Trabecular architecture and joint loading of the proximal humerus in extant hominoids, *Ateles*, and *Australopithecus africanus*

Tracy L. Kivell1,2,3*, Rebecca Davenport4, Jean-Jacques Hublin2, J. Francis Thackeray3, Matthew M. Skinner1,2,3

1 School of Anthropology and Conservation, University of Kent, Canterbury, United Kingdom

2 Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig Germany

3 Evolutionary Studies Institute and Center for Excellence in PalaeoSciences, University of the Witwatersrand, South Africa

4 Department of Anthropology, University College London, United Kingdom

*Corresponding author:
Tracy L. Kivell
School of Anthropology and Conservation
Marlowe Building
University of Kent,
Canterbury CT2 7NR
United Kingdom
t.l.kivell@kent.ac.uk
+44 (0) 1227 82 495

Number of pages of text (including bibliography): 34

Number of figures: 8

Number of tables: 5

Abbreviated title: Trabecular bone of the proximal humerus

Keywords: locomotion, upper limb, hominin, arboreal, cancellous bone

Grant sponsorship: Max Planck Society (TLK, JJH, MMS) and European Research Council Starting Grant #336301 (TLK and MMS)
ABSTRACT

Objectives Several studies have investigated potential functional signals in the trabecular structure of the primate proximal humerus but with varied success. Here we apply for the first time a “whole-epiphyses” approach to analysing trabecular bone in the humeral head with the aim of providing a more holistic interpretation of trabecular variation in relation to habitual locomotor or manipulative behaviors in several extant primates and *Australopithecus africanus*.

Materials and Methods We use a “whole-epiphysis” methodology in comparison to the traditional volume of interest (VOI) approach to investigate variation in trabecular structure and joint loading in the proximal humerus of extant hominoids, *Ateles* and *A. africanus* (StW 328).

Results There are important differences in the quantification of trabecular parameters using a “whole-epiphysis” versus a VOI-based approach. Variation in trabecular structure across knuckle-walking African apes, suspensory taxa, and modern humans was generally consistent with predictions of load magnitude and inferred joint posture during habitual behaviors. Higher relative trabecular bone volume and more isotropic trabeculae in StW 328 suggest *A. africanus* may have still used its forelimbs for arboreal locomotion.

Discussion A whole-epiphysis approach to analysing trabecular structure of the proximal humerus can help distinguish functional signals of joint loading across extant primates and can provide novel insight into habitual behaviors of fossil hominins.
INTRODUCTION

Reconstructing locomotor and manipulative behavior in the primate fossil record is central to discussions surrounding the ways in which extinct taxa interacted with their environments. However, there is often much ambiguity and debate over the functional interpretation of the external morphology of fossils; researchers face the problem of distinguishing between potentially non-functional vestigial reflections of phylogenetic history, and functionally significant markers of actual behaviors. This problem can result in dramatically different reconstructions of behavior in fossil taxa (e.g., Ward, 2002, and references therein).

Contributions to this debate can come from a better understanding of aspects of bony morphology that are more sensitive to loading during life than external bone shape and size. Internal bone structures, including cortical and trabecular bone, may provide this functional insight because they are responsive to the magnitude and direction of mechanical stress during an individual's lifetime, a concept known as bone functional adaptation (Cowin et al., 1985; Currey, 2002; Ruff et al., 2006). Trabecular bone may be particularly useful for reconstructing joint loading and behavior because it remodels faster than cortical bone (Eriksen, 2010). The ways in which trabecular bone's response to mechanical stress may be constrained by, for example, genetic (e.g., Havill et al., 2010) or systemic (e.g., Lieberman, 1996; Chirchir et al., 2015; Tsegai et al., 2018) factors are not fully understood [e.g., Bertram and Swartz, 1991; see Kivell, 2016 for a review].

Furthermore, empirical studies on non-primate animals have found that trabecular bone does not respond to load as predicted in mice (Carlson et al., 2008), and that bony response can vary based on the duration of load (e.g., Skerry and Lanyon, 1995; Lambers et al. 2013) and anatomical region (Räth et al. 2015). However, several empirical studies have demonstrated that altering the direction, magnitude and/or frequency of load is associated with predicted changes in the trabecular structure (e.g., Lanyon, 1974; Bieweiner et al., 1996; Pontzer et al., 2006; van der Meulen et al., 2006; Barak et al., 2011; Wallace et al., 2017). The dynamic response of trabecular bone to loading is also supported by computational analyses, such as finite element modelling, that have demonstrated the strong relationship between variation in trabecular structure and its mechanical
properties (e.g., Odgaard et al., 1997; Kabel et al., 1999; Huiskes et al. 2000; Fox and Keaveny, 2001). As such, analyses of internal bone structure may offer a more direct window into the loads experienced by a particular bone or joint and, ultimately, an individual’s behavior, than analyses of external morphology alone.

Locomotor signals in primate trabecular bone of the proximal humerus

Studies that have sought to identify locomotor signals in long bone trabeculae and, in particular, the proximal humerus in extant non-human primates have had varied success. Fajardo and Müller (2001) reported a distinction in trabecular alignment (i.e., degree of anisotropy; DA) in the proximal humerus (and femur) between quadrupedal and suspensory taxa, but found bone volume fraction (bone volume/total volume; BV/TV) to be similar across taxa regardless of locomotor behavior. Ryan and Walker (2010) found that humeral head trabecular structure was consistently different from that of the femoral head across five anthropoid primates, but found no systematic variation in individual trabecular variables within the humeral head across taxa or locomotor groups.

More recent studies using multivariate analyses to investigate several trabecular parameters at once have reported more promising results regarding the relationship between variation in humeral head trabecular structure and different loading regimes. Ryan and Shaw (2012) found that variable suites of trabecular bone features in the humeral head differentiated locomotor groups across eight anthropoid species (although differentiation was clearer in the femoral head). Similarly, Scherf et al. (2013) found significant differences in humeral trabecular structure across three hominoid taxa. Finally, Scherf et al. (2016) found that suites of trabecular bone variables distinguished greater manual activity levels in Neolithic humans relative to recent humans. However, results for individual trabecular variables in these studies did not consistently meet predictions based on variation in humeral loading.

Here we build on this previous work by applying for the first time a “whole-epiphysis” approach to the analysis of humeral head trabecular structure in extant hominoids and spider
monkeys (*Ateles* sp.) in comparison with the traditional volume-of-interest (VOI)-based approach. We aim to provide a more holistic interpretation of trabecular variation in relation to habitual locomotor or manipulative behaviors and, within this comparative context, provide further insight into the upper limb use of *Australopithecus africanus*.

Biomechanical implications of humeral loading regimes

An understanding of the biomechanics of habitual locomotor and/or manipulative behaviors of the study sample is necessary to hypothesise potential relationships between trabecular architecture and humeral loading. *Pan* and *Gorilla* most frequently engage in terrestrial knuckle-walking (Tuttle and Watts, 1985; Hunt, 1991a, b; Doran, 1997). This locomotor mode involves stereotypical protraction and retraction of the humerus, and thus uniformly repetitive loading of the humeral head in the parasagittal plane (Hunt, 1991b, 1992; Inouye, 1994). Knuckle-walking also generates high compressive joint reaction forces in the humerus due to the combined effect of muscle contraction and gravitational forces acting on the body mass (Carlson and Patel, 2006). *Pan* typically spends more time in the trees than *Gorilla* but in both species the most frequent arboreal locomotor mode is vertical climbing (Tuttle and Watts, 1985; Hunt, 1991a; but see Crompton et al. 2010), which is thought to incur a high degree of gleno-humeral joint strain and is kinematically similar to quadrupedal walking (Hunt, 1991b, 1992; Hanna et al. 2008; Hanna and Schmitt, 2011; Larson and Stern, 2013; Scherf et al., 2013). When arboreal, both *Pan* and, less so *Gorilla*, also infrequently engage in suspensory locomotion, which requires a fully abducted humerus (Tuttle and Watts, 1985; Hunt, 1991a, b; Remis, 1995; Doran, 1997).

Pongo, *Symphalangus* and *Ateles* most frequently engage in arboreal locomotion. The characteristic locomotor mode of *Pongo* is variably classified as orthograde clambering (Cant, 1987, Hunt et al., 1996), quadrumanous clambering (Sugardjito and van Hooff, 1986) and torso-orthograde suspension (Thorpe and Crompton, 2006), all of which broadly describe a slow, upright-torso, irregular climbing pattern in which all four limbs are used in various combinations to grasp substrates in different ways (Sugardjito and van Hooff, 1986; Cant, 1987; Hunt et al., 1996). A
similar locomotor mode is employed frequently during feeding by Symphalangus (Fleagle, 1976) and, less often, by Ateles (Mittermeier and Fleagle, 1976). Both Symphalangus and Ateles also frequently use non-ricochetal brachiation (Fleagle, 1976; Jenkins et al., 1978; Jungers and Stern, 1984; Mittermeier and Fleagle, 1976; Cant et al., 2003; Usherwood and Bertram, 2003) but there are biomechanical differences between these taxa. Ateles uses a prehensile tail during the support phase of brachiation (Richard, 1970; Jenkins et al., 1978; Mittermeier and Fleagle, 1976; Jungers and Stern, 1984) while Symphalangus performs a pull-up or hoist during the support phase to elevate the centre of gravity and permit a greater drop and acceleration during the subsequent downswing (Jungers and Stern, 1981; Larson, 1988). Symphalangus also employs ricochetal brachiation, characterised by an aerial phase between handholds (Fleagle, 1976; Jungers and Stern, 1984; Cant et al., 2003; Usherwood and Betram, 2003). Both these brachiating modes in Symphalangus are likely to increase stress on the humerus relative to Ateles.

