
Compositional Verification of Compiler Optimisations
on Relaxed Memory

Mike Dodds1, Mark Batty2, and Alexey Gotsman3

1 Galois 2 University of Kent 3 IMDEA

Abstract. This paper is about verifying program transformations on an ax-
iomatic relaxed memory model of the kind used in C/C++ and Java. Relaxed mod-
els present particular challenges for verifying program transformations, because
they generate many additional modes of interaction between code and context.
For a block of code being transformed, we define a denotation from its behaviour
in a set of representative contexts. Our denotation summarises interactions of the
code block with the rest of the program both through local and global variables,
and through subtle synchronisation effects due to relaxed memory. We can then
prove that a transformation does not introduce new program behaviours by com-
paring the denotations of the code block before and after. Our approach is compo-
sitional: by examining only representative contexts, transformations are verified
for any context. It is also fully abstract, meaning any valid transformation can be
verified. We cover several tricky aspects of C/C++-style memory models, includ-
ing release-acquire operations, sequentially consistent fences, and non-atomics.
We also define a variant of our denotation that is finite at the cost of losing full
abstraction. Based on this variant, we have implemented a prototype verification
tool and applied it to automatically prove and disprove a range of compiler opti-
misations.

1 Introduction

Context and objectives Any program defines a collection of observable behaviours: a
sorting algorithm maps unsorted to sorted sequences, and a paint program responds to
mouse clicks by updating a rendering. It is often desirable to transform a program with-
out introducing new observable behaviours – for example, in a compiler optimisation
or programmer refactoring. Such transformations are called observational refinements,
and they ensure that properties of the original program will carry over to the trans-
formed version. It is also desirable for transformations to be compositional, meaning
that they can be applied to a block of code irrespective of the surrounding program con-
text. Compositional transformations are particularly useful for automated systems such
as compilers, where they are known as peephole optimisations.

The semantics of the language is highly significant in determining which transfor-
mations are valid, because it determines the ways that a block of code being transformed
can interact with its context and thereby affect the observable behaviour of the whole
program. Our work applies to a relaxed memory concurrent setting. Thus, the context of
a code-block includes both code sequentially before and after the block, and code that

2 Mike Dodds, Mark Batty, and Alexey Gotsman

runs in parallel. Relaxed memory means that different threads can observe different, ap-
parently contradictory orders of events – such behaviour is permitted by programming
languages to reflect CPU-level relaxations and to allow compiler optimisations.

We focus on axiomatic memory models of the type used in C/C++ and Java. In ax-
iomatic models, program executions are represented by structures of memory actions
and relations on them, and program semantics is defined by a set of axioms constraining
these structures. Reasoning about the correctness of program transformations on such
memory models is very challenging, and indeed, compiler optimisations have been re-
peatedly shown unsound with respect to models they were intended to support [29,
27]. The fundamental difficulty is that axiomatic models are defined in a global, non-
compositional way, making it very challenging to reason compositionally about the
single code-block being transformed.

Approach Suppose we have a code-block B, embedded into an unknown program con-
text. We define a denotation for the code-block which summarises its behaviour in a re-
stricted representative context. The denotation consists of a set of histories which track
interactions across the boundary between the code-block and its context, but abstract
from internal structure of the code-block. We can then validate a transformation from
code-block B to B′ by comparing their denotations. This approach is compositional: it
requires reasoning only about the code-blocks and representative contexts; the validity
of the transformation in an arbitrary context will follow. It is also fully abstract, mean-
ing that it can verify any valid transformation: considering only representative contexts
and histories does not lose generality.

We also define a variant of our denotation that is finite at the cost of losing full ab-
straction. We achieve this by further restricting the form of contexts one needs to con-
sider in exchange for tracking more information in histories. For example, it is unnec-
essary to consider executions where two context operations read from the same write.

Using this finite denotation, we implement a prototype verification tool, Stellite.
Our tool converts an input transformation into a model in the Alloy language [13], and
then checks that the transformation is valid using the Alloy* solver [20]. Our tool can
prove or disprove a range of introduction, elimination, and exchange compiler optimi-
sations. Many of these were verified by hand in previous work; our tool verifies them
automatically.

Contributions Our contribution is twofold. First, we define the first fully abstract de-
notational semantics for an axiomatic relaxed model. Previous proposals in this space
targeted either non-relaxed sequential consistency [7] or much more restrictive opera-
tional relaxed models [9, 14, 24]. Second, we show it is feasible to automatically ver-
ify relaxed-memory program transformations. Previous techniques required laborious
proofs by hand or in a proof assistant [28, 30, 31, 29, 27]. Our target model is derived
from the C/C++ 2011 standard [25]. However, our aim is not to handle C/C++ per se
(especially as the model is in flux in several respects; see §3.8). Rather we target the
simplest axiomatic model rich enough to demonstrate our approach.

Compositional Verification of Compiler Optimisations on Relaxed Memory 3

2 Observation and Transformation

2.1 Observational refinement

The notion of observation is crucial when determining how different programs are re-
lated. For example, observations might be I/O behaviour or writes to special variables.
Given program executions X1 and X2, we write X1 4ex X2 if the observations in X1

are replicated in X2. Lifting this notion, a program P1 observationally refines another
P2 if every observable behaviour of one could also occur with the other – we write this
P1 4pr P2. More formally, let J−K be the map from programs to sets of executions.
Then we define 4pr as:

P1 4pr P2
∆⇐⇒ ∀X1 ∈ JP1K.∃X2 ∈ JP2K. X1 4ex X2 (1)

2.2 Compositional transformation

Many common program transformations are compositional: they modify a sequential
fragment of the program without examining the rest of the program. We call the former
the code-block and the latter its context. Contexts can include sequential code before
and after the block, and concurrent code that runs in parallel with it. Code-blocks are
sequential, i.e. they do not feature internal concurrency. A context C and code-block B
can be composed to give a whole program C(B).

A transformation B2 B1 replaces some instance of the code-block B2 with
B1. To validate such transformation, we must establish whether every whole program
containing B1 observationally refines the same program with B2 substituted. If this
holds, we say that B1 observationally refines B2, written B1 4bl B2, defined by lifting
4pr as follows:

B1 4bl B2
∆⇐⇒ ∀C. C(B1) 4pr C(B2) (2)

If B1 4bl B2 holds, then the compiler can replace block B2 with block B1 irre-
spective of the whole program, i.e. B2 B1 is a valid transformation. Thus, deciding
B1 4bl B2 is the core problem in validating compositional transformations.

The language semantics is highly significant in determining observa-
tional refinement. For example, the code blocks B1 : store(x,5) and
B2 : store(x,2); store(x,5) are observationally equivalent in a sequential
setting. However, in a concurrent setting the intermediate state, x = 2, can be observed
in B2 but not B1, meaning the code-blocks are no longer observationally equivalent.
In a relaxed-memory setting there is no global state seen by all threads, which further
complicates the notion of observation.

2.3 Compositional verification

To establish B1 4bl B2, it is difficult to examine all possible syntactic contexts. Our
approach is to construct a denotation for each code-block – a simplified, ideally finite,
summary of possible interactions between the block and its context. We then define a

4 Mike Dodds, Mark Batty, and Alexey Gotsman

store(x,0); store(y,0);

store(x,1);

v1 := load(y);

store(y,1);

v2 := load(x);

store(f,0); store(x,0);

store(x,1);

store(f,1);

b := load(f);

if (b == 1)

r := load(x);

Fig. 1. Left: store-buffering (SB) example. Right: message-passing (MP) example.

refinement relation on denotations and use it to establish observational refinement. We
write B1 v B2 when the denotation of B1 refines that of B2.

Refinement on denotations should be adequate, i.e., it should validly approximate
observational refinement: B1 v B2 =⇒ B1 4bl B2. Hence, if B1 v B2, then
B2 B1 is a valid transformation. It is also desirable for the denotation to be fully
abstract: B1 4bl B2 =⇒ B1 v B2. This means any valid transformation can be
verified by comparing denotations. Below we define several versions ofvwith different
properties.

3 Target Language and Core Memory Model

We now describe our target language. Our language’s memory model is derived from
the C/C++ 2011 standard (henceforth ‘C11’), as formalised by [25, 6]. However, we
simplify our model in several ways; see end of section for details. In C11 terms, our
model covers release-acquire and non-atomic operations, and sequentially consistent
fences. To simplify the presentation, at first we omit non-atomics, and extend our ap-
proach to cover them in §7. Thus, all operations in this section correspond to C11’s
release-acquire.

3.1 Relaxed memory primer

In a sequentially consistent concurrent system, there is a total temporal order on loads
and stores, and loads take the value of the most recent store; in particular, they cannot
read overwritten values, or values written in the future. A relaxed (or weak) memory
model weakens this total order, allowing behaviours forbidden under sequential con-
sistency. Two standard examples of relaxed behaviour are store buffering and message
passing, shown in Figure 1.

In most relaxed models v1 = v2 = 0 is a possible post-state for SB. This cannot
occur on a sequentially consistent system: if v1 = 0 then store(y,1) must be ordered
after the load of y, which would order store(x,1) before the load of x, forcing it to
assign v2 = 1. In some relaxed models, b = 1 ∧ r = 0 is a possible post-state for
MP. This is undesirable if, for example, x is a complex data-structure and f is a flag
indicating it has been safely created.

3.2 Language syntax

Programs in the language we consider manipulate thread-local variables l, l1, l2 . . . ∈
LVar and global variables x, y, . . . ∈ GVar, coming from disjoint sets LVar and GVar.

Compositional Verification of Compiler Optimisations on Relaxed Memory 5

Each variable stores a value from a finite set Val and is initialised to 0 ∈ Val. Constants
are encoded by special read-only thread-local variables. We assume that each thread
uses the same set of thread-local variable names LVar. The syntax of the programming
language is as follows:

C ::= l := E | store(x, l) | l := load(x) | l := LL(x) | l′ := SC(x, l) | fence |
C1 ‖ C2 | C1;C2 | if (l) {C1} else {C2} | {−}

E ::= l | l1 = l2 | l1 6= l2 | . . .

Many of the constructs are standard. LL(x) and SC(x, l) are load-link and store-
conditional, which are basic concurrency operations available on many platforms (e.g.,
Power and ARM). A load-link LL(x) behaves as a standard load of global variable
x. However, if it is followed by a store-conditional SC(x, l), the store fails and returns
false if there are intervening writes to the same location. Otherwise the store-conditional
writes l and returns true. The fence command is a sequentially consistent fence: inter-
leaving such fences between all statements in a program guarantees sequentially consis-
tent behaviour. We do not include compare-and-swap (CAS) command in our language
because LL-SC is more general [2]. Hardware-level LL-SC is used to implement C11
CAS on Power and ARM. Our language does not include loops because in this paper we
do not consider infinite computations (see §3.8 for discussion). As a result, loops can be
represented by their finite unrollings. Our load commands write into a local variable.
In our examples, we sometimes use ‘bare’ loads without a local variable write.

The construct {−} represents a block-shaped hole in the program. To simplify our
presentation, we assume that exactly one hole appears in the program. Transformations
that apply to multiple blocks at once can be simulated by using the fact our approach is
compositional: transformations can be applied in sequence using different divisions of
the program into code-block and context.

The set Prog of whole programs consists of programs without holes, while the set
Contx of contexts consists of programs. The set Block of code-blocks are whole pro-
grams without parallel composition. We often write P ∈ Prog for a whole program,
B ∈ Block for a code-block, and C ∈ Contx for a context. Given a context C and a
code-block B, the composition C(B) is C with its hole syntactically replaced by B.
For example:

C : load(x); {-}; store(y,l1), B : store(x,2)
−→ C(B) : load(x); store(x,2); store(y,l1)

We restrict Prog, Contx and Block to ensure LL-SC pairs are matched correctly.
Each SC must be preceded in program order by a LL to the same location. Other types
of operations may occur between the LL and SC, but intervening SC operations are
forbidden. For example, the program LL(x); SC(x,v1); SC(x,v2); is forbidden.
We also forbid LL-SC pairs from spanning parallel compositions, and from spanning
the block/context boundary.

3.3 Memory model structure

The semantics of a whole program P is given by a set JP K of executions, which consist
of actions, representing memory events on global variables, and several relations on

6 Mike Dodds, Mark Batty, and Alexey Gotsman

〈l := load(x), σ〉 ∆
= {({load(x, a)}, ∅, σ[l 7→ a]) | a ∈ Val}

〈store(x, l), σ〉 ∆
= {({store(x, a)}, ∅, σ) | σ(l) = a}

〈C1;C2, σ〉
∆
= {(A1 ·∪A2, sb1 ∪ sb2 ∪ (A1 ×A2), σ2) |

(A1, sb1, σ1) ∈ 〈C1, σ〉 ∧ (A2, sb2, σ2) ∈ 〈C2, σ1〉}

Fig. 2. Store, Load and sequential composition in the thread-local semantics. The full semantics
is given in §A. We writeA1 ·∪A2 for a union that is defined only when actions inA1 andA2 use
disjoint sets of identifiers. We omit identifiers from actions to avoid clutter.

these. Actions are tuples in the set Action ∆
= ActID × Kind × Option(GVar) × Val∗.

In an action (a, k, z, b) ∈ Action: a ∈ ActID is the unique action identifier; k ∈ Kind
is the kind of action – we use load, store, LL, SC, and the failed variant SCf in the
semantics, and will introduce further kinds as needed; z ∈ Option(GVar) is an option
type consisting of either a single global variable Just(x) or None; and b ∈ Val∗ is the
vector of values (actions with multiple values are used in §4).

Given an action v, we use gvar(v) and val(v) as selectors for the different fields.
We often write actions so as to elide action identifiers and the option type. For example,
load(x, 3) stands for ∃i. (i, load, Just(x), [3]). We also sometimes elide values. We call
load and LL actions reads, and store and successful SC actions writes. Given a set of
actions A, we write, e.g., reads(A) to identify read actions in A. Below, we range over
all actions by u, v; read actions by r; write actions by w; and LL, SC actions by ll and
sc respectively.

The semantics of a program P ∈ Prog is defined in two stages. First, a thread-
local semantics of P produces a set 〈P 〉 of pre-executions (A, sb) ∈ PreExec. A pre-
execution contains a finite set of memory actions A ∈ Action that could be produced
by the program. It has a transitive and irreflexive sequence-before relation sb ⊆ A×A,
which defines the sequential order imposed by the program syntax.

For example two sequential statements in the same thread produce actions ordered
in sb. The thread-local semantics takes into account control flow in P ’s threads and
operations on local variables. However, it does not constrain the behaviour of global
variables: the values threads read from them are chosen arbitrarily. This is addressed
by extending pre-executions with extra relations, and filtering the resulting executions
using validity axioms.

3.4 Thread-local semantics

The thread-local semantics is defined formally in Figure 2. The semantics of a program
P ∈ Prog is defined using function 〈−,−〉 : Prog × VMap → P(PreExec × VMap).
The values of local variables are tracked by a map σ ∈ VMap

∆
= LVar → Val. Given a

program and an input local variable map, the function produces a set of pre-executions
paired with an output variable map, representing the values of local variables at the
end of the execution. Let σ0 map every local variable to 0. Then 〈P 〉, the thread-local
semantics of a program P , is defined as

〈P 〉 ∆
= {(A, sb) | ∃σ′. (A, sb, σ′) ∈ 〈P, σ0〉}

Compositional Verification of Compiler Optimisations on Relaxed Memory 7

The significant property of the thread-local semantics is that it does not restrict the
behaviour of global variables. For this reason, note that the clause for load in Fig-
ure 2 leaves the value a unrestricted. We take a simplified approach to local variables
at thread joins: the initial variable map σ is copied to both threads in C1 ‖ C2, and the
original map is restored when they complete. This avoids having a particular policy for
combining thread post-states.

We follow [17] in encoding the fence command by a successful LL-SC pair to a
distinguished variable fen ∈ GVar that is not otherwise read or written.

3.5 Execution structure

The semantics of a program P is a set JP K of executions X = (A, sb, at, rf,mo, hb) ∈
Exec, where (A, sb) is a pre-execution and at, rf,mo, hb ⊆ A×A. Given an execution
X we sometimes writeA(X), sb(X), . . . as selectors for the appropriate set or relation.
The relations have the following purposes.

– Reads-from (rf) is an injective map from reads to writes. A read and a write actions
are related w rf−→ r if r takes its value from w.

– Modification order (mo) is an irreflexive, total order on write actions to each distinct
variable. This is a per-variable order in which all threads observe writes to the
variable; two threads cannot observe these writes in different orders.

– Happens-before (hb) is analogous to global temporal order – but unlike the sequen-
tially consistent notion of time, it is partial. Happens-before is defined as (sb∪rf)+:
therefore statements ordered in the program syntax are ordered in time, as are reads
with the writes they observe.

