Citation for published version

Kalli, Maria and Griffin, Jim E. (2017) Bayesian nonparametric vector autoregressive models.
Journal of Econometrics, 203 (2). pp. 267-282. ISSN 0304-4076.

DOI
https://doi.org/10.1016/j.jeconom.2017.11.009

Link to record in KAR
http://kar.kent.ac.uk/65792/

Document Version
Publisher pdf

KAR e

Kent Academic Repository



Journal of Econometrics 1 (RIEE) IIR BOR

journal homepage: www.elsevier.com/locate/jeconom e

Contents lists available at ScienceDirect

Journal of Econometrics

Bayesian nonparametric vector autoregressive models

Maria Kalli *, Jim E. Griffin **

School of Mathematics, Statistics & Actuarial Science, University of Kent, Canterbury, UK

article info abstract

Article history:

Received 13 September 2015
Received in revised form 4 August 2017
Accepted 16 November 2017

Available online xxxx

Vector autoregressive (VAR) models are the main work-horse models for macroeconomic forecasting,
and provide a framework for the analysis of complex dynamics that are present between macroeconomic
variables. Whether a classical or a Bayesian approach is adopted, most VAR models are linear with
Gaussian innovations. This can limit the model's ability to explain the relationships in macroeconomic

series. We propose a nonparametric VAR model that allows for nonlinearity in the conditional mean, het-

JEL classification:

eroscedasticity in the conditional variance, and non-Gaussian innovations. Our approach differs from that

c11 of previous studies by modelling the stationary and transition densities using Bayesian nonparametric
c15 methods. Our Bayesian nonparametric VAR (BayesNP-VAR) model is applied to US and UK macroeconomic
C52 time series, and compared to other Bayesian VAR models. We show that BayesNP-VAR is a flexible model
Cs3 that is able to account for nonlinear relationships as well as heteroscedasticity in the data. In terms
Cs8 of short-run out-of-sample forecasts, we show that BayesNP-VAR predictively outperforms competing
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1. Introduction

Introduced by Sims (1980), vector autoregressive (VAR) models
provide a systematic way of capturing the dynamics and interac-
tions of multiple time-series. Inits basic form, the  L-lag VAR model
represents a p-dimensional vector of variables measured attime  t,

yvD CBy: 1C CBy: .Ce 1)

where fB,gLDl are (p p)-dimensional matrices of unknown coeffi-
cients,and e, D (er;:::; ep;t)ois a(p 1)-dimensionalinnovation
vector with distribution N(O ; ). VAR models have emerged as a
benchmark for the analysis of dynamic macroeconomic problems.
The linear representation of the variables' joint dynamic behaviour
facilitates the study of the effects of shocks (such as monetary and
fiscal policy shocks) through computation of response functions,
and forecast error variance decompositions (see Lucas, 1980; Pa-
gan, 1997; Stock and Watson, 1999 ; Diebold and Rudebusch, 2001 ).
Despite their popularity, there have been criticisms of the use
of VAR models in macroeconomic analysis. When pis large there is
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the risk of overfitting the data which leads to imprecise inference
and erratic model forecasts. In addition, the linearity, stationarity,
Gaussian innovations and constant conditional mean and variance
of these models can be considered unrealistic. For example, em-
pirical evidence suggests that macroeconomic variables may have
nonlinear relationships (see  Granger and Terasvirta, 1994 ), the
nature of shocks may not be Gaussian ( Weise, 1999), and the
effects of these shocks may not be linear (see Ravn and Sola(2004)
and Matthes and Barnichon (2015) for monetary policy studies,
and Sorensen et al. (2001), Auerbach and Gorodnichenko (2013),
Baum and Koester (2011), and Gambacorta et al. (2014) for fiscal
policy studies).

In the last two decades these criticisms have been addressed
by: using adaptations of the parametric model given in Eg. (2)
such as regime switching and threshold crossing behaviour, intro-
ducing time varying coefficient models with or without stochastic
volatility, and, more recently, using nonparametric methods and
considering non-Gaussian innovations. Both regime switching and
threshold models are motivated by empirical evidence that many
macroeconomic time series behave differently during different
time periods (for example, in economic downturns and in expan-
sions) which are often called regimes. Both models assume that
there are a small number of regimes which can be accurately mod-
elled by different VARs. The mechanism for the change between
regimes is the key difference between the two approaches.  Hamil-
ton (1989) popularised Markov-switching regression where the
change in regimes is driven by latent (unobservable) stochastic
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variables, usually with a Markov structure. Literature on these
models has subsequently grown, see e.g. Hansen (1992), Chib
(1996), Chauvet (1998), Kim and Nelson (1999), Kim et al. (2005),
and Sims and Zha (2006). Beaudry and Koop (1993), Terasvirta
(1994), Potter (1995), and Pesaran and Potter (1997) popularised
vector threshold autoregressive (VTAR) and vector smooth tran-
sition autoregressive (VSTAR) models. Unlike Markov-switching
regressions, regime changes in a VTAR model occur if some func-
tion (often, a linear function) of the observable macroeconomic
variables crosses a threshold. Whereas VSTAR uses a weighted
average of VAR models where the weighting depends on a continu-
ous, non-linear function of the previous lags. For a comprehensive
survey see Hubrich and Terasvirta (2013). In contrast, time varying
vector autoregressions are a class of models in which the system's
conditional mean and/or variance are allowed to vary over time.
This is achieved by modelling the VAR parameters (coefficients
and innovation covariance matrix) with a linear time series model,
often a random walk or an AR(1) process. Notable work in this area

is presented in  Stock and Watson (1996, 2001, 2002), Cogley and
Sargent (2001, 2005a), and Primiceri (2005). See Koop and Koro-
bilis (2010) for a recent review of these methods. An alternative
approach to modelling the joint dynamic behaviour are nonpara-
metric methods. Hardle etal. (1998) proposed a vector conditional
heteroskedastic autoregressive nonlinear model where both the
conditional mean and variance are unknown functions of past
observations. Hamilton (2001) developed a flexible parametric
regression model where the conditional mean has a linear para-
metric component and a potential nonlinear component repre-
sented by an isotropic Gaussian random field. Dahl and Gonzalez-
Rivera (2003a, b) extended his model to non-Gaussian random
fields, while Jeliazkov (2013) models the conditional mean us-
ing a Bayesian hierarchical representation of generalised additive
models, where a ““smoothness prior" is given to the nonparametric
function of the vector of past realisations. The use of non-Gaussian
innovations is linked to structural VAR models where the compu-
tation of impulse response functions requires identification of the
structural errors.  Hyvérinen et al. (2010), Moneta et al. (2013),
and Lanne etal. (2017) use independent component analysis where
they assume mutual independence across the non-Gaussian in-
novation processes and represent the residuals (obtained when
estimating the VAR model) as linear mixtures of these.  Lanne and
Lutkepohl (2010) model the innovations using a mixture of two
Gaussian distributions, whereas Jeliazkov (2013) uses the Student
t-distribution.