In contrast to largely terrestrial African apes, the humerus of Pongo, Symphalangus and Ateles is most frequently loaded above the head such that tensile forces are thought to predominate (Swartz et al., 1989; Preuschoft et al., 2010). The main compressive forces are those resulting from muscle contraction alone so that compression load magnitude is lower than that of knuckle-walking Pan and Gorilla (Carlson and Patel, 2006; Preuschoft et al., 2010). In addition, the irregularity of substrates and superstrates within an arboreal environment requires diverse positioning and loading of the limbs compared to more uniform terrestrial environments (Kimura, 2002; Carlson, 2005).

While non-human primates utilise their humerus in a supportive capacity to bear their mass during locomotion, bipedal humans use the humerus primarily in a manipulative capacity below the shoulder level. Thus, it is likely that the proximal humerus is typically subject to lower magnitude loads (although still high; see Westerhoff et al., 2009b; Bergmann et al., 2011) than would occur during quadrupedal locomotion (Scherf et al., 2013). Furthermore, the typical combination of different manual activities would load the humerus in multiple directions, unless a
particular individual engaged in a highly repetitive, habitual activity (Büchler et al., 2002; Bergmann et al. 2007; Westerhoff et al., 2009a,b; Scherf et al., 2016).

Australopiths were bipedal hominins (e.g., Susman et al., 1984; Stern, 2000; Lovejoy et al., 2002; Ward, 2002, 2013), which would have freed the forelimbs from habitually supporting body mass. However, there is debate regarding the extent to which different australopith species also engaged in arboreal behaviors and thus the extent of humeral loading from locomotion (e.g. Ward, 2002, 2013; Niemitz, 2010). A suite of external skeletal traits, primarily those of the lower limb (e.g., Haeusler 2002; Latimer, 1991; Ward et al., 2011), indicate habitual bipedalism, while morphological features of the upper limb, including the morphology of the humeral head, suggest the potential for use of suspensory and climbing behaviors (Stern and Susman, 1983; Ward, 2002; Toussiant et al., 2003: Arias-Martorell et al., 2015a).

A. africanus fossils from Member 4 Sterkfontein - from which the specimen in this study derives - exhibit fore-to-hindlimb joint proportions more akin to extant apes than those of modern humans (McHenry and Berger, 1998; Green et al., 2007) and upper limb morphology that retains primitive features of early hominins and/or extant non-human apes (e.g. McHenry, 1983; Toussaint et al., 2003). These morphological features have led some researchers to conclude that arboreal behaviors, and particularly climbing, were an important part of the A. africanus locomotor repertoire (McHenry, 1983; McHenry and Berger, 1998; Green et al., 2007). If so, frequent arboreal locomotion would likely result in greater and more varied humeral loading in australopiths than that of modern humans.

Aims and predictions

Our study will build on previous investigations in two ways. Firstly we will incorporate new extant and fossil species into our analyses; our sample includes humans, African and Asian apes, and Ateles, of which Gorilla and Ateles have not been included in previous studies (Ryan and Shaw, 2012; Scherf et al, 2013), and use this comparative sample to investigate the trabecular structure in A. africanus. Secondly, we will employ two distinct but comparable methodologies: (1) we apply the traditional VOI-based method of analysing trabecular bone to compare our results directly to
previous studies and (2) we quantify trabecular structure throughout the entire humeral head epiphysis, including visualisation of variation in BV/TV and DA, to highlight potential variation in glenohumeral joint posture during peak loading.

The specific aims of this study are threefold. First (Aim 1), we quantify for the first time the trabecular structure throughout the entire proximal epiphysis to investigate the correlation between trabecular structure and inferred differences in joint loading across different locomotor and manipulative behaviors. We predict that variation in trabecular structure will correlate with the habitual loading regime of the humeral head employed by different primates during locomotor or manipulative behaviors. More specifically, we predict that in knuckle-walking taxa (Pan and Gorilla) where the humeral head is thought to predominantly experience high, stereotypical compressive joint reaction forces arising from both muscle contraction and gravitational forces operating on the supported body mass, DA and BV/TV, as well as trabecular number (Tb.N) and/or trabecular thickness (Tb.Th), will be higher. In contrast, in suspensory taxa (Pongo, Symphalangus and Ateles) where the compressive loads experienced by the humerus are lower (Carlson and Patel, 2006) and more diverse (Kimura, 2002; Carlson, 2005; Michilsens et al. 2012), we expect DA and BV/TV (as well as Tb.N and/or Tb.Th) to be lower. Finally, we assume loading of the human humeral head to be diverse from highly varied manipulative behaviors, and the magnitude lower than the stress incurred during locomotion (both terrestrial and arboreal). Thus, we predict that humans will have low BV/TV, as shown in previous studies (Ryan and Shaw, 2015; Chirchir et al. 2015) and also a more isotropic trabecular structure.

The whole-epiphysis approach allows visualisation of how BV/TV varies throughout the humeral head. Given that bone is deposited at regions of highest mechanical loading (van der Meulen et al., 2006; Barak et al., 2011), we predict that concentrations of BV/TV will reflect joint posture (position of the humeral head relative to the glenoid fossa) at peak loading. Since the precise articular relationships between the humeral head and glenoid fossa during different locomotor behaviors in non-human primates remain largely unexplored [but see, e.g. Soslowsky et al. (1992) and Büchler et al. (2002) for clinical studies of the human humeroglenoid joint and Patel
et al. (2018) for a study of glenoid fossa subchondral bone radiodensity in humans, chimpanzees and gibbons], we predict only that knuckle-walking taxa, suspensory taxa and humans will show greater intra-group similarities than inter-group similarities.

Our second aim (Aim 2) is to examine how results from the VOI-based and whole-epiphysis approaches vary and how each correlates with inferred differences in joint loading across different locomotor and manipulative behaviors. Despite potential biases that might arise from quantifying different volumes of trabecular bone (Fajardo and Müller, 2001; Kivell et al., 2011; Scherf et al., 2013), we predict that similar relative differences in trabecular parameters will be found across the different locomotor/manipulative groups in both methods. We also test for allometry in trabecular bone variables following results of previous studies (Ryan and Shaw, 2012, 2013; Barak et al., 2013).

Finally, within this comparative context, our third aim (Aim 3) is to elucidate locomotor and/or manipulative behavioral signals in an A. africanus (StW 328) partial humerus. Based on previous research showing relatively high BV/TV in hominins compared with recent humans (Chirchir et al. 2015; Ryan and Shaw, 2015), we predict that StW 328 will have high BV/TV compared with our human sample. However, if A. africanus still frequently used its forelimbs for arboreal locomotion, the pattern of BV/TV concentration should be more similar to that of arboreal apes than to humans. It is important to note that poor preservation of the lateral and posterior portions of the StW 328 humeral may prohibit revealing a clear trabecular pattern.

MATERIALS AND METHODS

Study sample

Details of the study sample are presented in Table 1. Trabecular structure was examined in the humeri of 12 Pan troglodytes verus, six Gorilla gorilla, eight Pongo pygmaeus, three Symphalangus syndactylus, four Ateles sp., nine Homo sapiens, and one A. africanus (StW 328). A second A. africanus specimen that includes the proximal humerus (StS 7) does not preserve imageable trabecular bone due to the inclusion of bright matrix. The sample sizes of the extant taxa are comparable to
previous studies (Ryan and Shaw, 2012; Scherf et al. 2013), and the *Pongo, P. t. verus* and human
specimens were included the study by Scherf et al. (2013). All extant non-human primate
specimens were wild-caught. The modern human material derived from a cadaveric collection
from the Institute for Human Genetics and Anthropology, Friedrich Schiller University (Jena,
Germany). Either the left or right humerus was used, depending on the availability of specimens
and all specimens were free of signs of pathology or post-mortem damage. All extant specimens
were considered adults based on complete external epiphyseal fusion in the humerus and
associated skeletal elements. However, this analysis revealed that all of the modern humans
retained a slight epiphyseal line within the trabecular structure of the humeral head (see
Discussion and Fig. SI1).

High-resolution micro-computed tomography

All specimens were scanned using a high-resolution BIR ACTIS 225/300 micro-computed
tomographic industrial scanner housed at the Department of Human Evolution, Max Plank Institute
for Evolutionary Anthropology (Leipzig, Germany). All specimens were scanned using an
acceleration voltage of 130kV at 100 µA and a 0.25 mm brass filter. Isometric voxel size of the
resultant scans ranged from 26-30 microns. Images were reconstructed as 2048 X 2048 pixel, 16-bit
TIFF stacks from 2500 projections with three frame averaging. Due to limitation in file size in
the whole-epiphysis analysis (see below), image stacks of large ape specimens were resampled to
between 45 microns (*Pan*-sized) and 80 microns (male *Gorilla*-sized). We tested the impact of
resampling on five specimens by extracting a VOI and resampling it to at least three different voxel
sizes. This resulted in minimal changes in BV/TV (standard deviation <0.05), DA (standard
deviation <0.06) and Tb.Th (standard deviation <0.03) (see Supplementary Information Table SI1).

