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Innovation and evolution are two processes of paramount relevance for social and biological sys-
tems. In general, the former allows the introduction of elements of novelty, while the latter is
responsible for the motion of a system in its phase space. Often, these processes are strongly
related, since an innovation can trigger the evolution, and the latter can provide the optimal con-
ditions for the emergence of innovations. Both processes can be studied by using the framework of
Evolutionary Game Theory, where evolution constitutes an intrinsic mechanism. At the same time,
the concept of innovation requires an opportune mathematical representation. Notably, innovation
can be modeled as a strategy, or can constitute the underlying mechanism which allows agents to
change strategy. Here, we analyze the second case, investigating the behavior of a heterogeneous
population, composed of imitative and innovative agents. Imitative agents change strategy only by
imitating that of their neighbors, whereas innovative ones change strategy without the need of a
copying source. The proposed model is analyzed by means of analytical calculations and numerical
simulations in different topologies. Remarkably, results indicate that the mixing of mechanisms can
be detrimental to cooperation near phase transitions. In those regions, the spatial reciprocity from
imitative mechanisms is destroyed by innovative agents, leading to the downfall of cooperation. Our
investigation sheds some light on the complex dynamics emerging from the heterogeneity of strategy
revision methods, highlighting the role of innovation in evolutionary games.

I. INTRODUCTION

The emergence of cooperation is a topic of paramount
relevance in different areas, as demonstrated by the long
list of contributions across various fields, ranging from bi-
ology to sociology, and from economics to robotics [1–4].
In a broad sense, why should people cooperate with their
peers in a competitive scenario, where selfish individu-
als would often fare better? Evolutionary Game Theory
(hereinafter EGT) constitutes one of the most suitable
tools for approaching such question [5–7], and the Pris-
oner’s Dilemma represents the canonical way for studying
how a cooperative behavior can emerge in a competitive
scenario [3, 8]. The dynamics of evolutionary games show
how cooperation results from a collective behavior. No-
tably, these models consider a population that, under
particular conditions, is able to reach an equilibrium of
cooperation even when the agent interactions are based
on games whose Nash equilibrium is defection.

One of the earliest approaches in EGT, proposed by
Maynard Smith [5, 9], uses the mathematical framework
of birth-death dynamics usually seen in biological evolu-
tion, in a model where individuals copy the strategy of
more successful contacts (akin to a Moran process). Us-
ing a linear copy probability, this mechanism leads to the
classical replicator equation [10], i.e. the general math-
ematical model for natural evolution. However, from a
Game Theory perspective, individuals can change strat-
egy by many other mechanisms, e.g. imitation of the
best, win-stay-lose-learn, tit-for-tat, and so on and so
forth [3, 10]. Here, updating rules based on imitative
mechanisms can be defined as non-innovative [10], since

they allow individuals to choose only among strategies
adopted in their neighborhood. As result, once a strat-
egy disappears, it can be considered as extinct if there
is no external mutation mechanism. It is important to
note how mutation mechanisms can lead to diversity, but
they are not directly related to an innovative updating
rule, which represents the ability of one individual to
choose a strategy that does not appear in its neighbor-
hood. On the other hand, mechanisms that lead individ-
uals to change strategy without the need to copy from a
source (e.g. a neighbor) can be defined as innovative. For
instance, one individual might change strategy by ana-
lyzing the trend of her/his gain, e.g. a decreasing gain
might lead to test a different strategy. One of the most
famous case is the win-stay-lose-shift, where if the indi-
vidual has a payoff below some aspiration level, she/he
simply changes strategy, no matter which strategies are
available from the neighborhood. Two other famous ex-
amples of innovative updating rules are the Logit rule
and best response [11–14].