Geweke and Keane (2007) state that answering interesting
questions in economics, from macroeconomic policy to the eval-
uation of economic welfare, often requires the entire conditional
distribution p(yjx). In this paper, we introduce a novel stationary
model for multivariate time series where the stationary and transi-
tion densities are directly modelled using Bayesian nonparametric
methods, which place a prior on an infinite dimensional parameter
space and adapt their complexity to the data (see Hjortetal., 2010
for a book length review of Bayesian nonparametric methods). The
Bayesian nonparametric approach to density estimation requires
a prior on distributions with random smooth densities. We use a
Dirichlet process mixture (DPM), the most popular of these priors,
which is an infinite mixture model, with the Dirichlet process
as the mixing measure. There are several advantages to using
Bayesian nonparametric methods. Unlike classical honparametric
methods, there is no need to tune any smoothing parameters.
Uncertainty in the unknown density can be expressed through
the posterior. The out-of-sample predictive performance of models
where the conditional density is estimated using the Bayesian
nonparametric approach is superior to other competitive models,
see Norets and Pati (2017). Adopting the DPM prior, allows us to
construct a mixture of VARs which can be viewed as a multivariate

mixture-of-experts. Introduced by  Jacobs et al.(1991) and Jordan
and Jacobs (1994), mixture-of-experts models focus on estimat-
ing the conditional predictive density  p(yjx) for all x where vy is
univariate (discrete or continuous) and  x a high dimensional set
of covariates. They are extensions of mixture regression models
that allow for covariates in the mixture weights. Geweke and
Keane (2007) and Villani et al. (2009) provide extensive analyses
when the mixture components are Gaussian, whereas Villani et
al. (2012) allow for distributions outside the exponential family to
represent the mixture components. In our Bayesian nonparametric
mixture of VARs, the mixing weights of the transition density de-
pend on the previous lags allowing different component transition
densities to be favoured at different times (for example, in ex-
pansionary and contractionary periods) based on lagged observed
values. Intuitively, we can view each mixture component (“"ex-
pert") as a regime with changes of regime determined by the
lagged values (through the mixing weights). Our Bayesian non-
parametric VAR model allows for nonlinearity in the conditional
mean, heteroskedasticity in the conditional variance, and non-
Gaussian innovations. We tackle over-parameterisation and the
danger of overfitting in two ways, via a prior on the number of mix-
ture components and by modelling the dependence within each
component with a prior favouring a simple correlation structure.
We find that our approach produces better forecasts (particularly
at longer time horizons) when compared to the widely used time
varying parameter models with stochastic volatility (TVP-SV-VAR).
The paper is organised as follows: Section 2 introduces the
Bayesian non-parametric VAR (BayesNP-VAR) model, describes
its construction and considers some of its properties. Section 3
provides an overview of the required Markov chain Monte Carlo
(MCMC) method for fitting this model (the full steps of the MCMC
sampler are described in Appendix A). Section 4 illustrates the
ability of the BayesNP-VAR model to identify regimes and changes
in regimes using simulated data, provides an empirical illustra-
tion using US macroeconomic time series, and compares the out-
of-sample predictive performance of the BayesNP-VAR to the
parametric BVAR and TVP-SV-VAR using both US and UK
macroeconomic series. Section 5 summarises our findings and
conclusions.
2. The Bayesian non-parametric vector
(BayesNP-VAR) model

autoregressive

We construct a multivariate time series model in which the sta-
tionary and transition densities are infinite mixtures. Antoniano-
Villalobos and Walker (2016) define such a model for a univariate
stationary time series. Their prior has full support for the transi-
tion density and stationary density ( i.e.any transition density and
stationary density can be represented arbitrarily well by the prior).
We extend their work to multivariate stationary time series and we
call our model Bayesian nonparametric VAR (BayesNP-VAR).

The transition densities of the BayesNP-VAR model are derived
from a joint distribution for  y; and its L lags y{- which is expressed
as an infinite mixture. This ensures that the stationary distribution
is known and also has the form of an infinite mixture. Specifically,
the joint density of y; andits Llags y{- is

p3
POGY) D wik(yevi ) @
iD1

where k(y,;ytLj i) is a (L C 1)p-dimensional probability density
function which does not depend on t and ; are the locations
of the mixture components with i " H. We assume that
Kyt i;::55ye i jj)fori D O;iiisL and D o0;:::;L
1 depends on  only (which can be achieved by assuming that
k(yt; y{-j i) is the joint distribution of a stationary process) to ensure
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that the overall process is stationary. The mixture weights  w; are

definedas Wy D vi; wy D vj ~ (1 Vm); and v b Be(1; M).
Assuming that the locations  j are independent of the weights, w;,
the model in Eq. (2) defines a Dirichlet process mixture ( Sethura-
man, 1994). The distribution of the locations, H, is often referred
to as the “base measure", the choice of which determines the
likely location of the components. The parameter M controls the
relative values of the weights. The expectation of the  jth weight is
EWw;U D mjcf)l and so, as M increases, the average size of the jth
weight becomes smaller and the number of components with non-
negligible weights becomes larger. Choosing a prior for M is key
to controlling the number of components and avoiding overfitting,
we discuss this choice later in this section.

The joint density in Eq. (2) leads to a transition density that is
also an infinite mixture with the following form:

T P k(s L
P(y:; Vo) go1 Wi ke v )
% b1 Wi k(Y )

X- L vk
D iy kydy §)
jD1

p(yijyy) D ®3)

where K(yijyr; J) is the transition density of the
J(yt) D PjL is the weight of the jth component which

kD1 Wk k(y‘] k)
depends on previous lags, the key feature of our model. We can

therefore refer to the transition density as a multivariate mixture

of experts. Mixtures of experts are extensions of smooth regression
models and popular within the machine learning community. They

are used in regression to estimate the conditional density ~ p(yjx) ofa
univariate y for all values of a (often, high-dimensional) covariate

X, using mixtures where the component weights depend ona  x,
see Jacobs et al. (1991), Jordan and Jacobs(1994), Geweke and
Keane (2007) and Villani et al. (2012). The weights of the tran-
sition density in Eq. (3) depend on the observed lagged values.
This feature allows different component transition densities to

be favoured in different periods. For example, expansionary and
recessionary periods could have different transition densities. In
our multivariate time series model, each component (" expert") can

be viewed as a regime with changes of regime determined by the
observed lagged values.

