) -> read(root0, root1)}

11 ::atomic{(root1 != NULL) -> read(root1, root0)}

12 ::atomic{(root0 != NULL) -> write(root0, root0)}

13 ::atomic{(root1 != NULL) -> write(root1, root1)}

14 ::atomic{(root0 != NULL) -> write(root0, root1)}

15 ::atomic{(root1 != NULL) -> write(root1, root0)}

16 ::atomic{!IS_HEAP_FULL() -> alloc(root0)}

17 ::atomic{!IS_HEAP_FULL() -> alloc(root1)}

18 od

19 }

Model 8: No GC to Marking phase: Mutator model.

2.2 The Mutator

Figure 8 shows the mutator model. The mutator model has two local variables:
root0 and root1. All mutators share an object; root0 of each mutator points
to the object at address 1. The mutator model emulates an arbitrary program
that reads from an object field, writes to an object field, or allocates an object.
We modelled read, write and allocation as atomic operations in order to reduce
the number of states to be explored. This does not lose generality because we
assume that mutators do not race one another, and the collector does not write
to the variables that the mutator accesses in these phases; all the collector does
in these phases is to advance the GC phase and wait for mutators to catch up.

In addition to the operations above, the mutator model changes its phase to
catch up with the GC phase. The mutator changes its phase at a GC safepoint
outside of any read, write or allocation action in this model.

Read, write and allocation operations are defined as: Model 9.

• read(p,r) reads a reference from the object that local variable p points to.
The read reference is assigned into local variable r.

• write(p,q) The mutator writes the value in local variable q to the object
to which local variable p points. After writing, the write barrier code
checkAndEnqueue may make the target object grey depending on the phase.

• alloc(r) allocates an object and stores the reference into local variable
r. The colour of the object is initialised according to the phase. It is

15

1 inline checkAndEnqueue(q) {

2 if

3 ::(m_phase[id] != NOGC_PHASE && q != NULL && COLOUR(q) == WHITE)->

4 COLOUR(q) = GREY

5 ::else -> skip

6 fi

7 }

8

9 inline write(p, q) {

10 SLOT(p) = q;

11 checkAndEnqueue(q);

12 }

13

14 inline read(p, retval) {

15 retval = SLOT(p);

16 }

17

18 inline alloc(retval) {

19 retval = free_ptr;

20 free_ptr = free_ptr + 1;

21 if

22 ::(m_phase[id] == PREMARK2_PHASE || m_phase[id] == MARK_PHASE) ->

23 COLOUR(retval) = BLACK;

24 ::else ->

25 COLOUR(retval) = WHITE;

26 fi;

27 SLOT(retval) = NULL;

28 }

Model 9: Read, write and allocation operations.

worth noting that alloc is called only when there is room for allocating a
new object: the choice of alloc in the do-loop in Model 8 is guarded by
“not IS_HEAP_FULL()”, which is defined as “free_ptr < N_OBJECTS”.

2.3 Collector and Phase Advancing

The collector advances the GC phase, and waits for the mutators to catch
up. Model 10 shows the model of the phase advance mechanism. g_phase and
m_phase represent the GC phase and the mutator phases of mutators, respec-
tively. collector is the collector model. The collector advances the GC phase,
and waits for all mutators to change mutator phase. Each mutator changes its
mutator phase with

7 ::atomic{(g_phase != m_phase[id]) -> m_phase[id] = g_phase};

16

1 mtype g_phase = NOGC_PHASE;

2 mtype m_phase[N_MUTATORS];

3

4 inline waitForMutators() {

5 int i = 0;

6 do

7 ::(i < N_MUTATORS) ->

8 (m_phase[i] == g_phase) -> i++

9 ::else -> break

10 od

11 }

12

13 proctype collector() {

14 atomic {

15 #ifdef TYPE_II

16 g_phase = PREMARK1_PHASE;

17 waitForMutators();

18 #endif

19 g_phase = PREMARK2_PHASE;

20 waitForMutators();

21 g_phase = MARK_PHASE;

22 waitForMutators();

23 }

24 }

Model 10: No GC to Marking phase: Phase advance

in Model 8.
We can explore both Type I and Type II phase changes, which use one or

two intermediate phases, respectively.1 If the TYPE_II macro is not defined in
Model 10, the collector skips the PREMARK1 phase, letting each mutator enable
the insertion barrier and start allocating black at the same time.

2.4 Verification

As Sapphire uses an insertion barrier with a grey mutator in these phases, we
checked that the strong tricolour invariant always holds. This invariant requires
that there are no black to white references. Our model includes an observer
process (Model 11) that checks, for every object, that if the object is BLACK and
its slot does not hold NULL, then the object pointed from the slot is not WHITE.
Because the observer can work at any time, our model checks the invariant is
held at any time.

17

1 proctype observer() {

2 int i = 1;

3 atomic {

4 do

5 ::(i <= N_OBJECTS) ->

6 assert(!(COLOUR(i) == BLACK && SLOT(i) != NULL) ||

7 COLOUR(SLOT(i)) != WHITE);

8 i = i + 1

9 ::else -> break

10 od

11 }

12 }

Model 11: No GC to Marking phase: Observer

2.5 Results

When we used two intermediate phases, that is, we defined the TYPE_II macro,
model checking showed that the tricolour invariant is always held. In contrast,
if we did not define TYPE_II, allowing the mutator to enable the insertion bar-
rier and to start allocating black at the same time, the model checker found a
counterexample where the strong tricolour invariant did not held. The coun-
terexample discovered the following execution:

mutator 0 mutator 1
1 m_phase[0]= PREMARK2_PHASE

2 root1 = alloc(); // new object: 2 (black)
3 root0.slot = root1; // root0: 1 (white), root1: 2 (black)
4 root1 = root1.slot;

5 root1 = root0.slot; // root0: 1 (white), root0.slot: 2 (black)
6 root1.slot = root0; // root1: 2 (black), root0: 1 (white)

Initially, root0 of both mutator threads points to the object 1.