From the point of view of Information Theory, there
is an important difference between these two classes of
updating rules, i.e. innovative and non-innovative. No-
tably, rational individuals [15] select their strategy ac-
cording to rules that take into account their gain over
time, or their current gain and that of their neighbors.
Therefore, they need some information in order to take
a decision. Thus, the essential difference between inno-
vative and non-innovative individuals lays in the infor-
mation source they adopt/have about the system. As
reported in previous investigations (e.g. [12, 14, 16–18]),
the application of innovative and non-innovative updat-
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ing rules leads to results that can be drastically different.
As a very interesting and recent example, [19] showed
how innovative strategies towards vaccination can lead to
different dynamics than the usual imitative ones, chang-
ing the vaccination coverage. It is interesting to observe
that imitative mechanisms are usually associated with
long term biological evolution. The copying process is
related to the offspring of a more successful individual
inheriting her/his parent strategy. On the other hand,
innovative dynamics can model the behavior of individ-
uals that, like humans, have cognitive responses to the
environment [20, 21], and that happen on shorter time
scales.

Imitative dynamics have been broadly studied for dif-
ferent games, updating rules and connection topologies.
Some classic mechanisms that support cooperation in this
setting include kin selection [22], mobility and dilution
[23], direct and indirect reciprocity [24], network reci-
procity [25, 26], group selection [27], dissociation [28],
and population heterogeneity [29–31] (for reviews see
[10, 32, 33]). Nevertheless, innovative mechanisms still
require deeper studies in the evolutionary context. It
is worth highlighting the strong relation between innova-
tion and cooperation, as reported in recent works demon-
strating that, if a population adopts just an innovative
strategy for performing updates, cooperation can be sus-
tained for a large range of parameters. In [16], the au-
thors show that win-stay-lose-shift with dynamic aspira-
tion can lead to the coexistence of cooperation and de-
fection for the whole parameter range while, at the same
time, cooperators do not need to form islands to survive.
In [12, 34, 35], a model based on the Glauber dynam-
ics (from magnetism) shows the survival of cooperators
while leading the population to global stable patterns,
in a process akin to the minimization of energy. Driven
by this observation, in this work we propose an evolu-
tionary model for studying the dynamics of a heteroge-
neous population composed of imitative and innovative
agents. In particular, imitative agents adopt the typical
copying mechanism with a probability weighted by the
Fermi-Dirac distribution, while the innovative ones use
the Logit rule (also weighted by the Fermi-Dirac distri-
bution).

Heterogeneity, in the most general form, is a strong
facilitator of cooperation. The mixing of strategies, dif-
ferent kinds of players, topologies, etc, has been shown
time and again to be a great promoter of coopera-
tion [30, 31, 36–45]. In this sense, we mix two kinds
of agents, each one following a specific updating rule. In
doing so, we can analyze the results coming from a form
of heterogeneity related to the “updating rules”.

We first solve the mean-field equation for the model
in the well-mixed case and perform Monte-Carlo simu-
lations in a square lattice to observe the effects of the
spatial structure. Most intriguingly, we find that while
a pure innovative population can maintain a high level
of cooperation, a minimum cooperation level occurs in
the mixed state of innovators and imitators. This hap-

pens for the Prisoner’s Dilemma near a critical point that
characterizes the phase transition of the pure imitative
model. In order to verify the robustness of this result, we
also analyze other connection topologies and games like
the Stag-Hunt and Snow-Drift. Lastly, we study what
mechanisms create this drop in cooperation for the mixed
states using lattice snapshots and the individual fraction
of each population (i.e. innovative cooperators, innova-
tive defectors, etc).

The remainder of the paper is organized as follows:
Section II introduces the proposed model and its dynam-
ics; Section III reports results of analytical calculations
and numerical simulations. Finally, Section IV provides a
summary of the main outcomes and related observations.

