
Kent Academic Repository
Full text document (pdf)

Copyright & reuse

Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all

content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions

for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research

The version in the Kent Academic Repository may differ from the final published version.

Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the

published version of record.

Enquiries

For any further enquiries regarding the licence status of this document, please contact:

researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down

information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Orchard, Dominic A. and Yoshida, Nobuko (2017) Session Types with Linearity in Haskell.
 In: Gay, S. and Ravara, A., eds. Behavioural Types: from Theory to Tools. River Publishers
Series in Automation, Control and Robotics . River Publishers, pp. 219-241. ISBN 9788793519824.

DOI

https://doi.org/10.13052/rp-9788793519817

Link to record in KAR

http://kar.kent.ac.uk/66632/

Document Version

Publisher pdf

10

Session Types with Linearity in Haskell

Dominic Orchard1 and Nobuko Yoshida2

1University of Kent, UK
2Imperial College London, UK

Abstract

Type systems with parametric polymorphism can encode a significant pro-

portion of the information contained in session types. This allows concurrent

programming with session-type-like guarantees in languages like ML and

Java. However, statically enforcing the linearity properties of session types,

in a way that is also natural to program with, is more challenging. Haskell

provides various language features that can capture concurrent programming

with session types, with full linearity invariants and in a mostly idiomatic

style. This chapter overviews various approaches in the literature for session

typed programming in Haskell.

As a starting point, we use polymorphic types and simple type-level func-

tions to provide session-typed communication in Haskell without linearity.

We then overview and compare the varying approaches to implementing

session types with static linearity checks. We conclude with a discussion of

the remaining open problems.

The code associated with this chapter can be found at http://github.

com/dorchard/betty-book-haskell-sessions.

10.1 Introduction

Session types are a kind of behavioural type capturing the communication

behaviour of concurrent processes. While there are many variants of session

types, they commonly capture the sequence of sends and receives performed

over a channel and the types of the messages carried by these interactions. A

significant aspect of session types is that they enforce linear use of channels:

219

220 Session Types with Linearity in Haskell

every send must have exactly one receive (no orphan messages), and vice

versa (no hanging receives). These properties are often referred to together as

communication safety. A channel cannot be reused once it has “used up” its

capability to perform sends and receives. This aspect of session types makes

them hard to implement in languages which do not have built-in notions of

linearity and resource consumption in the type system.

The following two example interactions will be used throughout.

Example 1 (Integer equality server and client). Consider a simple server

which provides two modes of interaction (services) to clients. If a client

chooses the first service, the server can then receive two integers, compare

these for equality, send the result back as a boolean, and then return to the

start state. The second service tells the server to stop hence it does not return

to providing the initial two services.

A potential client requests the first behaviour, sends two integers, receives

a boolean, and then requests that the server stop. These server and client

behaviours are captured by the following session types, using the notation

of Yoshida and Vasconcelos [18], which describe the interaction from the

perspective of opposite channel endpoints:

Server := µα.&{eq :?Z.?Z.!B.α, nil : end}

Client := ⊕{eq :!Z.!Z.?B.⊕{nil : end}}

The server has a recursive session type, denoted µα.S which binds the

variable α in scope of a session type S. Session types are typically equi-

recursive, such that µα.S ≡ S[µα.S/α]. The operator & denotes a choice

offered between branches, labelled here as eq and nil. In the eq case, two

integers are received and a boolean is sent before recursing with α. In the nil

case the interaction finishes, denoted by end.

The client selects the eq service, denoted by ⊕. Two integers are sent

and a boolean is received. Then the nil behaviour is selected via ⊕, ending

the interaction. Session types thus abstract communication over a channel, or

equivalently, they describe a channel’s capabilities.

The two types are dual: they describe complementary communication

behaviour on opposite end-points of a channel. Duality can be defined

inductively as a function on session types:

!τ.S = ?τ.S &{li : Si}i∈I = ⊕{li : Si}i∈I µα.S = µα.S[α/α]

?τ.S = !τ.S ⊕{li : Si}i∈I = &{li : Si}i∈I end = end

10.1 Introduction 221

Recursion variables come in two flavours: α and their dual α. The dual of a

dualised variable (α) = α is the undualised α. This formulation of duality

with recursive types is due to Lindley and Morris [7].

Duality enforces communication safety. If the communication patterns

of the server and client do not match then duality does not hold. Duality also

encompasses linearity, as any repetition of actions by the server or client leads

to non-matching communication behaviour.

Example 2 (Delegating integer equality). Following the expressive power

of the π-calculus, session types can also capture delegation, where channels

are passed over channels. Thus, the types of communicated values τ include

session types of communicated channels, written 〈S〉.
As a permutation on the previous example, we introduce a layer of

indirection through delegation. The server, after receiving two integers, now

receives a channel over which the resulting boolean should be sent. Dually,

the client sends a channel which has the capability of sending a boolean. This

is captured by the session types:

Server := µα.&{eq :?Z.?Z.?〈!B〉.α, nil : end}

Client := ⊕{eq :!Z.!Z.!〈!B〉.⊕{nil : end}}

The server’s capability to receive a channel, over which a boolean is sent, is

denoted ?〈!B〉 whose dual in the client is !〈!B〉: the sending of a channel over

which a boolean can be sent.

The reader is referred to the work of Yoshida and Vasconcelos [18] for a

full description of a session type theory for the π-calculus on which our more

informal presentation is based here.

To unpack the problem of encoding session type linearity in Haskell,

we first introduce a relatively simple encoding of session types capturing

sequences of send and receive actions on channels and some notion of

session duality. However, this approach does not fully enforce linearity

(Section 10.2). We then overview the various approaches in the literature for

encoding session types in Haskell, focusing on their approach to linearity

(Section 10.3). Outstanding problems and open questions in this area are

discussed finally in Section 10.4.