1. At line 1, mutator 0 proceeds to the PREMARK2 phase while mutator 1 is
still in the NOGC phase.

2. At line 2, mutator 0 allocates a black object 2. Then, it stores the object
into the slot of white object 1. Because the object 1 is shared between two
mutators, mutator 2 becomes able to access object 2 through object 1.

3. At line 5, mutator 1 reads the reference to object 2.

4. At line 6, mutator 1 stores a reference to white object 1 in the slot of black
object 2. Thus, the strong invariant is violated.

18

3 Phase Change: from Copy to Flip Phase

In the Copy (COPY) and Flip (FLIP) phases, the mutator writes to both fromspace
and tospace replicas. In the Copy phase, the mutator assumes that there are no
tospace references held anywhere except in tospace, and it never writes tospace
reference to anywhere other than tospace (Algorithm 3). In contrast, in the Flip
phase, the mutator never writes fromspace references (Algorithm 4). These two
barriers conflict: a mutator in the Flip phase may violate the assumption of
a mutator in the Copy phase. As a result, the invariant that a tospace object
never refers to a fromspace object is violated.

Algorithm 3: Copy phase barrier

1 WriteCopy(p, f, q): /∗ p.f = q ∗/
2 p[f] := q

3 if inFromspace(p)

4 pp = p.forwardingPointer

5 if inFromspace(q)

6 pp[f] := q.forwardingPointer

7 else

8 pp[f] := q

Algorithm 4: Flip phase barrier

1 WriteFlip(p, f, q): /∗ p.f = q ∗/
2 if inFromspace(q)

3 q = q.forwardingPointer

4 p[f] := q

5 if inFromspace(p) || inTospace(p)

6 pp := p.forwardingPointer

7 pp[f] := q

8

To prevent this, Sapphire uses two intermediate phases: PREFLIP1 and PREFLIP2.
The mutator runs with PreFlip phase barrier (Algorithm 5) in the PreFlip1
phase, and it switches to the Flip phase barrier when it enters to PreFlip2
phase. The PreFlip phase barrier carefully checks the destination of references
so that it works as if it is the Flip phase barrier if the mutator is writing a
tospace reference while it works as if it is the Copy phase barrier in other cases.
The following table summarises the mutator phases and barriers.

mutator phase write barrier
COPY Copy phase barrier (Algorithm 3)
PREFLIP1 PreFlip phase barrier (Algorithm 5)
PREFLIP2 and FLIP Flip phase barrier (Algorithm 4)

19

Algorithm 5: Copy to Flip phase: PreFlip phase barrier

1 WritepreFlip(p, f, q): /∗ p.f = q ∗/
2 if inFromspace(q) && inTospace(p)

3 q := q.forwardingPointer

4 p[f] := q

5 if inFromspace(p) || inTospace(p)

6 pp := p.forwardingPointer

7 if inFromspace(q) || (inTospace(q) && inFromspace(pp))

8 pp[f] := q.forwardingPointer

9 else

10 pp[f] := q

11

Our model represents the behaviour of the collector and mutators during
the phase transition from COPY to FLIP. The model has multiple mutators as the
model in Section 2 does so that we can check interactions between mutators in
different mutator phases. We used two mutators(N_MUTATORS = 2).

This model demonstrates that we need at least two intermediate phases.
More specifically, if we have a single intermediate phase, that is, if mutators
with the Copy phase barrier and mutators with the Flip phase barrier run
simultaneously, then the invariant is violated. But if we have two intermediate
phases, the model checker does not find an error.

3.1 Abstraction and Bounding

We consider three spaces: fromspace, tospace and a non-replicated space. We
assume that every object in fromspace has its copy in tospace because these
were created in a prior phase. We consider two objects in the replicated spaces
(N_OBJECTS = 2), and a single object in the non-replicated space; hence, there
are five copies of objects. We assign addresses from 0 to 4 to copies of objects.
The macros IN_FROM_SPACE and IN_TO_SPACE are predicates to test whether a
given address is in fromspace (respectively, tospace). In addition, the model
uses the FORWARD(r) macro to update r with the other copy of object referred to
by r if r is in fromspace or tospace. Otherwise, FORWARD does nothing.

Each object has a single field as usual. The field holds an address; initially,
each copy holds the address of itself in its field, meaning that each object refers
to itself. We do not check the case where a field holds NULL. The mutator and
collector processes obtain the value in the field with the following macros.

• FROM_SPACE_OBJECT(i),

• TO_SPACE_OBJECT(i), and

• NON_REPL_OBJECT(j),

20

1 proctype mutator(int id) {

2 int root0 = FROM_SPACE_OBJECT(0);

3 int root1 = FROM_SPACE_OBJECT(0);

4 int tmp, p, q;

5

6 end_mutator:

7 do /∗ handshake ∗/
8 ::atomic{(g_phase != m_phase[id]) -> m_phase[id] = g_phase;}

9 ::atomic{read(root0, root0);normalise()}

10 ::atomic{read(root0, root1);normalise()}

11 ::atomic{read(root1, root0);normalise()}

12 ::atomic{read(root1, root1);normalise()}

13 ::atomic{write(root0, root0)}

14 ::atomic{write(root0, root1)}

15 ::atomic{write(root1, root0)}

16 ::atomic{write(root1, root1)}

17 od

18 }

19

Model 12: Copy to Flip phase: Mutator model.

where i is a number identifying the object in fromspace and tospace (0 or 1),
and j is a number identifying the object in non-replicated space. Because we
have a single object in non-replicated space, j should be 0.

3.2 The Mutator

Model 12 shows the main loop of the mutator model. This is similar to the
mutator model for the phase change from NoGC to Mark phase in Section 2.

All mutators have two local variables: root0 and root1. Initially, both vari-
ables of all mutators refer to the same object in replicated space. Because the
GC is in the Copy phase, they hold the address of the fromspace replica. This
mutator model emulates an arbitrary program that reads from an object or
writes to an object, but we do not consider allocation for this model.