Whole-epiphysis analysis of trabecular structure

The whole-epiphysis approach allows for visualisation and quantification of the entire trabecular
structure throughout the humeral head via the use of multiple sampling spheres or VOIs. As such,
this method differs from the traditional VOI approach (see below) in quantifying trabecular
structure both throughout the entire region (e.g., an average BV/TV for the entire epiphysis) and at
any specific point within the anatomical region (e.g., difference in BV/TV between the posterior and
anterior regions of the epiphysis). For each scan, the humeral head was isolated from the rest of the
bone by cropping the image at the surgical neck, an anatomical region approximately homologous
across taxa. Images were segmented into binary format using the Ray Casting Algorithm (RCA)
(Scherf and Tilgner, 2009). Trabeculae in the fossil specimen StW 328 were well preserved and
thus this specimen was also segmented using the RCA method after small matrix inclusions were
removed manually. A test of intraobserver error in segmentation (run five times on one Gorilla
specimen) resulted in mean BV/TV values differing on average by 1.3%. Trabecular variables in the
user-defined humeral head were analysed using a customised, in-house software package called
medtool (Pahr and Zysset, 2009a). Steps detailing the morphological filters are described in Pahr
and Zysset (2009a) and tested in Gross et al. (2014) but a brief description is as follows (Fig. 1).
From the segmented image (Fig. 1a), the outer surface (boundary between cortex and air; Fig. 1b)
and inner surface (boundary between cortex and trabeculae; Fig. 1c) were defined and used to
create cortex only (outer surface minus inner surface; Fig. 1d) and trabecular only (segmented
image minus cortex only image; Fig. 1e) images. A mask overlay image (Fig. 1f) was generated and
separate grey values assigned to the cortex, trabecular bone and ‘air’. 2D meshes of outer and inner
isosurfaces were then created and the cortex and trabecular region volumes filled with tetrahedral
finite elements in HyperMesh® (Altair Engineering Inc., USA) (Pahr and Zysset, 2009b). This
enabled generation of 3D meshes of these regions (Fig. 1g).

Trabecular thickness (Tb.Th, mm) was calculated from the trabecular only image using the
BoneJ plugin (version 1.3.1; [61]) for ImageJ (version 1.46r) (Doube et al., 2010). To quantify
BV/TV and trabecular orientation (the second rank fabric tensor), a 5 mm-diameter sampling
sphere was placed at each node of a 3D background grid (2.5 mm grid spacing) applied to the 3D
trabecular mesh (Gross et al., 2014). Bone volume fraction was calculated as the ratio of bone
voxels to bone and air voxels. The second rank fabric tensor is calculated using the mean intercept
length method (Whitehouse, 1974; Odgaard, 1997) and the first, second and third eigenvectors and
eigenvalues were extracted. Calculations were made at each node and an average obtained for the
entire region. Fabric degree of anisotropy (DA) is calculated as 1 minus eigenvalue 3/eigenvalue 1
and describes trabecular organization or degree of alignment among trabecular struts. Bone
density maps, which are visual representations of BV/TV distribution across the defined region,
were created in Paraview 3.14.1 (Sandia Corporation, Kitware Inc). A test of mesh size variation in
one specimen revealed differences of less than 1% in calculated BV/TV and DA. Other trabecular
variables, such as trabecular number (Tb.N), separation (Tb.Sp) and pattern factor (Tb.Pf), were not
able to be quantified within the medtool script (Pahr and Zysset, 2009a).

Volume of interest-based analysis of trabecular variables

In addition to the whole-epiphysis analysis, trabecular structure was quantified using the
traditional VOI approach, in which only a subsample of the trabecular structure is analysed within
the humeral head (Fig. 2). The volume was defined and extracted from each epiphysis in AVIZO
6.3® (Visualization Sciences Group, SAS). To ensure homologous (scaled) size and position, a cubic
volume was defined by the maximum and minimum extents of the articular surface in the x, y and z
dimensions. The midpoint of the cube’s x, y and z dimensions was located and a smaller cubic VOI
was extracted from the epiphysis and exported as an image stack (.bmp format). The size of this
VOI was calculated as 30% of the geometric mean of the maximum superior-inferior and anterior-
posterior dimensions of the articular surface. The VOI image stack was then imported into CTAn®
(Skyscan, 2007) for analysis using a spherical volume of interest. In addition to trabecular
thickness, BV/TV and DA, which are directly comparable to the same parameters output in the
whole-epiphysis analysis, trabecular number (Tb.N, mm⁻¹), trabecular separation (Tb.Sp, mm), and
trabecular pattern factor (Tb.Pf, mm⁻¹; an inverse index of connectivity with low Tb.Pf indicating a
more highly connected lattice and negative values signifying many enclosed cavities). Details on the
calculation of these parameters can be found in Lazenby et al. (2011). Calculation of trabecular
parameters is similar across the different software programs; both BoneJ (Doube et al., 2010) and
CTAn® (Skyscan, 2007) calculate Tb.Th based on Hildebrand and Rüegseggar (1997), while both medtool (Pahr and Zysset, 2009a; Gross et al. 2014) and CTAn® (Skyscan, 2007) calculate BV/TV as a ratio of bone voxels to total voxels and DA based on the mean intercept length (Odgaard, 1997). As such, we do not anticipate any inherent bias based on the different programs used.

Statistical analyses

Data for all trabecular variables obtained from both the whole-epiphysis and VOI analyses were tested for allometry in PAST (v. 2.16) using ordinary least squares regression. *Ateles* was excluded from regressions to generate hominoid-only results comparable to those of Ryan and Shaw (2013). Since body size was unavailable for the study sample, the geometric mean of epiphysis size (see above) was used as a proxy for body size.

Due to small sample size and unknown sex for many specimens, all statistical analyses were conducted on the pooled sample of each taxon. Pair-wise comparisons using Kruskal-Wallis tests were used to investigate differences between specific taxa for all variables. Variation in trabecular parameters was depicted graphically with box-and-whisker plots. A principal components analysis (PCA) was conducted in PAST (v. 2.16) to investigate how a suite of trabecular variables may distinguish among different taxa/locomotor groups. The PCA was restricted to the VOI data because more trabecular variables (BV/TV, Tb.N, Tb.Th, Tb.Sp, Tb.Pf, and DA) could be quantified within the VOI compared with that of the whole-epiphysis approach (BV/TV, DA and Tb.Th). The PCA was run on all of the trabecular variables, including BV/TV, and with BV/TV excluded because it was highly correlated with several of these variables. The results of both PC analyses revealed similar relationships among the taxa and thus only the results including all of the trabecular variables are presented here. Due to unequal scale of variables, the PCA was conducted on the correlation matrix rather than on raw variables. Previous analyses have found no significant phylogenetic signal in trabecular structure of the primate humerus (Ryan and Shaw, 2012; Scherf et al., 2013) so this is not investigated here.
RESULTS

Allometry

Ordinary least squares regressions reveal that several variables are significantly correlated with the geometric mean of the humeral head epiphysis size (Table 2). Raw and logged Tb.Th (from both the whole-epiphysis and VOI analyses) scaled with negative allometry, indicating a relative thinning of trabecular bone as humeral head size increases. In the VOI, raw and logged Tb.N and Tb.Sp also scale with negative allometry. Logged DA scaled positively but raw DA did not scale significantly.

[INSERT TABLE 2 ABOUT HERE]

Comparison of individual trabecular variables

A coronal cross-section of the trabecular structure of the humeral head in a representative specimen from each extant taxon and A. africanus is shown in Figure 3 (see also Figs. SI1-6 for images of the complete sample). These images show some general trabecular patterns that were common in all taxa. The trabeculae were most dense, highly connected and uniformly oriented close to the articular surface. Trabeculae were also highly connected and uniformly oriented around the sub-cortical region of the surgical neck. In contrast, the central region of the head as it merges into the humeral shaft was characterised by a more isotropic structure with sparse, widely spaced, unconnected trabeculae. This latter pattern was most accentuated in humans, in which some specimens displayed an absence of trabeculae in the central-most region. In Pan this pattern was less marked and distribution was more homogenous throughout the entire humeral head. Humans retained a distinct internal epiphyseal line despite presenting with adult morphology externally. These trabecular patterns are further visualised in 3D in the colour maps of trabecular density (see below).

For each trabecular variable from both the whole-epiphysis and VOI approaches, summary statistics are presented in Table 3 and box-and-whisker plots are shown in Figure 4. Results of pairwise comparisons across different taxa for the whole-epiphysis and VOI data are presented in Table 4. Kruskal-Wallis tests indicate significant differences in Tb.Th (whole-epiphysis $p<0.001$, $p<0.001$,
VOI $p<0.001$, BV/TV (whole-epiphysis $p = 0.012$, VOI $p = 0.003$) and DA (whole-epiphysis $p = 0.025$, VOI $p = 0.002$) across all taxa.