– Atomicity (at ⊆ sb) is an extension to standard C11 which we use to support LL-
SC (see below). It is an injective function from a successful load-link action to a
successful store-conditional, giving a LL-SC pair.

3.6 Validity axioms

The semantics JP K of a program P is the set of executions X ∈ Exec compatible with
the thread-local semantics and the validity axioms, denoted valid(X):

JP K ∆
= {X | (A(X), sb(X)) ∈ 〈P 〉 ∧ valid(X)} (3)

The validity axioms on an execution (A, sb, at, rf,mo, hb) are:

– HBDEF: hb = (sb ∪ rf)+ and hb is acyclic.
This axiom defines hb and enforces the intuitive property that there are no cycles
in the temporal order. It also prevents an action reading from its hb-future: as rf is
included in hb, this would result in a cycle.

– HBVSMO: ¬∃w1, w2. w1

hb **
w2

mo
jj

This axiom requires that the order in which writes to a location become visible
to threads cannot contradict the temporal order. But take note that writes may be
ordered in mo but not hb.

8 Mike Dodds, Mark Batty, and Alexey Gotsman

– COHERENCE: ¬∃w1, w2, r. w1
mo //

rf

33w2
hb // r

This axiom generalises the sequentially consistent prohibition on reading over-
written values. If two writes are ordered in mo, then intuitively the second over-
writes the first. A read that follows some write in hb or mo cannot read from writes
earlier in mo – these earlier writes have been overwritten. However, unlike in se-
quential consistency, hb is partial, so there may be multiple writes that an action
can legally read.

– RFVAL: ∀r. (¬∃w′. w′ rf−→ r) =⇒ (val(r) = 0∧
(¬∃w.w hb−→ r ∧ gvar(w) = gvar(r)))

Most reads must take their value from a write, represented by an rf edge. However,
the RFVAL axiom allows the rf edge to be omitted if the read takes the initial value
0 and there is no hb-earlier write to the same location. Intuitively, an hb-earlier
write would supersede the initial value in a similar way to COHERENCE.

– ATOM: ¬∃w1, w2, ll, sc. w1

rf
��

mo // w2

mo

��
ll at // sc

This axiom is adapted from [17]. For an LL-SC pair ll and sc, it ensures that there
is no mo-intervening write w2 that would invalidate the store.

store(f, 0)

sb, hb

��mo

��

store(x, 0)
sb, hb,mo

xx
sb, hb

��
rf,hb

yy

store(x, 1)

sb, hb

��

load(f, 1)

sb, hb

��
store(f, 1)

rf, hb

88

load(x, 0)

Fig. 3. An invalid execution of MP.

Our model forbids the problematic relaxed be-
haviour of the message-passing (MP) program in
Figure 1 that yields b = 1∧r = 0. Figure 3 shows
an (invalid) execution that would exhibit this be-
haviour. To avoid clutter, here and in the following
we omit hb edges obtained by transitivity and lo-
cal variable values. This execution is allowed by
the thread-local semantics of the MP program, but
it is ruled out by the COHERENCE validity axiom.
As hb is transitively closed, there is a derived hb

edge store(x, 1)
hb−→ load(x, 0), which forms a

COHERENCE violation. Thus, this is not an exe-
cution of the MP program. Indeed, any execution
ending in load(x, 0) is forbidden for the same reason, meaning that the undesirable MP
relaxed behaviour cannot occur.

3.7 Relaxed observations

Finally, we define a notion of observational refinement suitable for our relaxed model.
We assume a subset of observable global variables, OVar ⊆ GVar, which can only be
accessed by the context and not by the code-block. We consider the actions and the hb
relation on these variables to be the observations. We write X|OVar for the projection of
X’s action set and relations to OVar, and use this to define 4ex for our model:

X 4ex Y
∆⇐⇒ A(X|OVar) = A(Y |OVar) ∧ hb(Y |OVar) ⊆ hb(X|OVar)

Compositional Verification of Compiler Optimisations on Relaxed Memory 9

This is lifted to programs and blocks as in §3, def. (1) and (2). Note that in the more
abstract execution, actions on observable variables must be the same, but hb can be
weaker. This is because we interpret hb as a constraint on time order: two actions that
are unordered in hb could have occurred in either order, or in parallel. Thus, weakening
hb allows more observable behaviours (see §2).

3.8 Differences from C11

Our language’s memory model is derived from the C11 formalisation in [6], with a
number of simplifications. We chose C11 because it demonstrates most of the impor-
tant features of axiomatic language models. However, we do not target the precise C11
model: rather we target an abstracted model that is rich enough to demonstrate our ap-
proach. Relaxed language semantics is still a very active topic of research, and several
C11 features are known to be significantly flawed, with multiple competing fixes pro-
posed. Some of our differences from [6] are intended to avoid such problematic features
so that we can cleanly demonstrate our approach.

In C11 terms, our model covers release-acquire and non-atomic operations (the lat-
ter addressed in §7), and sequentially consistent fences. We deviate from C11 in the
following ways:

– We omit sequentially consistent accesses because their semantics is known to be
flawed in C11 [18]. We do handle sequentially consistent fences, but these are
stronger than those of C11: we use the semantics proposed in [17]. It has been
proved sound under existing compilation strategies to common multiprocessors.

– We omit relaxed (RLX) accesses to avoid well-known problems with thin-air val-
ues [5]. There are multiple recent competing proposals for fixing these problems,
e.g. [16, 15, 23].

– We do not consider infinite computations, because their semantics in C11-style
axiomatic models remains undecided in the literature [5]. However, our proofs do
not depend on the assumption that execution contexts are finite.

– Our language is based on shared variables, not dynamically allocated addressable
memory, so for example we cannot write y:=*x; z:=*y. This simplifies our the-
ory by allowing us to fix the variables accessed by a code-block up-front. We be-
lieve our results can be extended to support addressable memory, because C11-style
models grant no special status to pointers; we elaborate on this in §4.

– We add LL-SC atomic instructions to our language in addition to C11’s standard
CAS. To do this, we adapt the approach of [17]. This increases the observational
power of a context and is necessary for full abstraction in the presence of non-
atomics; see §8. LL-SC is available as a hardware instruction on many platforms
supporting C11, such as Power and ARM. However, we do not propose adding LL-
SC to C11: rather, it supports an interesting result in relaxed memory model theory.
Our adequacy results do not depend on LL-SC.

10 Mike Dodds, Mark Batty, and Alexey Gotsman

4 Denotations of Code-Blocks

We construct the denotation for a code-block in two steps: (1) generate the block-local
executions under a set of special cut-down contexts; (2) from each execution, extract a
summary of interactions between the code-block and the context called a history.

4.1 Block-local executions

The block-local executions of a block B ∈ Block omit context structure such as syntax
and actions on variables not accessed in the block. Instead the context is represented
by special actions call and ret, a set AB , and relations RB and SB , each covering
an aspect of the interaction of the block and an arbitrary unrestricted context. Together,
each choice of call, ret,AB ,RB , and SB abstractly represents a set of possible syntactic
contexts. By quantifying over the possible values of these parameters, we cover the
behaviour of all syntactic contexts. The parameters are defined as follows:

– Local variables. A context can include code that precedes and follows the block
on the same thread, with interaction through local variables, but – due to syn-
tactic restriction – not through LL/SC atomic regions. We capture this with
special action call(σ) at the start of the block, and ret(σ′) at the end, where
σ, σ′ : LVar → Val record the values of local variables at these points. Assume
that variables in LVar are ordered: l1, l2, . . . , ln. Then call(σ) is encoded by the ac-
tion (i, call,None, [σ(l1), . . . σ(ln)]), with fresh identifier i. We encode ret in the
same way.

– Global variable actions. The context can also interact with the block through con-
current reads and writes to global variables. These interactions are represented by
setAB of context actions added to the ones generated by the thread-local semantics
of the block. This set only contains actions on the variables VSB that B can access
(VSB can be constructed syntactically). Given an execution X constructed using
AB (see below) we write contx(X) to recover the set AB .

– Context happens-before. The context can generate hb edges between its actions,
which affect the behaviour of the block. We track these effects with a relation RB
over actions in AB , call and ret:

RB ⊆ (AB ×AB) ∪ (AB × {call}) ∪ ({ret} × AB) (4)

The context can generate hb edges between actions directly if they are on the same
thread, or indirectly through inter-thread reads. Likewise call / ret may be related
to context actions on the same or different threads.

– Context atomicity. The context can generate at edges between its actions that we
capture in the relation SB ⊆ AB ×AB . We require this relation to be an injective
function from LL to SC actions. We consider only cases where LL/SC pairs do not
cross block boundaries, so we need not consider boundary-crossing at edges.

Together, call, ret, AB , RB , and SB represent a limited context, stripped of syn-
tax, relations sb, mo, and rf, and actions on global variables other than VSB . When

Compositional Verification of Compiler Optimisations on Relaxed Memory 11

hb, RB

hb, RB

mo

sb, hb

rf, hb

rf, hb

store(f,1)
load(f,1)

load(x,1)

call

sb, hb

sb, hb

ret

store(x,2)

store(x,1)

hb, RB

store(f,1)

call

ret

store(x,2)

store(x,1)
G

G

G

Fig. 4. Left: block-local execution. Right: corresponding history.

constructing block-local executions, we represent all possible interactions by quanti-
fying over all possible choices of σ, σ′, AB , RB and SB . The set JB,AB , RB , SBK
contains all executions of B under this special limited context. Formally, an execution
X = (A, sb, at, rf,mo, hb) is in this set if:

1. AB ⊆ A and there exist variable maps σ, σ′ such that {call(σ), ret(σ′)} ⊆ A. That
is, the call, return, and extra context actions are included in the execution.

2. There exists a set Al and relation sbl such that (i) (Al, sbl, σ′) ∈ 〈B, σ〉; (ii) Al =
A\ (AB ∪{call, ret}); (iii) sbl = sb\{(call, u), (u, ret) | u ∈ Al}. That is, actions
from the code-block satisfy the thread-local semantics, beginning with map σ and
deriving map σ′. All actions arising from the block are between call and ret in sb.

3. X satisfies the validity axioms, but with modified axioms HBDEF′ and ATOM′. We
define HBDEF′ as: hb = (sb∪rf∪RB)+ and hb is acyclic. That is, context relation
RB is added to hb. ATOM′ is defined analogously with SB added to at.

We say that AB , RB and SB are consistent with B if they act over variables in the
set VSB . In the rest of the paper we only consider consistent choices of AB , RB , SB .
The block-local executions of B are then all executions X ∈ JB,AB , RB , SBK.4

Example block-local execution. The left of Figure 4 shows a block-local execution for
the code-block

l1 := load(f); l2 := load(x) (5)

Here the set VSB of accessed global variables is {f, x}, As before, we omit local vari-
ables to avoid clutter. The context action set AB consists of the three stores, and RB is
denoted by dotted edges.

4 This definition relies on the fact that our language supports a fixed set of global variables, not
dynamically allocated addressable memory (see §3.8). We believe that in the future our results
can be extended to support dynamic memory. For this, the block-local construction would need
to quantify over actions on all possible memory locations, not just the static variable set VSB .
The rest of our theory would remain the same, because C11-style models grant no special
status to pointer values. Cutting down to a finite denotation, as in §5 below, would require
some extra abstraction over memory – for example, a separation logic domain such as [11].

12 Mike Dodds, Mark Batty, and Alexey Gotsman

In this execution, both AB and RB affect the behaviour of the code-block. The
following path is generated by RB and the load of f = 1:

store(x, 2)
mo−−→ store(x, 1)

RB−−→ store(f, 1)
rf−→ load(f, 1)

sb−→ load(x, 1)

Because hb includes sb, rf, and RB , there is a transitive edge store(x, 1)
hb−→

load(x, 1). The edge store(x, 2) mo−−→ store(x, 1) is forced because the HBVSMO axiom
prohibits mo from contradicting hb. Consequently, the COHERENCE axiom forces the
code-block to read x = 1.

4.2 Histories

From any block-local execution X , its history summarises the interactions between the
code-block and the context. Informally, the history records hb over context actions, call,
and ret. More formally the history, written hist(X), is a pair (A, G) consisting of an
action setA and guarantee relationG ⊆ A×A. Recall that we use contx(X) to denote
the set of context actions in X . Using this, we define the history as follows:

– The action set A is the projection of X’s action set to call, ret, and contx(X).
– The guarantee relation G is the projection of hb(X) to

(contx(X)× contx(X)) ∪ (contx(X)× {ret}) ∪ ({call} × contx(X)) (6)

The guarantee summarises the code-block’s effect on its context: it suffices to only
track hb and ignore other relations. Note the guarantee definition is similar to the con-
text relation RB , definition (4). The difference is that call and ret are switched: this
is because the guarantee represents hb edges generated by the code-block, while RB
represents the edges generated by the context. The right of Figure 4 shows the history
corresponding to the block-local execution on the left.

To see the interactions captured by the guarantee, compare the block given in def. (5)
with the block l2:=load(x). These blocks have differing effects on the following syn-
tactic context:

store(y,1); store(y,2); store(f,1) || {-}; l3:=load(y)

For the two-load block embedded into this context, l1 = 1 ∧ l3 = 1 is not a possible
post-state. For the single-load block, this post-state is permitted.5

In Figure 4.2, we give executions for both blocks embedded into this context. We
draw the context actions that are not included into the history in grey. In these execu-
tions, the code block determines whether the load of y can read value 1 (represented by
the edge labelled ‘rf?’). In the first execution, the context load of y cannot read 1 be-
cause there is the path store(y, 1)

mo−−→ store(y, 2)
hb−→ load(y) which would contradict

the COHERENCE axiom. In the second execution there is no such path and the load may
read 1.

5 We choose these post-states for exposition purposes – in fact these blocks are also distinguish-
able through local variable l1 alone.

Compositional Verification of Compiler Optimisations on Relaxed Memory 13

Execution 1: History 1:

store(f,1)

rf?

sb

rf

mo

sb

load(f,1)

load(x,0)

call

sb

sb

ret

store(y,1)

store(y,2)
sb

load(y)

G

store(f,1)

call

ret

G

Execution 2: History 2:

store(f,1)

rf?

sb

mo

call

ret

store(y,1)

store(y,2)
sb

load(y)

sb

load(x,0)

sb

store(f,1)

call

ret

Fig. 5. Executions and histories illustrating the guarantee relation.

It is desirable for our denotation to hide the precise operations inside the block –
this lets it relate syntactically distinct blocks. Nonetheless, the history must record hb
effects such as those above that are visible to the context. In Execution 1, the COHER-
ENCE violation is still visible if we only consider context operations, call, ret, and the
guarantee G – i.e. the history. In Execution 2, the fact that the read is permitted is like-
wise visible from examining the history. Thus the guarantee, combined with the local
variable post-states, capture the effect of the block on the context without recording the
actions inside the block.

4.3 Comparing denotations

The denotation of a code-block B is the set of histories of block-local executions of B
under each possible context, i.e. the set

{hist(X) | ∃AB , RB , SB . X ∈ JB,AB , RB , SBK}

To compare the denotations of two code-blocks, we first define a refinement relation on
histories: (A1, G1) vh (A2, G2) holds iff A1 = A2 ∧G2 ⊆ G1. The history (A2, G2)
places fewer restrictions on the context than (A1, G1) – a weaker guarantee corresponds
to more observable behaviours. For example in Figure 4.2, History 1 vh History 2 but
not vice versa, which reflects the fact that History 1 rules out the read pattern discussed
above.

We write B1 vq B2 to state that the denotation of B1 refines that of B2. The
subscript ‘q’ stands for the fact we quantify over both A and RB . We define vq by
lifting vh:

B1 vq B2
∆⇐⇒ ∀A, R, S. ∀X1 ∈ JB1,A, R, SK.

∃X2 ∈ JB2,A, R, SK. hist(X1) vh hist(X2)
(7)

In other words, two code-blocks are relatedB1 vq B2 if for every block-local execution
of B1, there is a corresponding execution of B2 with a related history. Note that the
corresponding history must be constructed under the same cut-down context A, R, S.

14 Mike Dodds, Mark Batty, and Alexey Gotsman

Execution X1: Execution X2: History:

R

sb, hb

rf, hb
load(x,1)

store(x,1)

call

sb, hb

ret

R

sb, hb

rf, hb
load(x,1)

store(x,1)

store(x,1)

call

sb, hb

sb, hb

ret load(x,1)

call

ret

G

Fig. 6. History comparison for an example program transformation.

THEOREM 1 (ADEQUACY OF vq) B1 vq B2 =⇒ B1 4bl B2.