To complete the BayesNP-VAR we need to choose k(y;; ytLj i)-
Firstly, we find it easier to write y; D C S where isap-
dimensional location vector an& S D diag(s:;:::; sp) is a scaling
matrix. Then k(y:; yrj j) D Jqu LeDy (S Yy, ) (St
ID(y: 1. ) where k is the joint density of ; . We propose
a model which has a structure similar to a factor model and
divides the variation of the data into a part which describes the
dependence between variables and a part which is idiosyncratic to
each variable. The assumed formis k ( ; ) D N(Oqcyp; BC Q)
where 0 (cy)p is a (L C 1)p-dimensional vector of 0's, B describes
the dependence between variables over time and  Q describes the
idiosyncratic variation over time. The form of  Bis

jth component and

><q T
BD P (2 )
zD1
where
1 1
1 . L1
P, D %:Z co § ;
L L 1.
z z : 1

1< ,< 1forz D 1;:::;gand
matrix of loadings. The matrix Q is

isa(p q)-dimensional

0 1
0 1 2 .l L
1 0 1 L1
QD 2 1 0 L2G;
L L1 L2 0
4 4 o
where | D diag —iii for 1 D 1;:::;L 1 <

E< 1 and kl Ga(=2; =2) for k D 1;:::;p. This leads
to a suitable choice of Kk(yy; [) for the BayesNP-VAR model to be
stationary. The marginal distribution is k () D N 0; ™C
diag( , L 2 i g 1y and so the marginal distribution of v, is
N ; S TS Cdiag(s$ , %< 21;:::;% o

The component-specific parameters in the mixture model are

D(;S ;; % )where D (151 o), °D( 5
2 and D(l;:::; o) We assume that ,S, , , °, ,and
are a priori independent with distribution ~ H which has density,
h(;'S 55 %3 )Dh () hs(S h ()
heo(% h() h() h()

The parameters  and S are given informative prior densities to
avoid the mixture model placing mass in areas which are not
plausible. We choose h ( ) D N( j o; o). Both parameters can
be chosen with prior information but we use the data dependent
choices o D W;and o D 1:52b : where W; and b are sample
mean and covariance matrix of y; in the empirical examples in
this paper. This choice leads to a prior for which is slightly
overdispersed relative to the distribution of the data, and so the
components are located in regions within or close to the data. For

the(p p)-dimensional scaling matrix, SD diag(s;; s;;:::; S), we
choose the hierarchical prior
1" Ga@s e 1) Gas):

The hyperparameter ; is shared by all components and is an
estimate of the overall scale of the ith variable. This hierarchical
structure allows different components to have similar scales, the
s's, for each variable.

We use the multiplicative gamma process shrinkage prior of
Bhattacharya and Dunson (2011)for . This allows the complexity
of B to adapt to the data. Under this prior, iz " N(O; Izl , L,
for i D ':::;pandz D 1;:::;qwhere ., Ga(=2; =2)and

, D iDl i with 4 Ga(1;1) and Ga(3; 1) for z 2:
The ,'s are independent, and the ,'s are viewed as the global
shrinkage parameters of the columns, while i:z's are the local
shrinkage parameters for the zth column. As value of , increases,
so does the value of , favouring smaller values of ..

The parameters and 7 control dependence across time in
both B and Q. We choose independent uniform priors on the
range that @plles stationarity and posmve aut@orrelatlon to give
h() D ZDlU( ,j0;1)and h»( ?) D IDlU( IjO 1) where
U( jO; 1) represents the density of a uniform distribution between
0 and 1. For the prior of M, the parameter controlling the number
of components, we choose the standard exponential distribution.
We find that this choice strikes a balance between having too many
and/or too few components.

3. Inference in Bayesian NP-VAR
The likelihood function can be derived from the transition in

Eq. (3) to be defined as

Yr H
p(y:)yy):
tDLC1
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Bayesian inference is complicated by the infinite sum in both the
numerator and denominator which precludes the direct use of
Markov chain Monte Carlo methods.  Antoniano-Villalobos and
Walker (2016) describe a Gibbs sampler for their univariate model
but truncate the centring distribution for the stationary variance
of each component away from zero. To avoid this truncation, we
use an adaptive truncation method introduced by Griffin (2016)
which adaptively truncates the infinite sum in the numerator and
denominator and tends to avoid large truncation errors in the
posterior. We define a truncation of the infinite model in Eq. 2)
with K mixture components which leads to a truncated transition
density which has the form

K Wik yovh |
ety D~ YoV ()

ip1 Wik Yil

Q iid d )
where wj D V; ~ [ /(1 Vm)andV; = Be(l;M)and ; = H.This
finite mixture model defines a sequence of posteriors of the form

v
k(1w 1wIY) 1 opk( 1w 1) pK(Yth{')
tDLC1
where 1« D (Vik; ; M). The adaptive truncation method

of Griffin (2016) uses an MCMC algorithm to sample from the
posterior, k,( 1%,s 1%,JY), for a user-defined starting value, Ko,
and then uses a sequential Monte Carlo method to sample from
the sequence of posterior distributions koC1( 1¥KoC1)) 1\(K0c1)jy),

koC2( 1\koC2)s 1\KeC2)IY) t:%h b 10 1wjY) where D is chosen
to avoid large truncation errors. The adaptive truncation scheme
follows the algorithm below.

1. Simulate a sample of size N using the MCMC sampler from

ko( 1,5 1%]y) which will be denoted (g T4 110

is()o; (lN\K)O andsetK D K, C 1.
2. Simulate S); ,ﬁ’;vﬁ’ from their prior distribution for i D
1;0000N.
3. Evaluate

. 0 ;
Ko 1w 1wy

(i) 0! i
K1 1y 10 1 plY

4. Evaluate
(Lib1 0
ES§ D -pPL
iDL i
5. IfES& < cN (weuse c D 0:5)then generate N values where

S); I((i) is sampled with probability proportional to i-

Set ; D 1fori D 1;:::; N and run one iteration of the
MCMC sampler updating i'\)K (KK from . 1w 1Y/
fori D 1;:::; N.

6. Let «DJES® ES% 4:If « ", k1 "and g ,

" terminate (we choose " equal to 0.001N). Otherwise, set
K D K C 1, and return to step 2.

Full details of the MCMC algorithm are provided in ~ Appendix A .
The MCMC algorithm uses two types of adaptive Metropolis
Hastings algorithm which are briefly reviewed here. The firstis the
adaptive random walk Metropolis Hastings algorithm ( Atchadé
and Rosenthal, 2005) with a normal proposal whose variance is
updated during the running of the chain. Suppose that 12 is the
proposal variance used at iteration t, then the proposal variance
attime t C1lis %, D 2Ct %(, 0:234) where . isthe
acceptance probability in the Metropolis Hastings algorithm at the

tth iteration. Atchadé and Rosenthal (2005) show that this algo-
rithm is ergodic. The second algorithm is Adaptive scaling within
the Adaptive Metropolis Hastings (ASWAM) algorithm ( Andrieu
and Moulines, 2006 ; Atchadé and Fort, 2010 ). This is suitable for
updating multiple parameters jointly. Suppose we wish to sample
aparameter, ,then the proposed value “atthe tth iteration is

0 N(;§ t)

where s, is a scalar and  is the sample covariance matrix of the
first t 1 sampled values of sampled from the posterior. The
scales; is updated using the recursion sy D s Ct 98( , 0:234)
where, again, . is the acceptance probability of the Metropolis
Hastings algorithm at the tth iteration.