In the whole-epiphysis analysis, *Gorilla* had significantly thicker Tb.Th than all other species except *Pongo* (Table 4). *Pongo* had significantly thicker trabeculae than smaller-bodied suspensory species *Symphalangus* and *Ateles*. Results from the VOI analysis were similar, with the exception that humans exhibit significantly thicker trabeculae than *Pan, Symphalangus* and *Ateles* (humans also had higher Tb.Th than all of these taxa in the whole-epiphysis analysis but this difference was not significant; Fig. 4). The *A. africanus* specimen showed similar Tb.Th values to humans in the whole-epiphysis but had lower Tb.Th values derived from the VOI and, in this way, was most similar to *Symphalangus* and *Ateles*.

BV/TV in the whole-epiphysis was highest in *Pan* and *Gorilla* and lowest in humans, with significant differences between *Pan*-humans and *Gorilla*-humans (Table 4). Suspensory *Pongo*, *Symphalangus* and *Ateles* were intermediate between African apes and humans. The VOI analysis yielded similar results; BV/TV is highest in *Pan* and *Gorilla* and both were significantly higher than *Pongo*, *Ateles*, and humans. *A. africanus* had relatively high BV/TV in the whole-epiphysis analysis, falling in between *Gorilla* and *Symphalangus*, but had the lowest BV/TV of the study sample in the VOI analysis, falling closest to humans (Table 3).

Humans, *Gorilla* and *Pan* demonstrated the highest DA in the whole-epiphysis analysis, while *Ateles* and *Symphalangus* had the lowest DA (Fig. 4). Humans were significantly higher than all suspensory taxa, while both *Gorilla* and *Pan* were significantly higher than *Ateles* only (Table 4). *Pongo* had DA values that were intermediate relative to the remainder of the study sample. DA values derived from the VOI were also high in *Pan* and *Gorilla*, and low in *Ateles* and *Symphalangus*. Differences are significant between *Pan*-humans, *Pongo*-humans, *Pan-Symphalangus*, *Pan-Ateles* and *Gorilla-Symphalangus*. However, in contrast to the results from the whole-epiphysis, *Pongo* had the highest DA, close to the values of *Pan* and *Gorilla*. Although the DA values for humans were similar between both analyses, the relative values across the remaining sample differed (Fig. 4). As such, humans had significantly lower VOI DA values than *Pan, Gorilla* and *Pongo*, which contrasts
with the whole-epiphysis results (Table 4). *A. africanus* had relatively low DA in both analyses, falling out most similar to *Pongo* in the whole-epiphysis and most similar to *Ateles* and humans in the VOI analysis (Table 3).

[INSERT TABLES 3 & 4 AND FIGS. 3 & 4 ABOUT HERE]

Bone volume fraction and degree of anisotropy in the whole-epiphysis

A bivariate plot of DA against BV/TV, as quantified in the whole-epiphysis, revealed substantial overlap across taxa, but a pattern that generally distinguishes different behavioral categories (Fig. 5). Knuckle-walking *Pan* and *Gorilla* were generally distinguished from suspensory taxa in having higher DA and BV/TV. Humans displayed a wide range of variation but were broadly distinguished from knuckle-walkers and suspensory taxa in having very low BV/TV but higher DA. Suspensory taxa fell out as intermediate between knuckle-walkers and humans in BV/TV but with generally lower DA, especially in *Ateles* and *Symphalangus*. *A. africanus* fell within the overlapping ranges of the great apes and modern humans for both BV/TV and DA. However, it exhibited higher BV/TV than all but one human and its DA was higher than that of most suspensory specimens (Fig. 5).

Distribution of bone volume fraction throughout the humeral head

Colour maps of the distribution of BV/TV throughout the humeral head are shown for one representative specimen of each of the extant taxa in Figure 6 and *A. africanus* in Figure 7. Colour maps for the entire sample are shown in the Supplementary Information Figures SI1-6. Visualisation of BV/TV distribution confirmed the taxonomic variation in trabecular patterns noted above in the segmented coronal cross-sections (Fig. 3). The colour maps further revealed that BV/TV is highest (>40%) medially, in the sub-articular region of the humeral head in all specimens, although both the degree and the precise axial location varied across taxa.

When all specimens were scaled to the same BV/TV range (0-45%; Fig. 6), *Pan* and *Gorilla* demonstrated the largest regions of high BV/TV and a coronal midslice revealed that these high-
density regions penetrate further into the centre of the humeral head than in all other species. In *Pan* the regions of lowest density (<10% BV/TV) were minimal or absent, demonstrating a more uniform distribution of BV/TV than that of *Gorilla*. Both species show a medial, slightly superior but largely posterior concentration of trabecular bone. *Gorilla* specimens exhibited a more localised, parasagittally-oriented band of highest concentration from the posterior to the superior region of the articular surface that was not as evident in *Pan* (see also Figs. SI2-3).

Among the suspensory taxa, a coronal midslice of the *Pongo* humeral head revealed a superior concentration of high BV/TV. *Ateles* and *Symphalangus*, on the other hand, exhibited a more medio-posterior concentration. *Symphalangus* demonstrated higher BV/TV throughout the humeral head compared with *Pongo* and *Ateles* (Fig. 6).

In humans, the BV/TV concentration was largely confined to the sub-articular region, barely penetrating into central regions of the humeral head. Several modern human specimens had large areas of BV/TV of less than 10%. Coronal midslice images showed a localised superior concentration in modern humans (Fig. 6).

Although the StW 328 *A. africanus* humeral head was not complete, trabecular structure within the preserved portion of the humeral head is intact (Fig. 7). Maximum BV/TV was confined to the sub-articular surface, similar to the pattern seen in humans. However, the regions of lowest BV/TV (<10%) were smaller than in humans. It was not possible to determine the precise pattern and extent of the highest BV/TV concentration due to incompleteness (Fig. 7).

Principal components analysis on volume of interest data

Figure 8 shows the results of a PCA using five trabecular parameters derived from a VOI. The first two principal components accounted for 79.8% of the total variance. Along the first principal component (PC1) (47.9%), *Gorilla, A. africanus* and most humans and *Pongo* were distinguished from *Pan, Symphalangus* and *Ateles*, in having lower Tb.N and greater Tb.Sp (Table 5; Fig. 8). Along
PC2 (31.9%), *Gorilla* was mainly distinguished from all other taxa in having higher Tb.Th and BV/TV and a more anisotropic trabecular structure, although several human, *Pongo* and *Pan* specimens overlap with the *Gorilla* distribution. Despite overlap, there was generally sufficient distinction among taxa to describe a characteristic trabecular structure but this did not hold true for locomotor categories.

Systematic comparison of whole-epiphysis and VOI results

In addition to the individual variables that differ across species in the whole-epiphysis and VOI-based results (*Table 4*), there were notable systematic differences within each taxon for each variables (*Table 3; Fig. 4*). Mean values for Tb.Th were generally higher across all taxa in the VOI analysis compared with the whole-epiphysis results. This was especially the case in humans, with Tb.Th 27.0% higher in the VOI analysis than the whole-epiphysis analysis (*Table 3*). However, *Pongo* and, more markedly, *A. africanus* were exceptions, both showing higher Tb.Th values (by 4.3% and 16.4% respectively) in the whole-epiphysis analysis than the VOI result. Mean values of BV/TV and DA were also systematically higher within each taxon in the VOI analysis than in the whole-epiphysis analysis. *A. africanus* was the only exception with a much higher (45.2%) BV/TV value in the whole-epiphysis analysis. Although the VOI analysis generally yielded systemically higher values for all variables than the whole-epiphysis analysis in each of the extant taxa, the degree of this increase was not consistent across taxa for any variable. For example, *Gorilla* BV/TV was 28.6% higher in the VOI in the whole-epiphysis analysis, but *Pongo* BV/TV was only 1.8% higher.

DISCUSSION

This study investigated the relationship between trabecular structure and loading regime in the humeral head of several primate taxa and *A. africanus*. Our aims were (1) to quantify for the first time the trabecular structure throughout the entire proximal epiphysis in order to investigate
The correlation between trabecular structure and inferred differences in joint loading across different locomotor and manipulative behaviors; (2) to examine how results from the traditional VOI-based methods compare to that of the whole-epiphysis analysis; and (3), within this comparative context, elucidate locomotor and/or manipulative behavioral signals in the *A. africanus* StW 328 partial humerus.

Allometry

The allometric relationship between different trabecular parameters and humeral epiphysis size was similar to that found in previous studies of the primate humerus in a more diverse primate sample (Ryan and Shaw, 2013) and to studies of other skeletal elements (Cotter et al., 2009; Fajardo et al., 2013) and broader mammalian samples (Doube et al., 2011; Barak et al., 2013). Trabecular thickness, spacing and number scaled with negative allometry, indicating that smaller primates have relatively thicker, more separated and more numerous trabeculae than in larger primates (Ryan and Shaw, 2013). However, unlike Ryan and Shaw (2013), we found that the relationship between BV/TV and the size of humeral epiphysis was not significant (rather than positively allometric) and that DA showed weak positive allometry. Other studies have also found BV/TV and DA to be (largely) independent of body mass across several primate species (Cotter et al., 2009; Fajardo et al., 2013) and mammal species (Doube et al., 2011; Barak et al., 2013). This may be due to differences in the respective study samples (i.e., range of taxa and body size), variation in trabecular scaling across different skeletal elements, and/or differences in methodology. Furthermore, phylogenetically informed linear regressions indicate that scaling relationships may vary between primate taxa (Ryan and Shaw, 2013), as is the case in rodents and humans (Barak et al., 2013). As such, to accurately determine scaling relationships of trabecular structure, regression analyses should be conducted on a taxon-specific basis, rather than across broad taxonomic groups. However, obtaining large enough sample sizes of high-resolution CT data to test within-species allometry remains challenging.
Does trabecular structure distinguish behavioral modes and loading regime?