Throughout, “Haskell” refers to the variant of Haskell provided by

GHC (the Glasgow Haskell Compiler) which provides various type system

extensions, the use of which is indicated and explained as required.

222 Session Types with Linearity in Haskell

10.2 Pre-Session Types in Haskell

Haskell provides a library for message-passing concurrency with channels

similar in design to the concurrency primitives of CML [14]. The core

primitives have types:

newChan :: IO (Chan a)

readChan :: Chan a -> IO a

writeChan :: Chan a -> a -> IO ()

forkIO :: IO () -> IO ThreadId

These functions operate within the IO monad for encapsulating side-effectful

computations; creating channels (newChan), sending and receiving values on

these channels (writeChan and readChan), and forking processes (forkIO)

are all effectful. Channels have a single type and are bi-directional. The

following program implements Example 1:

server c d = do

x <- readChan c

case x of

Nothing -> return ()

Just x’ -> do

(Just y’) <- readChan c

writeChan d (x’ == y’)

server c d

main = do {c <- newChan; d <- newChan; forkIO (client c d); server c d}

client c d = do

writeChan c (Just 42)

writeChan c (Just 53)

r <- readChan d

putStrLn $ "Result: " ++ show r

writeChan c Nothing

The choice between the two services is provided via a Maybe type, where

server :: Chan (Maybe Int) -> Chan Bool -> IO (). Two channels are

used so that values of different type can be communicated. The channel

types ensure data safety: communicated values are of the expected type.

However, this typing cannot ensure communication safety. For example,

the following two alternate clients are well-typed but are communication

unsafe:

client’ c d = do

writeChan c (Just 42)

writeChan c (Just 53)

writeChan c (Just 53)

r <- readChan d

putStrLn $ "Result: " ++ show r

writeChan c Nothing

client’’ c d = do

writeChan c (Just 42)

readChan c

r <- readChan d

putStrLn $ "Result: " ++ show r

writeChan c Nothing

On the left, an additional message is sent which is left unreceived in the

server’s channel buffer. On the right, a spurious readChan occurs after the

first writeChan leading to a deadlock for the server and client.

10.2 Pre-Session Types in Haskell 223

send c x = do

c’ <- newChan

writeChan c (Send x c’)

return c’

recv c = do

(Recv x c’) <- readChan c

return (x, c’)

fork f = do

c <- newChan

c’ <- newChan

forkIO (link (c, c’))

forkIO (f c)

return c’

close c = return ()

Figure 10.1 Implementations of the communication-typed combinators where link ::

Links => (Chan s, Chan (Dual s)) -> IO ().

A significant proportion of communication safety (mainly the order of

interactions) can be enforced with just algebraic data types, polymorphism,

and a type-based encoding of duality.

10.2.1 Tracking Send and Receive Actions

Taking inspiration from Gay and Vasconcelos [3], we define the following

alternate combinators (with implementations shown in Figure 10.1) and data

types:

send :: Chan (Send a t) -> a -> IO (Chan t)

recv :: Chan (Recv a t) -> IO (a, Chan t)

close :: Chan End -> IO ()

data Send a t = Send a (Chan t)

data Recv a t = Recv a (Chan t)

data End

The send combinator takes as parameters a channel which can transfer values

of type Send a t and a value x of type a returning a new channel which can

transfer the values of type t. This is implemented via the constructor Send,

pairing the value x with a new channel c’, sending those on the channel c,

and returning the new continuation channel c’.

The recv combinator is somewhat dual to this. It takes a channel c on

which is received a pair of a value x of type a and channel c’ which can

transfer values of type t. The pair (x, c’) is then returned. The close

combinator discards its channel which has only the capability of transferring

End values, which are uninhabited (empty data types).

224 Session Types with Linearity in Haskell

The following implements a non-recursive version of the integer equality

server with delegation from Example 2 (for brevity C = Chan):

server :: C (Recv Int (Recv Int (Recv (C (Send Bool End)) End))) -> IO ()

server c = do

(x, c) <- recv c

(y, c) <- recv c

(d, c) <- recv c

d <- send d (x == y)

close c

close d

The type of the channel c gives a representation of the session type

?Z.?Z.?〈!B〉.end from Example 2. At each step of the program, the channel

returned by a send or receive is bound to a variable shadowing the chan-

nel variable used e.g. (x,c) <- recv c. This programming idiom provides

linear channel use.

10.2.2 Partial Safety via a Type-Level Function for Duality

One way to capture duality is via a type family. Type families are prim-

itive recursive type functions, with strong syntactic restrictions to enforce

termination. We define the (closed) type family Dual:

type family Dual s where

Dual (Send a t) = Recv a (Dual t)

Dual (Recv a t) = Send a (Dual t)

Dual End = End

Duality is used to type the fork operation, which spawns a process with a

fresh channel, returning a channel of the dual type:

fork :: Link s => (Chan s -> IO ()) -> IO (Chan (Dual s))

Figure 10.1 shows the implementation which uses a method link of the type

class Link to connect sent messages to received messages and vice versa. A

client interacting with server above can then be given as:

client c = do

c <- send c 42

c <- send c 53

d <- fork (\d’ -> do { c <- send c d’; close c })

(r, d) <- recv d

putStrLn ("Result: " ++ show r)

close d

example = do { c’ <- fork client; server c’ }

10.2 Pre-Session Types in Haskell 225

Thus, the client sends two integers on c then creates a new channel d’, which

is sent via c before c is closed. On the returned channel d (with dual session

type to d’), we receive the result, which is output before closing d. Thus,

Chan essentially provides the end-points of a bi-directional channel. The type

of client can be given as:1

client :: (Dual s ~ Recv Bool End, Link s) =>

Chan (Send Int (Send Int (Send (Chan s) End))) -> IO ()

Swapping a send for a recv, or vice versa, means the program will no longer

type check. Likewise, sending or receiving a value of the wrong type or at the

wrong point in the interaction is also a type error.