4. lllustrations

In this section we apply the BayesNP-VAR model to both simu-
lated and empirical data. Our aim is to demonstrate that our model
identifies economic regimes where shocks are transmitted in dif-
ferent ways, that it clearly indicates changes between regimes,
and provide evidence of the model's good out-of-sample predictive
performance.

To provide a point estimate of our mixture model, we approxi-
mate the posterior mode by selecting the MCMC sample which has
the highest posterior density value. We refer to this as the posterior
modal sample. This allows us to illustrate the model's ability to
correctly identify regimes by producing time plots showing how
the weights in the mixture model in Eq.  (3) change over time and to
highlight the component/regime which is favoured in a particular
time period (by finding the component with the highest posterior
weight). Since the transition density within each component is a
VAR model, we also plot impulse response functions (IRFs) to a
unit shock in a chosen variable for each component to understand
the different ways that shocks are transmitted under different
components/regimes. The usual methodology for generating IRFs
is used which involves a polynomial function of the estimated VAR
parameters.

The posterior mode is useful for presenting the inference from
our model but it ignores posterior uncertainty. To provide IRFs
which include posterior uncertainty, we also produce the IRFs sug-
gested by Koop et al. (1996) which we will refer to as Generalised
IRFs (GIRFs). These are used to study the effect of a shock of size
attime t on the state of the system attime t C n, given that there
are no other shocks to the system after time t. They are defined as

follows:
Gly.n; ; Yy 4f
D E[Yicnje: D ; &c1 D 05 @ca D OS Y, 4]

E[Yicnje: D O;ecai D 051115 eicn D 05 Yy 4] ®)
for n D 1;2;3;:::; where e ec1;:::; &cn represent the arbi-
trary shocks attimes t;t C 1;:::;t C n and the expectations are

taken conditional on the parameter values. This allows us to look
at posterior distributions of GI y.n; ; Y, 1/ to assess uncertainty in
their estimation.

For the out-of-sample predictive performance illustration we
calculate the log-predictive score (LPS) for all the variables (using
their joint predictive distribution) and for each variable separately
(using their marginal predictive distribution). We also calculate the
root mean squared error (RMSE) for each variable. The joint LPS is
given by

)’( h
log p(yicnjys; i 55 i) (6)
iDs
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Table 1

US data; Source: FRED.
Name Description Growth rates Levels
UNRATE Unemployment rate None None
PCEPI Personal Consumption Expenditure Index: 2009 D 100 1200 In(yly—‘l) 1200 In(yy)
PAYEMS Total non-farm payroll, thousands of persons 1200 In(y‘y—‘l) 1200 In(yy)
FEDFUNDS Federal funds rate None None
INDPRO Industrial production index: 2012 D 100 1200 |n(y‘y—'l) 1200 In(y;)
LTIR Long term interest rate None None

Table 2

UK data; Source: OECD.
Name Description Growth rates Levels
UNRATE Unemployment rate None None
CPI Consumer price Index: 2010 D 100 1200 In(y(y—‘l) 1200 In(y;)
STIR Short term interest rate None None
INDPRO Industrial production index: 2010 D 100 1200 In(y(y—‘l) 1200 In(y;)
LTIR Long term interest rate None None

where T is the size of the time series, s is the time from where Regime 2
the prediction starts, and  h is the predictive horizon. Similarly, the 0 1 0
1:8 0:6 0:05 0:2

marginal LPS for the jth variable is given by

)’( h
log p(yicn;jys; : 2 i): @
iDs
The RMSE of the jth variable is given by
v
o ox - .
m (Yichj  EWichglyss it yi))2: (8)

iDs
For both measures, smaller scores indicate better predictive per-
formance. We looked at h D 1, 2, and 4 months. We compare the
out-of-sample predictive performance of our BayesNP-VAR model
with other Bayesian VAR specifications: the stationary BVAR model
with the independent Normal-Wishart prior (with either one,
two, three or four lags), and the non-stationary non-linear TVP-
VAR model with stochastic volatility (TVP-SV-VAR) of  Primiceri
(2005) (with one lag). The BayesNP-VAR was chosen to have one
lag.

4.1. Simulated data

The following simulated example illustrates the ability of the
BayesNP-VAR to correctly identify regimes and the timing of
regime switches. We generated data from a threshold VAR(2)
model with p D 3 variables and 500 time points. The data had
two regimes and followed the VAR in Regime 1if y; 1.; > Oand
Regime 2 otherwise. The two regimes were

Regime 1
0 1 0 1
1:8 05 015 0
yi D @:52AC @20 034 0 Ay,
0:29 0:03 0:05 0:24
0:15 0:20 0:80°
C 014 0:18 0:30 y, ,Ce

0:07 0:03 0:14
with covariance matrix,

1
0:28 0:03 0:07°
. D 003 0:29 0:14
0:07 0:14 0:36

yviD @p:32AC @20 009 0 Ay
0:12 005 0 042
0:21 0:10 0:05°

C 0:07 0:32 0
0:06 0:02 0:45

Vi 2C e

with covariance matrix,

|

0:54 0:06 0:02°

oD 0:06 0:46 0:24
0:02 0:024 0:56

Fig. 1 displays plots of the three simulated series and some
results for the posterior modal sample which identifies two com-
ponents with non-negligible mixing weights. The top row of each
plot shows the time series for each variable and periods for which a
component has the highest weight. The second row of plots shows
the weight for that regime (and is the same for all variables). The
threshold is indicated by a dashed line and was setat y; 1.1 D 0.
We can clearly see that the estimated regimes change correctly as
the value of y; 1:; changes. The second row displays the weight of
the regime and we can see that the regimes are correctly identified
with probability close to 1.

We also simulated a VAR(2) model with p D 3variables and 500
time points with the specification givenin  Appendix B . We do not
display the results here but our model is able to correctly identify
that there is only one regime. Both simulated threshold VAR(2) and
VAR(2) data are used in Section 4.3 as part of our out-of-sample
forecasting exercise.