To address Aim 1, we predicted that DA and BV/TV, as well as Tb.N and/or Tb.Th (which are correlated with BV/TV) would be higher in knuckle-walking taxa in which the humerus is thought to most frequently experience higher and more stereotypical compressive loading. We also predicted that suspensory taxa would show the opposite pattern due to lower and more diverse loading of the proximal humerus. Finally, we expected that humans would have the lowest BV/TV values, consistent with previous research (e.g. Scherf et al. 2013; Chirchir et al. 2015; Ryan and Shaw, 2015), and predicted low DA due to the low magnitude and diverse loading assumed to occur during manipulative activities. In general, the results from both whole-epiphysis and VOI-based analyses supported these predictions.

The results of both the whole-epiphysis and VOI analyses in this study largely concurred with previous studies of humeral head trabecular structure (Ryan and Shaw, 2012; Scherf et al., 2013), finding separation between knuckle-walking Pan and suspensory Pongo, and that the trabecular structure of humans overlapped more with Pongo than with Pan. As predicted, we found that most knuckle-walking individuals displayed higher BV/TV, Tb.Th and DA than most suspensory individuals, with Ateles and Symphalangus being particularly distinct. Humans were generally distinct from all other taxa, due largely to the lowest BV/TV values in both types of analyses, and showed relatively low DA that was more similar to suspensory taxa than to knuckle-walking taxa in the VOI analysis, supporting our predictions (see below). Therefore, VOI-based analyses [including Ryan and Shaw (2012) and Scherf et al. (2013)] and, to a lesser degree, whole-epiphysis analyses show that analysis of several aspects of trabecular structure together (e.g. BV/TV, DA, Tb.Th) can distinguish, to some extent, among species with different locomotor repertoires. However, there was considerable overlap in our sample across locomotor and taxonomic groups and analyses of different trabecular variables revealed that the overall structure was not the same across taxa in any given behavioral group.

Pan and Gorilla both exhibited high BV/TV, DA and low Tb.Pf (highly connected trabeculae), as predicted, but the overall trabecular structure was not the same. Pan trabeculae were more
numerous and closely packed (i.e., higher Tb.N and lower Tb.Sp); a trabecular pattern also reported in *Pan* by previous studies of the humerus (Ryan and Shaw, 2012; Scherf et al., 2013) and vertebrae (Liu et al., 2009). In contrast, *Gorilla* had significantly higher Tb.Th than *Pan*, suggesting that different trabecular parameter combinations may result in similar mechanical properties. These results make clear that not all knuckle-walkers have the same trabecular structure and highlight the importance of including more than just *Pan* in a comparative sample.

In both the whole-epiphysis and VOI analyses, suspensory taxa *Pongo, Symphalangus* and *Ateles* all demonstrated lower BV/TV (though this difference was not significant in *Symphalangus*) and higher Tb.Pf (less connected trabeculae) than that of knuckle-walking taxa. This result is consistent with previous findings of a less compact structure in *Pongo* (Ryan and Shaw, 2012; Scherf et al., 2013). Contrary to our predictions, *Symphalangus, Ateles* and, to a lesser degree, *Pongo*, shared high Tb.N and low Tb.Sp (i.e., more numerous and closely-packed trabecular structure) with *Pan* (*Table 3; Figs. 4 and 8*). All suspensory taxa also showed lower DA than knuckle-walking taxa, in the whole-epiphysis and VOI analyses, supporting our prediction of more diverse loading of the proximal humeral joint in the former group. The notable exception to this was the high DA value for *Pongo* in the VOI analysis, which was significantly higher than other suspensory taxa and humans and more similar to African apes (*Fig. 4*). This VOI result is consistent with the results of Scherf et al. (2013), which also used a VOI-based analysis. These varying results suggest that particular regions (in this case, the more central region of the epiphysis) of the *Pongo* proximal humerus may be relatively anisotropic but that the overall structure throughout the epiphysis is more isotropic like other suspensory taxa. This more anisotropic structure in *Pongo* may reflect allometry, as we found a weak positive relationship between DA and body mass, or it may relate to functional reasons that are currently unclear.

In the whole-epiphysis analysis, the mean BV/TV value for humans was lower than that of all other taxa, and significantly so compared to knuckle-walking taxa. Humans demonstrated a sparse structure with few, relatively unconnected trabeculae consistent with previous analyses of humans (Ryan and Shaw, 2012, 2015; Scherf et al., 2013; Chirchir et al., 2015). In the VOI analysis, the
human BV/TV was relatively higher, being more similar to suspensory taxa (but still significantly lower than knuckle-walking taxa). Results for DA in humans also contrasted between the two approaches. In the whole-epiphysis analysis, humans had significantly more anisotropic trabeculae than *Pongo, Ateles* and *Symphalangus* and mean values were higher than those of knuckle-walkers. Scherf et al. (2013) reported an even higher mean DA for humans quantified from VOIs. However, in our VOI analysis, human DA was significantly lower than that of knuckle-walkers and *Pongo*. Overall, these DA results did not support our predictions and, together with the DA results in *Pongo*, demonstrate that DA values are particularly dependent on the method used (see below).

Does the distribution of bone volume fraction reflect joint posture?

The whole-epiphysis analysis enabled visualisation of BV/TV variation throughout the entire humeral head, helping to address our first aim of investigating the correlation between trabecular structure and inferred joint loading (Fig. 6 and Figs. SI1-6). In all taxa, BV/TV was highest at the subarticular surface where forces are initially incurred, and there were greater similarities in the distribution of high BV/TV across the taxa than was initially predicted. *Pan* and *Gorilla* showed the largest concentrations of high BV/TV that penetrated much further into the epiphysis than in any other taxa. This pattern is consistent with the quantitative results described above and generally high compressive loading of the humerus during knuckle-walking. However, high BV/TV was distributed within the medio-posterior and superior aspects of the humeral head, which is not consistent with a more anterior humeral head-glenoid contact that would be expected during protraction and retraction of the humeral head during knuckle-walking (Hunt, 1991b, 1992; Inouye, 1994). Instead, the BV/TV pattern found in African apes is more similar to that of the suspensory taxa and may reflect arboreal behaviors, particularly climbing. We did not predict a functional signal of an arboreal (i.e., above-the-shoulder) arm posture in African apes given their high frequency of quadrupedal knuckle-walking. However, both species, and particularly *Gorilla*, may engage in more frequently in arboreal locomotor behaviors than previously thought (Crompton et al., 2010). That being said, *Gorilla* showed a parasagittal band of
high BV/TV that extended more anteriorly than was found in Pan, which may be consistent with
more frequent parasagittal protraction and retraction of the humerus during knuckle-walking
(Tuttle and Watts, 1985; Hunt, 1991a; see Figs. SI2-3). Arthrokinematic data on shoulder joint
posture in Pan and Gorilla during knuckle-walking and different types of arboreal locomotion are
needed to clarify the peak loading postures of the glenoid fossa and humeral head to fully interpret
the similarities and differences in distribution of BV/TV in both of these taxa.

Pongo displayed a superior concentration of BV/TV, consistent with abduction or flexion of
the humerus to shoulder level and above. As the humerus is elevated, the superior region of the
head articulates with the glenoid fossa (Soslowsky et al., 1992; Arias-Martorell et al., 2015b).
Elevation above shoulder level causes superior orientation of the scapula, including the glenoid
fossa, and thus the same region of articulation is maintained (Soslowsky et al., 1992). This solely
superior concentration was absent in *Ateles* and *Symphalangus*; instead they showed a medio-
superior distribution of high BV/TV. This difference possibly reflects different joint postures during
brachiation and slow orthograde clambering (Fleagle, 1976; Cant et al., 2001). Further variation in
trabecular patterns found between *Symphalangus* and *Ateles*, particularly larger regions of higher
BV/TV in *Symphalangus*, may reflect the use of quick, ricochetal brachiation (Fleagle, 1976; Jungers
and Stern, 1981; 1984; Cant, 2003), a pull-up phase during non-ricochoetal brachiation (Jungers and
Stern, 1981, Larson, 1988) and the absence of a prehensile tail, all which may increase loading at
the glenohumeral joint.

Conversely, similar BV/TV distributions may result from distinct joint postures. Both *Pongo*
and humans exhibited a superior concentration of BV/TV. In *Pongo*, this likely reflects use of the
arms in suspensory, abducted postures at or above the level of the shoulder. While humans
generally engage in manipulative behaviors predominantly below shoulder level (Westerhoff et al.
2009b; Scherf et al. 2016), it may be only those at or above shoulder level (during which
articulation is superior; Soslowsky et al. 1992) that incur loads great enough for increased bone
deposition and subsequent increases in BV/TV. This is supported by empirical data reporting
maximum forces during above the shoulder activities (Bergmann et al., 2011). The similar
distributions in *Pongo* and humans may also be related to the requirement in both species for highly mobile glenohumeral joints, for diverse arboreal behaviors (orthograde clambering on irregular substrates/superstrates) and irregular manipulative behaviors, respectively. This is also consistent with the high BV/TV in the superior region of the *Pan* and *Gorilla* proximal humerus, as African apes also require highly mobile glenohumeral joints for arboreal locomotion.