THEOREM 2 (FULL ABSTRACTION OF vq) B1 4bl B2 =⇒ B1 vq B2.

As a corollary of the above theorems, a program transformation B2 B1 is valid
if and only if B1 vq B2 holds. We prove Theorem 1 in §B. We give a proof sketch of
Theorem 2 in §8 and a full proof in §F.

4.4 Example transformation

We now consider how our approach applies to a simple program transformation:

B2 : store(x,l1); store(x,l1) B1 : store(x,l1)

To verify this transformation, we must show that B1 vq B2. To do this, we must
consider the unboundedly many block-local executions. Here we just illustrate the rea-
soning for a single block-local execution; in §5 below we define a context reduction
which lets us consider a finite set of such executions.

In Figure 6, we illustrate the necessary reasoning for an execution X1 ∈
JB1,A, R, SK, with a context action set A consisting of a single load x = 1, a con-
text relation R relating ret to the load, and an empty S relation. This choice of R
forces the context load to read from the store in the block. We can exhibit an execution
X2 ∈ JB2,A, R, SK with a matching history by making the context load read from the
final store in the block.

5 A Finite Denotation

The approach above simplifies contexts by removing syntax and non-hb structure, but
there are still infinitely many A/R/S contexts for any code-block. To solve this, we
introduce a type of context reduction which means that we need only consider finitely

Compositional Verification of Compiler Optimisations on Relaxed Memory 15

many block-local executions. This means that we can automatically check transforma-
tions by examining all such executions (see the discussion of our checking tool in §6).
However this ‘cut down’ approach is no longer fully abstract. We modify our denotation
as follows:

– We remove the quantification over context relation R from definition (7) by fixing
it as ∅. In exchange, we extend the history with an extra component called a deny.

– We eliminate redundant block-local executions from the denotation, and only con-
sider a reduced set of executions X that satisfy a predicate cut(X).

These two steps are both necessary to achieve finiteness. Removing the R relation
reduces the amount of structure in the context. This makes it possible to then remove
redundant patterns – for example, duplicate reads from the same write.

Before defining the two steps in detail, we give the structure of our modified refine-
ment vc. In the definition, histE(X) stands for the extended history of an execution X ,
and vE for refinement on extended histories.

B1 vc B2
∆⇐⇒ ∀A, S.∀X1 ∈ JB1,A, ∅, SK.

cut(X1) =⇒ ∃X2 ∈ JB2,A, ∅, SK. histE(X1) vE histE(X2)
(8)

As with vq above, the refinement vc is adequate. However, as we show below, it is
not fully abstract.

THEOREM 3 (ADEQUACY OF vc) B1 vc B2 =⇒ B1 4bl B2.

We prove the theorem in §E.

5.1 Cutting predicate

Removing the context relation R in definition (8) removes a large amount of structure
from the context. However, there are still unboundedly many block-local executions
with an empty R – for example, we can have unbounded reads and writes that do not
interact with the block. The cutting predicate identifies these redundant block-local ex-
ecutions.

We first identify the actions in a block-local execution that are visible, meaning they
directly interact with the block. We write code(X) for the set of actions in X generated
by the code-block. Visible actions belong to code(X), read from code(X), or are read
by code(X). In other words,

vis(X)
∆
= code(X) ∪ {u | ∃v ∈ code(X). u

rf−→ v ∨ v rf−→ u}

Informally, cutting eliminates three redundant patterns.

1. Non-visible context reads, i.e. reads from context writes.
2. Duplicate context reads from the same write.
3. Duplicate non-visible writes that are not separated in mo by a visible write.

16 Mike Dodds, Mark Batty, and Alexey Gotsman

mo

mo

mo

rf

rf

store(x,0)

load(y,0)

call

store(x,3)

ret

load(x,0)

load(x,0)
store(x,1)

store(x,2)

[a]
store(y,0)rf

[d]

[c]

rf

load(x,2)
[b]

rf load(x,3)

)

)

)

[a] Forbidden by cutW(). Two
non-visible stores without a vis-
ible store intervening in mo.

[b] Forbidden by cutR(). Load is
non-visible as it reads from a
context store.

[c] Forbidden by cutR(). Both
reads are visible, but are du-
plicates, reading from the same
write.

[d] Allowed. Visible load and store.

Fig. 7. Left: block-local execution which includes patterns forbidden by cut(). Right: key ex-
plaining the patterns forbidden or allowed.

Formally, we define cut′(X), which is the conjunction of cutR for reads, and cutW
for writes.

cutR(X)
∆⇐⇒ reads(X) ⊆ vis(X)∧

∀r1, r2 ∈ contx(X). (r1 6= r2 ⇒ ¬∃w.w
rf−→ r1 ∧ w

rf−→ r2)

cutW(X)
∆⇐⇒ ∀w1, w2 ∈ (contx(X) \ vis(X)).

w1
mo−−→ w2 ⇒ ∃w3 ∈ vis(X). w1

mo−−→ w3
mo−−→ w2

cut′(X)
∆⇐⇒ cutR(X) ∧ cutW(X)

The final predicate cut(X) extends this in order to keep LL-SC pairs together: it re-
quires that, if cut′() permits one half of an LL-SC, the other is also permitted implicitly
(for brevity we omit the formal definition of cut() in terms of cut′).

It should be intuitively clear why the first two of the above patterns are redundant.
The main surprise is the third pattern, which preserves some non-visible writes. This
is required by Theorem 3, Adequacy, for technical reasons connected to per-location
coherence.

We illustrate the application of cut() to a block-local execution in Figure 7.

5.2 Extended history (histE)

In our approach, each block-local execution represents a pattern of interaction between
block and context. In our previous definition of vq, constraints imposed by the block
are captured by the guarantee, while constraints imposed by the context are captured
by the R relation. The definition (8) of vc removes the context relation R, but these
constraints must still be represented. Instead, we replace R with a history component
called a deny. This simplifies the block-local executions, but compensates by recording
more in the denotation.

The deny records the hb edges that cannot be enforced due to the execution struc-
ture. For example, consider the block-local execution6 of Figure 8.

6 We use this execution for illustration, but in fact the cut() predicate would forbid the load.

Compositional Verification of Compiler Optimisations on Relaxed Memory 17

D rf

mo

sb

store(x,1)store(x,0)

call

sb

ret

load(x,1)

Fig. 8. A deny edge.

This pattern could not occur in a context that gener-
ates the dashed edge D as a hb – to do so would violate
the HBVSMO axiom. In our previous definition of vq, we
explicitly represented the presence or absence of this edge
through the R relation. In our new formulation, we repre-
sent such ‘forbidden’ edges in the history by a deny edge.

The extended history of an execution X , written
histE(X) is a triple (A, G,D), consisting of the familiar
notions of action set A and guarantee G ⊆ A × A, to-
gether with deny D ⊆ A×A as defined below:

D
∆
= {(u, v) |HBvsMO-d(u, v)∨Cohere-d(u, v)∨RFval-d(u, v)} ∩

(
(contx(X)× contx(X)) ∪ (contx(X)× {call}) ∪ ({ret} × contx(X))

)

Each of the predicates HBvsMO-d, Cohere-d, and RFval-d generates the deny for
one validity axiom. In the diagrammatic definitions below, dashed edges represent the
deny edge, and hb∗ is the reflexive-transitive closure of hb:

HBvsMO-d(u, v): ∃w1, w2. w1
hb∗ // u

D // v
hb∗ // w2

mo

ll

Coherence-d(u, v): w1
mo //

rf

11w2
hb∗ // u

D // v
hb∗ // r

RFval-d(u, v): ∃w, r. gvar(w) = gvar(r)∧

¬∃w′. w′ rf−→ r ∧ w
hb∗ // u

D // v
hb∗ // r

One can think of a deny edge as an ‘almost’ violation of an axiom. For example, if
HBvsMO-d(u, v) holds, then the context cannot generate an extra hb-edge u hb−→ v – to
do so would violate HBVSMO.

Because deny edges represent constraints on the context, weakening the deny places
fewer constraints, allowing more behaviours, so we compare them with relational in-
clusion:

(A2, G2, D2) vE (A2, G2, D2)
∆⇐⇒ A1 = A2 ∧G2 ⊆ G1 ∧D2 ⊆ D1

This refinement on extended histories is used to define our refinement relation on
blocks, vc, def. (8).

5.3 Finiteness

The refinement vc is finite. By this we mean that any code-block has a finite number of
block-local executions satisfying cut.

THEOREM 4 (FINITENESS) If for a block B and state σ the set of thread-local ex-
ecutions 〈B, σ〉 is finite, then so is the set of resulting block-local executions, {X |
∃A, S.X ∈ JB,A, ∅, SK ∧ cut(X)}.

18 Mike Dodds, Mark Batty, and Alexey Gotsman

Proof (Proof sketch). It is easy to see for a given thread-local execution there are finitely
many possible visible reads and writes. Any two non-visible writes must be distin-
guished by at least one visible write, limiting their number.

Theorem 4 means that any transformation can be checked automatically if the two
blocks have finite sets of thread-local executions. We assume a finite data domain,
meaning action can only take finitely many distinct values in Val. Recall also that our
language does not include loops. Given these facts, any transformations written in our
language will satisfy finiteness, and can therefore by automatically checked.

6 Prototype Verification Tool

Stellite is our prototype tool that verifies transformations using the Alloy* model
checker [13, 20]. Our tool takes an input transformation B2 B1 written in a C-like
syntax. It automatically converts the transformation into into an Alloy* model encoding
B1 vc B2. If the tool reports success, then the transformation is verified for unbound-
edly large syntactic contexts and executions.

An Alloy model consists of a collection of predicates on relations, and an instance
of the model is a set of relations that satisfy the predicates. As previously noted in [32],
there is therefore a natural fit between Alloy models and axiomatic memory models.

At a high level, our tool works as follows:

1. The two sides of an input transformation B1 and B2 are automatically converted
into Alloy predicates expressing their syntactic structure.Intuitively, these block
predicates are built by following the thread-local semantics from §3.

2. The block predicates are linked with a pre-defined Alloy model expressing the
memory model and vc.

3. The Alloy* solver searches (using SAT) for a history of B1 that has no matching
history of B2. We use the higher-order Alloy* solver of [20] because the standard
Alloy solver cannot support the existential quantification on histories in vc.

The Alloy* solver is parameterised by the maximum size of the model it will exam-
ine. However, Stellite itself is not a bounded model checker. Our finiteness theorem for
vc (Theorem 4) means there is a bound on the size of cut-down context that needs to be
considered to verify any given transformation. If our tool reports that a transformation
is correct, it is verified in all syntactic contexts of unbounded size.

Given a query B1 vc B2, the required context bound grows in proportion to the
the number of internal actions on distinct locations in B1. This is because our cutting
predicate permits context actions if they interact with internal actions, either directly,
or by interleaving between internal actions. In our experiments we run the tool with a
model bound of 10, sufficient to give soundness for all the transformations we consider.
Note that most of our example transformations do not require such a large bound, and
execution times improve if it is reduced.

If a counter-example is discovered, the problematic execution and history can be
viewed using the Alloy model visualiser, which has a similar appearance to the ex-
ecution diagrams in this paper. The output model generated by our tool encodes the

Compositional Verification of Compiler Optimisations on Relaxed Memory 19

Introduction, validity, time (s)
skip fc X 76

skip ld(x) X 429

skip l := ld(x) x 18

l := ld(x) l := ld(x); st(x, l) x 72

l := ld(x) l := ld(y); l := ld(x) X ∞
l := ld(x) l := ld(x); l := ld(x) X 20k

st(x, l) st(x, l); st(x, l) x 136

fc fc; fc X 248

Elimination, validity, time (s)
fc skip x 15

l := ld(x) skip x 17

l := ld(x); st(x, l) l := ld(x) x 64

l := ld(x); l := ld(x) l := ld(x) X 2k

st(x, l); l := ld(x) st(x, l) X 9k

st(x,m); st(x, l) st(x, l) X 24k

fc; fc fc X 382

Exchange, validity, time (s)
fc; l := ld(x) l := ld(x); fc x 26

fc; st(x, l) st(x, l); fc x 50

l := ld(x); fc fc; l := ld(x) x 79

st(x, l); fc fc; st(x, l) x 145

l := ld(x); st(y,m) st(y,m); l := ld(x) x 28

m := ld(y); l := ld(x) l := ld(x);m := ld(y) x 118

st(y,m); l := ld(x) l := ld(x); st(y,m) X ∞
st(y,m); st(x, l) st(x, l); st(y,m) x 641

Fig. 9. Results from executing Stellite on a 32 core 2.3GHz AMD Opteron, with 128GB RAM,
over Linux 3.13.0-88 and Java 1.8.0 91. load/store/fence are abbreviated to ld/st/fc. X and
x denote whether the transformation satisfies vc.∞ denotes a timeout after 8 hours.

history of B1 for which no history of B2 could be found. As vc is not fully abstract,
this counter-example could of course be spurious.

Stellite currently supports transformations with atomic reads, writes, and fences. It
does not yet support non-atomic accesses (see §7), LL-SC, or branching control-flow.
We believe supporting the above features would not present fundamental difficulties,
since the structure of the Alloy encoding would be similar. Despite the above limita-
tions, our prototype demonstrates that our cut-down denotation can be used for auto-
matic verification of important program transformations.

6.1 Experimental results

We have tested our tool on a range of different transformations. A table of experimental
results is given in Figure 9. Many of our examples are derived from [27] – we cover
all their examples that fit into our tool’s input language. Transformations of the sort
that we check have led to real-world bugs in GCC [21] and LLVM [10]. Note that
some transformations are invalid because of their effect on local variables, e.g. skip
l := load(x). The closely related transformation skip load(x) throws away the
result of the read, and is consequently valid.

Our tool takes significant time to verify some of the above examples, and two of
the transformations cause the tool to time out. This is due to the complexity and non-
determinism of the C11 model. In particular, our execution times are comparable to ex-
isting C++ model simulators such as Cppmem when they run on a few lines of code [4].

20 Mike Dodds, Mark Batty, and Alexey Gotsman

However, our tool is a sound transformation verifier, rather than a simulator, and thus
solves a more difficult problem: transformations are verified for unboundedly large syn-
tactic contexts and executions, rather than for a single execution.

When our tool times out, this of course does not establish validity for the transfor-
mation. However, as with bounded model checking, our experience is counter-examples
are found at shallow positions in the search space.

7 Transformations with Non-Atomics

We now extend our approach to non-atomic (i.e. unsynchronised) accesses. C11 non-
atomics are intended to enable sequential compiler optimisations that would otherwise
be unsound in a concurrent context. To achieve this, any concurrent read-write or write-
write pair of non-atomic actions on the same location is declared a data race, which
causes the whole program to have undefined behaviour. Therefore, adding non-atomics
impacts not just the model, but also our denotation.

7.1 Memory model with non-atomics

Non-atomic loads and stores are added to the model by introducing new com-
mands storeNA(x, l) and l := loadNA(x) and the corresponding kinds of actions:
storeNA, loadNA ∈ Kind. NA is set of all actions of these kinds. We partition global
variables so that they are either only accessed by non-atomics, or by atomics. We do
not permit non-atomic LL-SC operations. Two new validity axioms ensure that non-
atomics read from writes that happen before them, but not from stale writes:

– RFHBNA: ∀w, r ∈ NA. w
rf−→ r =⇒ w

hb−→ r

– COHERNA: ¬∃w1, w2, r ∈ NA. w1
hb //

rf

33w2
hb // r

Modification order (mo) does not cover non-atomic accesses, and we change the
definition of happens-before (hb), so that non-atomic loads do not add edges to it:

– HBDEF: hb = (sb ∪ (rf ∩ {(w, r) | w, r /∈ NA}))+

Consider the code on the left in Figure 10: it is similar to MP from Figure 1, but we
have removed the if-statement, made all accesses to x non-atomic, and we have added
an additional load of x at the start of the right-hand thread. The valid execution of this
code on the right-hand side demonstrates the additions to the model for non-atomics:

– modification order (mo) relates writes to atomic y, but not non-atomic x;
– the first load of x is forced to read from the initialisation by RFHBNA; and
– the second read of x is forced to read 1 because the hb created by the load of y

obscures the now-stale initialisation write, in accordance with COHERNA.