II. MODEL

In the proposed model, we aim to clarify the influence
of innovation in the dynamics of evolutionary games, by
considering the behavior of a population whose agents
have two strategies available, cooperation (C) and de-
fection (D). Such scenario can be represented by the
following payoff matrix:

(C D

C R S
D T P

)
, (1)

where two cooperative agents receive a reward (R), two
defectors receive a punishment (P ), and an agent that co-
operates with a defector receives S, while the defecting
agent receives a temptation (T ). Using the parametriza-
tion R = 1, P = 0, S = [−1, 1], T = [0, 2], we can explore
the dynamics of the model in four different configura-
tions, i.e. the Prisoner’s Dilemma for (T > 1, S < 0),
the Stag-Hunt for (T < 1, S < 0), the Snow-Drift for
(T > 1, S > 0), and the Harmony Game for (T < 1, S >
0) [10, 46].

In addition, our agents are provided with a charac-
ter, i.e. they can be innovators or imitators. Notably, a
fixed fraction of agents, say α, will update its strategy ac-
cording to a mechanism based on innovation. Whereas,
a fraction (1 − α) of agents will change its strategy by
adopting the typical imitative dynamic [8, 10]. We em-
phasize that while agents can change strategy (e.g. from
C to D) over time, their character (imitative or innova-
tive) never changes. As result, an imitative agent i, at
each update, randomly chooses one neighbor j and copies
its strategy with probability:

p(∆uij)imt =
1

1 + e−(uj−ui)/k
, (2)

where ui and uj indicate the payoff of the selected agent
(i) and of its neighbor (j), respectively, while k represents
the agent’s irrationality. Here we set k = 0.1, i.e. a nu-
merical value that is widely used in the literature in order
to add small noise in the decision process. As above re-
ported, the imitation rule is a non-innovative mechanism
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[10], because an agent changes strategy by considering
only among those available in its neighborhood. In do-
ing so, new strategies can never appear once extinguished
and, most importantly, agents can never “explore” new
ones [10, 14]. Notably, the process of imitation is similar
to local competition where death is a random uniform
process, and reproduction rates are determined by the
payoff (fitness).

On the other hand, an innovative agent, i, changes its
current strategy to the opposite one with probability:

p(∆ui)inv =
1

1 + e−(ui∗−ui)/k
, (3)

where ui∗ is the agent’s own payoff if it had changed to
the opposite strategy and everything else remained the
same. It is worth to remind that this updating rule cor-
responds to the Glauber dynamics in magnetic models
[47, 48] while, in the context of Game Theory, it is known
as Logit dynamics, myopic best response or myopic Logit
rule [11, 14, 35]. According to this rule, an innovative
agent evaluates the gain that it might achieve by chang-
ing strategy, under the hypothesis that its neighborhood
remains unchanged. As reported in previous investiga-
tions [12–14, 16, 49] this mechanism leads to very differ-
ent results compared to imitative dynamics. Tuning the
value of α between 0 (i.e. full imitation) and 1 (i.e. full
innovation), we aim to analyze how innovation affects the
dynamics towards cooperation, in different conditions.

III. RESULTS

The proposed model is studied by means of numerical
simulations, by arranging agents over a regular lattice
and on complex networks. However, as a preliminary
study, we perform analytical calculations considering the
dynamics of a well-mixed population using the mean-field
approximation.

A. Well-mixed population

We begin the analysis of the proposed model with the
case of a well-mixed population. Notably, by using the
master equation in the mean-field approach [10, 50, 51],
the temporal evolution of the cooperator’s density, ρ,
reads

ρ̇ = (1− ρ)Γ+ − ρΓ−, (4)

where Γ+ stands for the average rate at which agents
change strategy from D to C, leading to an increase in
ρ (and similarly to Γ−). While usually this rate depends
on just one updating rule, in our case we need to con-
sider the presence of two kinds of agents, i.e. innovators
and imitators. As result, the both rates, Γ±, will be the
average rate between each updating rule, weighted by α:

Γ± = (1− α)Γ±imt + αΓ±inv (5)
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FIG. 1. Asymptotic cooperation fraction (ρ) versus tempta-
tion to defect (T ) in the weak Prisoner’s Dilemma (S = 0)
in the mean-field, well-mixed population for the innovative
(α = 1) and imitative (α = 0) model, compared with the
mixed population of half innovative and half imitative agents
(α = 0.5).