10.2.3 Limitations

The approach described so far captures sequences of actions, but cannot

enforce exact linear usage of channels; nothing is enforcing the idiom of

shadowing each channel variable once it is used. For example, the first few

lines of the above example client could be modified to:

client c = do

c <- send c (42 :: Int)

_ <- send c 53

c <- send c 53

...

By discarding the linear variable-shadowing discipline, an extra integer is

sent on c in the third line. This is not prevented by the types. While the

typing captures the order of interactions, it allows every action to be repeated,

and entire session interactions to be repeated. Thus, the session type theory

captured above is a kind of Kleene-star-expanded version where sequences

of actions in a session type A1.An.end are effectively expanded to allow

arbitrary repetition of individual actions and entire interaction sequences:

(A∗

1
.A∗

n)
∗.end.

We thus need some additional mechanism for enforcing proper linear use

of channels, rather than relying on the discipline or morality of a program-

mer writing against a communication specification. We have also not yet

considered branching behaviour or recursion, which are highlighted in the

approaches from the literature.

1A more general type can be inferred, since both Int types can be replaced with arbitrary

types of the Num class and Bool with an arbitrary type of the Show class.

226 Session Types with Linearity in Haskell

10.3 Approaches in the Literature

There are various different approaches in the literature providing session-

typed concurrent, communicating programs in Haskell with linearity:

• Neubauer and Thiemann [9] give an encoding of first-order single-

channel session types with recursion;

• Using parameterised monads, Pucella and Tov [13] provide multiple

channels, recursion, and some building blocks for delegation, but require

manual manipulation of a session type context;

(http://hackage.haskell.org/package/simple-sessions)

• Sackman and Eisenbach [15] provide an alternate approach where

session types are constructed via a value-level witness;

(http://hackage.haskell.org/package/sessions)

• Imai et al. [5] extend Pucella-Tov with delegation and a more user-

friendly approach to handling multiple channels;

(http://hackage.haskell.org/package/full-sessions)

• Orchard and Yoshida [11] use an embedding of effect systems into

Haskell via graded monads based on a formal encoding of session-typed

π-calculus into PCF with an effect system;

(https://github.com/dorchard/sessions-in-haskell)

• Lindley and Morris [8] provide a finally tagless embedding of the GV

session-typed functional calculus into Haskell, building on a linear λ-

calculus embedding due to Polakow [12].

(https://github.com/jgbm/GVinHs)

The following table summarises the various implementations’ support for

desirable session-type implementation features: recursion, delegation, mul-

tiple channels (for which we summarise how session contexts are modelled

and its members are accessed), idiomatic Haskell code, and whether manual

user-given specification of session types is feasible.

NT04 PT08 SE08 IYA10 OY16 LM16

Recursion � � deBruijn �labels � Affine

Delegation � � � �

Multi-channel � � � � �

− Contexts stack map list map list

− Access positional labels deBruijn names member

Idiomatic � � �� �� �

Manual spec � � �value � �

10.3 Approaches in the Literature 227

We characterise idiomatic Haskell as code which does not require interposing

combinators to replace standard syntactic elements of functional languages,

e.g., λ-abstraction, application, let-binding, recursive bindings, and variables.

In the above, for example, PT08 has one tick and IYA10 has two since PT08

must use specialised combinators for handling multiple channel variables

whilst IYA10 does not require such combinators, instead using standard

Haskell variables.

10.3.1 Note on Recursion and Duality

Early formulations of session types e.g. [18], defined duality of recursive

types as µα.S = µα.S. Whilst this duality is suitable for tail-recursive

session types, it is inadequate when recursive variables appear in a communi-

cated type [2]. For example, the type µα.!〈α〉 should have the unfolded dual

type of ?〈µα.!〈α〉〉 but under the earlier approach is erroneously ?〈µα.?〈α〉〉.
In Section 10.1, duality was defined using dualisable recursion variables, akin

to Lindley and Morris [7], which solves this problem. However, all session-

type implementations which support delegation and recursion (PT08, IYA10,

OY16) implement the erroneous duality. This is an area for implementations

to improve upon.

10.3.2 Single Channel; Neubauer and Thiemann [9]

Neubauer and Thiemann provided the first published implementation of

session types in Haskell. Their implementation is based on a translation

from a simple session-typed calculus that is restricted to one end of a

single communication channel. The session type theory is first order (i.e.,

no channel delegation), but includes alternation and recursive sessions using

a representation based on the following data types:

data NULL = NULL -- the closed session

data EPS = EPS -- the empty session

data SEND_MSG m r = SEND_MSG m r -- send message m, then session r

data RECV_MSG m r = RECV_MSG m r -- receive message m, then session r

data ALT l r = ALT l r -- alternative session: either l or r

data REC f = REC (f (REC f)) -- fixed-point of a parametric type

Session types are specified by defining a value using the above data construc-

tors which provides a homomorphic type-level representation of the session

228 Session Types with Linearity in Haskell

type. For example, the following value and its type describes a sequence of

receiving two integers and sending a bool:

simple = RECV_MSG intW (RECV_MSG intW (SEND_MSG boolW EPS))

where intW = 0, boolW = False witness the integer and boolean types and

simple :: RECV MSG Int (RECV MSG Int (SEND MSG Bool EPS)).

Duality is provided by parameterising such specification values by place-

holders for the ‘send’ and ‘receive’ actions which can then be applied

to SEND MSG and RECV MSG in one order or the other to provide the dual

specification. For example, the above specification becomes:

simple (send :: (forall x y . x -> y -> s x y))

(recv :: (forall x y . x -> y -> r x y)) =

recv intW (recv intW (send boolW EPS))

This function specialisations to the dual behaviour of the server via (simple

RECV MSG SEND MSG) and the client (simple SEND MSG RECV MSG).