The most significant change to the model is the introduction of a safety axiom, data-
race freedom (DRF). This forbids non-atomic read-write and write-write pairs that are
unordered in hb:

Compositional Verification of Compiler Optimisations on Relaxed Memory 21

store(y,0); storeNA(x, 1);

storeNA(x,1);

store(y,1);

l1 := loadNA(x);

l2 := load(y);

l3 := loadNA(x);

store(y, 0)

sb, hb

��mo

��

storeNA(x, 0)

sb, hb

xx
sb, hb

��
rf

vv
storeNA(x, 1)

sb, hb

��

ll
race
33

rf

��

loadNA(x, 0)

sb, hb

��
store(y, 1)

rf, hb

33 load(y, 1)

sb, hb

��
loadNA(x, 1)

store(y,0); storeNA(x, 1);

storeNA(x,1);

store(y,1);

l1 := loadNA(x);

l3 := loadNA(x);

l2 := load(y);

store(y, 0)

sb, hb

��mo

��

storeNA(x, 0)

sb, hb

xx
sb, hb

��
rf

xx
rf

vv

storeNA(x, 1)

sb, hb

��

ll
race
33loadNA(x, 0)

sb, hb

��
store(y, 1)

rf, hb **

loadNA(x, 0)

sb, hb

��
load(y, 1)

Fig. 10. Top left: augmented MP, with non-atomic accesses to x, and a new racy load. Top right:
the same code optimised with B2 B1. Below each: a valid execution.

DRF: ∀u, v ∈ A.
(
∃x. u 6= v ∧ u = (store(x,)) ∧
v ∈ {(load(x,)), (store(x,))}

)
=⇒

(
u

hb−→ v ∨ v hb−→ u
∨u, v /∈ NA

)

We write safe(X) if an execution satisfies this axiom. Returning to the left of Fig-
ure 10, we see that there is a violation of DRF – a race on non-atomics – between the
first load of x and the store of x on the left-hand thread.

Let JP KNAv be defined same way as JP K is in §3, def. (3), but with adding axioms
RFHBNA and COHERNA and substituting the changed axiom HBDEF. Then the se-
mantics JP K of a program with non-atomics is:

JP K ∆
= if ∀X ∈ JP KNAv . safe(X) then JP KNAv else >

The undefined behaviour > subsumes all others, so any program observationally
refines a racy program. Hence we modify our notion of observational refinement on
whole programs:

P1 4
NA
pr P2

∆⇐⇒ (safe(P2) =⇒ (safe(P1) ∧ P1 4pr P2))

This always holds when P2 is unsafe; otherwise, it requires P1 to preserve safety and
observations to match. We define observational refinement on blocks, 4NA

bl , by lifting
4NA

pr as per §2, def. (2).

22 Mike Dodds, Mark Batty, and Alexey Gotsman

7.2 Denotation with non-atomics

We now define our denotation for non-atomics,vNA
q , building on the ‘quantified’ deno-

tation vq defined in §4. (We have also defined a finite variant of this denotation using
the cutting strategy described in §5 – we leave this to §C.)

Non-atomic actions do not participate in happens-before (hb) or coherence order
(mo). For this reason, we need not change the structure of the history. However, non-
atomics introduce undefined behaviour >, which is a special kind of observable be-
haviour. If a block races with its context in some execution, the whole program becomes
unsafe, for all executions. Therefore, our denotation must identify how a block may race
with its context. In particular, for the denotation to be adequate, for any context C and
two blocks B1 vNA

q B2, we must have that if C(B1) is racy, then C(B2) is also racy.
To motivate the precise definition of vNA

q , we consider the following (sound) ‘anti-
roach-motel’ transformation, noting that it might be applied to the right-hand thread of
the code in the left of Figure 10:

B2 : l1 := loadNA(x); l2 := load(y); l3 := loadNA(x)

 B1 : l1 := loadNA(x); l3 := loadNA(x); l2 := load(y)

In a standard roach-motel transformation [29], operations are moved into a synchro-
nised block. This is sound because it only introduces new happens-before ordering be-
tween events, thereby restricting the execution of the program and preserving data-race
freedom. In the above transformation, the second NA load of x is moved past the atomic
load of y, effectively out of the synchronised block, reducing happens-before ordering,
and possibly introducing new races. However, this is sound, because any data-race gen-
erated by B1 must have already occurred with the first NA load of x, matching a racy
execution of B2. Verifying this transformation requires that we reason about races, so
vNA

q must account for both racy and non-racy behaviour.
The code on the left of Figure 10 represents a context, composed with B2, and the

execution of Figure 10 demonstrates that together they are racy. If we were to apply our
transformation to the fragment B2 of the right-hand thread, then we would produce the
code on the right in Figure 10. On the right in Figure 10, we present a similar execution
to the one given on the left. The reordering on the right-hand thread has led to the second
load of x taking the value 0 rather than 1, in accordance with RFHBNA. Note that the
execution still has a race on the first load of x, albeit with different following events.
As this example illustrates, when considering racy executions in the definition of vNA

q ,
we may need to match executions of the two code-blocks that behave differently after a
race. This is the key subtlety in our definition of vNA

q .
In more detail, for two related blocksB1 vNA

q B2, ifB2 generates a race in a block-
local execution under a given (reducted) context, then we require B1 and B2 to have
corresponding histories only up to the point the race occurs. Once the race has occurred,
the following behaviours of B1 and B2 may differ. This still ensures adequacy: when
the blocks B1 and B2 are embedded into a syntactic context C, this ensures that a race
can be reproduced in C(B2), and hence, C(B1) 4NA

pr C(B2).
By default, C11 executions represent a program’s complete behaviour to termina-

tion. To allow us to compare executions up to the point a race occurs, we use prefixes of

Compositional Verification of Compiler Optimisations on Relaxed Memory 23

Execution X1 Execution X2 History

race
loadNA(x,0)

call
sb, hb

ret

rf, hb

loadNA(x,0)

load(y,1)

sb, hb

sb, hb

sb, hb

R, hb

store(y,1)

storeNA(x,1)
race

race
loadNA(x,0)

call
sb, hb

ret'

rf, hb load(y,1)

loadNA(x,1)

sb, hb

sb, hb

sb, hb

R, hb

store(y,1)

storeNA(x,1)

call

ret

G

store(y,1)

storeNA(x,1)

G

Fig. 11. History comparison for an NA-based program transformation

executions. We therefore introduce the downclosure X↓, the set of (hb ∪ rf)+-prefixes
of an execution X:

X↓
∆
= {X ′ | ∃A. X ′ = X|A ∧ ∀(u, v) ∈ (hb(X) ∪ rf(X))+. (v ∈ A ⇒ u ∈ A)}

Here X|A is the projection of the execution X to actions in A. We lift the downclosure
to sets of executions in the standard way.

Now we define our refinement relation B1 vNA
q B2 as follows:

B1 vNA
q B2

∆⇐⇒ ∀A, R, S.∀X1 ∈ JB1,A, R, SKNAv .∃X2 ∈ JB2,A, R, SKNAv .

(safe(X2) =⇒ safe(X1) ∧ hist(X1) vh hist(X2)) ∧
(¬safe(X2) =⇒ ∃X ′2 ∈ (X2)

↓.∃X ′1 ∈ (X1)
↓.

¬safe(X ′2) ∧ hist(X ′1) vh hist(X
′
2))

In this definition, for each execution X1 of block B1, we witness an execution X2

of block B2 that is related. The relationship between the two depends on whether X2 is
safe or unsafe.

– If X2 is safe, then the situation corresponds to vq – see §4, def. (7). In fact, if B2

is certain to be safe, for example because it has no non-atomic accesses, then the
above definition is equivalent to vq.

– If X2 is unsafe then it has a race, and we do not have to relate the whole executions
X1 and X2. We need only show that the race in X2 is feasible by finding a prefix in
X1 that refines the prefix leading to the race in X2. In other words, X2 will behave
consistently with X1 until it becomes unsafe. This ensures that the race in X2 will
in fact occur, and its undefined behaviour will subsume the behaviour of B1. After
X2 becomes unsafe, the two blocks can behave entirely differently, so we need not
show that the complete histories of X1 and X2 are related.

Recall the transformation B2 B1 given above. To verify it, we must establish
that B1 vNA

q B2. As before, we illustrate the necessary reasoning for a single block-
local execution – verifying the transformation would require a proof for all block-local
executions.

24 Mike Dodds, Mark Batty, and Alexey Gotsman

In Figure 11 we give an execution X1 ∈ JB1,A, R, SK, with a context action set A
consisting of a non-atomic store of x = 1 and an atomic store of y = 1, and a context
relationR relating the store of x to the store of y. Note that this choice of context actions
matches the left-hand thread in the code listings of Figure 10, and there are data races
between the loads and the store on x.

To prove the refinement for this execution, we exhibit a corresponding unsafe exe-
cutionX2 ∈ JB2,A, R, SKv . The histories of the complete executionsX1 andX2 differ
in their return action. In X2 the load of y takes the value of the context store, so COH-
ERNA forces the second load of x to read from the context store of x. This changes the
values of local variables recorded in ret′. However, because X2 is unsafe, we can select
a prefixX ′2 which includes the race (we denote in grey the parts that we do not include).
Similarly, we can select a prefix X ′1 of X1. We have that hist(X ′1) = hist(X ′2) (shown
in the figure), even though the histories hist(X1) and hist(X2) do not correspond.

Our denotation with non-atomics is both adequate and fully abstract.

THEOREM 5 (ADEQUACY OF vNA
q) B1 vNA

q B2 =⇒ B1 4NA
bl B2.

THEOREM 6 (FULL ABSTRACTION OF vNA
q) B1 4NA

bl B2 ⇒ B1 vNA
q B2.

We prove Theorem 5 in §B and Theorem 6 in §F.
Note that the prefixing in our definition of vNA

q is required for full abstraction—but
it would be adequate to always require complete executions with related histories.

8 Full Abstraction

The key idea of our proofs of full abstraction (Theorems 2 and 6, given in full in §F) is to
construct a special syntactic context that is sensitive to one particular history. Namely,
given an execution X produced from a block B, this context CX guarantees: (1) that X
is the block portion of an execution of CX(B); and (2) for any block B′, if CX(B′) has
a different block history from X , then this is visible in different observable behaviour.
Therefore for any blocks that are distinguished by different histories, CX can produce
a program with different observable behaviour, establishing full abstraction.

Special context construction. The precise definition of the special context construction
CX is given in §F – here we sketch its behaviour. CX executes the context operations
from X in parallel with the block. It wraps these operations in auxiliary wrapper code
to enforce R and check the history. If wrapper code fails, it writes to an error variable,
which thereby alters the observable behaviour.

The context must generate edges in R. This is enforced by wrappers that use watch-
dog variables to create hb-edges: each edge (u, v) ∈ R is replicated by a write and read
on variable h(u,v). If the read on h(u,v) does not read the write, then the error variable
is written. The shape of a successful read is given on the left in Figure 12.

The context must also prohibit history edges beyond those in the original guarantee
G, and again it uses watchdog variables. For each (u, v) not in G, the special context
writes to watchdog variable g(u,v) before u and a reads g(u,v) after v. If the read of

Compositional Verification of Compiler Optimisations on Relaxed Memory 25

u

R

��

sb,hb
��

write(hu,v, 1)
rf,hb
// read(hu,v, 1)

sb,hb

��
v

write(gu,v, 1)

rf,G

��

sb,hb

��
u

hb
// v

sb,hb
��

read(gu,v, 1)

Fig. 12. The execution shapes generated by the special context for, on the left, generation of R,
and on the right, errant history edges.

g(u,v) does read the value written before u, then there is an errant history edge, and the
error location is written. An erroneous execution has the shape given on the right in
Figure 12 (omitting the write to the error location).

Full abstraction and LL-SC We note that our proof of full abstraction for the language
with C11 non-atomics requires the language to also include LL-SC, not just C11’s stan-
dard CAS: the former operation increases the observational power of the context. How-
ever, for the version of our approach without non-atomics (§4) CAS would be sufficient
to prove full abstraction.

9 Related Work

Our approach builds on [4], which generalises linearizability [12] to the C11 memory
model. Batty et al. represented interactions between a library and its clients by sets
of histories consisting of a guarantee and a deny; we do the same for code-block and
context. However, Batty et al. assumed information hiding, i.e., that the variables used
by the library cannot be directly accessed by clients; we lift this assumption here. Also,
we establish both adequacy and full abstraction, propose a finite denotation, and build
an automated verification tool.

Our approach is broadly similar to the seminal concurrency semantics of [7]. In
both cases, a code block is represented by a denotation capturing possible interactions
with an abstracted context. In Brookes, denotations are sets of traces, consisting of se-
quences of global program states; context actions are represented by changes in these
states. To handle the more complex axiomatic memory model, our denotation consists
of sets of context actions and relations on them, with context actions explicitly repre-
sented as such. Also, in order to achieve full abstraction, Brookes assumes a powerful
atomic await() instruction which blocks until the global state satisfies a predicate. Our
full abstraction result does not require this: all our instructions operate on single loca-
tions, and our strongest instruction is LL-SC, which is commonly available on hardware
platforms.

Brookes-like approaches have been applied to several relaxed models: operational
hardware models [9], TSO [14], and SC-DRF [24]. Also, [9, 24] define tools for ver-
ifying program transformations. All three approaches are based on traces rather than
partial orders, and are therefore not directly portable to C11-style axiomatic memory

26 Mike Dodds, Mark Batty, and Alexey Gotsman

models. All three also target substantially stronger (i.e. more restrictive) relaxed mod-
els than ours.

Methods for verifying code transformations, either manually or using proof assis-
tants, have been proposed for several relaxed models: TSO [28, 30, 31], Java [29] and
C/C++ [27]. These methods are non-compositional in the sense that verifying a transfor-
mation requires considering the trace set of the entire program — there is no abstraction
of the context. We abstract both the sequential and concurrent context and thereby sup-
port automated verification. The above methods also model transformations as rewrites
on program executions, whereas we treat them directly as modifications of program
syntax; the latter corresponds more closely to actual compilers. Finally, these methods
all require considerable proof effort; we build a tool that can verify transformations
automatically.

There has also been various work on automatically verifying compiler optimisa-
tions under sequential consistency. For example, Alive [19] and Peek [22] are tools for
verifying sequential peephole optimisations on LLVM and CompCert respectively. Vel-
lvm is a formalisation of the LLVM intermediate representation that has been used to
formally verify sequential SSA-based optimisations [33].

Our tool is a sound verification tool – that is, transformations are verified for all
context and all executions of unbounded size. Several tools exist for testing (not verify-
ing) program transformations on axiomatic memory models by searching for counter-
examples to correctness, e.g., [17] for GCC and [10] for LLVM. Alloy was used by [32]
in a testing tool for comparing memory models – this includes comparing language-
level constructs with their compiled forms. Alloy has also been used in the MemSAT
tool for simulation of the Java memory model [26]. Finally, our Alloy encoding of the
memory model is similar to the input files for the Herd/Cat memory model simula-
tor [1].

10 Conclusions

We have proposed the first fully abstract denotational semantics for an axiomatic re-
laxed memory model, and using this, we have built the first tool capable of automati-
cally verifying program transformation on such a model. The key technical challenge
of our work is that axiomatic models are defined in a global non-compositional style.
We have shown that it is possible to recover a powerful form of compositionality that
can be applied to prove useful properties of relaxed code.

Our theory lays the groundwork for further research into the properties of axiomatic
models. In particular, our definition of the denotation as a set of histories and our context
reduction techniques should be portable to other axiomatic models based on happens-
before, such as those for hardware [1] and distributed systems [8]. Using our tech-
niques, we are confident that further sound verification tools can be developed based on
bounded model-checking techniques. We are also hopeful that our work will feed into
memory-model design, which is often motivated by support for key compiler transfor-
mations.

Compositional Verification of Compiler Optimisations on Relaxed Memory 27

References

1. J. Alglave, L. Maranget, and M. Tautschnig. Herding cats: Modelling, simulation, testing,
and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2):7:1–7:74, July
2014.

2. J. H. Anderson and M. Moir. Universal constructions for multi-object operations. In Pro-
ceedings of the Fourteenth Annual ACM Symposium on Principles of Distributed Computing,
PODC ’95, pages 184–193, New York, NY, USA, 1995. ACM.

3. Anonymous. Extended version of this paper (anonymised). Available from the submission
system, 2017.

4. M. Batty, M. Dodds, and A. Gotsman. Library abstraction for C/C++ concurrency. In Pro-
ceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, POPL ’13, pages 235–248, New York, NY, USA, 2013. ACM.

5. M. Batty, K. Memarian, K. Nienhuis, J. Pichon-Pharabod, and P. Sewell. The problem of
programming language concurrency semantics. In J. Vitek, editor, Programming Languages
and Systems: 24th European Symposium on Programming, ESOP 2015, Proceedings, pages
283–307, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

6. M. Batty, S. Owens, S. Sarkar, P. Sewell, and T. Weber. Mathematizing C++ concurrency.
In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’11, pages 55–66, New York, NY, USA, 2011. ACM.