Notably, for the well-mixed population we have the
following rates [10, 12],

Γ+imt =
ρ

1 + e−A/k
, (6)

Γ−imt =
1− ρ

1 + e+A/k
, (7)

Γ±inv =
1

1 + e∓A/k
, (8)

where A = ρ(1 − T ) + (1 − ρ)S is the difference in the
average payoff from a typical C and D agent interacting
with all other agents. Note that for the innovative up-
dating rate, Γ±inv, the only change between the positive
(Γ+inv) and negative (Γ−inv) rate is in the sign of A.
Accordingly, the full equation becomes

ρ̇ = (1− ρ)

[
ρ(1− α) + α

1 + e−A/k

]
− ρ

[
(1− ρ)(1− α) + α

1 + eA/k

]
.

(9)
We solve Eq. (9) numerically, letting the system reach the
equilibrium point as t → ∞. This gives the asymptotic
behavior of the population for the well-mixed case —see
Fig. 1 for the fully imitative (α = 0), fully innovative
(α = 1) and mixed (α = 0.5) cases.

This preliminary analysis shows that the behavior of
the heterogeneous population is not just the average
value of the two pure cases (α = 0 or α = 1), i.e. even if
half population is imitative, the behavior is much more
similar to the pure innovative population. Also, we ob-
serve in Fig. 1 that the point T = 1 is relevant, as it
defines which updating rule leads to the highest value of
cooperation. If T < 1, the imitative population has a
higher cooperation fraction, while for T > 1, the innova-
tive population has higher levels of cooperation. Specif-
ically, if T = 1 and S = 0, we obtain that A = 0 in Eq.
9, leading to ρ̇ = α(1 − 2ρ). This ODE has only one
fixed point at ρ = 0.5, that is independent of α, as we
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FIG. 2. Asymptotic cooperation level, ρ, versus fraction of
innovators, α, here S = 0. Results obtained from the mean-
field equation in the well-mixed population. The increasing of
innovators is beneficial for cooperation in the weak Prisoner’s
Dilemma (T > 1), while detrimental to it in the region T < 1.
In T = 1 all models have the same asymptotic behavior.

see in Fig. 1; all three models have the same value of ρ
for T = 1.

We proceed analyzing how different values of α af-
fect the population. In particular, as shown in Fig. 2,
cooperation increases monotonously with α in the re-
gion T > 1, while the opposite occurs for T < 1. In
this case, innovation is beneficial to cooperation only
for the Prisoner’s Dilemma region of the parameter T .
If T < 1, which characterizes the region of Stag-Hunt
and Harmony-Game, cooperation fares better if there are
more imitative agents, i.e. low α values.

B. Structured population

In order to study the behavior of the proposed model
considering a structured population, we initially perform
Monte Carlo simulations by arranging 104 agents in a
square lattice with periodic boundary conditions. Here,
at each time step, an agent (say i) interacts with its
neighbors and, according to the payoff matrix of the
game, obtains a cumulative payoff. Then, agent i un-
dergoes the ‘strategy revision phase’ (SRP) that is based
on the probability defined in Eq. (2), or in Eq. (3), de-
pending on its nature, i.e. imitator or innovator. Thus,
the described set of actions (i.e. from the agent selec-
tion to the SRP) is repeated N times (where N is the
total number of agents), which constitute a single Monte
Carlo Step (MCS). The simulation lasts until the pop-
ulation reaches a stable state (103 − 104 MCS’s) [10].
After that, results are averaged over the last 1000 MCS,
and observed for 10 − 50 different initial conditions. It
is worth reporting that, at the beginning of each simula-
tion, we start with a homogeneous strategy distribution,
so that half population is composed of cooperators, and
half of defectors.