4.2. Empirical examples

4.2.1. Data sets

We constructed two macroeconomic data sets, one for the US
and one for the UK, based on the series described and transforma-
tions carried out in  Carriero et al. (2015). Both data sets include
seasonally adjusted monthly time series, the sample period for the
US s from 1st January 1959 to 1st August 2016, and for the UK from
1st January 1978 to 1st February 2015. The US series were collected
from the Federal Reserve Bank of St Louis (FRED) and UK series
from the Organisation for Economic Cooperation and Development
(OECD). Details of the variables together with the transformations
used are displayed in Table 1 for the US and Table 2 for the UK
respectively. We include the series in both growth rates and levels.
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Fig. 1. Plots identifying the two regimes of the simulated threshold VAR(2) series. Top panel displays the three series (left-series 1, middle-series 2 and right-series 3) and
highlights (in cyan) the regime. The dashed line at zero in the series 1 plot is the threshold. Bottom panel displays the non-negligible weight of that regime.

For the illustrations in Sections 4.2.2 and 4.2.3 we used the US
data, in growth rates. For the out-of-sample predictive exercise we
have used both the US and UK data in growth rates and levels.

4.2.2. Component/Regime identification

Applying our BayesNP-VAR model to the US data in growth
rates, we identify eight mixture components, and here we present
the six which had the largest non-negligible weights. Figs.2 4
display results for the six distinct components. The first two rows
show the time series for each variable with the component/regime
with the largest mixture weight and the weight for that compo-
nent/regime is plotted over time (in the bottom row). The first
regime, which we named, stable inflation (PCEPI-growth) and out-
put (INDPROD) growth, covers periods of sustained growth and
includes “The Great Moderation" of the mid-1980s to the mid-
2000s, a period when volatility of business cycle fluctuations was
low. The second component identifies periods after recent stock
market crashes, caused by the burst of the "Dot.com' bubble and the
collapse of the US housing market respectively. These are periods
of very low federal funds rates and long term interest rates with
fairly stable growth and declining unemployment rate. These are
in line with the National Bureau of Economic Research (NBER)
peak to through periods of March 2001 to November 2001, and

November 2007 to June 2009 respectively. The “Golden Era"of
US capitalism, the period up to the early 1970s, is captured by
the third component, whereas the fourth component captures the
period of mid 1981 to 1984 of the  “Volcker disinflation". The last
two components identify two of the worst recessions in the US
where output growth was in decline and unemployment rapidly
increasing. The ““US housing crisis"of 2007 is captured by the fifth
component, and the “"Oil Shock"of the early 1970s is captured by
the sixth component. The difference between the two is that the
latter was characterised by high inflation.

4.2.3. Impulse response functions

Each component of our BayesNP-VAR model follows a VAR and
so we can produce component/regime dependent IRFs as poly-
nomial functions of the estimated VAR parameters. All IRFs look
at 60 months ahead. Figs. 5 and 6 display these IRFs for each
component using a different colour and pattern for each. The
colour and pattern scheme is: blue dash inverted triangle is for
the first component, red dash for the second, green dot dash for
the third, yellow solid for the fourth, cyan circle dash for the fifth
and pink plus dash for the sixth component. Recall that periods
of stable inflation and output growth are in the first component,
periods after the stock market crashes of 2001 and 2007 are in
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Component 1: Stable inflation and output growth
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Component 2: After recent stock market crashes
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Fig. 2. Plots identifying the first and second components of the US data in growth rates. First two rows of each set of nine plots display the time series highlighting (in cyan)
the component/regime, and the third row displays the non-negligible weight of the respective regime.

the second, the “Golden Era" periods in the third, the *° Volcker
disinflation" periods in the fourth, the periods of the US housing
crisis in the fifth and the 1970s  “"Oil shock"is the sixth component.
We centre our IRFs around the study of monetary policy. Fig. 5
displays the IRFs of inflation panel (a), output growth panel (b),
and unemployment rate panel (c) to a 1% increase in the federal
funds rate. It is clear that the IRFs are regime dependent with
the transmission of the monetary policy shock differing between
periods of expansion, stability and recession. Inflation eventually
goes down and output growth declines in the two crisis periods

of 1973 and 2007, whereas the monetary policy shock has small
effect on inflation during the periods after the stock market crashes

of 2001 and 2007, Volcker's chairmanship and the “Golden Era!
During periods of relative stability inflation and output growth
increase marginally before remaining at a constant level. The un-
employment rate response steadily increases for the  “"Golden Era"
and 2007 crisis, is relatively flat for the  Oil shock"and ““Volcker
disinflation" regimes, and declines for the component identifying
the periods after the stock market crashes of 2001 and 2007, and
the component identifying periods of relative economic stability.

Fig. 6 displays the IRFs of the federal funds rate to a 1% increase in
inflation panel (a) and to a 1% increase in unemployment rate panel

(b). During the Volcker disinflation regime, the rate reacts quickly

to both an inflationary and an unemployment shock, though the
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Component 3: Golden era
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Component 4: Volcker disinflation
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Fig. 3. Plots identifying the third and fourth components of the US data in growth rates. First two rows of each set of nine plots display the time series highlighting (in cyan)
the component/regime, and the third row displays the non-negligible weight of the respective regime.

length of time before stabilising is longer for the latter (20 rather
than 10 months). A similar pattern can be seen in the  “Golden
Era" regime, however the response to the unemployment shock
is more prolonged with a sharp decline for the first 5 months. The
rate response to the inflationary shock is not as extreme. When it
comes to the other four regimes the inflationary shock has little
impact, but the unemployment shock leads to a steady decline in
the federal funds rate in the period of stable inflation and output
growth, and to a marginal decline for the first 5 months before
levelling off for the 2007 US housing crisis regime.

Figs. 7 and 8 display the GIRFs (see Eg. (5)) with their 95%
credible intervals for inflation and unemployment rate after a 1%
increase in the federal funds rate at two different dates. The dates

chosen for comparison are June 1981 and December 2007, the
former because it is representative of Paul Volcker's chairmanship
of the Fed and the latter because it is the beginning of the US
housing crisis. Fig. 7 displays the response of inflation panel (a)
and unemployment panel (b), over a 60 month period, to a 1%
permanent increase in the Federal funds rate occurring in June
1981. There is no evidence of an effect. Fig. 8 draws the same
graphs for a 1% increase in the Federal funds rate occurring in
December 2007. There is clear evidence of an increase in inflation
with the median response being a 0.5% increase. There is evidence
of a negative effect on unemployment with the median effect close
to zero, but the lower credible interval shows that a 1% drop in
unemployment is plausible.
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Component 5: The 2007 housing market crash
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Component 6: The 1973 oil crisis
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Fig. 4. Plots identifying the fifth and sixth components of the US data in growth rates. First two rows of each set of nine plots display the time series highlighting (in cyan)
the component/regime, and the third row displays the non-negligible weight of the respective regime.