A recursive session type (µβ.γ) is represented as a fixed-point, via REC,

of a parametric data type representing γ. For Example 1, the body of the

server’s recursive type &{eq :?Z.?Z.!B.α, nil : end} can be represented by

the following data type, which also uses ALT:

data Exm s r a =

MkExm (ALT (r Label (r Int (r Int (s Bool a)))) (r Label EPS))

where data Label = Eq | Nil. The full specification is constructed as:

exampleSpec (send :: (forall x y . x -> y -> s x y))

(recv :: (forall x y . x -> y -> r x y)) = a0

where a0 = REC (MkExm (ALT

(recv Eq (recv intW (recv intW (send boolW a0))))

(recv Nil EPS)))

A computation at one end-point of a channel is represented by the Session

data type which is indexed by the session type representation and internally

wraps the IO monad. The main communication primitives produce values of

Session:

class SEND st message nextst | st message -> nextst where

send :: message -> Session nextst () -> Session st ()

class RECEIVE st cont | st -> cont where

receive :: cont -> Session st ()

close :: Session NULL () -> Session EPS ()

10.3 Approaches in the Literature 229

The SEND class provides sending values of type message given a continuation

session with specification nextst, returning a computation with specification

st. The functional dependency st message -> nextst enforces that the

instantiation of st and message uniquely determines nextst. An instance

SEND (SEND MSG m b) m b specialises send to:

send :: m -> Session b () -> Session (SEND_MSG m b) ()

The RECEIVE class abstracts receiving, taking a general continuation and

returning a computation with communication specified by st. For RECV MSG

and ALT, the receive method is specialised at the types:

receive :: (m -> Session x ()) -> Session (RECV_MSG m x) ()

receive :: (RECV s m, RECV s’ m’) => ALT m m’ -> Session (ALT s s’) ()

with RECV shorthand for RECEIVE. The Example 1 server can be defined:

exampleServer socket = do

(h, _ ,_) <- accept socket

let session = receive (ALT (\Eq -> recvNum1) (\Nil -> finish))

recvNum1 = receive (\x -> recvNum2 x)

recvNum2 x = receive (\y -> sendEq x y)

sendEq x y = send (x == y) session

finish = close (io $ putStrLn "Fin.")

str <- hGetContents h

run session (exampleSpec SEND_MSG RECV_MSG) str h

The communication pattern of session (line 3), encoded by its type, must

match that of the specification exampleSpec SEND MSG RECV MSG as enforced

by the run deconstructor which expects a computation of type Session st

a and a corresponding specification value of type st. Any deviation from

the specification is a static type error. Since computations are wrapped in

the indexed Session type, they can only be executed via run and thus are

always subject to this linearity check. This contrasts with the simple approach

in Section 10.2 where actions on channels produce computations in the

(unindexed) IO monad, which allowed arbitrary repetition of actions within

the specified behaviour.

10.3.3 Multi-Channel Linearity; Pucella and Tov [13]

Pucella and Tov improve on the previous approach, providing multi-channel

session types with recursion and some higher-order support, though not full

delegation. Similarly to Neubauer-Thiemann, the basic structure of session

230 Session Types with Linearity in Haskell

types is represented by several data types: binary type constructors :!: and

:?: for send and receive and Eps for a closed session. Offering and selecting

of choices are represented by binary type constructors :&: and :+:, which

differs to Neubauer-Thiemann who coalesce these dual perspectives into ALT.

Duality is defined as a relation via a type class with a functional dependency

enforcing bijectivity:

class Dual r s | r -> s, s -> r

instance Dual r s => Dual (a :!: r) (a :?: s)

instance Dual r s => Dual (a :?: r) (a :!: s)

instance Dual Eps Eps

instance (Dual r1 s1, Dual r2 s2) => Dual (r1 :+: r2) (s1 :&: s2)

instance (Dual r1 s1, Dual r2 s2) => Dual (r1 :&: r2) (s1 :+: s2)

instance Dual r s => Dual (Rec r) (Rec s)

instance Dual (Var v) (Var v)

Recursive session types use a De Bruijn encoding where Rec r introduces

a new recursive binder over r and Var n is the De Bruijn index of the nth

binder where n has a unary encoding (e.g., Z, S Z, etc.).

Communication is provided by channels Channel c (which we abbreviate

to Chan c) where the type variable c represents the name of the channel. The

session type of a channel c is then a capability provided by the data type Cap

c e s which associates session type s to channel c with an environment e of

recursive variables paired with session types.

A parameterised monad [1] is used to capture the session types of the

free channels in a computation. Parameterised monads generalise monads to

type constructors indexed by a pair of types akin to pre- and post-conditions.

Its operations are represented via the class:

class ParameterisedMonad (m :: k -> k -> * -> *) where

(>>=) :: m p q a -> (a -> m q r b) -> m p r b

return :: a -> m p p a

The “bind” operation >>= for sequential composition has type indices repre-

senting sequential composition of Hoare triples: a computation with post-

condition q can be composed with a computation with pre-condition q.

Relatedly, a pure value of type a can be lifted into a trivial computation which

preserves any pre-condition p in its post-condition.

One of the original examples of parameterised monads is for encoding

first-order single-channel session-typed computations [1]. This is expanded

upon by Pucella and Tov to multi-channels. They provide a parameterised

monad Session, indexed by stacks of session type capabilities associated

10.3 Approaches in the Literature 231

to channels. Pre-conditions are the channel capabilities at the start of a

computation, and post-conditions are the remaining channel capabilities after

computation.