Large regions of BV/TV under 10% in humans support our prediction that habitual loading of the proximal humerus is lower than in non-human primates. This may help to explain the retention of a faint epiphyseal line, wherein loading does not attain magnitudes sufficient to completely remodel this structure. However, recent studies have shown a systemic pattern of low BV/TV in throughout the skeleton of recent sedentary humans (Chirchir et al., 2015; Ryan and Shaw, 2015), including skeletal elements that incur high loads due to bipedalism, such as the femoral head (Ryan and Shaw, 2012), vertebrae (Cotter et al., 2009) and calcaneus (Maga et al., 2006). As such, there may be a taxon-specific systemic pattern to trabecular structure throughout the skeleton and low BV/TV in the human humeral head may not solely reflect loading intensity (Tsegai et al. 2018).

Comparison of whole-epiphysis and VOI results

The second main aim of this study was to examine variation in results derived from two different approaches to measuring trabecular structure: the whole-epiphysis analysis and VOI analysis. We found notable differences in trabecular parameter results for specific taxa and the two approaches yielded systematic differences across taxa and variables, which did not support our prediction.

Broadly, results from the VOI yielded higher values for the Tb.Th, BV/TV and DA within most taxa than the whole-epiphysis approach. In some cases, this difference was minimal (e.g. Tb.Th and BV/TV values in *Pan* and all suspensory taxa), while in other taxa the variables showed a much greater discrepancy. In particular, all DA values derived from the VOI were substantially higher within all taxa, except humans, than those derived from the whole-epiphysis. This difference was most striking in *Pongo*, in which the whole-epiphysis approach yielded a relatively low DA value (mean 0.129), similar to other suspensory taxa and supporting our predictions based on diverse
loading direction during arboreal behaviors. In contrast, the VOI yielded a much higher DA value (mean 0.293) in *Pongo* that was similar to that of African apes. Scherf et al. (2013) also predicted low DA in the *Pongo* humerus but found even higher DA values using a larger and more superiorly-placed VOI. This discrepancy in DA between the two methods is consistent with the findings of Kivell et al. (2011) that DA values are particularly susceptible to changes in VOI location in the hand bones (but relatively robust to changes in VOI size). Thus, the differing results found in this study likely reflect variation in the location of the trabeculae being quantified. In other words, certain regions of the humeral proximal epiphysis – in particular, the central region (measured in this study) and central-superior region (measured in Scherf et al., 2013) – have more aligned (anisotropic) trabeculae than other regions. This anisotropy is captured in the VOI analyses but not when trabecular structure throughout the whole-epiphysis is quantified. For example, the differing results in *Pongo* suggest that trabeculae in the superior-central region is substantially more aligned, which may suggest that peak loading of the humerus occurs superiorly when the arm is loaded above the shoulder. Overall, however, the trabecular structure of the entire epiphysis is relatively isotropic, consistent with resisting loads from multiple directions.

In contrast to the remaining sample, human DA results were very similar between the two methods. This may reflect the much lower density of trabeculae in the human epiphysis, such that the central-distal region of the humeral head was essentially empty (Figs. 3 and 6) compared with the more “full” and homogeneous trabecular distribution in our non-human primate sample. As such, in humans there is less trabeculae being quantified in the whole-epiphysis analysis and what was quantified by the VOI is more representative of the overall alignment of the trabeculae throughout the head. The same explanation may apply to variation seen in the results of Tb.Th in both humans and *Gorilla*, such that the VOI yielded higher Tb.Th values than the whole-epiphysis method. Both taxa show the most distinct contrast in BV/TV between the subarticular region of the humeral head, which is extremely dense, and the central region, which is almost empty of trabeculae (Fig. 6). Thus, differences between the two methods are increased when the trabecular structure is less homogeneous.
Overall, each method provides different, and potentially functionally relevant, information about loading of the humerus and either method may be valid in future studies depending on the question being addressed. Furthermore, despite the systematic variation across the results, the relative relationships across most taxa/behavioral groups remained the same. For example, Gorilla, Pongo and humans had the highest Tb.Th using both methods, and knuckle-walking taxa consistently had higher BV/TV than suspensory taxa, and humans always had the lowest BV/TV values. These results are also consistent with previous analyses that have demonstrated minimal phylogenetic influence on trabecular structure in the primate humerus and other skeletal elements (Shaw and Ryan, 2012; Tsegai et al., 2018). However, it is important to note that these species differences were not always statistically significant in both analyses. Thus, when comparing results across studies, it is important to recognise that a VOI-based analyses may provide systematically higher values (depending on VOI placement) for certain trabecular variables than whole-epiphysis-based analyses, and that these differences are likely accentuated in taxa with less homogenous trabecular structure. As such it is necessary to consider relative differences across taxa/behavioral groups rather than rely on statistically significant results alone.

A. africanus and implications for fossil hominins

Visualisation and quantification of the trabecular structure in A. africanus StW 328 for the first time provides a novel opportunity to glean new functional information about behavior in this fossil taxon and shed light on the debate surrounding the degree of arboreality in australopiths (Stern, 2000; Ward 2002, 2013; Niemitz, 2010; Arias-Martorell et al., 2015a). The correlations between BV/TV distribution and inferred joint posture in extant taxa found here can help to reconstruct joint posture and loading in StW 328, thus addressing our final aim. However, given the variation in the results derived from both methods, we focus on the relative differences between extant taxa and employ caution in making functional inferences. In the VOI analysis, A. africanus was similar to humans in having relatively few, widely-separated trabeculae and low BV/TV, suggesting low loading conditions. However, the trabecular structure was highly connected, similar to Pan, Gorilla.
and Pongo, which would enable resistance to high loads perhaps associated with arboreal behaviors. Furthermore, the whole-epiphysis analysis showed that *A. africanus* had high BV/TV like that of non-human hominoids suggesting greater loading of the humerus than humans, and possibly some degree of arboreality. Although, it is important to note the low BV/TV in humans is likely systemic and a relatively recent phenomenon; modern human foragers have BV/TV values that are similar to other primates for their body size (Ryan and Shaw, 2015) and thus high BV/TV in *A. africanus* is not inconsistent with a non-arboreal lifestyle. *A. africanus* DA was intermediate between *Pan* and *Pongo* in the whole-epiphysis analysis and similar to *Symphalangus* and *Ateles* in the VOI analysis, suggesting diverse loading the humeral head, perhaps in an arboreal context. Unfortunately, the preservation of the specimen prevents delineation of joint posture on the basis of BV/TV distribution (Fig. 7). Although represented by only a single specimen, the preserved trabecular structure of the *A. africanus* proximal humerus is broadly similar to humans, with some structural characteristics that indicate higher, more varied loading possibly reflecting the retention of arboreal locomotion.

The results of this and previous studies make clear that there is variation in primate humeral trabecular structure that correlates with species and, less clearly, locomotor differences, that may help reconstruct behavior in fossil taxa. Greater knowledge of glenohumeral joint posture during maximal loading, particularly in non-human primates, as well as a better understanding of how different trabecular parameters may respond to mechanical stress, are needed to provide further insight into the potential functional signals of humeral trabecular bone. In the short term, application of different trabecular methodologies to larger and broader study samples may help to provide more accurate functional interpretations of variation in trabecular patterns.

ACKNOWLEDGEMENTS

For scanning assistance we thank Heike Scherf and Heiko Temming. For access to specimens in their care we thank Frieder Mayer (Berlin Museum für Naturkunde), Horst Bruchhaus (Friedrich Schiller University), Christophe Boesch (Max Planck Institute for Evolutionary
Anthropology), Bernard Zipfel (Evolutionary Studies Institute, University of Witwatersrand), and Gerhard Haszprunar (Zoologische Staatsammlung München). StW 328 was scanned as part of a collaborative project between the Evolutionary Studies Institute, University of the Witwatersrand and the Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology. We are grateful to Julia Arias-Martorell for helpful comments on an earlier draft of this manuscript and to the Associate Editor and four anonymous reviewers for the insightful suggestions. This study was funded in part by the Max Planck Society (MMS, JJH and TLK) and European Research Council Starting Grant #336301 (MMS, TLK).

REFERENCES

van der Meulen MCH, Morgan TG, Yang X, Baldini TH, Myers ER, Wright TM, Bostrom MPG. 2006.

Figure 1. Morphological filters applied during the whole-epiphysis analysis shown on a paracoronal midslice. Original segmented image (A); outer surface of the cortical bone (B), inner surface, defining the cortical-trabecular boundary (C); cortical thickness image (outer surface – inner surface) (D), trabecular only image (original segmented image - cortical thickness) (E), final masked image in which cortex, trabeculae and non-bone (air) are assigned separate greyscale values (F), 3D mesh of cortex (red) and trabecular bone (yellow) (H).
Figure 2. Example of the location of a cubic volume of interest. Subsequently, a spherical volume of interest (red circle) is extracted from this cube and having a diameter 30% of the geometric mean of the articular surface dimensions.
Figure 3. Coronal plane midslice though segmented image of one specimen of each extant taxon in the study sample and *A. africanus* StW 328. 1cm scale bar shown for each specimen.
Figure 4. Box-and-whisker plots of trabecular variables across taxa and a comparison of bone volume fraction (BV/TV), trabecular thickness (Tb.Th), and anisotropy (DA) values derived from the volume of interest and whole-epiphysis analyses. ’Tb.N’, trabecular number; ’Tb.Sp’, trabecular separation; ’Tb.Pf’, trabecular pattern factor; Symph.’, Symphalangus.
Figure 5. Bivariate plot of bone volume fraction plotted and degree of anisotropy (fabric DA) quantified in the whole-epiphysis. Convex hulls are drawn around specimens of each taxon.