As with the mutator model in Section 2, read and write operations are
atomic. Because we needed to reduce the state space to be explored by model
checking further in orde to complete within a reasonable computational resource,
we normalised the states of mutators after read operations. Normalisation swaps
the values of variables root0 and root1 if necessary so that root0 ≤ root1. Be-
cause this model is symmetry with respect to these local variables, this normal-
isation does not loose generality.

Reads and writes are modelled in similar way to the model in Section 2, but
the write barrier differs.

• read(p, r) reads a reference from the object to which local variable p points

21

into local variable r.

• write(p, q) writes the value in local variable q to the object to which local
variable p points by calling the write barrier corresponding to the current
phase.

Write barriers are defined in Model 13. write_copy, write_preflip, and
write_flip are models of the copy phase barrier (Algorithm 3), the PreFlip
phase barrier (Algorithm 5) and the Flip phase barrier (Algorithm 4) respec-
tively. They semantically write address of the object q to the field of the object
p. In these models, raw_write(p,q) writes the value q to the address p. The
modelling of these barriers is straightforward.

3.3 Collector and Phase Advancing

The collector model and the phase advancing mechanism are the same as those
for the model for the phase change from NoGC to PreMark in Section 2 up to
the phase names.

It is worth noting that this model is also capable of checking Type I and
Type II phase changes by undefining and defining the TYPE_II macro, as with
the collector model in that section.

3.4 Verification

An important invariant of Sapphire is that

a tospace object never refers to a fromspace object.

Our model includes an observer process that checks this invariant. More specif-
ically, the observer process checks the assertion

1 assert(!IN_FROM_SPACE(TO_SPACE_OBJECT(i)));

for all objects i in the replicated space.

3.5 Results

We used two intermediate phases, and checked the invariant that an object in
tospace never has a reference to fromspace. Model checking showed that the
invariant always holds. However, with a single intermediate phase, omitting the
phase where mutator used the PreFlip phase barrier (Algorithm 5), the model
checker found a counterexample. This showed that the intermediate phase with
the PreFlip phase barrier is necessary.

The counterexample our model checking with a single intermediate phase
found is as follows.

22

1 inline write_copy(p, q) {

2 raw_write(p, q);

3 if

4 ::(IN_FROM_SPACE(p)) ->

5 FORWARD(p);

6 if

7 ::(IN_FROM_SPACE(q)) -> FORWARD(q); raw_write(p, q)

8 ::else -> raw_write(p, q)

9 fi

10 ::else -> skip

11 fi

12 }

13

14 inline write_preflip(p, q) {

15 if

16 ::(IN_FROM_SPACE(q) && IN_TO_SPACE(p)) -> FORWARD(q)

17 ::else -> skip

18 fi;

19 raw_write(p, q);

20 if

21 ::(IN_FROM_SPACE(p) || IN_TO_SPACE(p)) ->

22 FORWARD(p);

23 if

24 ::(IN_FROM_SPACE(q) || (IN_TO_SPACE(q) && IN_FROM_SPACE(p))) ->

25 FORWARD(q);

26 raw_write(p, q)

27 ::else -> raw_write(p, q);

28 fi

29 ::else -> skip

30 fi

31 }

32

33 inline write_flip(p, q) {

34 if

35 ::(IN_FROM_SPACE(q)) -> FORWARD(q)

36 ::else -> skip

37 fi;

38 raw_write(p, q);

39 if

40 ::(IN_FROM_SPACE(p) || IN_TO_SPACE(p)) ->

41 FORWARD(p);

42 raw_write(p, q);

43 ::else -> skip

44 fi

45 }

46

Model 13: Copy to Flip phase: Write barriers. raw write(p, q) writes value q
to address p.

23

mutator 0 mutator 1
1 m_phase[0]= PREFLIP2_PHASE

2 root0.slot = root0; // mem[0] := 2, mem[2] := 2
3 root0 = root0.slot; // root0 := mem[0]
4 swap root0 and root1 // root0 := 0, root1 := 2
5 root1.slot = root0; // mem[2] := 0

Although we performed model checking with two objects in the replicated space
and one object in the non-replicated space, the counterexample showed a single
replicated object suffices to cause an error. In the counterexample, address 0 is
of the fromspace copy of the object and 2 is of the tospace copy. Initially, both
root0 and root1 of both mutator threads points to the fromspace copy.

1. At line 1, mutator 0 proceeds to the PREFLIP2 phase while mutator 1 is
still in the COPY phase.

2. At line 2, mutator 0 writes by calling the Flip phase barrier. The Flip
phase barrier writes the address of tospace copy to both copies.

3. At line 3, mutator 1 reads from the fromspace copy, which has the address
of the tospace copy.

4. At line 4, the model checking swaps the value of two local variables root0

and root1 of mutator 1. This does not lose generality. Now, root0 points
to the fromspace copy, and root1 points to the tospace copy.

5. Finally, at line 5, mutator 1 writes by calling the Copy phase barrier.
The Copy phase barrier writes the address of the fromspace to the tospace
copy.

As a result, the tospace copy points to the fromspace copy, violating the invari-
ant.

24

4 Reference Objects

Java provides references of four (decreasing) levels of strength: strong (i.e. nor-
mal), soft, weak, and phantom. Weaker references are implemented by reference
object classes. Correct handling of reference objects by a concurrent, let alone
an on-the-fly, collector is complex. Mutators can acquire a reference through
java.lang.ref.Reference.get, which returns a strong reference to the referent
or null if the reference has been cleared (PhantomReference.get always returns
null). For simplicity, we consider only weak references here.

root

reference objects

normal objectsx

r

r

r

o

o

o

Figure 1: Weak references held in strongly reachable objects r0, r1 and r2 must
be cleared atomically.

The challenge for concurrent GC is that there may be a race between the
collector clearing a reference and a mutator strengthening the reachability of
its referent by calling get. For this reason, the semantics of reference classes
require that, at the time that the GC decides to reclaim a weakly reachable
object (such as o2 in Figure 1), it must also clear atomically

1. all weak references to o2 (e.g. the reference from r2 in Figure 1), and

2. all weak references to other weakly-reachable objects from which o2 is
reachable through a chain of stronger references (e.g. the references in r0
and r1).