Stacks are constructed out of tuples where () is the empty stack. For

example, (Chan c e s, (Chan c’ e’ s’, ())) is a stack of two capa-

bilities for channels c and c’. The core communication primitives then

manipulate the capability at the top of the stack:

send :: Chan c -> a -> Session (Cap c e (a :!: s), x) (Cap c e s, x) ()

recv :: Chan c -> Session (Cap c e (a :?: s), x) (Cap c e s, x) a

For example, sending a value of type a on channel c requires the capability a

:!: s at the top of the stack for c in the pre-condition, which becomes s in

the post condition. Branching follows a similar scheme.

Recursive behaviour is mediated by combinators which provide the

unrolling of a recursive session type (enter) and referencing a bound

De-Bruijn-indexed recursive variable via zero and suc:

enter :: Chan c -> Session (Cap c e (Rec s), x) (Cap c (s, e) s, x) ()

zero :: Chan c -> Session (Cap c (s,e) (Var Z), x) (Cap c (s,e) s, x) ()

suc :: Session (Cap t (r, e) (Var (S v)), x) (Cap t e (Var v), x) ()

Thus, entering a recursive sessions type adds the body of the type onto the

top of De-Bruijn environment stack; zero peeks the session type from the top

of the stack and suc pops and decrements the variable. The original paper has

a slightly different but equivalent formulation for suc– the above is provided

by the online implementation.

Example 1 can then be implemented as follows:

server c = do

enter c

loop

where loop = offer c

(do x <- recv c

y <- recv c

send c (x == y)

zero c

loop)

(close c)

client c = do

enter c

sel1 c

send c 42

send c 53

x <- recv c

io $ putStrLn $ "Got: " ++ show x

zero c

sel2 c

close c

The types of both can be inferred. For example, the type of server is:

server :: Eq a => Chan t -> Session

(Cap t e (Rec ((a :?: (a :?: (Bool :!: Var Z))) :&: Eps)), x) x ()

232 Session Types with Linearity in Haskell

Dual endpoints of a channel are created by functions accept and request

capturing the notion of shared channels [18], called a rendezvous here:

accept :: Rendezvous r ->

(forall t. Chan t -> Session (Cap t () r, x) y a) -> Session x y a

request :: Dual r r’ => Rendezvous r ->

(forall t. Chan t -> Session (Cap t () r’, x) y a) -> Session x y a

Thus, for our example, the server and client processes can be composed by

the following code which statically enforces duality through request:

example = runSession $ do rv <- io newRendezvous

forkSession (request rv client)

accept rv server

with forkSession :: Session x () () -> Session x () () enforcing a closed

final state for the forked subcomputation (line 2). Whilst the above code is

fairly idiomatic Haskell (modulo the management of recursion variables),

the example has only one channel. In the context of multiple channels, the

capability of a channel may not be at the top of the session environment stack,

thus context manipulating combinators must be used to rearrange the stack:

swap :: Session (r, (s, x)) (s, (r, x)) ()

dig :: Session x x’ a -> Session (s, x) (s, x’) a

where swap is akin to exchange and dig moves down one place in the stack.

Thus, multi-channel code requires the user to understand the type-level stack

representation and to manipulate it explicitly. Multi-channel code is there-

fore non-idiomatic, in the sense that we can’t just use Haskell variables on

their own.

Example 2 cannot be captured as channels cannot be passed. Pucella

and Tov provide a way to send and receive capabilities, however there is no

primitive for sending channels along with an associated capability. Imai et al.

describe a way to build this on top of Pucella and Tov’s approach with an

existentially quantified channel name, however this is still limited by the lack

of a new channel constructor. Instead, channel delegation could be emulated

with global shared channels for every delegation but this shifts away from the

message-passing paradigm.

In their paper, Pucella and Tov use the ixdo notation which copies exactly

the style of the do notation for monads, but which is desugared by a pre-

processor into the operations of the parameterised monad. In modern GHC,

this can be replaced with the RebindableSyntax extension which desugars

the standard do notation using any functions in scope named (>>=) and

10.3 Approaches in the Literature 233

return, regardless of their type. The operations of a parameterised monad

can therefore usurp the regular monad operations. Thus, the non-idiomatic

pre-processed ixdo notation can be replaced with idiomatic do notation. The

same applies to the work of Sackman and Eisenbach (Section 10.3.4) and

Imai et al. (Section 10.3.5) who also use parameterised monads. Similarly,

GHC’s rebindable syntax is reused by Orchard and Yoshida with graded

monads (Section 10.3.6).

10.3.4 An Alternate Approach; Sackman and Eisenbach [15]

In their unpublished manuscript, Sackman and Eisenbach provide an imple-

mentation also using a parameterised monad but with quite a different

formulation to Pucella and Tov. The encoding of session environments is

instead through type-level finite maps from channel names (as types) to

session types. This requires significantly more type-level machinery (imple-

mented mostly using classes with functional dependencies), resulting in much

more complicated types than Pucella-Tov. However, they provide a parame-

terised monad SessionType for constructing session-type witnesses at the

value level (similarly to Neubauer-Thiemann) which is much easier to read

and write than the corresponding type-level representation. Session-based

computations are then constructed through another parameterised monad

called SessionChain.

Sackman-Eisenbach represent session types by type-level lists (via con-

structors Cons and Nil) of actions given by parametric data types Send,

Recv, Select, Offer, Jump, and (non parametric) End similar to the other

representations. For Example 2, the recursive session type of the server can

be constructed via value-level terms as:

(serverSpec, a) = makeSessionType $ do

a <- newLabel

let eq = do {recv intW; recv intW; recvSession (send boolW); jump a}

a .= offer (eq ~|~ end ~|~ BLNil)

return a

This uses the SessionTypeparameterised monad indexed by TypeState types

which have further indices managing labels and representing session types.