7. S. Brookes. Full abstraction for a shared-variable parallel language. Information and Com-
putation, 127(2):145 – 163, 1996.

8. S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated data types: Specification,
verification, optimality. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’14, pages 271–284, New York, NY, USA,
2014. ACM.

9. S. Burckhardt, M. Musuvathi, and V. Singh. Verifying local transformations on relaxed mem-
ory models. In Proceedings of the 19th Joint European Conference on Theory and Practice
of Software, International Conference on Compiler Construction, CC’10/ETAPS’10, pages
104–123, Berlin, Heidelberg, 2010. Springer-Verlag.

10. S. Chakraborty and V. Vafeiadis. Validating optimizations of concurrent c/c++ programs. In
Proceedings of the 2016 International Symposium on Code Generation and Optimization,
CGO ’16, pages 216–226, New York, NY, USA, 2016. ACM.

11. D. Distefano, P. W. O’Hearn, and H. Yang. A Local Shape Analysis Based on Separation
Logic, pages 287–302. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

12. M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst., 12(3):463–492, July 1990.

13. D. Jackson. Software Abstractions – Logic, Language, and Analysis. MIT Press, revised
edition, 2012.

14. R. Jagadeesan, G. Petri, and J. Riely. Brookes is relaxed, almost! In Proceedings of the 15th
International Conference on Foundations of Software Science and Computational Structures,
FOSSACS’12, pages 180–194, Berlin, Heidelberg, 2012. Springer-Verlag.

15. A. Jeffrey and J. Riely. On thin air reads towards an event structures model of relaxed
memory. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, pages 759–767, New York, NY, USA, 2016. ACM.

16. J. Kang, C.-K. Hur, O. Lahav, V. Vafeiadis, and D. Dreyer. A promising semantics for
relaxed-memory concurrency. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, pages 175–189, New York, NY, USA,
2017. ACM.

28 Mike Dodds, Mark Batty, and Alexey Gotsman

17. O. Lahav, N. Giannarakis, and V. Vafeiadis. Taming release-acquire consistency. In Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’16, pages 649–662, New York, NY, USA, 2016. ACM.

18. O. Lahav, V. Vafeiadis, J. Kang, C.-K. Hur, and D. Dreyer. Repairing sequential consistency
in C/C++11. In PLDI 2017, 2017.

19. N. P. Lopes, D. Menendez, S. Nagarakatte, and J. Regehr. Provably correct peephole opti-
mizations with alive. In Proceedings of the 36th ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’15, pages 22–32, New York, NY, USA,
2015. ACM.

20. A. Milicevic, J. P. Near, E. Kang, and D. Jackson. Alloy*: A general-purpose higher-order
relational constraint solver. In Proceedings of the 37th International Conference on Software
Engineering - Volume 1, ICSE ’15, pages 609–619, Piscataway, NJ, USA, 2015. IEEE Press.

21. R. Morisset, P. Pawan, and F. Zappa Nardelli. Compiler testing via a theory of sound op-
timisations in the c11/c++11 memory model. In Proceedings of the 34th ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’13, pages 187–
196, New York, NY, USA, 2013. ACM.

22. E. Mullen, D. Zuniga, Z. Tatlock, and D. Grossman. Verified peephole optimizations for
compcert. In Proceedings of the 37th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI ’16, pages 448–461, New York, NY, USA, 2016.
ACM.

23. J. Pichon-Pharabod and P. Sewell. A concurrency semantics for relaxed atomics that per-
mits optimisation and avoids thin-air executions. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’16, pages
622–633, New York, NY, USA, 2016. ACM.

24. D. Poetzl and D. Kroening. Formalizing and checking thread refinement for data-race-free
execution models. In Proceedings of the 22Nd International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems - Volume 9636, pages 515–530, New
York, NY, USA, 2016. Springer-Verlag New York, Inc.

25. The C++ Standards Committee. Programming Languages — C++. 2011. ISO/IEC JTC1
SC22 WG21.

26. E. Torlak, M. Vaziri, and J. Dolby. Memsat: Checking axiomatic specifications of memory
models. In Proceedings of the 31st ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’10, pages 341–350, New York, NY, USA, 2010. ACM.

27. V. Vafeiadis, T. Balabonski, S. Chakraborty, R. Morisset, and F. Zappa Nardelli. Common
compiler optimisations are invalid in the c11 memory model and what we can do about it.
In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’15, pages 209–220, New York, NY, USA, 2015. ACM.

28. V. Vafeiadis and F. Zappa Nardelli. Verifying fence elimination optimisations. In Proceed-
ings of the 18th International Conference on Static Analysis, SAS’11, pages 146–162, Berlin,
Heidelberg, 2011. Springer-Verlag.

29. J. Ševčı́k and D. Aspinall. On validity of program transformations in the java memory
model. In Proceedings of the 22Nd European Conference on Object-Oriented Programming,
ECOOP ’08, pages 27–51, Berlin, Heidelberg, 2008. Springer-Verlag.

30. J. Ševčı́k, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell. Relaxed-memory
concurrency and verified compilation. In Proceedings of the 38th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’11, pages 43–54,
New York, NY, USA, 2011. ACM.

31. J. Ševčı́k, V. Vafeiadis, F. Zappa Nardelli, S. Jagannathan, and P. Sewell. Compcerttso: A
verified compiler for relaxed-memory concurrency. J. ACM, 60(3):22:1–22:50, June 2013.

Compositional Verification of Compiler Optimisations on Relaxed Memory 29

32. J. Wickerson, M. Batty, T. Sorensen, and G. A. Constantinides. Automatically comparing
memory consistency models. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, pages 190–204, New York, NY, USA,
2017. ACM.

33. J. Zhao, S. Nagarakatte, M. M. Martin, and S. Zdancewic. Formal verification of ssa-based
optimizations for llvm. In Proceedings of the 34th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’13, pages 175–186, New York,
NY, USA, 2013. ACM.

30 Mike Dodds, Mark Batty, and Alexey Gotsman

A Collected Definitions

The Thread-local semantics of our target language. We write A1 ·∪A2 for a union that
is defined only when actions in A1 and A2 use disjoint sets of identifiers. We omit
identifiers from actions to avoid clutter.

〈l := load(x), σ〉 ∆
= {({load(x, a)}, ∅, σ[l 7→ a]) | a ∈ Val}

〈store(x, l), σ〉 ∆
= {({store(x, a)}, ∅, σ) | σ(l) = a}

〈l := LL(x), σ〉 ∆
= {({LL(x, a)}, ∅, σ[l 7→ a]) | a ∈ Val}

〈l′ := SC(x, l), σ〉 ∆
= {({SC(x, a)}, ∅, σ[l′ 7→ 1]) | σ(l) = a} ∪

{({SCf (x)}, ∅, σ[l′ 7→ 0])}
〈fence, σ〉 ∆

= {({ll, sc}, {(ll, sc)}, σ) | ll = LL(fen, 0) ∧ sc = SC(fen, 0)}
〈C1 ‖ C2, σ〉

∆
= {(A1 ·∪A2, sb1 ∪ sb2, σ) |

(A1, sb1, σ1) ∈ 〈C1, σ〉 ∧ (A2, sb2, σ2) ∈ 〈C2, σ〉}
〈C1;C2, σ〉

∆
= {(A1 ·∪A2, sb1 ∪ sb2 ∪ (A1 ×A2), σ2) |

(A1, sb1, σ1) ∈ 〈C1, σ〉 ∧ (A2, sb2, σ2) ∈ 〈C2, σ1〉}

〈if(l) {C1} else {C2}, σ〉
∆
=

{
〈C2, σ〉, if σ(l) = 0

〈C1, σ〉, otherwise

Execution observational refinement

X 4ex Y
∆⇐⇒ A(X|OVar) = A(Y |OVar) ∧ hb(Y |OVar) ⊆ hb(X|OVar)

Program observational refinement

P1 4pr P2
∆⇐⇒ ∀X1 ∈ JP1K.∃X2 ∈ JP2K. X1 4ex X2

Program observational refinement with NA

P1 4
NA
pr P2

∆⇐⇒ (safe(P2) =⇒ safe(P1) ∧ P1 4pr P2)

Block observational refinement

B1 4bl B2
∆⇐⇒ ∀C. C(B1) 4pr C(B2)

History abstraction

(A1, G1) vh (A2, G2)
∆⇐⇒ A1 = A2 ∧G2 ⊆ G1

Quantified abstraction

B1 vq B2
∆⇐⇒ ∀A, R, S. ∀X1 ∈ JB1,A, R, SK.∃X2 ∈ JB2,A, R, SK. hist(X1) vh hist(X2)

Compositional Verification of Compiler Optimisations on Relaxed Memory 31

Extended history abstraction

(A2, G2, D2) vE (A2, G2, D2)
∆⇐⇒ A1 = A2 ∧G2 ⊆ G1 ∧D2 ⊆ D1

Cut abstraction

B1 vc B2
∆⇐⇒ ∀A, S.∀X1 ∈ JB1,A, ∅, SK. cut(X1) =⇒ ∃X2 ∈ JB2,A, ∅, SK. histE(X1) vE histE(X2)

Cut predicates

vis(X)
∆⇐⇒ code(X) ∪ {u | ∃v ∈ code(X). u

rf−→ v ∨ v rf−→ u}

cut′(X)
∆⇐⇒ cutR(X) ∧ cutW(X)

cutR(X)
∆⇐⇒ reads(X) ⊆ vis(X) ∧ ∀r1, r2 ∈ contx(X). r1 6= r2 =⇒ ¬∃w.w rf−→ r1 ∧ w

rf−→ r2

cutW(X)
∆⇐⇒ ∀w1, w2 ∈ (contx(X) \ vis(X)). w1

mo−−→ w2 =⇒ ∃w3 ∈ vis(X). w1
mo−−→ w3

mo−−→ w2

Execution downclosure

X↓
∆
= {X ′ | ∃A. X ′ = X|A ∧ ∀(a, a′) ∈ (hb(X) ∪ rf(X))+. a′ ∈ A ⇒ a ∈ A}

Quantified abstraction with NA

B1 vNA
q B2

∆⇐⇒ ∀A, R, S. ∀X1 ∈ JB1,A, R, SKNAv .∃X2 ∈ JB2,A, R, SKNAv .

(safe(X2) =⇒ safe(X1) ∧ hist(X1) vh hist(X2)) ∧
(¬safe(X2) =⇒ ∃X ′2 ∈ (X2)

↓.∃X ′1 ∈ (X1)
↓.¬safe(X ′2) ∧ hist(X ′1) vh hist(X

′
2))

B Proof of Theorems 1 and 5 (adequacy)

We now prove adequacy of vNA
q . As vNA

q =⇒ vq, this suffices to prove adequacy of
vq. Our proof need several auxiliary notions:

– codeE(X) is the projection of an execution X to actions in (codeE(X) ∪
interf(X) ∪ {call, ret}).

– The interface actions are actions on variables in VSB that occur in the context.
These are context actions that can affect the behaviour of the code-block. We write
interf(X) for this set.

– contxE(X) is the projection of an execution X to the context. This is a more
complex projection than codeE(X) because it removes mo and rf over actions in
interf(X). Let I = contx(X) ∪ {call, ret} and C = contx(X) \ interf(X). Then

contxE(X) = (A(X)|I , hb(X)|I , sb(X)|I ,mo(X)|C , rf(X)|C)

– hbC(X) is the context-side projection of hb to interface actions. In other words, the
projection of hb(X) to pairs in:

(interf(X)× interf(X)) ∪ (interf(X)× {call}) ∪ ({ret} × interf(X))

32 Mike Dodds, Mark Batty, and Alexey Gotsman

– atC(X) is the context-side projection of at to context actions: i.e. the projection of
at(X) to pairs in (interf(X)× interf(X)).

– JC,R, SKv is the context-local execution of a single-hole context C – this is an
analogous notion to the block-local execution, except that rf and mo are not gener-
ated for the interface. Here R is a relation representing dependencies in hb arising
from the code and S represents code at edges. An execution X is in this set iff:
• R is a code-side relation on interface actions interf(X):

R ⊆ (interf(X)× interf(X)) ∪ (interf(X)× {ret}) ∪ ({call} × interf(X))

• S is a code-side relation on interface actions interf(X):

S ⊆ (interf(X)× interf(X))

• The execution satisfies the thread-local semantics:

(A(X), sb(X)) ∈ 〈C〉

We assume that a singleton hole has the following thread-local semantics:

〈{−}, σ〉 ∆
= {({c, r}, {c→ r}, σ′) | c = call(σ) ∧ r = ret(σ′)}

• X satisfies HBDEF’, ATOM′, ACYCLICITY, RFWF, HBVSMO, COHERENCE,
RFHBNA, COHERNA.

• The projection X|contxE(X) satisfies RFVAL, MOWF. mo and rf are disjoint
from actions in interf(X).

We sometimes write JCKv to stand for JC, ∅, ∅K, i.e. the set of context-local execu-
tions with empty code-side relations.

LEMMA 7 (DECOMPOSITION) Assume X ∈ JC(B)Kv , and no there are no at edges
in C spanning B, nor any between the actions of B and C. Then codeE(X) ∈
JB, interf(X), hbC(X), atC(X)Kv and contxE(X) ∈ JC, hbL(X), atL(X)Kv .

Proof (Proof (code)). We have several proof obligations.

– hbC(X) and atC(X) are context-side relations on interface actions (trivial by defi-
nition).

– (codeE(codeE(X)), sb(codeE(X))) ∈ 〈B〉, i.e. the execution satisfies the thread-
local semantics.

– The actions in codeE(codeE(X)) are in between a call / ret pair in sb. We assume
we can introduce call / ret freely to satisfy this requirement.

– codeE(X) satisfies the validity axioms for a block-local execution – note that this
replaces HBDEF with HBDEF’, and ATOM with ATOM′.

For the first obligation, we argue inductively over the structure of C. First assume
that C = {−}, i.e. C consists only of a hole. In this case the result holds immediately
from the thread-local semantics. For the inductive case, assume C is a composite one-
hole context, e.g. C1;C2(−) / C1(−);C2 / C1‖C2(−) / etc.

Compositional Verification of Compiler Optimisations on Relaxed Memory 33

For the fourth obligation, we prove codeE(X) satisfies the validity axioms by argu-
ing in turn about each. Assume the following shorthand:

codeE(X) = (A(l), hb(l), at(l)sb(l),mo(l), rf(l))

HBDEF’: Let R = hbC(X). Now prove in both directions:

(a, b) ∈ hb(l) =⇒ (a, b) ∈ (sb(l) ∪ rfAT(l) ∪R)+ (9)
(a, b) ∈ (sb(l) ∪ rfAT(l) ∪R)+ =⇒ (a, b) ∈ hb(l) (10)

For the first case, any (a, b) in hb(l) must have code or interface actions at both ends,
and must have originated from a path (a, b) ∈ (sb(X) ∪ rfAT(X))+. By construction,
there are no rf-edges between codeE(X) and contxE(X). Therefore, portions of the
path which stray into the context must enter and leave through call, ret, or actions in
interf(X). These portions of the path will be summarised by hbC(X). As a result, for
any such path, there must be an equivalent path (a, b) ∈ (sb(l) ∪ rfAT(l) ∪ hbC(X))+.

For the second case, we make a similar argument. For any pair (c, d) ∈ hbC(X),
there must be a path (c, d) ∈ (sb(X) ∪ rfAT(X)). As a consequence, for any (a, b) in
(sb(l) ∪ rf(l) ∪ hbC(X))+, there must be a path (a, b) ∈ (sb(X) ∪ rfNA(X)). Thus
(a, b) ∈ hb(X). As hb(l) is a projection of hb(X), this completes the proof.

ATOM′, ACYCLICITYRFWF, MOWF, COHERENCE, RFHBNA, COHERNA: all hold
immediately by the fact that codeE(X) is a projection of X .

RFVAL: holds because code(X) contains exactly the actions in X that are on locations
a ∈ gvB . Therefore, the projection cannot remove the origin write for a read.

Proof (Proof (context)). Similar argument to the code.

LEMMA 8 (COMPLETION LEMMA) Let X be an execution. If valid(X) and
(A(X), sb(X)) ∈ 〈Q〉↓, then X ∈ JQK↓v .

Proof. We require the existence of a Y ∈ JQKv such that X ∈ Y ↓. To prove this, we
iteratively extend X by adding sb-final actions, and show that the new execution can in
each case be made valid. As all executions are finite, this proves the result.

Assume the current execution is Xi. We choose an A(Xi+1) and sb(Xi+1)
such that the new execution is extended by a single sb-final action, and that
(A(Xi+1), sb(Xi+1) ∈ 〈Q〉↓. We now need to show that we can construct a valid
Xi+1.