This prevents a mutator from making o2 strongly-reachable by retrieving one of
the weakly-reachable objects from which o2 is reachable.

This is relatively straightforward in a stop-the-world context, as mutators are
not active while the collector runs. However, in an on-the-fly context, a mutator
may call get on a weak reference (e.g. A) whose referent O is only weakly-
reachable, causing the referent to become strongly-reachable if the reference
has not yet been cleared. Once the referent becomes strongly-reachable, the
collector must not clear the weak reference, and must retain any objects that
just become strongly reachable. The consequence is that single invocation of
get may affect whether the collector should clear many other weak references
spread across the heap. This problem cannot be resolved with just a barrier.

Our Sapphire collector identifies all strongly-reachable objects and all weak
references whose referents are only weakly-reachable. This is an iterative process
since a mutator may cause a previously weakly-reachable object to become
strongly-reachable by calling get. Mutators calling get communicate with the
collector through a global reference-state variable.

25

NORMAL TRACING CLEARING

REPEAT

get() restart tracing

no tracing workstart tracing

by collector
by collector (atomic)
by mutator (atomic)

Figure 2: Global reference state transitions.

4.1 Reference processing state transitions

Figure 2 shows the state transition diagram for this global reference state. The
collector is in the NORMAL state when it is not running. When a collection is
triggered, the collector starts TRACING, traversing strong references from the
roots as usual, trying to mark all strongly-reachable objects. If no mutator calls
get during the traversal, all strongly-reachable objects will be marked and the
collector can proceed to CLEARING weak reference objects whose referents are not
marked.

However, if a mutator invokes get on a reference object with an unmarked
referent while the collector is TRACING, the collector must process the referent’s
transitive closure before it moves to CLEARING. To resolve the race between
calling get and the collector proceeding to CLEARING, we introduce another state,
REPEAT. When the collector believes its tracing work is complete, it attempts to
change the state to CLEARING atomically. Meanwhile, any get will attempt to set
the global state atomically to REPEAT, which will prevent the collector proceeding
to CLEARING. If the collector fails to proceed to CLEARING, it continues TRACING

from the newly greyed referents. We can expect these to be few and that the
number of white objects that can be reached from those grey objects not to be
large. Once the collector starts CLEARING, mutators are prevented from retrieving
any unmarked referent: get returns null. Thus the collector has logically cleared
all weak references simultaneously.

It is important to ensure that no mutator obtains a reference to an unmarked
referent in the CLEARING state. If a get method were to be invoked in the NORMAL

or REPEAT state, and if the collector were to change the state to TRACING and then
to CLEARING before the mutator executes the instruction to obtain the referent
in get, then the mutator would obtain the reference in the CLEARING state. This
does not happen in our collector because the collector handshakes with mutators
in the TRACING state to flush the tobeCopiedQueue for the mutators’ write barrier.
The mutator cannot answer the handshake while it is executing get. Thus,
the transition from TRACING to CLEARING occurs only when tracing is actually
complete.

26

4.2 Implementation

When a mutator in the TRACING state obtains a white (unmarked) referent of
a weak reference, the documentation for Java’s java.lang.ref package specifies
that a strong reference is loaded. How this is handled depends on whether the
collector uses an insertion or a deletion barrier. If the collector uses insertion
barriers, the mutator is grey so it may hold a white reference. This reference
will be blackened when the collector loops to terminate, scanning its work queue
and mutator roots repeatedly until it finds no grey objects before attempting to
set its state to CLEARING (Algorithm 6a). If this attempt succeeds, tracing has
terminated, and any attempts to get an unmarked referent will return null.

If the collector uses deletion barriers, mutators are black and cannot load a
white reference, as the collector does not rescan roots (Algorithm 6b). Hence,
get must shade the referent grey to preserve the invariant (Algorithm 7b); get
with an insertion barrier does not need to do this (Algorithm 7a). However, the
collector must still loop to terminate, in this case to process grey objects, if the
global state was REPEAT when the collector attempted to switch to CLEARING.

The deletion barrier solution tends to terminate quickly, as the collector
traces only from objects known to be grey. In contrast, a collector using an
insertion barrier must scan the roots to discover grey objects before processing
them. This also increases the opportunity for mutators to get further white
referents while the collector is attempting to terminate. Thus, theoretically
there is a risk of failure to make progress, for instance if a mutator repeatedly
gets then drops a white referent. However, termination is guaranteed with the
deletion barrier. We used model checking to confirm the correctness of the
deletion barrier version. It also identified the risk of non-progress with the
insertion barrier.

4.3 Model Checking

To check our algorithms for processing reference types, we verified the following
properties:

P1 (Safety) A mutator will never see a reclaimed object.

P2 (Consistency) Once a get() method called on a reference object returns
null, a mutator will never see the referent of that object.

These properties are from the mutator’s view because there can be a variety
of implementations of ‘clearing’. In our implementation, logically cleared refer-
ences appeared cleared to mutator. Property P1 is required regardless of the
existence of reference objects. But P1 also requires that, if a mutator loads a
referent of a reference object, the referent has not been reclaimed. Property P2
implies the atomicity that the API definition requires.