The makeSessionType function returns a pair of a value capturing the speci-

fication serverSpec and the component of the type labelled by a. Labels are

used to associate types to channels and for recursive types, where newLabel

generates a fresh label bound to a. The third line associates to a the expected

session behaviour: a choice is offered where offer takes a list of behaviours

234 Session Types with Linearity in Haskell

constructed by ~|~ (cons) and BLNil (nil). As in Neubauer-Thiemann, intW

and boolW are value witnesses of types. The recursive step is via jump on label

a. The type of send illustrates the SessionType parameterised monad:

send :: (TyList f, TyList fs) => t -> SessionType

(TypeState n d u (Cons (lab, f) fs))

(TypeState n d u (Cons (lab, (Cons (Send (Normal, t)) f)) fs)) ()

The final parameter to TypeState provides a type-level list of labelled ses-

sion types (themselves lists). In the post-condition, the session type f from

the head of the list in the pre-condition has Send consed onto the front,

parameterised by (Normal, t) indicating the value type t.

The session-type building primitives have computation building counter-

parts (whose names are prefixed with s, e.g. ssend) returning computations

in the SessionChain parameterised monad. We elide the details, but show the

implementation of the server from Example 2:

server = do

cid <- fork serverChan dual (cons (serverSpec, notDual) nil) client

c <- createSession serverSpec dual cid

withChannel c (soffer ((do

x <- srecv

y <- srecv

recvChannel c (\d ->

withChannel d (do { ssend (x == y); sjump })))

~||~ (return ()) ~||~ OfferImplsNil))

The session type specification serverSpec is linked to computation to enforce

linearity via fork. Above, client refers to the client code which is forked

and given a channel whose behaviour is dual to that created locally by

createSession, specified by serverSpec. The sjump primitive provides the

recursive behaviour but has no target which is implicitly provided by the

specification. The withChannelprimitive “focuses” the computation on a par-

ticular channel such that the communication primitives are not parameterised

by channels, similar to Neubauer-Thiemann. This has some advantage over

Pucella-Tov, which required manual session-context manipulation, though

channel variables still cannot be used directly here. Combined with the

complicated type encoding, we therefore characterise this approach as the

least idiomatic.

It should be noted that since the appearance of their manuscript, the

type checking of functional dependencies in GHC has become more strict

(particularly with the additional Coverage Condition [16, Def. 7]). At the time

10.3 Approaches in the Literature 235

of writing, the latest available online implementation of Sackman-Eisenbach

fails to type check in multiple places due to the coverage conditions added

later to GHC. It is not immediately clear how to remedy this due to their

reliance on functional dependencies which do not obey the new coverage

condition.

10.3.5 Multi-Channels with Inference; Imai et al. [5]

Imai, Yuen, and Agusa directly extend the Pucella-Tov approach, providing

type inference, delegation, and solving the deficiencies with accessing multi-

ple channels. They replace the positional, stack-based approach for multiple

channels with a De Bruijn index encoding which is handled implicitly at the

type level. For example, send has type

send :: (Pickup ss n (Send v a), Update ss n a ss’, IsEnded ss F)

=> Channel t n -> v -> Session t ss ss’ ()

Computations are modelled by the parameterised monad Session as before,

but now pre- and post-condition indices ss and ss’ are type-level lists

of session types, rather than a labelled stack. Whilst these structures are

isomorphic, the way session types are accessed within the list representation

differs considerably.

A channel Channel t n has a type-level natural number n representing

the position of the channel’s session type in the list. The constraint Pickup

above specifies that at the nth position in ss is the session type Send v a. The

constraint Update then states that ss’ is the list of session types produced

by replacing the nth position in ss with the session type a. The rest of the

communication primitives follow a similar scheme to the above, generalising

Pucella-Tov primitives to work with the De Bruijn indices instead of just the

capability at the top of the stack.

A fresh channel can be created by the following combinator:

new :: SList ss l => Session t ss (ss:>Bot) (Channel t l)

where l is the length of the list ss as defined by the constraint SList, and

thus is a fresh variable for the computation.

Using this library leads to highly idiomatic Haskell code, with no

additional combinators required for managing the context of session-typed

channels. Both examples can be implemented, with code similar to that

shown for Pucella-Tov in Section 10.3.3. The one downside of this approach

however is that the types, whilst they can be inferred (which is one of the aims

236 Session Types with Linearity in Haskell

of their work), are complex and difficult to read, let alone write. Relatedly,

the type errors can be difficult to understand due to the additional type-level

mechanisms for managing the contexts.

10.3.6 Session Types via Effect Types; Orchard and Yoshida [11]

Orchard and Yoshida studied the connection between effect systems and

session types. One part of the work showed the encoding of a session-

typed π-calculus into a parallel variant of PCF with a general, parameterised

effect system. This formal encoding was then combined with an approach for

embedding effect systems in Haskell [10] to provide a new implementation

of session-typed channels in Haskell. The implementation supports multiple

channels in an idiomatic style, delegation, and a restricted form of recursion

(affine recursion only).

The embedding of general effect systems in Haskell types is provided

by a graded monad structure, which generalises monads to type constructors

indexed by a type-representation of effect information. This “effect type” has

the additional structure of a monoid, encoded using type families. The graded

monad structure in Haskell is defined:

class Effect (m :: ef -> * -> *) where

type Unit m :: ef

type Plus m (f :: ef) (g :: ef) :: ef

return :: a -> m (Unit m) a

(>>=) :: m f a -> (a -> m g b) -> m (Plus m f g) b

Thus a value of type m f a denotes a computation with effects described by

the type index f of kind ef. The return operation lifts a value to a trivially

effectful computation, marked with the type Unit m. The “bind” operation

(>>=) provides the sequential composition of effectful computations, with

effect information composed by the type-level binary function Plus m. The

session type embedding is provided by a graded monad structure for the data

type Process:

data Process (s :: [Map Name Session]) a = Process (IO a)

Type indices s are finite maps of the form ’[c :-> s, d :-> t, ...] map-

ping channel names c, d to session types s, t. The Session kind is given by

a data type (representing a standard grammar of session types) promoted by

the data kinds extension of GHC to the kind-level.