Case-split on the type of the new action. Non-atomics read from their immediate hb
predecessor, or the init value if none exists. Atomic reads read from the end of mo, and
writes can be added to the end of mo. Compare-and-swaps read from the end of mo.
All of these cases preserve the validity axioms.

Note that if the new action is a read, we may need to fix its value depending on an
earlier write. This depends on the property of receptiveness – given a prefix (A, sb) ∈
〈Q′〉 and a read r that is sb-maximal, any value can be given to the read. This property
follows from the thread-local semantics: the only tricky cases are conditionals and LL-
SC, where receptiveness is guaranteed by the fact that any possible value is represented
in the set of possible reads.

34 Mike Dodds, Mark Batty, and Alexey Gotsman

LEMMA 9 (SAFETY COMPLETION) Let X,Y be valid executions. ¬safe(X) and X ∈
Y ↓ implies ¬safe(Y).

Proof. Prove the contrapositive: safe(Y) =⇒ safe(X). This holds immediately from
the fact that in a safe execution, potentially racy actions must be related in hb.

LEMMA 10 (COMPOSITION) Let X and Y be executions such that X ∈
JB,A, hbC(Y), atC(Y)K↓v and Y ∈ JC,A, R′, S′K↓v with no LL/SC pairs crossing the
block boundary in each case, with hist(Y) vh hist(X) and with atL(X) = S′. Then
there exists an execution Z such that Z ∈ JC(B)K↓v . Furthermore:

– If ¬safe(X) or ¬safe(Y), then ¬safe(Z).
– If safe(X), safe(Y), and safe(Z), and X ∈ JB,A, hbC(Y), atC(Y)Kv and Y ∈

JC,A, R′, S′Kv , then Z ∈ JC(B)Kv and contxE(Y) 4ex contxE(Z).

Proof. We begin by defining Z. Taking each term of the execution in turn:

– The action set A(Z) is the union of the two action sets A(X) and A(Y), merging
call, return and interface actions.

– sb(Z) = (sb(X) ∪ sb(Y))+.
– moZ = (mo(X) ∪ mo(Y)) – as the two mo relations are disjoint, no transitive

closure is needed.
– rfZ = (rf(X) ∪ rf(Y)) – likewise.
– hbZ = (sb(Z) ∪ rfAT(Z))

+, ie, according to HBDEF.
– atZ = at(X) ∪ at(Y).

We first need to show that Z ∈ JC(L)K↓v . To do this we use the completion lemma: thus
our proof obligations are (A(Z), sb(Z)) ∈ 〈C(B2)〉↓ and valid(Z).

We observe that that (A(Z), sb(Z)) ∈ 〈C(B2)〉↓ is obvious from the thread-local
semantics.

Next prove that valid(Z). HBDEF holds by construction. RFWF, RFVAL, MOWF,
RBDEF are true trivially as for each variable, validity is checked solely in either the
code or context. This leaves ACYCLICITY, HBVSMO, COHERENCE, COHERNA and
ATOM. (RFHBNA needs to be treated specially – see below).

– For ACYCLICITY, a violation would correspond to a path in (sb(Z) ∪ rfAT(Z) ∪
rfNA)

+. As this path cannot appear in eitherX or Y , it must cross between the two:
each point where it does so must be an interface action or call / return. As a result,
a corresponding violation can be constructed in X .
Call-to-return paths are in (sb(X) ∪ rfAT(X))+ ∪ rfNA(X))+. Conversely, return-
to-call paths are in (sb(Y) ∪ rfAT(Y) ∪ rfNA(Y))+. As Y satisfies RFHBNA,
rfNA(Y) ∈ hb(Y). Thus the return-to-call portions of the path are in hbC(Y). This
contradicts the assumption that X satisfies ACYCLICITY.

– For HBVSMO, a violation consists of a write pair w1, w2 such that (w1, w2) ∈
hb(Z) and (w2, w1) ∈ mo(Z). As mo is partitioned between code and context,
either both writes are in X or both in Y . By assumption, the violation is not solely
in X or Y , so the path from w1 to w2 in (sb ∪ rfAT)

+ must contain a sequence of
interface actions or call / return.

Compositional Verification of Compiler Optimisations on Relaxed Memory 35

1. If the writes are in X , then mo is replicated immediately. The block-local por-
tions of the path are in (sb(X) ∪ rfAT(X))+, while the context-local portions
are in hbC(X). Thus we can replicate the violation.

2. If the writes are in Y , we can use a similar argument. However, we also appeal
to the fact that hist(Y) vh hist(X), which means that hbL(X) ⊆ hbL(Y).
This means that any code-side hb edge in X can be replicated in Y to recreate
the violation.

– For COHERENCE and COHERNA, we note that rf and mo are partitioned between
X and Y . Therefore we can apply the same argument as for the previous axioms to
show the hb edges for a violation must exist in either X or Y .

– Similarly, for ATOM we note that at is partitioned between X and Y so any viola-
tion must exist in either X or Y .

Finally, we consider RFHBNA. As histY vh histX , composing the two may
weaken hb and generate violations on the context side. To solve this, we convert the
RFHBNA violation to a safety violation. Take a Z ′ ∈ Z↓ such that there is a single
(hb ∪ rf)-final RFHBNA violation. We redirect the origin of this read to its immediate
hb-predecessor, or the initialisation value if this does not exist. This gives an execution
Z ′′ which satisfies RFHBNA, but violated DRF. All the other validity axioms are pre-
served under prefixing, so by the completion lemma, Z ′′ ∈ JC(B)K↓v . We use Z ′′ as our
constructed execution.

We now need to show that ¬safe(X) or ¬safe(Y) implies ¬safe(Z). If we had to
fix an RFHBNA violation, the new execution Z ′′ is unsafe by construction. Otherwise,
composition can only weaken hb, meaning any violation is trivially replicated.

Conversely, we need to show that if safe(X), safe(Y), and safe(Z), and X ∈
JB,A, hbC(Y), atC(Y)Kv and Y ∈ JC,A, R′, S′Kv , then Z ∈ JC(B)Kv and
contxE(Y) 4ex contxE(Z). As Z is safe, we know we did not have to fix a RFHBNA
violation. For the rest of the proof, the same arguments as above give us a valid execu-
tion Z ∈ JC(B)Kv .

It remains to show that contxE(Y) 4ex contxE(Z). Inclusion of context ac-
tions follows from the construction of Z. Inclusion on hb follows from the fact that
hist(Y) vh hist(X). Thus the composition can only weaken hb over context actions.

THEOREM 11 (ADEQUACY) B1 vNA
q B2 =⇒ B1 4bl B2 for blocks that include

only matched LL/SC pairs.

Proof. Our objective from the definition of 4bl is the following property:

∀C, V. ¬safe(C(B2)) ∨
(safe(C(B1)) ∧ ∀X ∈ JC(B1)Kv.∃Y ∈ JC(B2)Kv. X|V 4ex Y |V)

Begin the proof by picking an arbitrary C, V . The proof then proceeds by the normal
steps: decomposition, abstraction, then composition.

– Case-split on whether C(B2) is safe or unsafe. If unsafe, we are done immediately.
Therefore we can assume safe(C(B2)).

– Pick an arbitrary execution X ∈ JC(B1)Kv .

36 Mike Dodds, Mark Batty, and Alexey Gotsman

– Apply the decomposition lemma to show that that contxE(X) ∈
JC, hbL(X), atL(X)Kv and codeE(X) ∈ JB1, hbC(X), atC(X)Kv .

– Expand the definition of vNA
q , and pick R = hbC(X) and S = atC(X). This gives

us executions Y ∈ JB2,A, hbC(X), atC(X)K↓v and X ′ ∈ codeE(X)↓ such that:

hist(X ′) vh hist(Y) ∧
safe(Y) =⇒ (safe(X ′) ∧ (X ′ = codeE(X)) ∧ Y ∈ JB2,A, hbC(X)Kv)

– Case-split on whether safe(Y) ∧ safe(contxE(X)) holds. If not, then apply the
composition lemma to build an execution Z ∈ JC(B2)K↓v such that ¬safe(Z). By
lemma 9, there must exist a Z ′ ∈ JC(B2)Kv such that ¬safe(Z ′), which contradicts
our assumption that C(B2) is safe.
Conversely, suppose safe(Y) ∧ safe(contxE(X)) holds. In this case, we apply the
context lemma to build a Z ∈ JC(B2)Kv such that contxE(X) 4ex contxE(Z). All
actions on observable variables in V must be be in the context, which means that
X|V 4ex Z|V must also hold.
It remains to prove that safe(X) holds. First we observe that safe(codeE(X)) holds
by the abstraction theorem. As safe(contxE(X)) also holds, the result follows im-
mediately.

C Non-atomics and Denies

We now definevNA
c , a refinement between denotations which includes both cutting and

non-atomics.
To do this we first need extra deny shapes. In the following, the variables obey the

following constraint:

u, a, c ∈ ret ∪ interf(X) v, b, d ∈ call ∪ interf(X)

All the actions a, b, c, d, u, v are pairwise distinct. Note that some of the hb-edges are
transitively closed, meaning that syntactically distinct actions might be the same – e.g.
w1 and u in HBvsMO-d.

CoNA-d(u, v): ∃w1, w2, r ∈ NA. w1
hb //

rf

��

hb // w2

hb∗

��
u

D
��
v

hb∗

��
r

∨ w1
hb∗ //

rf
++

u
D // v

hb∗ // w2

hb
��
r

Compositional Verification of Compiler Optimisations on Relaxed Memory 37

CoNA-d2(a, b, c, d): ∃w1, w2, r ∈ NA. w1
hb∗ //

rf

!!

a
D1 // b

hb∗ // w2

hb∗

��
c

D2
��
d

hb∗

��
r

As before, we need a few notions to define the deny theorem.

– denyL(X) contains all the binary denies:

denyL(X)
∆
= HBvsMO-d ∪ CoWR-d ∪ Init-d ∪ CoNA-d

– denyNA(X) contains the quaternary denies: denyNA(X)
∆
= CoNA-d2

– guarNA(X) is the projection of (rfNA ∪ hb)+ to pairs in

(interf(X)× interf(X)) ∪ (interf(X)× {ret}) ∪ ({call} × interf(X))

– Let I be the set of actions interf(X) ∪ {call, ret}. The augmented history of X ,
written histE(X), is defined as

histE(X)
∆
= (A(X)|I , hbL(X), denyL(X), guarNA(X), denyNA(X))

– Two augmented histories, H = (A, G,D,M,N), H ′ = (A′, G′, D′,M ′, N ′) are
related H vh H

′ iff

A = A′ ∧G′ ⊆ G ∧D′ ⊆ D ∧M ′ ⊆M ∧N ′ ⊆ N

– FinalNA(X, a) holds if the action a is (1) an NA action, and (2) is the hb-final
action in the code block in X .

– hbA(X, a), for an execution X and action a is the projection of hb(X) to pairs in
({a} × interf(X)) ∪ (interf(X)× {a})

– The comparison a ≤X,Yna b ensures that b participates in a race if a does. Formally,
the comparison holds if: (1) a and b are actions on the same location; (2) b is a
write if a is a write; and (3) hbA(Y, b) ⊆ hbA(X, a). The final condition is needed
to ensure that history edges cannot spuriously prevent a race in Y .

– The set of almost-valid executions JB,A, R, SKvr is defined identically to the stan-
dard semantics, except that it permits RFHBNA not to hold. We write JB,A, SKvr
stands for JB,A, ∅, SKvr

We then define deny abstraction as follows:

B1 vNA
d B2

∆
= ∀S. ∀X ∈ JB1,A, SK↓vr.∃Y ∈ JB2,A, SK↓vr. histE(X) vE histE(Y) ∧

(∀a.FinalNA(X, a) =⇒ ∃b ∈ A(Y). a ≤X,Yna b) ∧
(X ∈ JB1,A, SKvr =⇒ Y ∈ JB2,A, SKvr)

38 Mike Dodds, Mark Batty, and Alexey Gotsman

In addition to the cutting predicated defined in the body of the paper, we need the
following to cover NA cuts.

NAcutR(X)
∆
= ∀r1, r2 ∈ (interf(X) ∩ Read ∩ NA).

(val(r1) = val(r2) = init ∨ ∃w.w rf−→ r1 ∧ w
rf−→ r2)

=⇒ (r1 = r2)

NAcutW(X)
∆
= ∀w1, w2 ∈ (interf(X) ∩Write ∩ NA).

(loc(w1) = loc(w2)) =⇒
(w1 = w2) ∨ (∃r ∈ code(X). w1

rf−→ r ∨ w2
rf−→ r)

The context cutting predicate is defined as the conjunction of these predicates:

cutNA(X)
∆
= cutR(X) ∧ cutW(X) ∧ NAcutR(X) ∧ NAcutW(X)

We then define cut abstraction as follows:

B1 vNA
c B2

∆
= ∀X ∈ JB1K↓vr. cutNA(X) =⇒

∃Y ∈ JB2K↓vr. histE(X) vE histE(Y) ∧
(∀a.FinalNA(X, a) =⇒ ∃b ∈ A(Y). a ≤X,Yna b) ∧
(X ∈ JB1Kvr =⇒ Y ∈ JB2Kvr)

THEOREM 12 B1 vNA
d B2 =⇒ B1 vNA

q B2

Proof. Pick a context-side A, R and an execution X ∈ JB1,A, R, SKv . Case-split on
safe(X) – suppose first that it does not hold.

– Pick a prefix X ′ ∈ X and action a ∈ A(X ′) such that (1) X ′ contains precisely
one safety violation, which includes a; and (2) FinalNA(X ′, a) holds.

– Generate a new execution X ′′ by building hb as (sw∪ sb)+ (i.e. kick out R). As all
axioms but RFHBNA are preserved under reduction of hb, X ′ ∈ JB1,A, SK↓vr.

– Apply the assumption to give an execution Y ′ ∈ JB2,A, SK↓vr, such that
histE(X

′′) vE histE(Y
′). By the theorem, there must exist an action b to the same

location such that a ≤na b.
– Build Y from Y ′ by defining hb(Y) as sb(Y ′) ∪ rfNA(Y

′) ∪ R, and keeping other
relations the same. We now need to establish that (1) hist(X ′) vh hist(Y); (2)
¬safe(Y); and (3) valid(Y).

– hist(X ′) vh hist(Y) holds from the fact that histNA(X ′′) vE histE(Y
′), and both

X ′ and Y are derived by adding the same relation R.
– To show ¬safe(Y) we observe that action a in X ′ participates in a race. As actions

in a code-block are sb-sequenced, the other action c forming the race must be in
interf(X ′). If (b, c) does not form a race in Y , then (b, c) or (c, b) must be in hb(Y).
Any such path must be in R ∪ hbL(Y)∪ hbA(Y ′, b). The corresponding path must
exist in R ∪ hbL(X) ∪ hbA(X ′′, b), which rules out the race in X and contradicts
the assumption.

Compositional Verification of Compiler Optimisations on Relaxed Memory 39

– Finally, we need to prove that valid(Y). HBDEF’ holds by construction. RFWF,
RFVAL, MOWF, ATOM are invariant under adding hb-edges, and so follow imme-
diately from valid(Y ′). This leaves ACYCLICITY, COHERENCE, HBVSMO, CO-
HERNA, and RFHBNA.
All but RFHBNA are covered by a deny (RFHBNA requires special treatment). A
new violation of an axiom caused by edges from R would induce a corresponding
deny shape in histE(Y

′). As histE(X ′) vE histE(Y) this deny shape must also be
in X ′. However, this means that the corresponding violation can be replicated in
X ′, which contradicts the assumption that valid(X ′) holds.

– Thus, we have an almost-valid execution Y ∈ JB2,A, RK↓vr such that hist(X ′) vh

hist(Y); (2) ¬safe(Y).
To complete the proof, we need to fix violations of RFHBNA. We use the same
approach as in the proof of Theorem 10: (1) build a shorter prefix in Y ↓ which
contains precisely one violation of RFHBNA; (2) redirect the read to a valid origin,
using the receptiveness of the thread-local semantics. This redirection does alter
the history, because non-atomic reads do not appear in the quantified history. This
gives an execution Y ′′ such that (1) Y ′′ ∈ JB2,A, R, SK↓vr; (2) ¬safe(Y ′′); and (3)
hist(Y ′′) ∈ hist(Y ↓).
We finally need to show that there exists an X ′′′ ∈ X↓ such that hist(X ′′′) vh

hist(Y ′′). This necessarily exists by application of the history prefixing lemma.
Note that X ′′′ may not necessarily be unsafe, but Y ′′ is guaranteed to be unsafe by
construction.