Symph., *Symphalangus*
Figure 6. Visual representations of trabecular bone volume (BV/TV) in one specimen of each extant taxon in the study sample. From left to right: anterior view with main fabric and stiffness orientations, coronal plane cross-section, coronal plane midslice through segmented image, and superior view. In the first two colour maps (left), all specimens are scaled to a BV/TV range of 0-45%, while in the far-right colour maps (superior view), each specimen is scaled to its own data range to better show areas of BV/TV concentration. ‘Pr’, proximal; ‘L’, lateral; ‘M’, medial; ‘P’, posterior; ‘A’, anterior.
Figure 7. Detailed illustrations of the StW 328 specimen. Top row – surface models of StW 328 in, from left to right, anterior, medial, posterior and lateral views; middle row – midplane section illustrating preservation of trabecular structure (left) and superior view of surface model (right); bottom row – BV/TV maps in anterior view (far left), coronal cross-section (middle left), segmented coronal cross-section (middle), superior view (middle right), and parasagittal cross-section (far right).
Figure 8. Principal component analysis scores of trabecular variables quantified in the volume of interest analysis. Convex hulls are drawn around all specimens of each taxon. 'Symph.', Symphalangus.
Table 1. Information about the study sample, including estimated body mass and primary locomotor mode.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>N</th>
<th>Side (R/L)</th>
<th>Sex (M/F/?)</th>
<th>Mean body mass (kg)</th>
<th>Locomotor mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homo sapiens</td>
<td>9</td>
<td>9/0</td>
<td>0/0/9</td>
<td>72.1(^2)</td>
<td>Bipedal</td>
</tr>
<tr>
<td>Australopithecus africanus</td>
<td>1</td>
<td>1/0</td>
<td>0/0/1</td>
<td>41(^3)</td>
<td>Bipedal/arboreal?</td>
</tr>
<tr>
<td>Pan troglodytes verus</td>
<td>12</td>
<td>5/7</td>
<td>0/0/12</td>
<td>46.3</td>
<td>Knuckle-walker</td>
</tr>
<tr>
<td>Gorilla gorilla</td>
<td>6</td>
<td>4/2</td>
<td>1/1/4</td>
<td>170.4</td>
<td>Knuckle-walker</td>
</tr>
<tr>
<td>Pongo pygmaeus</td>
<td>8</td>
<td>6/2</td>
<td>0/0/8</td>
<td>78.5</td>
<td>Suspensory (torso-orthogrady)</td>
</tr>
<tr>
<td>Symphalangus syndactylus</td>
<td>3</td>
<td>1/2</td>
<td>0/2/1</td>
<td>11.9</td>
<td>Suspensory (brachiation)</td>
</tr>
<tr>
<td>Ateles sp.</td>
<td>4</td>
<td>3/1</td>
<td>1/1/2</td>
<td>7.8-9.4(^4)</td>
<td>Suspensory (brachiation)</td>
</tr>
</tbody>
</table>

\(^1\) Extant primate body mass mean values from Smith and Jungers (1997)
\(^2\) Data derived from contemporary Danes (Holloway, 1980)
\(^3\) *Au. africanus* body mass estimates from McHenry (1992)
\(^4\) Range covers all *Ateles* species reported in Smith and Jungers (1997)
\(^5\) *Ateles* also uses a variety of other arboreal behaviours, including clambering and quadrupedal locomotion at similarly high frequencies to suspensory locomotion (Cant et al., 2001).
Table 2. Results of ordinary least squares regression for raw and logged trabecular variables derived from the whole-epiphysis (whole-epi.) and volume of interest (VOI) analyses.

<table>
<thead>
<tr>
<th>Method</th>
<th>Variable</th>
<th>Isometric slope value</th>
<th>Slope</th>
<th>CL-</th>
<th>CL+</th>
<th>R^2</th>
<th>y-intercept</th>
<th>P</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>whole-epi.</td>
<td>Raw Tb.Th</td>
<td>1</td>
<td>0.005</td>
<td>0.003</td>
<td>0.007</td>
<td>0.627</td>
<td>0.030</td>
<td><0.001</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Log10 Tb.Th</td>
<td>1</td>
<td>0.809</td>
<td>0.525</td>
<td>1.020</td>
<td>0.642</td>
<td>-1.906</td>
<td><0.001</td>
<td>-</td>
</tr>
<tr>
<td>VOI</td>
<td>Raw Tb.Th</td>
<td>1</td>
<td>0.006</td>
<td>0.004</td>
<td>0.007</td>
<td>0.68</td>
<td>0.03</td>
<td><0.001</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Log10 Tb.Th</td>
<td>1</td>
<td>0.808</td>
<td>0.560</td>
<td>1.024</td>
<td>0.64</td>
<td>-1.87</td>
<td><0.001</td>
<td>-</td>
</tr>
<tr>
<td>VOI</td>
<td>Raw BV/TV</td>
<td>0</td>
<td><0.001</td>
<td>-0.001</td>
<td>0.002</td>
<td>0.001</td>
<td>0.224</td>
<td>0.859</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Log10 BV/TV</td>
<td>0</td>
<td>0.024</td>
<td>0.271</td>
<td>0.329</td>
<td>0.001</td>
<td>-0.688</td>
<td>0.884</td>
<td>+</td>
</tr>
<tr>
<td>VOI</td>
<td>Raw BV/TV</td>
<td>0</td>
<td>0.001</td>
<td>-0.001</td>
<td>0.004</td>
<td>0.04</td>
<td>0.20</td>
<td>0.214</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Log10 BV/TV</td>
<td>0</td>
<td>0.136</td>
<td>-0.194</td>
<td>0.529</td>
<td>0.02</td>
<td>-0.82</td>
<td>0.445</td>
<td>+</td>
</tr>
<tr>
<td>VOI</td>
<td>Raw Fab DA</td>
<td>0</td>
<td>0.001</td>
<td>0.003</td>
<td>0.037</td>
<td>0.114</td>
<td>0.226</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Log10 Fab DA</td>
<td>0</td>
<td>0.537</td>
<td>0.430</td>
<td>1.340</td>
<td>0.072</td>
<td>-1.710</td>
<td>0.089</td>
<td>+</td>
</tr>
<tr>
<td>VOI</td>
<td>Raw DA</td>
<td>0</td>
<td>0.002</td>
<td><0.001</td>
<td>0.005</td>
<td>0.07</td>
<td>0.17</td>
<td>0.094</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Log10 DA</td>
<td>0</td>
<td>0.397</td>
<td>0.101</td>
<td>0.893</td>
<td>0.10</td>
<td>-1.26</td>
<td>0.043</td>
<td>+</td>
</tr>
<tr>
<td>VOI</td>
<td>Raw Tb.Pf</td>
<td>0</td>
<td>-0.029</td>
<td>-0.069</td>
<td>0.004</td>
<td>0.05</td>
<td>1.90</td>
<td>0.163</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Raw Tb.N</td>
<td>0</td>
<td>-0.016</td>
<td>-0.021</td>
<td>-0.008</td>
<td>0.32</td>
<td>1.63</td>
<td><0.001</td>
<td>-</td>
</tr>
<tr>
<td>VOI</td>
<td>Log10 Tb.N</td>
<td>0</td>
<td>-0.673</td>
<td>-0.873</td>
<td>0.408</td>
<td>0.30</td>
<td>1.06</td>
<td><0.001</td>
<td>-</td>
</tr>
<tr>
<td>VOI</td>
<td>Raw Tb.Sp</td>
<td>1</td>
<td>0.011</td>
<td>0.005</td>
<td>0.016</td>
<td>0.28</td>
<td>0.37</td>
<td><0.001</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Log10 Tb.Sp</td>
<td>1</td>
<td>0.569</td>
<td>0.266</td>
<td>0.775</td>
<td>0.30</td>
<td>-1.01</td>
<td><0.001</td>
<td>-</td>
</tr>
</tbody>
</table>

1 Following Ryan and Shaw (2013), for size variables (Tb.Th, Tb.Sp), isometric scaling slope = 1, + allometry = >1, - allometry = <1. For shape variables (BV/TV, DA, Tb.Pf, Tb.N), isometric scaling slope = 0, + allometry = >0, - allometry = <0.

2 Slope indicates scaling coefficient for each variable with 95% confidence limits (CL-/CL+).
Table 3. Summary statistics for trabecular bone structure variables derived from whole-epiphysis (whole-epi.) and volume of interest (VOI) analyses.