The Plus type operation of the Process graded monad takes the union of

two finite maps and sequentially composes the session types of any channels

10.3 Approaches in the Literature 237

that appear in both of the finite maps. This relies on the closed type family

feature of GHC to define type-level functions that can match on their types,

e.g., to compare types for equality.

The core send and received primitives then have the following types:

send :: Chan c -> t -> Process ’[c :-> t :! End] ()

recv :: Chan c -> Process ’[c :-> t :? End] t

In each, the type-index on Process gives a singleton finite map from the

channel name c to the session type. We elide the rest of the combinators.

Duality is enforced when a pair of channel endpoints is created by new:

new :: (Duality env c) => ((Chan (Ch c), Chan (Op c)) -> Process env t)

-> Process ((env :\ (Op c)) :\ (Ch c)) t

where :\ removes a channel’s session type from the environment.

A non-recursive implementation of Example 2 can be defined:

server (c :: (Chan (Op "c"))) =

do l <- recv c

case l of

L -> subL $ do

x <- recv c

y <- recv c

k <- chRecv c

k (\d -> send d (x == y))

R -> subR $ subEnd c (return ())

client (c :: (Chan (Ch "c"))) = do

send c L

subL’ c $ do

send c 42

send c 53

new (\(d :: (Chan (Ch "d")), d’) ->

do chSend c d

x <- recv d’

print $ "Got: " ++ show x)

which are composed by new (\(c, c’) -> client c ‘par‘ server c’).

One advantage of this approach is that most types are easy to write by

hand, with a succinct understandable presentation in terms of the finite maps

from channel names to session types. Furthermore, the use of multiple chan-

nels is idiomatic, using Haskell’s normal variables. The major disadvantage

of this approach is that the user must give their own explicit type-level names

to the channels, e.g., type signatures like Chan (Ch "c") above. For simple

examples this is not a burden, but manually managing uniqueness of variables

does not scale well.

Furthermore, the approach is brittle due to complex type-level represen-

tation and manipulations of finite maps. For example, GHC has difficulty

reasoning about the type-level union operation (used as Plus) when applied

to types involving some polymorphism.

238 Session Types with Linearity in Haskell

10.3.7 GV in Haskell; Lindley and Morris [8]

GV is a session-typed linear functional calculus, proposed by [17], based

on the work of Gay and Vasconcelos [3], and adapted further by Lindley

and Morris [6]. The GV presented by Lindley and Morris aims at re-use

of standard components, defined as an extension of the linear λ-calculus

with session-typed communication primitives. This provides a basis for their

Haskell implementation by reusing an embedding of the linear λ-calculus

into Haskell due to Polakow [12]. Polakow’s embedding provides a “tagless

final” encoding of the linear-λ calculus (LLC), meaning that terms of LLC are

represented by functions of a type class, whose interpretation/implementation

can be varied based on the underlying type. Furthermore, the embedding uses

higher-order abstract syntax (HOAS) i.e., binders in LLC are represented by

Haskell binders.

To represent the linear types notion of context consumption, contexts

are split in two with judgments of the form: ∆I \∆O ⊢ e : A with input

context ∆I and output context ∆O which remains after computing e and

thus after some parts of ∆I have been consumed. Contexts come equipped

with the notion of a “hole” (written �) denoting a variable that has been

consumed. For example, a linear variable use is typed by ∆, x : A,∆′ \∆,�,
∆′ ⊢ x : A.

The embedding of this linear type system uses natural numbers to rep-

resent variables in judgements. Judgements are represented by types repr

:: Nat -> [Maybe Nat] -> [Maybe Nat] -> * -> *. Thus, the LLC term

representation is a type indexed by four pieces of information: a natural

number denoting a fresh name for a new variable, the input context (a list

of Maybe Nat where Just n is a variable and Nothing denotes �), the output

context, and the term type.

The core of the embedding for the linear function space fragment, is then

given by the LLC class, parameterised by a repr type:

class LLC (repr :: Nat -> [Maybe Nat] -> [Maybe Nat] -> * -> *) where

llam :: (LVar repr v a -> repr (S v) (Just v ’: i) (Box ’: o) b)

-> repr v i o (a -<> b)

(^) :: reprv v i h (a -<> b) -> repr v h o a -> prepr v i o b

where LVar represents linear variables, defined as the type forall v i o .

(Consume x i o) => repr v i o a describing that using a variable leads to

its consumption for all input and output contexts i and o.

10.4 Future Direction and Open Problems 239

The session primitives of GV are added atop the LLC embedding via

another tagless final encoding (we elide the primitives for branching):

class GV (ch :: * -> *) repr where

send :: DualS s => repr v i h t -> repr v h o (ch (t <!> s))

-> repr v i o (ch s)

recv :: DualS s => repr v i o (ch (t <?> s)) -> repr v i o (t * ch s)

wait :: repr v i o (ch EndIn) -> repr v i o One

fork :: DualS s => repr v i o (ch s -<> ch EndOut)

-> repr v i o (ch (Dual s))

The types involve duality as both a predicate (type constraint) DualS and as a

type-level function Dual.