Since bounded model checking does not deal with infinite state, we checked
the properties for the limited model shown in Fig. 1. This model has three pairs
of reference and normal objects, namely r0, r1, r2 for references and o0, o1, o2

27

1 collection() {
2 insertionBarrier ← ON;

3 transitiveClosureFromRoot();
4

5

6

7

8 while(true) {
9 refState ← TRACING;

10 handshake();
11 transitiveClosureNoRootScan();
12 scanRoot();
13 if(workQueue.empty() &&

14 CAS(refState,
15 TRACING, CLEARING))
16 break;

17 }
18 insertionBarrier ← OFF;

19 clearReference();
20 refState ← NORMAL;

21 handshake();
22 reclaim();
23 }

(a) Insertion barrier

1 collection() {
2 insertionBarrier ← ON;

3 transitiveClosureFromRoot();
4 deletionBarrier ← ON;

5 handshake();
6 scanRoot();
7 insertionBarrier ← OFF;

8 while(true)
9 refState ← TRACING;

10 handshake();
11 transitiveClosureNoRootScan();
12

13 if(workQueue.empty() &&

14 CAS(refState,
15 TRACING, CLEARING))
16 break;

17 }
18 deletionBarrier ← OFF;

19 clearReferences();
20 refState ← NORMAL;

21 handshake();
22 reclaim();
23 }

(b) Deletion barrier

Algorithm 6: The collector

28

1 get() {
2 while(true) {
3 switch(refState) {
4 case NORMAL:

5 return referent;

6 case REPEAT:

7 return referent;

8

9

10

11

12 case TRACING:

13 if (referent=null

14 ||COLOR(referent) 6=WHITE)
15 return referent;

16 CAS(refState, TRACING, REPEAT);
17 break; /∗ retry ∗/
18

19

20

21 case CLEANING:

22 if (referent=null

23 ||COLOR(referent) 6=WHITE)
24 return referent;

25 return null;

26 }
27 }
28 }

(a) Insertion barrier

1 get() {
2 while(true) {
3 switch(refState) {
4 case NORMAL:

5 return referent;

6 case REPEAT:

7 if (referent=null

8 ||COLOR(referent) 6=WHITE)
9 return referent;

10 COLOR(referent) ← GREY;

11 return referent;

12 case TRACING:

13 if (referent=null

14 ||COLOR(referent) 6=WHITE)
15 return referent;

16 if (CAS(refState, TRACING, REPEAT)) {
17 COLOR(referent) ← GREY;

18 return referent;

19 }
20 break; /∗ retry ∗/
21 case CLEANING:

22 if (referent=null

23 ||COLOR(referent) 6=WHITE)
24 return referent;

25 return null;

26 }
27 }
28 }

(b) Deletion barrier

Algorithm 7: WeakReference.get()

29

1 while(true) {
2 i = random.nextInt(5);
3 switch (i) {
4 case 0: x = vr0.get(); break;

5 case 1: x = vr1.get(); break;

6 case 2: x = vr2.get(); break;

7 case 3: if (x 6= null) x = x.next; break;

8 case 4: x = null; break;

9 }
10 }

Algorithm 8: Simple mutator

for the corresponding normal objects. These normal objects are linked in a list,
but there are no other strong references to them. We assumed that all reference
objects remain directly strongly reachable from the root and that the mutator
can always call get() methods on them.

Algorithm 8 shows the mutator’s pseudocode: vri is a local variable whose
value is a reference object ri, and x is another local variable. The mutator
repeatedly and arbitrarily calls a get() method to load the referent to x, loads
the ‘next’ object of x, or clears x. Since we focus on the behaviour of references,
the mutator does not write to any object. Thus, our model does not have write
barriers.

Model 14 shows the model of the get() method on the reference object ri,
for a collector using an insertion barrier. This model is faithful to Algorithm 7a.
The return value is passed to the caller through the parameter ret. mark[i] and
CLEARED[i] represent the colour of oi and whether ri has been cleared or not,
respectively. When get() returns oi, it sets i to ret. In order to check P2, the
model also puts i and ret in global variables getRef_arg and getRef_ret.

For the collector side, our model is faithful to the pseudocode in Algorithms
6a and 6b. At the end of a cycle, the collector reclaims white objects by calling
reclaim(): we introduce a fourth object state RECLAIMED. Our model of reclaim()
reclaims white objects and reverts the black objects to white. P1 and P2 can
be interpreted as:

P1 �((x 6= NULL) =⇒ (mark[x] 6= RECLAIMED))

P2 �(RETNULLi =⇒ ¬♦(x = i)) (i = 1, 2, 3)

where RETNULLi ≡(getRef_arg= i)∧ (getRef_ret= NULL).
We have model checked these properties with models both for collectors with

an insertion barrier and a deletion barrier. We also tried to model check the
termination property.

P3 (Termination) GC eventually terminates.

30

1 inline getReferent(i, ref) {

2 do :: (refState == NORMAL) ->

3 if

4 :: (reference[i] == true) -> ref = REFERENT(i)

5 :: else -> ref = -1

6 fi;

7 break

8 :: (refState == REPEAT) ->

9 #ifdef DELETION_BARRIER

10 if :: (reference[i] == true) ->

11 if

12 :: (mark[REFERENT(i)] == WHITE) -> mark[REFERENT(i)] = GRAY;

13 :: else -> skip

14 fi;

15 ref = REFERENT(i);

16 :: else -> ref = -1;

17 fi;

18 break

19 #else

20 if :: (reference[i] == true) -> ref = REFERENT(i)

21 :: else -> ref = -1

22 fi;

23 break

24 #endif

25 :: (refState == TRACING) ->

26 if :: (reference[i] == true) ->

27 if :: (mark[REFERENT(i)] == WHITE) ->

28 CAS(refState, TRACING, REPEAT) /∗ continue do−loop ∗/
29 :: else -> ref = REFERENT(i); break

30 fi

31 :: else -> ref = -1; break

32 fi

33 :: (refState == CLEANING) ->

34 if :: (reference[i] == true) ->

35 assert(mark[REFERENT(i)] != RECLAIMED);

36 assert(mark[REFERENT(i)] != GRAY);

37 if :: (mark[REFERENT(i)] == WHITE) -> ref = -1

38 :: else -> ref = REFERENT(i)

39 fi;

40 :: else -> ref = -1

41 fi;

42 break

43 od;

44 d_step{

45 getReferent_arg = i;

46 getReferent_ret = ref

47 };

48 }

Model 14: Reference processing: Reference.get() method

31

4.4 Results

With an insertion barrier, the mutator can continually prevent the collector from
breaking out of the termination loop, even if we assume weakly fair scheduling.
The reason for this is that, while the collector is tracing or checking if the work
queue is empty, a mutator has a chance to load a white referent to a local
variable x and then clear x. The mutator changes refState to REPEAT when it
loads a reference with get(), thus forcing the collector to trace again. However,
if the mutator has cleared x, the collector will not find, and hence shade, a new
white referent: the number of white objects is not reduced and so no progress
is made. SPIN confirmed that reference processing may not terminate with the
insertion barrier.