<table>
<thead>
<tr>
<th></th>
<th>H. sapiens</th>
<th>A. africanus</th>
<th>Pan</th>
<th>Gorilla</th>
<th>Pongo</th>
<th>Symphalangus</th>
<th>Ateles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb.Th (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>whole-epi.</td>
<td>0.241 ± 0.029</td>
<td>0.248</td>
<td>0.229 ± 0.031</td>
<td>0.374 ± 0.073</td>
<td>0.269 ± 0.035</td>
<td>0.181 ± 0.037</td>
<td>0.211 ± 0.037</td>
</tr>
<tr>
<td>Mean</td>
<td>0.201 - 0.294</td>
<td></td>
<td>0.191 - 0.307</td>
<td>0.290 - 0.498</td>
<td>0.211 - 0.323</td>
<td>0.142 - 0.217</td>
<td>0.165 - 0.251</td>
</tr>
<tr>
<td>Range</td>
<td>0.306 ± 0.044</td>
<td>0.213</td>
<td>0.235 ± 0.027</td>
<td>0.396 ± 0.045</td>
<td>0.258 ± 0.025</td>
<td>0.199 ± 0.050</td>
<td>0.227 ± 0.042</td>
</tr>
<tr>
<td>VOI</td>
<td>0.263 - 0.381</td>
<td></td>
<td>0.186 - 0.277</td>
<td>0.313 - 0.433</td>
<td>0.224 - 0.297</td>
<td>0.159 - 0.254</td>
<td>0.173 - 0.272</td>
</tr>
<tr>
<td>BV/TV</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>whole-epi.</td>
<td>0.183 ± 0.047</td>
<td>0.241</td>
<td>0.265 ± 0.042</td>
<td>0.252 ± 0.053</td>
<td>0.227 ± 0.032</td>
<td>0.230 ± 0.034</td>
<td>0.207 ± 0.034</td>
</tr>
<tr>
<td>Mean</td>
<td>0.114 - 0.269</td>
<td></td>
<td>0.204 - 0.325</td>
<td>0.181 - 0.316</td>
<td>0.163 - 0.260</td>
<td>0.177 - 0.273</td>
<td>0.176 - 0.255</td>
</tr>
<tr>
<td>Range</td>
<td>0.220 ± 0.048</td>
<td>0.166</td>
<td>0.298 ± 0.052</td>
<td>0.324 ± 0.082</td>
<td>0.231 ± 0.035</td>
<td>0.254 ± 0.039</td>
<td>0.223 ± 0.043</td>
</tr>
<tr>
<td>VOI</td>
<td>0.148 - 0.279</td>
<td></td>
<td>0.208 - 0.365</td>
<td>0.215 - 0.433</td>
<td>0.169 - 0.278</td>
<td>0.211 - 0.284</td>
<td>0.176 - 0.259</td>
</tr>
<tr>
<td>Fab DA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>whole-epi.</td>
<td>0.181 ± 0.056</td>
<td>0.148</td>
<td>0.165 ± 0.032</td>
<td>0.170 ± 0.029</td>
<td>0.129 ± 0.042</td>
<td>0.099 ± 0.072</td>
<td>0.085 ± 0.077</td>
</tr>
<tr>
<td>Mean</td>
<td>0.068 - 0.239</td>
<td></td>
<td>0.087 - 0.208</td>
<td>0.132 - 0.207</td>
<td>0.056 - 0.195</td>
<td>0.018 - 0.157</td>
<td>0.018 - 0.170</td>
</tr>
<tr>
<td>DA</td>
<td>0.191 ± 0.044</td>
<td>0.188</td>
<td>0.276 ± 0.040</td>
<td>0.277 ± 0.068</td>
<td>0.293 ± 0.074</td>
<td>0.160 ± 0.044</td>
<td>0.189 ± 0.063</td>
</tr>
<tr>
<td>VOI</td>
<td>0.121 - 0.260</td>
<td></td>
<td>0.204 - 0.324</td>
<td>0.215 - 0.372</td>
<td>0.189 - 0.404</td>
<td>0.127 - 0.210</td>
<td>0.118 - 0.270</td>
</tr>
<tr>
<td>Tb.Pf (mm⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>whole-epi.</td>
<td>1.965 ± 1.113</td>
<td>0.554</td>
<td>-0.039 ± 0.951</td>
<td>-0.512 ± 0.892</td>
<td>0.687 ± 0.763</td>
<td>0.742 ± 0.888</td>
<td>2.336 ± 1.124</td>
</tr>
<tr>
<td>Mean</td>
<td>0.835 - 3.772</td>
<td></td>
<td>-1.210 - 1.820</td>
<td>-1.860 - 1.786</td>
<td>-0.385 - 1.916</td>
<td>-0.273 - 1.371</td>
<td>0.943 - 3.322</td>
</tr>
<tr>
<td>Range</td>
<td>0.724 ± 0.162</td>
<td>0.777</td>
<td>1.260 ± 0.111</td>
<td>0.810 ± 0.137</td>
<td>0.898 ± 0.121</td>
<td>1.302 ± 0.171</td>
<td>0.985 ± 0.096</td>
</tr>
<tr>
<td>Tb.N (mm⁻¹)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>whole-epi.</td>
<td>0.552 - 1.033</td>
<td></td>
<td>1.117 - 1.449</td>
<td>0.630 - 1.015</td>
<td>0.673 - 1.027</td>
<td>1.119 - 1.456</td>
<td>0.876 - 1.099</td>
</tr>
<tr>
<td>Mean</td>
<td>0.529 - 0.745</td>
<td></td>
<td>0.529 - 0.745</td>
</tr>
<tr>
<td>Range</td>
<td>0.704 - 1.194</td>
<td></td>
<td>0.695 - 1.088</td>
</tr>
<tr>
<td>Tb.Sp (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>whole-epi.</td>
<td>0.944 ± 0.164</td>
<td>1.401</td>
<td>0.634 ± 0.070</td>
<td>0.945 ± 0.162</td>
<td>0.915 ± 0.121</td>
<td>0.667 ± 0.124</td>
<td>0.767 ± 0.036</td>
</tr>
<tr>
<td>Mean</td>
<td>0.704 - 1.194</td>
<td></td>
<td>0.529 - 0.745</td>
<td>0.750 - 1.234</td>
<td>0.695 - 1.088</td>
<td>0.561 - 0.802</td>
<td>0.723 - 0.809</td>
</tr>
</tbody>
</table>
Table 4. Pairwise comparisons across taxa of results from the whole-epiphysis and volume of interest (VOI) methods for trabecular thickness (Tb.Th), bone volume fraction (BV/TV), and degree of anisotropy (DA). In each table, the upper half presents comparisons across taxa in the VOI analysis and the lower half presents comparisons across taxa for the whole-epiphysis analysis.

<table>
<thead>
<tr>
<th></th>
<th>H. sapiens</th>
<th>Pan</th>
<th>Gorilla</th>
<th>Pongo</th>
<th>Symphalangus</th>
<th>Ateles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb. Th</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H. sapiens</td>
<td>-17.4**</td>
<td>NS</td>
<td>NS</td>
<td>-23.8**</td>
<td>-19.8*</td>
<td></td>
</tr>
<tr>
<td>Pan</td>
<td>NS</td>
<td></td>
<td>26.67**</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Gorilla</td>
<td>19.3**</td>
<td>24.8**</td>
<td>20.3**</td>
<td>33.0**</td>
<td>29.0**</td>
<td></td>
</tr>
<tr>
<td>Pongo</td>
<td>NS</td>
<td>-13.1*</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Symphalangus</td>
<td>NS</td>
<td>NS</td>
<td>36.3**</td>
<td>-24.7**</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Ateles</td>
<td>NS</td>
<td>NS</td>
<td>27.7**</td>
<td>-16.0*</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>

BV/TV						
H. sapiens	16.3**	17.9*	NS	NS	NS	
Pan	20.5**		NS	13.9*	NS	15.7*
Gorilla	17.2*	NS	15.6*	NS	NS	17.3*
Pongo	NS	NS	NS	NS	NS	
Symphalangus	NS	NS	NS	NS	NS	
Ateles	NS	15.0*	NS	NS	NS	

DA						
H. sapiens	18.0**	16.9	19.3**	NS	NS	
Pan	NS		NS	22.1**	17.0*	
Gorilla	NS	NS	NS	NS	NS	
Pongo	-16.1*	NS	NS	-23.5**	-18.3*	
Symphalangus	-20.0*	NS	NS	NS	NS	
Ateles	-20.1*	15.0*	16.6*	NS	NS	

Note: light shading indicates a lack of agreement in statistically significant differences between the VOI and whole-epiphysis analysis; ‘NS’, not significant; ‘*’, indicates significant difference between taxa at $p < 0.05$; ‘**’, indicates significant difference between taxa at $p < 0.01$.

49
Table 5. Variable loadings on first two principal components listed by magnitude (VOI analysis).

<table>
<thead>
<tr>
<th>Variable</th>
<th>PC1 (55.3%)</th>
<th>Variable</th>
<th>PC2 (27.2%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TbN</td>
<td>-0.63</td>
<td>DA</td>
<td>0.92</td>
</tr>
<tr>
<td>Tb.Sp</td>
<td>0.61</td>
<td>TbTh</td>
<td>0.37</td>
</tr>
<tr>
<td>TbTh</td>
<td>0.47</td>
<td>TbN</td>
<td>0.14</td>
</tr>
<tr>
<td>DA</td>
<td>-0.04</td>
<td>Tb.Sp</td>
<td>-0.08</td>
</tr>
</tbody>
</table>