Fig. 3, based on the weak Prisoner’s Dilemma (S = 0),
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FIG. 3. Asymptotic cooperation level (ρ) versus tempta-
tion to defect (T ) in a square lattice for the weak Prisoner’s
Dilemma. Each line corresponds to a different fraction of
innovators (α). The inset shows the T region where the het-
erogeneous population, α = 0.5, has a cooperation level lower
than any pure population.

shows the ρ − T graph for the following cases: fully im-
itative (α = 0), fully innovative (α = 1), and equally
mixed population (α = 0.5). The behavior in the struc-
tured population is different from the well-mixed case,
especially for T > 0.9.

It is worth to note that, in the square lattice, even if
the behavior of the mixed population stays, usually, be-
tween the two pure cases (i.e. α = 0 and α = 1), some
values of T can lead to different scenarios. In particu-
lar, in the range 0.8 < T < 1.03, detailed in the inset
of Fig. 3, the heterogeneous population exhibits the low-
est cooperation value among the three presented models.
Surprisingly, we find that in this region cooperation is
higher when the population is composed of only one kind
of agent (i.e. full imitation or full innovation). In addi-
tion, we note that the considered range of T contains the
critical point of the phase transition from cooperation to
defection in the full imitative model [10], suggesting that
a heterogeneous population undergoes a faster transition
than a homogeneous one.

Fig. 4 shows how the final cooperation level varies, as
we increase the number of innovative agents for a given
T value (S = 0). There are regions where the depen-
dence with α is not trivial, especially around T = 1 (i.e.
near the edge between the Prisoner’s Dilemma and the
Stag-Hunt game). Notably, in this region, the mixing
of different updating rules tends to reduce cooperation.
This effect is especially strong near T = 1.04, where the
imitative model shows a phase transition [10]. We note
that this drop in cooperation for mixed updating rules
was also observed in [18], which considers a very differ-
ent setting, the Public Goods Game with a different kind
of innovative SRP (win-stay-lose-shift), mixed with the
imitation model. Also, [35] showed that mixed strategies
coupled with co-evolutionary processes can lead to spon-
taneous cyclic dominance and diverse complex patterns
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FIG. 4. Asymptotic cooperation level, ρ, for increasing frac-
tion of innovators (α) in the square lattice. The behavior is
quite different from the well-mixed population. In the region
T > 1.04 it is always better a fully innovative population.
But for 0.8 < T < 1.04 there is a always minimum value of ρ
for mixed populations.
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FIG. 5. Asymptotic cooperation level (ρ) in a triangular lat-
tice. In a) we show the dependence in T while in b) we show
its dependence in α. As we can see, the mixing of update
rules can lead to a drop in cooperation for 0.95 < T < 1.25.
The behavior is qualitatively similar to the square lattice.

in the population.

To further back our claims, we analyze the same setting
in a triangular lattice with periodic boundary conditions.
We see in Fig. 5a) the same qualitative behavior observed
in the square lattice, i.e., there is a drop in cooperation
level near the phase transition point of the system when
we mix updating rules. We see that for 0.95 < T < 1.25,
the mixing of strategies only decreases cooperation. The
effect disappears after T > 1.25, when cooperation is al-
ready extinct for the fully imitative population. Fig. 5b)
shows the behavior as we increase α. As in the square
lattice, ρ reaches a minimum for small α values near the
range of T where the imitative model has a drop in co-
operation.

We also ran simulations of similar settings in a ran-
dom and a scale-free network with average connectivity
degree of 2.7, generated using the Krapivsky-Redner al-
gorithm [52]. Note that the scale-free network is a very
famous case of spatial reciprocity when the imitation rule
is used [10], and at the same time it is know that the pure
innovative rule destroys this reciprocity effect [16]. The
results are shown in Fig. 6a) for the random and Fig. 6b)
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FIG. 6. Asymptotic cooperation level (ρ) as we increase T for
a random network in a) and a scale-free network in b).The
drop in cooperation for the mixed population, compared to
pure populations, happens in both topologies.

for the scale-free network. The same qualitative effect
was observe in these two topologies. As we approach a
value o T where cooperation drops for the pure imitative
or innovative model, here T = 1, cooperation from the
mixed model drops below the value of any pure model. It
is interesting to note the same effect in all these different
topologies, as it points out to a general behavior.