Fortunately, the deletion barrier version does make progress, since get()

shades white objects grey. SPIN confirmed that all three properties, P1, P2
and P3, hold for this model, i.e. our implementation is safe, consistent and
terminates.

5 Header and Hashcode

Handling of the Java Object.hashCode method is tricky in Sapphire. The re-
quirement of Java language is:

Whenever it is invoked on the same object more than once during
an execution of a Java application, the hashCode method must con-
sistently return the same integer, provided no information used in
equals comparisons on the object is modified1.

Sapphire uses address-based hashing, in which addresses of objects are used
as their hash codes. But Sapphire moves objects. In a stop-the-world setting,
we could record the hash code of an object when the garbage collector moves
the object if any mutator had previously obtained its address as its hash code.
However, in our on-the-fly setting, the mutator may call the hashCode method
while the collector is moving the object and, hence, they may race.

We made models of multiple mutators that continuously call the hashCode

method on the same object while the collector is running in order to check that
hashCode in our implementation meets its specification. The collector model
performs the whole cycle of Sapphire garbage collection continuously because a
mutator may call hashCode in any GC phase.

Property The property we checked is that all calls of the hashCode method
return the same value. Because the hash code depends on the address where
the object is placed when the first invocation of hashCode is made, we cannot
determine a hash code before the method is first called on that object. Therefore,
the property we checked is denoted by the linear temporal logic formula

1 https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html#hashCode--

32

Table 1: State transition in address based hashing.

hashCode() collector’s copy
return value next state tospace copy’s state

UNHASHED address HASHED UNHASHED

HASHED address HASHED MOVED

MOVED hashcode field MOVED MOVED

(Generic Consistency)
∀v 6= INVALID. �((hash = v) =⇒ �(hash = v)),

where hash is the variable to which mutators write the return value of hashCode,
and the initial value of hash is INVALID.

Our model uses a single object, with two addresses 0 and 1 for its fromspace
and tospace replicas. Thus, the formula above is specialised as follows, which is
the property we checked:

(Consistency) �((hash = 0) =⇒ �(hash = 0))∧
�((hash = 1) =⇒ �(hash = 1)).

5.1 Address Based Hashing

In systems where objects do not move, we can use the addresses of objects for
hash codes of them. This implementation is efficient because neither do we have
to generate hash codes nor do objects require extra space to store hash codes. If
objects move, however, this implementation does not work. The address of an
object changes, and so hashCode on the same object would not yield the same
hash code.

Instead, address-based hashing uses the address where an object is located
when hashCode is called on the object for the first time as the hash code of the
object. If the object moves after hashCode was called, the collector allocates an
extra field in the tospace object to store its hash code.

In address-based hashing implementation, every object has one of three hash-
ing states: UNHASHED, HASHED, and MOVED. Table 1 and Figure 3 show the state
transition. Objects are initially in the UNHASHED state. When hashCode is called
on an UNHASHED object, the address of the object is used for the hash code of the
object, and the object transits to the HASHED state. When the collector moves a
HASHED object, the collector allocates an extra word, the hashcode field, for the
tospace object and stores the address of the fromspace object in that field. The
tospace object is in the MOVED state. The hashCode method yields the value in
the hashcode field if the object is in the MOVED state. When the collector moves
a MOVED object, the collector copies the hashcode field as well as other words of
the object.

In concurrent collectors, implementation of the address based hashing in-
volves a subtle problem: the collector copying an UNHASHED object may race with

33

UNHASHED HASHED MOVED
copy by collector

hashCode() by mutator

Figure 3: State transition in address based hashing.

a mutator executing the hashCode method. If the collector copies a UNHASHED ob-
ject that the hashCode method is using its address as a hash code, hashCode

returns the address of fromspace copy although the tospace object is in the
UNHASHED state.

In our Sapphire implementation, object headers hold their hashing states.
Sapphire uses an eager tospace invariant for object headers, i.e. the collector
copies the object headers, and once the header of an object is copied, mutators
access the header of the tospace copy. The forwarded bit in the object header
of a fromspace object indicates that the header has been copied: the collector
sets this bit when it copies the header.

To resolve races between the collector copying the header and mutators
accessing and updating the hashing state, Sapphire uses a meta-lock mecha-
nism. Whenever a mutator accesses an object header, it calls the metaLockObject

method to obtain a pseudo-reference of the object. The mutator accesses the
object header referred to by the pseudo-reference.

Algorithm 9 shows pseudocode for metaLockObject. A pseudo-reference of
an object is actually a pointer to the copy of the object that has the up-to-date
value of the object header. If the GC is not running or the object has already
been copied, the object (in case the GC is not running) or the tospace copy
(in the case that the object has been copied) holds the up-to-date value. If
the object has not been copied, metaLockObject sets the busy bit to prevent the
collector from copying the object. The metaUnlockObject method clears the busy

bit.

5.2 Abstraction

Our model has a single object, with two addresses 0 and 1 for its fromspace
and tospace copies. Because our model of the collector performs multiple GC
cycles, which address is for fromspace changes during the execution. Our model
keeps track of fromspace. The IN_FROM_SPACE(o) macro tells whether the copy
of object o is in fromspace or not.

To obtain the address of the other copy of the object, the FWD(o) macro is
useful. For the mutator, FWD(o) models the getForwardingPointer operation on
o. For the collector, it gives the address to which o is copied.