4.3. Out-of-sample predictive performance

We compare the out-of-sample predictive performance of the
BayesNP-VAR model with other Bayesian VAR specifications: the
stationary BVAR model with the independent Normal-Wishart
prior (with one, two, three or four lags), and the non-stationary,
non-linear TVP-VAR model with stochastic volatility (TVP-SV-VAR)
of Primiceri (2005) (with one lag). Our comparison metrics are
the log-predictive scores described in Egs. (6) and (7) and the
root mean squared error in Eq. (8). We used two simulated (from
threshold VAR(2) and VAR(2) models) and four real data sets
(US and UK data in growth rates and levels). We consider three
predictive horizons: 1 month, 2 months and 4 months, and look

at 48 months out-of-sample. This means that for the US data the
prediction starts on 1st September 2012, and for the UK data on
1st March 2011.

Tables 3 and 4 display the log-predictive scores and the RMSEs
for the simulated VAR(2) data and simulated threshold VAR(2)
data respectively. The BayesNP-VAR(1) outperforms the TVP-SV-
VAR(2) for all predictive horizons both for all variables jointly and
each variable marginally, in both the threshold VAR(2) and VAR(2)
simulated data. Inthe VAR(2) data, the overall log-predictive scores
and the RMSEs for the BVAR(1) and the BayesNP-VAR(1) are com-
parable at all horizons. In the threshold VAR(2) data, the BayesNP-
VAR(1) has the lowest overall log-predictive scores. It also
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Fig. 5. IRFs to a 1% increase in federal funds rate. (a) Inflation response, (b) Industrial production growth response, and (c) Unemployment response. Blue dash
inverted triangle component 1, Red dash component 2, Green dot dash component 3, Yellow solid component 4, Cyan circle dash component 5, and Pink plus
dash component 6.
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Fig. 7. GIRF of inflation response (a) and GIRF of unemployment rate response (b) to a 1% increase in federal funds rate. We look at 60 months ahead and the shock starts in
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Fig. 8. GIRF of inflation response (a) and GIRF of unemployment rate response (b) to a 1% increase in federal funds rate. We look at 60 months ahead and the shock starts in
December 2007. Solid line is the 50th percentile and dashed line the 95% credible interval.

outperforms BVAR(1) at horizon 2, and 4 for all variables and horizons of 2 and 4 months than any of the alternative models. The
horizon 1 for variable 1. BayesNP-VAR outperforms the BVAR models for most variables at
Tables 5 8 display the log-predictive scores and the RMSEs for horizons 1, 2 and 4 in log predictive scores and for all variables,
the growth rates of the US and UK data respectively. The BayesNP- except unemployment rate, at all horizons with RMSE. In the case
VAR(1) is on average the model with the better out-of-sample of the UK growth rates, the BayesNP-VAR(1) outperforms the other
predictive performance for both data sets. The BayesNP-VAR(1) models for the overall and marginal log-predictive scores and
model outperforms the TVP-SV-VAR(1) for all forecasting horizons RMSE for all horizons and all variables (with a few exceptions).
in both the overall and marginal log-predictive scores, and RMSEs Tables 9 12 display the log-predictive scores and RMSEs for the
with the US growth rates data. In terms of overall log-predictive levels of the US and UK data respectively. Once again, the BayesNP-
scores itis slightly outperformed by the BVAR(3) at horizon 1, but it VAR(1) model produces better overall and marginal log-predictive
provides superior overall log-predictive scores for the longer time scores and RMSEs for all time horizons when compared to the
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Table 3

11

Log-predictive scores and RMSEs for the simulated VAR(2) data.

Model Horizon Joint and marginal scores RMSEs
Overall Varl Var2 Var3 Varl Var2 Var3
BVAR(1) 1 123 49 42 47 0.52 0.58 0.62
2 135 44 48 50 0.57 0.65 0.69
4 138 50 52 51 0.70 0.73 0.72
BVAR(2) 1 127 40 42 47 0.55 0.58 0.63
2 138 44 48 50 0.60 0.66 0.69
4 141 50 52 51 0.71 0.74 0.74
BVAR(3) 1 129 41 43 50 0.55 0.59 0.67
2 142 50 50 52 0.63 0.70 0.73
4 145 51 53 52 0.73 0.78 0.76
BVAR(4) 1 134 43 44 50 0.60 0.62 0.68
2 150 48 52 53 0.70 0.76 0.74
4 150 52 54 52 0.78 0.82 0.76
BayesNP-VAR(1) 1 125 39 43 47 0.51 0.57 0.61
2 133 44 48 50 0.57 0.63 0.69
4 136 49 51 50 0.69 0.73 0.72
TV-SV-VAR(1) 1 170 47 63 71 0.63 0.68 0.68
2 177 50 80 78 0.58 0.96 0.82
4 193 61 87 87 6.17 8.83 6.75
Table 4
Log-predictive scores for simulated threshold VAR(2) data.
Model Horizon Joint and marginal scores RMSEs
Overall Varl Var2 Var3 Varl Var2 Var3
BVAR(1) 1 305 74 97 60 1.08 1.83 0.86
2 335 92 97 67 1.33 1.56 0.93
4 361 95 109 63 1.43 1.72 0.96
BVAR(2) 1 276 75 82 47 1.42 1.73 0.85
2 338 94 78 50 1.71 1.46 0.93
4 341 96 85 51 1.46 1.55 0.97
BVAR(3) 1 291 7 77 63 1.38 1.89 0.97
2 322 94 74 68 1.57 1.84 1.04
4 323 94 82 56 1.44 1.69 0.96
BVAR(4) 1 297 78 81 65 1.42 2.08 1.07
2 313 97 83 68 1.59 2.13 1.19
4 332 96 82 59 1.46 1.99 111
BayesNP-VAR(1) 1 171 67 55 59 1.04 0.75 0.79
2 204 81 59 70 1.51 0.86 0.83
4 211 89 61 72 1.91 0.93 0.96
TV-SV-VAR(1) 1 195 69 64 67 1.01 0.75 0.79
2 229 88 71 79 1.52 0.91 0.97
4 244 102 76 86 2.39 1.23 1.54
TVP-SV-VAR(1) for both the US and UK data. When compared to the the mean | and the covariance  which are modelled by non-

BVAR models, it performs better on the UK data. In the US data, the
BayesNP-VAR(1) model outperforms BVAR(1) overall for horizons
1 and 2 but not horizon 4. The BVAR(1) and BayesNP-VAR(1) model
each produce better predictions for some variables but there is no
clearly superior model for all variables for log predictive scores but
BayesNP-VAR(1) outperforms BVAR(1) for all variables with RMSE.
To summarise the BayesNP-VAR(1) outperforms the TVP-SV-
VAR(1) for all predictive horizons, in both the simulated and
empirical data sets. The non-stationary TVP-SV-VAR accounts for
nonlinearity in the conditional mean, and heteroskedasticity in the
conditional variance and therefore one would expect it to be better
suited to capturing the nonlinear dynamic relationships between
variables, leading to better predictive performance. However, for
all data sets considered, it is often outperformed by BVAR models.
This may be due to fact that the TVP-SV-VAR does not separate the
non-linearity in the conditional mean and heteroskedasticity from
non-stationarity, which can be a problem when vy, is a stationary
process. The transition density of the TVP-SV-VAR depends on

stationary processes. Therefore, when this transition density is not
appropriately chosen then the TVP-SV-VAR will not do a good job
in approximating the real transition density.