Now suppose that safe(X) holds. We use essentially the same proof structure as
above: the constructed Y may be safe or unsafe, depending whether we need to fix
violations of RFHBNA.

D Counter-example to full abstraction

Finiteness has a cost: vc is not fully abstract. To see this, consider the optimisation
B2 : load(x) B1 : skip. It is easy to see that B1 vq B2 holds: the new load can
read from either a hb-earlier write action, or the initialisation if none exists. Neither
case introduces an extra guarantee edge.

However, B1 vc B2 does not hold. If the context contains a write W , then the
load can either read from it or the initialisation. The former generates a hb-edge in the
history, while the latter generates a deny from RFval-d – thus history inclusion does not
hold.

E Proof of Theorems 3 and 5 (cut soundness)

We now prove that vNA
c is adequate. Note that because vNA

c =⇒ vc, we implicitly
prove vc adequate. We define several versions of the abstractions with different levels

40 Mike Dodds, Mark Batty, and Alexey Gotsman

of context cutting:

B1 vic B2
∆
= ∀X ∈ JB1,AK↓vr. cuti(X) =⇒

∃Y ∈ JB2,AK↓vr. histE(X) vE histE(Y) ∧
(∀a.FinalNA(X, a) =⇒ ∃b ∈ A(Y). a ≤X,Yna b) ∧
(X ∈ JB1,AKvr =⇒ Y ∈ JB2,AKvr)

We define several versions of the cutting predicate, incrementally cutting more of
the context.

cut1(X)
∆
= cutR(X)

cut2(X)
∆
= cutR(X) ∧ cutW(X)

cut3(X)
∆
= cutR(X) ∧ cutW(X) ∧ NAcutR(X)

LEMMA 13 (ATOMIC READ CUTTING) B1 v1
c B2 =⇒ B1 vNA

d B2

Proof. – Pick an execution X ∈ JB1,A, SK↓d. We now want to build a corresponding
execution such that cutR holds.

– Identify a subset A′ ⊆ A(X) such that cutR(X|A′) holds, and no larger subset
exists. We call this maximal projected execution X ′. We use AR to refer to the
removed actions A \ A′.

– It’s straightforward to see that AR ⊆ Read ∩ interf(X). Context actions aren’t re-
quired by the thread-local semantics, and removing context reads preserves validity,
so X ′ ∈ JB1,A, SK↓d.
It’s also straightforward from the definition of cutR to see that any read r in AR is
removed for one of two reasons:
• context-read. The associated write for r is in the context.
• duplicate-read. The associated write is read by another context read r′ which

is not removed. We call this r′ the representative for r.
– We have an execution X ′ ∈ JL1,A, SK↓d such that cutR(X ′) holds. Now apply the

assumption to produce an execution ∃Y ′ ∈ JL2,A, SK↓d such that histE(X ′) vE

histE(Y
′).

Build a new execution Y by re-injecting the actions fromAR. As all of these actions
are context reads, the only relation that must change is rf.
• If the action is a context-read, direct rf to the context write it pointed to in X .

This must still exist by history inclusion.
• If the action is a duplicate-read, direct rf to the write read by its representative.

The origin for the representative write must exist by validity of Y ′.
It now remains to show that that Y ∈ JL2,A, SK↓d and histE(X) vE histE(Y).

– To show that Y ∈ JB2,A, SK↓d, we only need to show that Y is valid. Adding new
atomic context reads to a valid execution is guaranteed to preserve validity, as long
as they are equipped with valid origin writes in rf.

– To show that histE(X) vE histE(Y), we have two obligations: hbL(Y) ⊆ hbL(X),
and denyL(Y) ⊆ denyL(X). The former is a trivial consequence of the way we
construct Y .
For the latter, we reason by contradiction for each of the deny shapes:

Compositional Verification of Compiler Optimisations on Relaxed Memory 41

• HBvsMO-d and Acyc-d: As context reads are terminal in hb, the only case we
need to consider is the one where u ∈ AR and the remainder of the shape is
not removed. Otherwise the deny is entirely replicated in Y ′, and thus in X . If
u is a duplicate-read, the deny is replicated in Y using its representative. If u is
a context-read, a deny edge exists w1

d−→ v. In either case, it is easy to see that
the deny u d−→ v must be replicable in X , contradicting the assumption.

• Cohere-d and Init-d: Similarly, the cases we need to consider are (1) u ∈ AR,
(2) v = r and r ∈ AR, and (3) both. In the first case, the same argument applies
as with HBVSMO. In the second, we can replace r with its representative. In
both cases, it’s straightforward to replicate the deny u d−→ v is replicated in X .
The third case just combines the arguments from the other two.

• CoNA-d and CoNA-d2: Ruled out as actions in AR must be hb-terminal. This
precludes any such action participating in one of these non-atomic shapes.

– Finally, we need to show that any final NA action in X is replicated in Y , and that
Y is complete if X is complete. Both properties are inherited trivially from Y ′.

LEMMA 14 (ATOMIC WRITE CUTTING) B1 v2
c B2 =⇒ B1 v1

c B2

Proof. – Pick an X ∈ JB1,A, SK↓d such that cutR(X) holds.
– Now we build an X ′ such that X ′ ∈ JB1,A, SKd and cutR(X)∧ cutW′(X) holds.

First identify the set of non-visible write actions for each location z:

Az = {a ∈ A | loc(a) = z ∧ a ∈ (Write ∩ Atomic) ∧ ¬visible(a)}

Partition this set into maximal disjoint nonempty subsets Bz1 , Bz2 . . . such that:

Bzi ⊆ Az ∧ (∀a1, a2 ∈ Bzn.¬∃w /∈ Bzn. a1
mo−−→ w

mo−−→ a2)

In other words, each set B is a maximal set of non-visible writes so that there is
no intervening write in mo. Thus, either a set B is mo-minimal / maximal, or it
has a visible action which is its immediate mo-predecessor / successor. We call
these actions wBp and wBs respectively. (The cases where B is minimal / maximal
are ignored as they are simpler versions of the case where wBp and wBs exist.
Note that due to COHERENCE, if there is a LL-SC in B, it must either read from a
write in B, or from wBp . Similarly, if wBs is a LL-SC, it must read from a write in B.
To build X ′, replace each B with a single LL-SC pair wBn (as above, call this a
representative). Take as the value that is read the value of wBp , and take as the
written value the mo-final value written in B. We modify the rest of the execution
as follows:
• As each set B is mo-contiguous in X , we don’t need to modify mo other than

to insert the new LL-SC pair.
• As the execution satisfies cutR, we have already kicked out all the context

reads. We direct rf so that wBp
rf−→ wBn . If wBs is a LL-SC, we direct rf so that

wBn
rf−→ wBs .

• Introducing wBn may generate new hb edges, so we regenerate hb according to
HBDEF’.

42 Mike Dodds, Mark Batty, and Alexey Gotsman

– We now need to show thatX ′ is valid. This is simple for most of the axioms because
the writes that are removed can only be read by their immediate mo-successor.
However, if wBs is a LL-SC, then we might generate an hb-edge wBp

hb−→ wBs which
did not previously exist. We therefore need to show that ACYCLICITY, HBVSMO,
COHERENCE, COHERNA still hold in X ′.
• HBVSMO, ACYCLICITY: The two writes w1, w2 responsible must be on a

different location from wBp and wBs : otherwise the violation would be an HB-
VSMO violation in X . Any hb-path between two actions on different locations
must pass through the code. If the wBp and wBs are not themselves in the code,
we can replicate the violation immediately using the hb-adjacent internal ac-
tions ap/as.

• COHERENCE, COHERNA: Again, the responsible writes / reads must be to
a different location from wBp and wBs . Otherwise we can generate a violation
using the LL-SCwBs , and the fact that mo follows hb. Apply the same reasoning
as the previous point to replicate the violation in X .

We also need to show that cutR(X ′)∧cutW(X ′) holds. It’s obvious that cutR(X ′)
still holds – we have introduced no extra reads. cutW(X ′) holds because each new
write wBn is separated in mo by a visible action.

– Apply the assumption to give an execution Y ′ ∈ JL2,A, SK such that X ′ vE Y
′.

Now build the execution Y . To do this, replace each representative LL-SC wBn in
Y ′ with the corresponding actions in B. In other words, for any pair of actions in
a single set B, take mo the same as in mo(X). For an action in B and some other
action, relate it in mo as in mo(Y ′) for the set representative.
We need to show that (1) Y is valid, (2) histE(X) vE histE(Y).

– Validity. Modifying Y ′ to Y alters rf, mo, and hb.
RFWF, RFVAL, MOWF, ATOM are obvious by construction.
ACYCLICITY holds because hb edges are only removed between existing writes,
and introduced between actions represented in B, which are by definition unrelated
to context actions aside from at wBp and wBs . Therefore any cycle would exist inside
B, and thus in X .
HBVSMO holds because actions in B are introduced at a single point in mo rep-
resented by wBn . Any hb-edges inside B must be consistent with mo, or a similar
violation could be replicated in X .
COHERENCE, COHERNA holds because any violation for non-B reads/write could
be replicated in Y ′ using the representative LL-SC wBn . A violation inside B could
immediately be replicated in X .
RFHBNA holds because any hb-path in Y ′ that is broken in Y must pass through
the code. Therefore, the path must be replicable through sb, which contradicts the
violation.

– hbL(Y) ⊆ hbL(X). Actions in B in X are only related to each other and wBp /
wBs in hb. For paths in hb outside some B, it must be that hbL(X) = hbL(X ′) ⊆
hbL(Y ′) = hbL(Y). As paths inside B are identical betweenX and Y , any hb-path
can be replicated.

– guarNA(Y) ⊆ guarNA(X). Trivial by the previous argument, and the fact B-sets
only cover atomic actions.

Compositional Verification of Compiler Optimisations on Relaxed Memory 43

– denyL(Y) ⊆ denyL(X). Prove by contradiction: assume a deny shape in Y that is
not in X .
• HBvsMO-d / Acyc-d: Suppose a deny shape involving writes w1/w2.
∗ w1/w2 not in any B. As actions in B are not read/written in the code, any

hb path which includes actions in B and which passes through the code,
must enter and exit B through other context actions, a, b. There is a deny
a

d−→ b in Y ′ by construction, and thus inX . hb-paths inside B are identical
in X and Y . Combining this gives us a deny in X .

∗ w1/w2 entirely inside B: reproducible trivially as mo/hb are identical be-
tween Y and X .

∗ w1 outside B, w2 inside. In this case, there must be a deny in Y ′ and X ′

with the representative: wBp
d−→ b (using the same argument as above).

Substituting B for the representative in X builds the violation.
∗ w2 outside B, w1 inside. Symmetrical to previous case.

• Cohere-d / Init-d: the deny shape involves writes w1/w2/r.
∗ w1, w2, r all in B: replicated trivially.
∗ w1, w2, r all outside B: replicated trivially.
∗ w1, w2 in B, r outside: r can only be wBs , shape ruled out by construction.
∗ w1 in B, w2, r outside: deny replicated in Y ′ / X ′ using representative.

Rebuild the violation when reintroducing B in X .
∗ All three outside B: trivial.
∗ w2, r in B,w1 outside:w1 can only bewBp , shape ruled out by construction.
∗ w2 in B, w1, r outside: deny replicated in Y ′ using representative, rebuild

in X when adding B.
∗ r in B,w1,w2 outside:w1 can only bewBp , shape ruled out by construction.

• CoNA-d2: similar argument to Cohere-d, exept that some cases are ruled out
by the fact that elements in B are necessarily atomic.

– denyNA(X) ⊆ denyNA(Y). Similar argument to CoNA-d2 above.
– The Final NA and completeness properties are satisfied for the same reason as in

the previous proof.

LEMMA 15 (NA READ CUTTING) B1 v3
c B2 =⇒ B1 v2

c B2

Proof. – Pick an X ∈ JB1,A, SK↓ such that cut2(X) holds. Build X ′ using the
same approach as in atomic read cutting: X ′ is a maximal sub-execution such that
NAcutR(X) holds.
From the structure of NAcutR, the actions AR removed from X must all be non-
atomic reads. Just as before, removed reads have a representative that remains inX ′

and that reads from the same write. Unlike in the atomic case, reads from context
writes also have representatives. This is necessary to detect new writes that might
violated CoNA-d2 (which in turn is needed because NA writes are not ordered in
mo).
X ′ is valid because the axioms are invariant under read removal.

– We then apply the assumption to build an execution Y ′ ∈ JB2,A, SK↓vr. Finally we
build Y by restoring the cut actions, with rf(Y ′) built in the same way as for the
atomic cutting case.

44 Mike Dodds, Mark Batty, and Alexey Gotsman

Almost-validity is preserved trivially because the inserted reads are not part of hb.
Deny inclusion is ensured by the fact that the inserted reads are placed at the same
position as their representatives: any violation would immediately be replicated by
the representative. The FinalNA and completion property are unaffected from Y ′.

LEMMA 16 (NA WRITE CUTTING) B1 vc B2 =⇒ B1 v3
c B2

Proof. – Pick an X ∈ JB1,A, SK↓ such that cut3(X) holds.
– As NAcutWdoesn’t discriminate on the basis of mo, we can replace the set of all

context writes to a location with a single representative write. We build X ′ as a
maximal sub-execution such that NAcutWholds, and ‘orphan’ context reads are
removed. As NAcutRholds, each NA write has at most one context read. Note that
as the execution is maximal, if at least one write to a location had an associated
read, then the representative will have an associated read.

– Validity for X ′ is trivial as the removed writes cannot participate in hb, or be read
in the code. We then build Y ′ by applying the theorem to give an almost-valid
execution of B2. Finally, we build Y by re-inserting the removed reads and writes.
The only relation that needs to be updated is rf, which associates removed reads
with their origin write.
Preservation of almost-validity follows from the fact that the inserted writes are dis-
joint from all other actions in the execution relations. Deny inclusion holds because
any deny shape in Y that involves a removed write / read can be easily replicated
using the representative.

THEOREM 17 (CUT ADEQUACY) B1 vc B2 =⇒ B1 vNA
d B2

Proof. Prove this as a sequence of implications:

B1 vc B2 =⇒ B1 v3
c B2 =⇒ B1 v2

c B2 =⇒ B1 v1
c B2 =⇒ B1 vNA

d B2

Each implication step is proved in a lemma above.

F Proofs of Theorems 2 and 6 (full abstraction)

F.1 Proof structure

We now sketch the proof structure for full abstraction, for simplicity eliding the treat-
ment of non-atomics and LL-SC. The full proof is given in §F. Assume B1 4bl B2; we
have to prove B1 vq B2.

1. Following the definition of vq (def. (7) in §4), consider arbitrary A, R, and X1 ∈
JB1,A, R, ∅K (∅ is due to the fact that we ignore LL-SC).

2. We use X1 to construct the special context CX1
(defined in §F.2). The context

performs the actions specified by A and monitors executions to ensure that they
do not significantly diverge from X1, e.g., by checking that the values returned by
context reads match those in A. If CX1

detects a mismatch with X1, it writes to a
special observable error variable e ∈ OVar. The context CX1 is constructed in such
a way that for any code-block B′ and any execution Y ∈ JCX1(B

′)K in which e is
not written, the following three facts hold:

Compositional Verification of Compiler Optimisations on Relaxed Memory 45

(a) the actions of A appear in Y , and the actions by B′ in Y transform local vari-
ables in a way consistent with the call and ret actions in X1;

(b) hb(Y) includes the edges in R;
(c) hb(Y) is included in the guarantee of hist(X1).

3. We show that there is an execution Z1 ∈ JCX1
(B1)K where the actions generated

by B1 match those in X1, and where e is not written; the latter implies that the
above properties (a), (b) and (c) hold of Z1.

4. Since B1 4bl B2, by applying the definition of 4bl (def. (2) in §4) to the special
context CX1 , we get an execution Z2 ∈ JCX1(B2)K where e is never written.

5. By the construction of CX1
, we know facts (a) and (b). Using this, we construct an

execution X2 ∈ JB2,A, R, ∅K where the actions generated by B2 match those in
Z2 and the call and ret actions match those in X1. Let hist(X1) = (A1, G1) and
X2 = (A2, G2). Using (a), we show A1 = A2 and using (c) we show G2 ⊆ G1.
This establishes hist(X1) vh hist(X2), and by def. (7), gives B1 vq B2.

F.2 Context construction

We next describe the construction of the context CX for an executionX ∈ JB,A, R, ∅K
and argue that it satisfies the above properties (a)-(c). To illustrate the construction, we
use the execution X in Figure 4, for the block B defined by def (5). The context CX is
defined on the top of Figure 13 and an application to the example is given below (for
brevity, we use syntactic sugar that elides manipulations of local variables).