An object is modelled with a combination of the contents of the hashing
state (hashState), the busy bit (busy), the forwarded bit (forwarded), and the

34

Algorithm 9: Implementation of meta-locking

1 metaLockObject(o):
2 if not inGCCycle() || not inFromSpace(o)
3 return o

4 do

5 status ← o.statusWord

6 if (status & FORWARDED) 6= 0

7 return o.forwardingPointer

8 while not CAS(&o.statusWord, status, status | BUSY)
9 return o

10

11 metaUnlockObject(o):
12 if not inGCCycle() || not inFromSpace(o)
13 return

14 o.statusWord ← o.statusWord & ~BUSY;

1 do

2 ::true -> obj = root[id];getObjectHashCode(obj, hc);hash = hc

3 ::atomic{m_phase_behind[id] -> m_phase_behind[id] = 0}

4 od

Model 15: Mutator model.

word used for the hash code (hashcode) if the object has been moved after its
hashcode was obtained. The collector manipulates these variables directly to
set up the tospace copy. The mutator accesses the hash state though macros
IS_UNHASHED(o) and IS_HASHED(o), which tell if the hash state of o is UNHASHED

and HASHED, respectively. Remark that IS_HASHED(o) yields false if the hash state
of o is MOVED.

5.3 Mutator

This model has multiple mutator processes. We checked with up to three mu-
tators (N_MUTATORS ≤ 3). All mutators share an object, referred to by root.
Though the roots of mutators are local variables, they are represented by a
global array whose index is the process ID in the model so that the collector
can flip them.

Model 15 shows the mutator model. Each mutator repeatedly obtains the
hash code of the object by calling getObjectHashCode, which models the hashCode

method. The getObjectHashCode method returns the hash code through the
second parameter hc. The mutator stores the hash code in a global variable
hash. Thus, we can check that our implementation satisfies the requirements of
hashCode by observing hash.

The mutator also advances its phase if it is behind the GC phase, as per

35

Algorithm 10: Hashing implementation

1 getObjectHashCode(o):
2 o ← hashByAddress(o)
3 if isHashed(o)
4 return (int) o

5 return readHashCode(o) /∗ HASHED AND MOVED ∗/
6

7 hashByAddress(o):
8 if not isUnhashed(o)
9 return o

10 if not inGCCycle() || not inFromSpace(o)
11 setHashed(o)
12 return o

13 o ← metaLockObject(o) /∗ returns a pseudo−reference ∗/
14 if isUnhashed(o)
15 setHashed(o)
16 metaUnlockObject(o)
17 return o

the mutator models in Sections 2 and 3. However, we modelled phase advanc-
ing mechanism in a different way from those models. The modelling of phase
advancing is mentioned in Section 5.6.

5.4 The hashCode Method

Algorithm 10 shows pseudo code of the hashCode method. Our implementation
of hashCode method consists of two parts. The getObjectHashCode function deals
with the simple cases, where the object is in HASHED or MOVED. In these states,
the hash code of the object has been fixed. Thus, getObjectHashCode can return
the hash code regardless of the behaviour of mutators.

In the racy case where the object is UNHASHED, hashByAddress is called to make
object HASHED atomically. The hashByAddress function takes meta-lock on the
object if there is a risk of a race with the collector, i.e. the GC is running and the
object is in fromspace, before changing the hashing state of the object to HASHED.
Otherwise, the function makes the object HASHED without synchronisation.

We modelled these functions straightforwardly as shown in Model 16.

5.5 Meta-locking

Model 17 shows the model of meta-locking, whose algorithm is shown in Al-
gorithm 9. The second parameter of metaLockObject, oo, is the out parameter,
through which metaLockObject returns the pseudo-reference of object o.

The loop with the CAS in lines 4–8 in Algorithm 9 is not modelled straight-
forwardly. This loop sets the busy bit of the object if the forwarded bit is not
set. Since the collector may set the forwarded bit while the mutator is executing

36

1 inline getObjectHashCode(o, r) {

2 int tmp;

3 hashByAddress(o, tmp);

4 if

5 ::IS_HASHED(tmp) -> r = tmp

6 ::else -> r = hashcode[tmp]

7 fi

8 }

9

10 inline hashByAddress(o, r) {

11 int pseudo;

12 do

13 ::if

14 ::!IS_UNHASHED(o) -> r = o; break /∗ return ∗/
15 ::else -> skip

16 fi;

17 if

18 ::!IN_GC_CYCLE() || !IN_FROM_SPACE(o) ->

19 setHashed(o);

20 r = o; break /∗ return ∗/
21 ::else -> skip

22 fi;

23 metaLockObject(o, pseudo);

24 if

25 ::IS_UNHASHED(pseudo) -> setHashed(pseudo)

26 ::else -> skip

27 fi;

28 metaUnlockObject(pseudo);

29 r = pseudo; break /∗ return ∗/
30 od

31 }

Model 16: Hashing: the hashCode method.

37

1 inline metaLockObject(o, oo) {

2 if

3 ::!IN_GC_CYCLE() || !IN_FROM_SPACE(o) ->

4 oo = o

5 ::else ->

6 if /∗ model of loop with CAS ∗/
7 ::forwarded[o] -> oo = FWD(o)

8 ::atomic{

9 (!forwarded[o] && busy[o] == 0) -> busy[o] = 1

10 };

11 oo = o

12 fi

13 fi

14 }

15

16 inline metaUnlockObject(o) {

17 if

18 ::!IN_GC_CYCLE() || !IN_FROM_SPACE(o) -> skip

19 ::else -> busy[o] = 0

20 fi

21 }

Model 17: Hashing: meta-locking.

this loop, testing of the forwarded bit and setting the busy bit are performed
atomically by using a CAS. In the model, we used the atomic block rather than
iterating a loop.

5.6 Collector and Phase Advance

The collector performs GC continuously. The collector performs some actions
in each GC phase. Model 18 shows the model of the collector.

In our model, GC consists of four phases.

• In the MARK_ALLOC phase, the collector copies the object header. First, the
collector sets the busy bit. Then, it sets up the hashing state hashState

depending on the hashing state of the fromspace object. Finally, it sets
the forwarded bit and clears the busy bit.

• In the COPY phase, the collector copies the contents of the object. However,
our model of hashing does not deal with the contents. Thus, the collector
model does nothing in this phase.