Next we present the asymptotic levels of cooperation
in the full T − S parameter space for the square lat-
tice. The imitative model (i.e. α = 0) is presented in
Fig. 7a), the heterogeneous population (i.e. α = 0.5) in
Fig. 7b), and the fully innovative population (i.e. α = 1)
in Fig. 7c). In this parametrization (R = 1, S = 0), each
quadrant of the parameter space corresponds to one spe-
cific game: Harmony Game (HG), Snow-Drift (SD), Pris-
oner’s Dilemma (PD) and Stag-Hunt (SH), in a clockwise
fashion. Note that the pure cases differ mainly in the SH
and SD regions, and the heterogeneous population leads
to a behavior that is, usually, in between the two pure
cases.

With the aim to compare the mixed and pure cases in
the square lattice, Fig. 8 shows the difference in the final
cooperation fraction between the heterogeneous model
(ρmix), and the average value of the pure imitative (ρimt)
and pure innovative (ρinv) models, i.e.

∆ρ = ρmix − [(1− α)ρimt + αρinv]. (10)

This is particularly useful for observing whether there
is any non-linear phenomenon. If innovative and imita-
tive agents did not influence one another, it would be
expected that ∆ρ = 0, as the mixing of the two would
behave as just the average of the two pure models. Here
we use α = 0.2, as this is the region where the mixed
model differs most from the pure models. Note that the
mixed model is mainly different from the average in the
diagonal (S = T − 1), with specific regions where the
mixing can increase the cooperation in even 0.2, or lower
it in −0.8 for the SH region. On the other hand, there are
smaller positive and negative differences through all the
SD region. The Prisoner’s Dilemma and Harmony Game
regions are almost unchanged, except near the line S = 0
(weak-Prisoner’s Dilemma).

In order to understand how the mixing can be detri-
mental to cooperation, we study the subpopulation of
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FIG. 7. Asymptotic cooperation level (colors) in the whole
T − S parameter space for the square lattice. We have a)
pure imitation model (α = 0), b) the mixture of imitation
and Logit dynamics (α = 0.5) and c) the pure Logit (α =
1) model. The main differences happens in the SH and SD
regions.
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FIG. 8. Difference in asymptotic cooperation level (colors)
between the mixed model (α = 0.2), and the average between
the Logit and imitation model. The mixed model behaves
differently from just the average of the two models, mainly in
the SD and SH regions.
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FIG. 9. Asymptotic cooperation and defectors fraction for the
two types of agents, innovative and imitative, in the square
lattice. Here S = 0 and α = 0.5. While innovative cooper-
ators (Cinv) can survive for high T , conversely, it is the imi-
tative defectors (Dimt) that fare better when T > 1. Similar
behavior occurs for all α values.

innovative cooperators (Cinv) and imitative cooperators
(Cimt) separately. Fig. 9 reports the four subpopula-
tions (including innovative and imitative defectors) for
the mixed case, α = 0.5. Note that imitative coopera-
tors follow the usual behavior expected for a fully imi-
tative population, i.e. they are almost extinguished for
T > 1.04, while innovative cooperators survive. But un-
expectedly, while there are some innovative defectors, it
is the imitative defectors that fare better for higher T
values. This result strongly suggests that the imitative
behavior favors cooperation for T < 1 and defection for
T > 1, while the innovative behavior has a smaller effect
in this regard. We stress that such behavior is consistent
for all values of α.