5. Discussion

This paper introduces a new approach to modelling multivari-
ate time series. Using Bayesian nonparametric methods, we have
shown how we can express both marginal and transition densities
as infinite mixtures, leading to a flexible stationary model that al-
lows for non-linearity in the conditional mean, heteroskedasticity
in the conditional variance, and non-Gaussianity. Our empirical
results, for both US and UK data, as well as simulated data, indicate
that the BayesNP-VAR model outperforms TVP-SV-VAR at all time
horizons and shows substantial improvements over BVAR at most
time horizons and data sets. The empirical results illustrate that it
is useful to allow changes in mixture components to depend on the
observed lagged values. However, our model assumes stationarity,
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Log-predictive scores for growth rates of US data.

Model Horizon Joint and marginal scores
Overall FEDFUNDS INDPRO LTIR PAYEMS PCEPI UNRATE
BVAR(1) 1 314 13 159 10 87 96 23
2 391 30 157 10 90 98 5
4 491 50 152 34 88 94 33
BVAR(2) 1 306 9 160 10 82 95 25
2 392 35 158 14 82 99 11
4 540 75 152 50 85 95 15
BVAR(3) 1 301 8 159 11 81 95 25
2 387 36 158 15 81 99 11
4 511 72 152 44 83 95 13
BVAR(4) 1 301 8 159 10 81 95 25
2 392 36 158 16 81 98 11
4 511 72 152 45 83 95 13
BNP-VAR(1) 1 322 52 109 39 48 52 22
2 335 51 107 38 47 51 21
4 321 58 102 36 45 49 20
TV-SV-VAR(1) 1 332 48 120 38 50 63 16
2 351 54 119 45 51 64 21
4 367 62 121 50 55 65 26
Table 6
RMSEs for growth rates of US data.
Model Horizon RMSEs
FEDFUNDS INDPRO LTIR PAYEMS PCEPI UNRATE
BVAR(1) 1 0.117 5.91 0.153 0.93 1.71 0.148
2 0.189 5.92 0.238 0.83 1.88 0.199
4 0.307 6.04 0.326 0.87 1.77 0.251
BVAR(2) 1 0.130 6.33 0.161 0.73 1.72 0.145
2 0.233 6.46 0.254 0.66 1.96 0.184
4 0.390 6.58 0.359 0.70 1.86 0.214
BVAR(3) 1 0.125 6.23 0.163 0.75 1.69 0.144
2 0.209 6.41 0.249 0.70 1.92 0.182
4 0.343 6.66 0.323 0.69 1.84 0.204
BVAR(4) 1 0.127 6.17 0.166 0.76 1.69 0.144
2 0.217 6.39 0.255 0.74 1.92 0.185
4 0.385 6.65 0.336 0.72 1.91 0.209
BayesNP-VAR(1) 1 0.026 4.94 0.153 0.69 1.67 0.159
2 0.043 5.05 0.232 0.67 1.81 0.228
4 0.061 5.10 0.328 0.74 1.76 0.332
TV-SV-VAR(1) 1 0.098 6.39 0.180 0.70 1.99 0.179
2 0.163 6.24 0.322 0.71 241 0.278
4 0.731 13.99 0.797 2.22 7.00 2.565
which is a strong assumption about macroeconomic data. There Updating

may be benefits in terms of predictive power from relaxing this
assumption by allowing both marginal and transition densities to
vary over time. We will investigate these types of models in future
work.

Appendix A. Gibbs sampler

model with L lags using the following Gibbs sampler. We use the
renormalised stick-breaking construction of ~ Griffin (2016) with K
atoms as our truncation. This implies a transition density of the
form
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The parameter can be updated using an adaptive random walk
Metropolis Hastings sampler where a normal proposal is used
whose variance is tuned to have an acceptance rate 0.234.
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The parameter can be updated using an adaptive random walk
Metropolis Hastings sampler on the log scale where a normal
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Table 7
Log-predictive scores for growth rates of UK data.
Model Horizon Joint and marginal scores
Overall cPI INDPRO LTIR STIR UNRATE
BVAR(1) 1 254 121 183 1 7 48
2 338 120 181 20 23 25
4 485 115 173 55 41 23
BVAR(2) 1 235 116 182 5 4 55
2 356 114 180 23 29 20
4 647 111 174 72 65 72
BVAR(3) 1 231 115 182 5 4 57
2 346 112 180 24 30 32
4 608 111 173 66 64 60
BVAR(4) 1 224 114 182 4 3 61
2 327 111 180 24 29 40
4 572 109 173 67 60 27
BayesNP-VAR(1) 1 168 104 145 12 42 67
2 220 95 144 12 22 42
4 345 93 140 3 27 12
TV-SV-VAR(1) 1 353 81 142 49 55 29
2 368 79 142 54 62 35
4 389 81 143 61 68 42
Table 8
RMSEs for growth rates of UK data.
Model Horizon RMSEs
CPI INDPRO LTIR STIR UNRATE
BVAR(1) 1 3.24 10.19 0.20 0.058 0.076
2 3.58 10.52 0.35 0.108 0.130
4 3.51 10.32 0.58 0.205 0.237
BVAR(2) 1 2.87 9.94 0.18 0.123 0.069
2 2.89 10.22 0.32 0.224 0.115
4 3.06 10.46 0.56 0.364 0.199
BVAR(3) 1 2.75 9.94 0.18 0.126 0.070
2 2.75 10.22 0.33 0.248 0.104
4 3.00 10.42 0.56 0.417 0.169
BVAR(4) 1 2.64 9.96 0.20 0.131 0.062
2 2.54 10.21 0.37 0.253 0.092
4 2.70 10.50 0.65 0.509 0.159
BayesNP-VAR(1) 1 2.29 9.93 0.18 0.064 0.089
2 212 9.94 0.30 0.112 0.158
4 1.99 10.04 0.49 0.198 0.295
TV-SV-VAR(1) 1 257 14.33 0.19 0.084 0.087
2 2.07 15.23 0.32 0.148 0.126
4 211 13.59 0.59 0.542 0.380
proposal is used whose variance is tuned to have an acceptance The parameter can be updated using an adaptive random walk Me-
rate 0.234. tropolis Hastings sampler on a logit scale where a normal proposal
is used whose variance is tuned to have an acceptance rate 0.234.
Updating
Updating
The full conditional density of  ;;; is proportional to
age . ? . .
n oy The full conditional density of i is proportional to
=2 1 . .
i EXP 5 i Pk YYe v 1 : yr _
tDLC1 Pk YiJYe v 1)
The parameter can be updated using an adaptive random walk tDLC1
Metropolis Hastings sampler on the log scale where a normal The parameter can be updated using an adaptive random walk Me-
proposal is used whose variance is tuned to have an acceptance tropolis Hastings sampler on a logit scale where a normal proposal
rate 0.234. is used whose variance is tuned to have an acceptance rate 0.234.
Updating Updating
The full conditional density of  j; is proportional to The full conditional density of j:i:k IS proportional to
Y _ 1, Y .
Pk Yi)Ye v 1) - exp 5 sk ik gk P YtJYe vve 1)
tDLC1 tDLC1
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Log-predictive scores for levels of US data.