The approach does not provide recursive sessions so we implement a non-

recursive version of Example 1 as:

server = llam $ \c ->

recv c ‘bind‘ (llp $ \x c ->

recv c ‘bind‘ (llp $ \y c ->

send (const (==) $$$ x $$$ y) c))

example = fork server ‘bind‘ client

client = llam $ \c ->

send (const 42) c ‘bind‘ (llam $ \c ->

send (const 53) c ‘bind‘ (llam $ \c ->

recv c ‘bind‘ (llp $ \r c ->

wait c ‘bind‘ (llz $ ret r))))

This approach cleanly separates the notion of linearity from the channel

capabilities of session types. The main downside is that application, λ-

abstraction, and composition of terms must be mediated by the combinators

of the LLC embedding. Therefore, the approach does not support idiomatic

Haskell programming.

10.4 Future Direction and Open Problems

The table at the beginning of Section 10.3 (p. 226) indicates that there

is no one implementation that provides all desirable features: a session-

typed library for communication-safe concurrency with linearity, delegation,

multiple-channels, recursion, idiomatic Haskell code, and the ability to eas-

ily give session type specifications by hand. Furthermore, none correctly

implements duality with respect to recursion (Section 10.3.1).

So far there appears to be a trade-off between these different features.

Pucella and Tov provide an idiomatic system with relatively simple types,

but require the manual management of the capability stack. The work of Imai

et al. provides a highly idiomatic system, but the types are hard to manipulate

and understand. Orchard and Yoshida provide types that are easy to write,

but at the cost of forcing the user to manually manage fresh channel names.

Lindley and Morris handle variables idiomatically, but require additional

240 Session types with linearity in Haskell

combinators for application, λ-abstraction and term composition. Sackman

and Eisenbach provide session types which are easily specified by-hand with

a value witness, but with non-idiomatic code and hard to manipulate types.

One possible solution is to adapt the approach of Orchard and Yoshida

with a way to generate fresh channel names at the type-level automatically

via a GHC type checker plugin (see, e.g., [4]). Alternatively, existential names

can be used for fresh names. However, the implementation of type-level finite

maps relies on giving an arbitrary ordering to channel names (for the sake of

normalisation) which is not possible for existential names. In which case,

a type-checker plugin could provide built-in support for finite maps more

naturally, rather than using the current (awkward) approach of Orchard and

Yoshida.

We have examined the six major session type implementations for Haskell

in this chapter. All of them provide static linear checks, leveraging Haskell’s

flexible type system, but all have some deficiencies; finding a perfectly

balanced system remains an open problem.

Acknoweldgements We thank Garrett Morris and the anonymous reviewers

for their helpful comments. This work was supported in part by EPSRC

grants EP/K011715/1, EP/K034413/1, EP/L00058X/1, EP/M026124/1, and

EU project FP7-612985 UpScale.

References

[1] Robert Atkey. Parameterised notions of computation. Journal of

functional programming, 19(3–4):335–376, 2009.

[2] Giovanni Bernardi, Ornela Dardha, Simon J. Gay, and Dimitrios Kouza-

pas. On duality relations for session types. In Trustworthy Global

Computing 2014, pages 51–66, 2014.

[3] Simon J. Gay and Vasco T. Vasconcelos. Linear type theory for asyn-

chronous session types. Journal of Functional Programming, 20(01):

19–50, 2010.

[4] Adam Gundry. A typechecker plugin for units of measure: domain-

specific constraint solving in GHC Haskell. In ACM SIGPLAN Notices,

volume 50, pages 11–22. ACM, 2015.

[5] Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. Session Type Inference in

Haskell. In PLACES, pages 74–91, 2010.

References 241

[6] Sam Lindley and J. Garrett Morris. A semantics for propositions as

sessions. In ESOPb, pages 560–584. Springer, 2015.

[7] Sam Lindley and J. Garrett Morris. Talking Bananas: Structural Recur-

sion for Session Types. In Proceedings of the 21st ACM SIGPLAN

International Conference on Functional Programming, ICFP 2016,

pages 434–447. ACM, 2016.

[8] Sam Lindley and J Garrett Morris. Embedding session types in haskell.

In Proceedings of the 9th International Symposium on Haskell, pages

133–145. ACM, 2016.

[9] Matthias Neubauer and Peter Thiemann. An Implementation of Session

Types. In PADL, volume 3057 of LNCS, pages 56–70. Springer, 2004.

[10] Dominic Orchard and Tomas Petricek. Embedding effect systems in

Haskell. ACM SIGPLAN Notices, 49(12):13–24, 2015.

[11] Dominic Orchard and Nobuko Yoshida. Effects as Sessions, Sessions as

Effects. ACM SIGPLAN Notices, 51(1):568–581, 2016.

[12] Jeff Polakow. Embedding a Full Linear Lambda Calculus in Haskell.

ACM SIGPLAN Notices, 50(12):177–188, 2016.

[13] Riccardo Pucella and Jesse A. Tov. Haskell Session Types with

(Almost) no Class. In Proc. of Haskell Symposium ’08, pages 25–36.

ACM, 2008. ISBN 978-1-60558-064-7.

[14] John H. Reppy. CML: A Higher-Order Concurrent Language. In PLDI,

pages 293–305, 1991.

[15] Matthew Sackman and Susan Eisenbach. Session Types in Haskell

(Updating Message Passing for the 21st Century), 2008. Technical

report, Imperial College London.

[16] Martin Sulzmann, Gregory J Duck, Simon Peyton-Jones, and Peter J

Stuckey. Understanding functional dependencies via constraint handling

rules. Journal of Functional Programming, 17(01):83–129, 2007.

[17] Philip Wadler. Propositions as sessions. Journal of Functional

Programming, 24(2–3):384–418, 2014.

[18] Nobuko Yoshida and Vasco Thudichum Vasconcelos. Language Primi

tives and Type Discipline for Structured Communication-Based Pro-

gramming Revisited: Two Systems for Higher-Order Session Commu-

nication. Electr. Notes Theor. Comput. Sci., 171(4):73–93, 2007.