In the same spirit, we present in Fig. 10 the four sub-
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populations as we continuously vary α for 3 different val-
ues of T . In Fig. 10a), we have low temptation, T = 0.8,
where there is no defection and Cinv grows, while Cimt

drops, linearly with α. In Fig. 10c), the temptation value
is high (i.e. T = 1.05) and then the same linear behav-
ior occurs for defectors (although now there are some
innovative cooperators that can survive for high T ). The
most interesting effect nevertheless occurs for intermedi-
ate values of T . Fig. 10b), shows results for T = 1, where
a non-linear behavior emerges for imitative agents. We
see that, as expected, the increasing in α (i.e. total frac-
tion of innovative agents) is detrimental to imitative co-
operators. However, remarkably, imitative defectors take
profit from that, growing to a peak at α = 0.2. The
mixing of updating rules favors defection for this range
of α values (specifically imitative defectors). It is worth
to emphasize that the described phenomenon is not in-
tuitive. The increasing in innovative agents makes the
subpopulation of imitative defectors sharply grow until
20% of the lattice is composed of innovative agents.

Fig. 11 reports the ratio between innovative and imi-
tative agents of each strategy (φC and φD )in the region
near T = 1. To compare different fractions of innovative
agents for different levels of α, we normalize each popu-
lation, dividing the fraction of innovative cooperators by
α, and the fraction of imitative cooperators by 1−α (and
doing the same for defectors). This is done to prevent the
oversampling of innovative agents in a scenario with high
α values, i.e.

φC =
Cinv

α

1− α
Cimt

. (11)

In doing so, we can see that there is a general behavior
in each population that is independent of α. For T < 1
the ratio φC is close to 1, as cooperators from both types
dominate the population. Although the total number of
cooperators decreases as we increase T , the ratio between
innovative and imitative cooperators keep increasing, in-
dicating that innovative ones have the advantage. At the
same time, φD varies for 1 < T < 1.04 but is always
below 1 for the whole T range. In other words, imita-
tive sites will tend to be defectors, regardless of the total
number of defectors. This general behavior occurs for
any value of α.

Lastly, we analyze the snapshots of the square lattice
to better understand this phenomenon on a microscopic
level. Note that the Monte Carlo method is probabilis-
tic, and accurate results are dependent on sufficiently
large averages [53, 54]. Nevertheless, looking at frames
of the lattice, after the system has reached dynamical
stability, can lead us to valuable insights. Those snap-
shots are shown in Fig. 12. We remind that the pure
imitative model has a phase transition in T = 1.04 [10],
near this region cooperation is mainly sustained because
cooperators tend to form compact clusters to support
each other [25]. This behavior can be seen in Fig. 12 a),
where α = 0.1 and most of the population is imitative.
At the same time, the pure innovative Logit model has
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FIG. 10. Asymptotic fraction of the four types of agents (im-
itative and innovative cooperators and defectors) as α is in-
creased for a) T = 0.8, b) T = 1 and c) T = 1.05. The
behavior is linear with α in a) and b). However, For T = 1
there is a non-linear behavior, with an increase of Dimt until
α = 0.2.

a higher fraction of cooperators for T = 1.04. However,
in this case, cooperators do not form compact clusters.
Instead, they spread out in the lattice and cooperation
is sustained because of other mechanisms related to sec-
ond order spatial effects as seen in [12, 16]. Mixing both
models, innovative cooperators spread trough the lattice
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FIG. 11. Ratio between the normalized fraction of innovative
and imitative agents in the square lattice for three different
values of α. The ratio of cooperators is shown in black and
defectors in red. Notice that φC grows with T , while φD is
always smaller than 1.

a) b)

FIG. 12. Snapshots of the square lattice with T = 1 for a)
α = 0.1 and b) α = 0.7. As we mix innovators, the imitative
cooperator islands gets dissolved, leading to a drop in total
cooperation. Cooperators are shown in blue and defectors in
red.