The context CX is a parallel composition of threads: one for the parameter code-
block {−}, and one each action in A—these are collectively ranged over by m in Fig-
ure 13. We introduce functions call and ret on the indices m, mapping {−} to the
call and ret actions in X , respectively, and acting as the identity otherwise. Recall that
for our example execution X , the set A consists of the three writes outside the dashed
rectangle. Our construction consists of several wrapper functions, introduced below.

1. Innermost is check(m), which for brevity, we only describe informally. For a read
or a write action u ∈ A, check(u) executes the corresponding operation and, in the
case of a read, compares the value read with the one specified by u. The command
check({−}) initialises local variables to the values specified by the call action in
X , runs the code-block, {−}, and then compares the local variables with the values
specified by the ret action in X . If there is a mismatch in the above cases, check
writes to the error variable e. In this way, it ensures that property (a) holds in error-
free executions. We give an example of check on the right of Figure 13.

2. The wrappers Rrelm and Racqm ensure property (b). Recall the type (4) of R; in
our running example from Figure 4,R is given by the dashed edges. Each Rrelm is
built up of a sequence of invocations of Rrelu,v , one for each edge (u, v) ∈ R out-
going from u = ret(m); the wrapper Racqm is constructed symmetrically. These
wrappers use watchdog variables hu,v to create happens-before edges as in the MP
test of Figure 1. Namely, Rrelu,v and Racqu,v respectively write to and read from
the variable hu,v . If Racqu,v does not read the value written by Rrelu,v , then it
writes to the error variable e. The invocation of Rrelu,v is sequenced after u and
that of Racqu,v before v. Hence, any non-erroneous execution contains the shape

46 Mike Dodds, Mark Batty, and Alexey Gotsman

on the left of Figure 14. This reproduces the required R edge (u, v) in the happens-
before. In our running example, the edge (store(x, 2), call) ∈ R is reproduced by
the invocation of Racqstore(x,2),call on the first thread and Rrelstore(x,2),call on the
second.

3. The wrappers Nrelm and Nacqm ensure property (c), prohibiting new happens-
before edges beyond those in the original guaranteeG of hist(X). We identify pairs
that must be monitored with the relationH: the edges ofGmatching the type (6) of
a guarantee that are not already covered by the reverse ofR. In our running example
from Figure 4, the edges fromG that we need to consider are (call,write(f, 1)) and
(call,write(x, 1)). Each Nrelm is built up of a sequence of invocations of Nrelu,v ,
one for each edge (u, v) ∈ H outgoing from u = call(m); the wrapper Racqm
is constructed symmetrically. The above wrappers detect errant happens-before
edges using watchdog variables gu,v , again relying on the mechanics of the MP
test of Figure 1. Namely, Nrelu,v and Nacqu,v respectively write to and read from
a watchdog variable gu,v . If Nacqv,u does read the value written by Nrelv,u, then
it writes to the error variable e. The invocation of Rrelu,v is sequenced before u
and that of Racqu,v after v. Hence, if an execution includes a happens-before edge
(u, v), then it contains the shape shown on the right of Figure 14 (omitting the write
to the error location). Here the happens-before edge (u, v) and the RFVAL axiom
(§3) force the read in Nacqu,v to read from the write in Nrelu,v , leading to a write to
e. Hence, a non-erroneous execution does not contain errant happens-before edges.
In our example the edge (call, store(f, 1)) ∈ G is covered by the invocation of
Nrelcall,store(f,1) on the first thread and Nacqcall,store(f,1) on the fourth.

Context construction The full context construction including LL/SC is included in Fig-
ure 15. The key difference from Figure 13 is that successful context LL/SC pairs in X
are arranged on a single thread, allowing the store conditional to suceed in CX .

Proof of Theorem 6. We now prove Theorem 6: full abstraction of vNA
q for programs

and contexts that do not use read-modify-write accesses, B1 4NA
bl B2 =⇒ B1 vNA

q

B2. Note that this implies Theorem 2.

Proof. – Start by choosing an arbitrary R, S and X ∈ JB1,A, R, SKNAv . It remains
to show that:

∃Y ∈ JB2,A, R, SKNAv .

(safe(Y) =⇒ safe(X) ∧ hist(X) vh hist(Y)) ∧
(¬safe(Y) =⇒ ∃X ′1 ∈ (X)↓.∃X ′2 ∈ (Y)↓.¬safe(X ′2) ∧ hist(X ′1) vh hist(X

′
2))

(11)

Compositional Verification of Compiler Optimisations on Relaxed Memory 47

– Apply the construction lemma (Lemma 18, below) to B1, R, S and X to find a
context CX , and an execution Z:

Z ∈ JCX(B1)KNAv ∧
code(Z) = X ∧
hbC(Z) = R ∧ atC(Z) = S ∧
∀B′.∀Z ′ ∈ JCX(B′)KNAv .
((A(contx(Z)) = A(contx(Z ′))) =⇒ (hist(Z) vh hist(Z

′)) ∧ at(contx(Z)) = at(contx(Z ′)))∧
(¬safe(Z ′) =⇒ ∃X ′ ∈ X↓.∃W ∈ (JB′,A, R, SKNAv)↓.¬safe(W) ∧ hist(X ′) vh hist(W))

(12)
– Specialise observation with the context CX and the set of all variables used in CX ,
VCX

, to get:

(¬safe(CX(B2)) ∨
(safe(CX(B1)) ∧
∀X ∈ JCX(B1)KNAv .∃Y ∈ JCX(B2)KNAv .
A(X|VCX

) = A(Y |VCX
))) ∧

hb(X|VCX
) ⊆ hb(Y |VCX

)))

(13)

and then case split on safe(CX(B2)).
– Case 1: safe(CX(B2)).
• By 13, there is an execution, Z ′ of CX(B2) with:

hb(Z|VCX
) = hb(Z ′|VCX

) ∧ A(Z|VCX
) = A(Z ′|VCX

)

• By construction of CX , the variables VCX
cover all context variables, so we

have:

hb(contx(Z)) = hb(contx(Z ′)) ∧A(contx(Z)) = A(contx(Z ′))

• Appealing to 12, we have:

hist(Z) vh hist(Z
′)

• Now apply the decomposition lemma to Z ′ to get the execution Y :

Y ∈ JB2,A, hbC(Z ′), atC(Z ′)KNAv ∧ code(Z ′) = Y

• Now simplify using the definition of hbC and atC.

Y ∈ JB2,A, R, SKNAv ∧ hbC(Z ′) = R = hbC(Z) ∧ atC(Z ′) = S = atC(Z)

• Choose Y as the witness for our goal 11. Note that the presence of a safety
violation in X or Y would contradict the safety of CX(B2) and CX(B1). It is
left to show that:

hist(X) vh hist(Y)

48 Mike Dodds, Mark Batty, and Alexey Gotsman

• Unfolding the definition of vh, we have:

A(Z) = A(Z ′) ∧ hbL(Z ′) ⊆ hbL(Z)

and it is left to show that,

A(X) = A(Y) ∧ hbL(Y) ⊆ hbL(X)

• Note that X and Y are the code-block projections of Z and Z ′ respectively,
and we are done.

– Case 2: ¬safe(CX(B2)).
• Identify an unsafe valid execution of CX(B2), Z ′, and specise the final con-

junct of 12 with B2 and Z ′ to get:

X ′ ∈ X↓ ∧W ∈ (JB2,A, R, SKNAv)↓ ∧ ¬safe(W) ∧ hist(X ′)↓ vh hist(W)

Then by the definition of ↓, there exists a W ′ ∈ JB2,A, R, SKNAv such that
W ∈W ′↓, and this case is completed by noting that W ′ and W satisfy 11.

F.3 Context construction

LEMMA 18 (CONSTRUCTION LEMMA)

∀BA, R, S .∀X ∈ JB,A, R, SKNAv .
∃CX .∃Z ∈ JCX(B)KNAv .
(code(Z) = X) ∧
(hbC(Z) = R) ∧ (atC(Z) = S) ∧
∀B′.∀Z ′ ∈ JCX(B′)KNAv .
((A(contx(Z)) = A(contx(Z ′))) =⇒ hist(Z) vh hist(Z

′) ∧ at(contx(Z)) = at(contx(Z ′)))∧
(¬safe(Z ′) =⇒ ∃X ′ ∈ X↓.∃W ∈ (JB′,A, R, SKNAv)↓.¬safe(W) ∧ hist(X ′) vh hist(W))

Proof. – Start by choosing an arbitrary B, A, R, S and X ∈ JB,A, R, SK.
– Construct the client CX as specified in Figure 13 with one minor change: have
check halt the thread if the error variable is written.
It remains to show that there exists Z ∈ JCX(B)KNAv such that:
1. (code(Z) = X) ∧ (hbC(Z) = R) ∧ (atC(Z) = S)
2. ∀B′.∀Z ′ ∈ JCX(B′)KNAv .

((A(contx(Z)) = A(contx(Z ′))) =⇒ hist(Z) vh hist(Z ′) ∧
at(contx(Z)) = at(contx(Z ′))) ∧
(¬safe(Z ′) =⇒ ∃X ′ ∈ X↓.∃W ∈ (JB′,A, R, SKNAv)↓.¬safe(W) ∧
hist(X ′) vh hist(W))

– We first establish 1.
• Appealing to the thread local semantics and the structure of CX(B), choose
Zp, a pre-execution of CX(B) that does not write the error variable, and whose
code projecion matches X .

Compositional Verification of Compiler Optimisations on Relaxed Memory 49

• Note that at is generated from the thread-local semantics matching X , and for
the context part, each LL/SC pair is in its own thread, so there is only one way
to link them.

• Consruct mo as follows: for code actions choose these edges to match X , and
for the context part, note that there is no choice: at each location there is only
one write after the initialisation.

• Construct rf as follows: for code actions choose these edges to match X , and
for that context actions set rf to be coincident with an R edge in the case of
Racq or from the initialisation write in the case of Nacq. Note that the context
projection of happens-before matches R by construction.

• Let Z be the combination of Zp, mo and rf. Show that Z is valid.
∗ The only axioms that could fail are Acyclicity over some Racq or
Coherence over some Nacq.
∗ In the first case, any cycle would be made up of code hb and R edges, and

would also be a cycle in X , a contradiction.
∗ A Coherence violation over some Nacq implies the existence of a hb

edge from the associated Nrel to the Nacq. This violates the rules used to
construct CX , and is a contradiction.

– Now establish 2.
• Start by choosing arbitrary B′ and Z ′ ∈ JCX(B′)KNAv .
• First, show that (A(contx(Z)) = A(contx(Z ′))) =⇒ hist(Z) vh hist(Z

′) ∧
at(contx(Z)) = at(contx(Z ′))

∗ Z does not write e, so neither does Z ′ (they have an equal context projec-
tion).
∗ By construction of CX , the histories of Z abstract the histories of Z ′ and

the at relations match.
• Now suppose Z ′ is unsafe. It remains to show:

∃X ′ ∈ X↓.∃W ∈ (JB′,A, R, SKNAv)↓.¬safe(W) ∧ hist(X ′) vh hist(W)

∗ CX uses only atomic and local variables that cannot exhibit safety vio-
lations: each violation must be amongst the actions of A and the actions
generated by B′.

∗ Identify a safety violation in Z ′ and consider the prefix Z ′p containing only
hb ∪ rf predecessors of the actions of the violation.

∗ There are no writes to e in Z ′p: after any such write, the thread is stopped,
so it cannot appear in the prefix Z ′p.

∗ Below, we establish that for every thread of Z ′p except those that contain
the safety violation from which it is constructed, the error variable is not
written in the corresponding thread of Z ′.
· Consider the hb ∪ rf edges that draw actions into the prefix Z ′p from

some thread t, there are two cases: the edge arises from a Rrel/Racq
pair, or it is created by a read, from write w, in the code block or a
context action.
· In the first case e is not written in check or Nacq on t, because that

would halt the thread before the call to Rrel.

50 Mike Dodds, Mark Batty, and Alexey Gotsman

· In the second case, no call to Nacq writes e, and calls of commit only
write to e in the case of a failing store conditional, contradiciting the
existence of writew in Z ′, sow is only performed in threads that never
write to e.

∗ From Z ′p, we constructW by applying the decomposition lemma Z ′p to get
an execution W , completing this to an execution in JB′,A, R, SKNAv , and
observing that W is in (JB′,A, R, SKNAv)↓. W is unsafe by construction.

∗ Take A to be the set of all context actions in W together with the call and
ret actions present in W . Let X ′ be the projection of X to the hb ∪ rf
predecessors of A, so that X ′ ∈ X↓.

∗ It remains to show that there is no edge in hb(W) between the actions of
A that is not present in the guarantee of X ′p, G′. By construction of W ,
any extraneous hb(W) edge must end at one of the threads hosting the
violation. There is only one code block, so at least one of the threads has
to be executing a context action. There is no single action that both creates
an incomming hb edge and causes a safety violation, so any additional
hb(W) edge must end at the code block. In that case, W does not include
the ret action following the racy action in hb, and neither does X ′, and
there can be no new edge in G′.

Compositional Verification of Compiler Optimisations on Relaxed Memory 51

Construction definition:

CX
∆
= ‖m (Racqm(Nrelm; check(m)(Nacqm(Rrelm))))

Rrelm
∆
= Rrelret(m),v1 ; . . . ; Rrelret(m),vn ,

where {v1, . . . , vn} = {v | (ret(m), v) ∈ R}

Rrelu,v
∆
= store(hu,v, 1)

Racqm(N)
∆
= Racqu1,call(m)(. . . Racqun,call(m)(N) . . .),

where {u1, . . . , un} = {u | (u, call(m)) ∈ R}

Racqu,v(N)
∆
= if (load(hu,v)) N else store(e, 1)

Nrelm
∆
= Nrelcall(m),v1 ; . . . ; Nrelcall(m),vn ,

where {v1, . . . , vn} = {v | (call(m), v) ∈ H}
Nrelu,v

∆
= store(gu,v)

Nacqm(N)
∆
= Nacqu1,ret(m)(. . . Nacqun,ret(m)(N) . . .),

where {u1, . . . , un} = {u | (u, ret(m)) ∈ H}

Nacqu,v(N)
∆
= if (¬load(gu,v)) N else store(e, 1)

check({−}) ∆= l1 := 0; l2 := 0;

{−};
if (l1 6= 1) {store(e, 1)};
if (l2 6= 1) {store(e, 1)}

Example application:

CX = Racqstore(x,2),call(Nrelcall,store(x,1); Nrelcall,store(f,1); check({−}))
‖ store(x, 2); Rrelstore(x,2),ret; Rrelstore(x,2),store(x,2)
‖ Racqstore(x,2),store(x,1)(store(x, 1); Nacqret,store(x,1)(Rrelstore(x,1),store(f,1)))
‖ Racqstore(x,1),store(f,1)(store(f, 1); Nacqret,store(f,1)(skip))

Fig. 13. Top: Definition of the construction ofCX forX ∈ JB,A, RK. We defineH and check()
in the text. The symbol m ranges over context actions A and a hole {−}. Bottom: Example of
check() and the construction for the execution in Figure 4.

u

R

��

sb,hb
��

store(hu,v, 1)
rf,hb
// load(hu,v, 1)

sb,hb

��
v

store(gu,v, 1)

rf,G

��

sb,hb

��
u

hb
// v

sb,hb
��

load(gu,v, 1)

Fig. 14. Context construction execution shapes. Left: Shape enforcing edges in R. Right: shape
prohibiting edges not in G.

52 Mike Dodds, Mark Batty, and Alexey Gotsman

CX = (;(m1,m2)∈at a(m1); a(m2)) ‖ (‖m\|at| a(m))

a(m) = Racqm(Nrelm; check(m)(Nacqm(Rrelm)))

Rrelm = Rrelret(m),v1 ; . . . ; Rrelret(m),vn ,

where {v1, . . . , vn} = {v | (ret(m), v) ∈ R}
Rrelu,v = store(hu,v, 1)

Racqm(N) = Racqu1,call(m)(. . . Racqun,call(m)(N) . . .),

where {u1, . . . , un} = {u | (u, call(m)) ∈ R}
Racqu,v(N) = if (load(hu,v)) N else store(e, 1)

Nrelm = Nrelcall(m),v1 ; . . . ; Nrelcall(m),vn ,

where {v1, . . . , vn} = {v | (call(m), v) ∈ H}
Nrelu,v = store(gu,v)

Nacqm(N) = Nacqu1,ret(m)(. . . Nacqun,ret(m)(N) . . .),

where {u1, . . . , un} = {u | (u, ret(m)) ∈ H}
Nacqu,v(N) = if (¬load(gu,v)) N else store(e, 1)

Fig. 15. Context construction: m ranges over context actions A and a code-block B′.