Model Horizon Joint and marginal scores
Overall FEDFUNDS  INDPRO LTIR  PAYEMS  PCEPI  UNRATE
BVAR(1) 1 327 14 159 9 98 98 20
2 489 30 173 8 118 119 2
4 793 46 190 28 160 147 20
BVAR(2) 1 309 9 157 10 88 94 25
2 533 35 177 14 116 130 7
4 1057 75 216 47 186 199 26
BVAR(3) 1 301 8 158 11 82 94 26
2 504 36 178 14 104 130 12
4 967 69 216 42 170 201 16
BVAR(4) 1 298 8 157 10 82 94 27
2 505 36 177 16 102 132 13
4 944 71 213 44 161 200 13
BayesNP-VAR(1) 1 290 9 210 22 216 178 3
2 486 15 231 39 257 204 19
4 899 43 264 47 291 246 27
TV-SV-VAR(1) 1 930 41 280 36 262 298 14
2 963 51 285 42 266 303 19
4 996 58 292 47 275 312 25
Table 10
RMSEs for levels of US data.
Model Horizon RMSEs
FEDFUNDS INDPRO LTIR PAYEMS PCEPI UNRATE
BVAR(1) 1 0.112 4.91 0.149 1.73 1.78 0.160
2 0.215 7.12 0.223 3.38 2.84 0.229
4 0.400 11.01 0.306 6.67 3.76 0.330
BVAR(2) 1 0.126 5.59 0.161 1.23 1.67 0.143
2 0.222 8.41 0.251 2.39 2.94 0.194
4 0.336 13.10 0.335 5.00 4.16 0.259
BVAR(3) 1 0.125 5.73 0.159 0.91 1.68 0.138
2 0.212 8.97 0.239 1.47 2.97 0.177
4 0.273 14.82 0.305 2.94 417 0.203
BVAR(4) 1 0.128 5.52 0.168 0.86 1.68 0.136
2 0.211 8.53 0.255 1.33 3.01 0.174
4 0.318 13.90 0.309 2.49 4.29 0.199
BayesNP-VAR(1) 1 0.031 491 0.149 1.17 2.03 0.158
2 0.057 7.14 0.224 2.23 3.49 0.224
4 0.093 10.28 0.304 4.40 5.82 0.324
TV-SV-VAR(1) 1 0.032 5.53 0.159 1.43 2.26 0.154
2 0.056 8.96 0.260 5.85 12.35 0.205
4 0.131 10.35 0.372 7.52 9.70 0.274
The parameter can be updated using an adaptive random walk Updating
Metropolis Hastings sampler where a normal proposal is used
whose variance is tuned to have an acceptance rate 0.234. p The full conditional distribution of ~ jisGa.K sC 1;( s 1)
K
. jDﬁ:i C .
Updating
- o . Updating V
The full conditional distribution for jick 18 Ga.( C 1=
( C ik jin)=2. The full conditional density of V; is proportional to
Updating M 1 .
Q 1 v P YilYe v 1)
Let ™D fDl‘tB[ﬂ t. The full conditional distribution for ji1is tbLct

ik

X @) X 2
Ga a; Cpg=2;1C ik Bk ik

kD1 iD1
The full conditional distribution for m2 ko oq is'
xd " x° '
Ga a,Cp(@ hC1=2;1C ik Jiik ik
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The parameter can be updated using an adaptive random walk
Metropolis Hastings sampler on the logit scale where a normal

proposal is used whose variance is tuned to have an acceptance
rate 0.234.

Updating M
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Table 11
Log-predictive scores for levels of UK data.
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Model Horizon Joint and marginal scores
Overall CPI INDPRO LTIR STIR UNRATE
BVAR(1) 1 313 128 184 3 10 8
2 620 171 197 16 27 116
4 1498 305 207 41 49 481
BVAR(2) 1 253 121 183 6 3 45
2 503 154 189 20 28 16
4 1261 250 194 54 61 239
BVAR(3) 1 236 118 181 6 4 53
2 430 145 188 21 29 23
4 972 233 191 57 58 90
BVAR(4) 1 226 116 181 6 4 60
2 399 141 188 20 28 38
4 853 230 190 54 56 42
BayesNP-VAR(1) 1 193 124 177 13 55 46
2 329 155 199 19 12 19
4 561 190 210 59 19 34
TV-SV-VAR(1) 1 617 270 222 47 50 28
2 641 276 224 52 57 33
4 673 284 229 59 66 40
Table 12
RMSEs for levels of UK data.
Model Horizon RMSEs
CPI INDPRO LTIR STIR UNRATE
BVAR(1) 1 4.09 10.01 0.173 0.281 0.213
2 7.78 13.81 0.288 0.541 0.408
4 15.42 16.62 0.459 1.005 0.770
BVAR(2) 1 3.36 10.20 0.164 0.114 0.135
2 6.26 12.69 0.270 0.272 0.296
4 12.73 15.11 0.411 0.700 0.643
BVAR(3) 1 3.13 9.71 0.166 0.124 0.094
2 5.70 12.31 0.280 0.259 0.170
4 11.74 14.87 0.444 0.497 0.381
BVAR(4) 1 2.99 9.69 0.164 0.120 0.072
2 5.43 12.22 0.271 0.239 0.118
4 11.41 14.12 0.425 0.453 0.240
BayesNP-VAR(1) 1 2.81 9.30 0.172 0.039 0.085
2 4.89 11.96 0.285 0.074 0.149
4 9.00 12.65 0.442 0.137 0.271
TV-SV-VAR(1) 1 3.34 10.34 0.164 0.061 0.072
2 4.10 13.26 0.274 0.133 0.113
4 8.34 12.79 0.474 0.280 0.230

Appendix B. Simulated VAR(2) specification

0 1 0 1
0:13 0:39 0:10 0:05

yi D @:12A C @y:35 0:34 0:47Ay; 1

0:29 0:49 0:24 01:24
0:06 0:11 0:02 °
C 0:19 0:18 001 y; ,Ce
0:31 0:13 0:09

with covariance matrix,

|

0:28 0:03 0:07°

D 0:03 0:29 0:14
0:07 0:14 0:36
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