• In the FLIP phase, the collector flips local variables of mutators.

• In the RECLAIM phase, the collector swaps the roles of spaces.

38

1 inline collection()

2 {

3 int i = 0;

4 int o = currentFromSpace; /∗ the live object ∗/
5

6 advancePhase(MARK_ALLOC);

7 atomic{!busy[o] -> busy[o] = 1}; /∗ assume CAS succeeds ∗/
8 forwarded[FWD(o)] = 0;

9 if

10 ::(hashState[o] == UNHASHED)-> hashState[FWD(o)] = UNHASHED

11 ::(hashState[o] == HASHED) -> hashState[FWD(o)] = MOVED;

12 hashcode[FWD(o)] = o

13 ::(hashState[o] == MOVED) -> hashState[FWD(o)] = MOVED;

14 hashcode[FWD(o)] = hashcode[o]

15 fi;

16 forwarded[o] = 1;

17 busy[o] = 0;

18

19 advancePhase(COPY);

20

21 advancePhase(FLIP);

22 i = 0;

23 do

24 ::(i == N_MUTATORS) -> break

25 ::else ->

26 root[i] = FWD(root[i]); /∗ flip mutator’s root ∗/
27 i = i + 1

28 od;i = 0;

29

30 advancePhase(RECLAIM);

31 currentFromSpace = 1 - currentFromSpace;

32

33 advancePhase(NOGC)

34 }

Model 18: Hashing: the collector

39

1 inline advancePhase(newPhase) {

2 atomic {

3 g_phase = newPhase;

4 i = 0;

5 do

6 ::(i == N_MUTATORS) -> break

7 ::else -> m_phase_behind[i] = 1; i++

8 od;

9 i=0;

10 };

11 do

12 ::atomic{

13 i = 0;

14 do

15 ::(i == N_MUTATORS) -> i = 0; goto phase_changed

16 ::(i < N_MUTATORS && !m_phase_behind[i]) -> i++

17 ::(i < N_MUTATORS && m_phase_behind[i]) -> break

18 od;

19 i = 0

20 }

21 od

22 phase_changed:

23 }

Model 19: Hashing: advancing the GC phase

In addition to these phases, the NOGC phase represents the time when the GC is
not running.

After the collector advances the GC phase, the collector waits for the mu-
tators to change their mutator phases. The collector calls advancePhase in
Model 19 to advance the GC phase. Because the collector consists of many
phases, we did not model mutator phases directly. Each mutator model has a
bit m_phase_behind[i] indicating that the phase of the mutator i is behind the
GC phase. Each mutator changes its mutator phase with

3 ::atomic{m_phase_behind[id] -> m_phase_behind[id] = 0}

in Model 15.

5.7 Results

This model checking showed that our handling of Object.hashCode meets the
requirement of the Java language. More precisely, we checked that our handling
has the property that whenever and whichever mutator calls Object.hashCode
on a particular object, the return values are the same; we did not find any error.

Although our setting of model checking was limited, it took into account
those parts of the algorithm that we think subtle, listed below.

40

• Our model has a collector and multiple mutators so as to check there are
no cases where different mutators have different views of the hash code of
an object.

• Our model performs the entire GC cycle multiple times because muta-
tors may call hashCode anytime. Especially, our model has ragged phase
changes, and checking showed that calling hashCode during phase change
did not cause any problems.

Most collector’s routine that deals with the hash code and mutator’s hashCode
method are modelled straightforwardly and the correspondence between the
algorithm and the model is clear. From this experience, we greatly increased
our confidence in the correctness of our handling of Object.hashCode.

References

[1] Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency
models: a tutorial. IEEE Computer, 29(12):66–76, 1996.

[2] Samuel Z. Guyer and David Grove, editors. 13th ACM SIGPLAN Interna-
tional Symposium on Memory Management, Edinburgh, June 2014. ACM
Press.

[3] G. J. Holzmann. The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley, 2004.

[4] Richard L. Hudson and J. Eliot B. Moss. Sapphire: Copying GC without
stopping the world. In Joint ACM-ISCOPE Conference on Java Grande,
pages 48–57, Palo Alto, CA, June 2001. ACM Press.

[5] Richard L. Hudson and J. Eliot B. Moss. Sapphire: Copying garbage collec-
tion without stopping the world. Concurrency and Computation: Practice
and Experience, 15(3–5):223–261, 2003.

[6] Intel. Intel R© 64 and IA-32 Architectures Software Developer’s Manual,
June 2013.

[7] Alexander Linden and Pierre Wolper. An automata-based symbolic ap-
proach for verifying programs on relaxed memory models. In SPIN, volume
6349 of LNCS, pages 212–226, 2010.

[8] Carl G. Ritson, Tomoharu Ugawa, and Richard Jones. Exploring garbage
collection with Haswell hardware transactional memory. In Guyer and
Grove [2], pages 105–115.

[9] Tomoharu Ugawa, Richard Jones, and Carl G. Ritson. Reference object
processing in on-the-fly garbage collection. In Guyer and Grove [2], pages
59–69.

41

[10] Heike Wehrheim and Oleg Travkin. TSO to SC via symbolic execution. In
Proc. of HVC, volume 9434 of LNCS, pages 104–119, 2015.

42

	Concurrent Copying
	Configuration
	Abstraction
	Mutator for Single-Word, Scalar-Field Configuration
	Mutator for Double-Word, Scalar-Field Configuration
	Mutator for Reference-Field Configuration
	The Collector
	Memory Model
	Results

	Phase Change: from NoGC to Mark Phase
	Abstraction and Bounding
	The Mutator
	Collector and Phase Advancing
	Verification
	Results

	Phase Change: from Copy to Flip Phase
	Abstraction and Bounding
	The Mutator
	Collector and Phase Advancing
	Verification
	Results

	Reference Objects
	Reference processing state transitions
	Implementation
	Model Checking
	Results

	Header and Hashcode
	Address Based Hashing
	Abstraction
	Mutator
	The hashCode Method
	Meta-locking
	Collector and Phase Advance
	Results