and, in turn, imitative cooperators are not able to form
clusters to protect themselves. At the same time, imi-
tative defectors manage to invade cooperators from both
sub-populations, leading to the downfall of cooperation.
This can be seen in Fig. 12, as we increase α the clusters
tend to dissolve. The process of dissolving the coopera-
tor islands is gradual and continuous in α. This is highly
dependent on the parameters and just a small fraction
of innovators can destroy the clusters when T is near
the phase transition point. The mixing of both updat-
ing rules near the critical point manages to neutralize the
mechanism for maintaining cooperation from both imita-
tive and innovative models. This is a robust mechanism,
happening in the square and triangular lattice, as well as
in random and scale-free networks. Nevertheless, it is im-
portant to keep in mind that this phenomenon happens
for a specific range of parameters in the T−S plane, near
the phase transition of the pure imitative model.

IV. CONCLUSION

In this work, we investigate the evolutionary dynam-
ics of heterogeneous populations, whose interactions are
based on dilemma games. In particular, our populations
are composed of two kinds of agents, i.e. innovators and
imitators. In principle, the main difference between them
is related to the information source they use to modify
their strategy, e.g. from cooperation to defection (or vice
versa). Notably, innovators can estimate the potential
gain they would receive when changing strategy, under
the hypothesis that those of their neighbors remain con-
stant. On the other hand, imitators take decisions by
copying one randomly selected neighbor, depending on
their payoff difference. As result, innovators are able to
adopt even strategies that do not exist in their neighbor-
hood, while imitators cannot do the same.

Innovation is an issue of paramount relevance in a num-
ber of systems, spanning from social to biological phe-
nomena. Thus, it is expected to have an impact also in
evolutionary games. In order to shed further light on this
aspect, the proposed model aims to analyze the influence
of innovation by considering the updating mechanisms,
i.e. the processes that allow agents to change strategy.
To this end, we first studied the dynamics of a population
in the mean-field case, so that we were able to solve the
model analytically. Then, we performed numerical sim-
ulations considering agents arranged on a regular square
and triangular lattice, as well as in random and scale-free
networks.

The well-mixed case has a transition at T = 1, where
ρ = 0.5, for any fraction of innovators. We found that, if
T < 1, imitation supports cooperation while, if T > 1, in-
novation supports cooperation. This behavior was shown
to be monotonous with the fraction of innovators only for
the well-mixed case. The structured case usually shows
a behavior in between the pure kinds (full imitation and
full innovation), although it is not a linear relation, i.e.
〈ρimt +ρinv〉 6= ρmix. On the other hand, remarkably, we
found that cooperation has a non trivial behavior for the
heterogeneous population near phase transition points.
For the square lattice, in the region 0.8 < T < 1.04 there
is always a minimum level of cooperation for any popula-
tion mixing (0 < α < 1). The triangular lattice, random
and scale-free networks also show a similar behavior, i.e.
cooperation drops near the phase transition point of each
topology when we mix strategy updating rules. Specifi-
cally, near the transition from cooperation to defection,
homogeneous populations perform better than hetero-
geneous ones in supporting cooperation. We also note
that this kind of behavior has been reported in investiga-
tions based on a different scenario (i.e. using the Public
Goods Games, mixing imitative and win-stay-lose-shift
updates).

We obtained compelling evidences, that suggest this
behavior is due to the interaction of innovative and imi-
tative agents in heterogeneous populations. In addition,
lattice snapshots and the ratio of innovative/imitative
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agents indicate that near T = 1, innovative cooperators
destroy the spatial reciprocity while, at the same time,
imitative defectors can invade both populations of coop-
erators. The mixing of two updating rules can destroy
both mechanisms that sustain cooperation in each of the
two pure cases.

The results of our investigations confirm that innova-
tion plays a non-trivial role in evolutionary games. Diver-
sity and heterogeneity usually increase cooperation due
to assortative effects. However, we have seen that this
may not always be the case, as in some particular con-

ditions mixed strategy revision rules can lead to lower
cooperation.
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