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A value-at-risk approach to optimisation of

warranty policy

Ming Luo, Shaomin Wu 1

Kent Business School, University of Kent,

Canterbury, Kent CT2 7FS, United Kingdom

Abstract

In the real world, a manufacturer may produce many products, which may have

common components installed. Consequently, the frequencies of the warranty claims

of those products are statistically dependent. Warranty policy optimisation in the

existing research, however, has not considered such statistical dependence, which

may increase bias in decision making. This paper is the first attempt to collectively

optimises warranty policy for a set of different products, produced by one manufac-

turer, whose failures are statistically dependent, using tools borrowed from financial

mathematics (i.e., value-at-risk theory and copula). We prove the existence of the

optimal solutions for different scenarios. Numerical examples are used to validate

the applicability of the proposed methods.

Keywords: (T) value-at-risk, warranty policy optimisation, mean-risk, copulas.

1 Introduction

Warranty is essentially offered with most durable products, which may be legally mandated

or market driven: the European Union (EU) passed legislation requiring a two-year warranty

for all products sold in Europe (S. Wu, 2014b). Warranty expense is an important part of a

manufacturer’s operating expense, for example, the automotive industry is the most warranty-

intensive of all: the total automotive OEM (original equipment manufacturer) warranty claims

paid by the entire U.S.-based manufacturers is $10,097 million in 2015 (WarrantyWeek, 2016).

To improve a manufacturer’s operating expense management, an efficient warranty policy man-

agement supported by warranty data analysis and modelling is necessary. It is known that the

number of warranty claims and the associated cost are uncertain, and products with longer

warranty periods may attract more buyers than those with shorter warranty periods. From a
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manufacturer’s perspective, however, providing a longer warranty period implies more resources

that are needed to handle warranty claims. Hence, there is a need to develop approaches to

optimising the warranty price and the warranty length.

In the literature, many methods aiming to optimise the warranty price and the warranty

length of an individual product have been proposed. Fig. 1 illustrates the evolution of the

research in warranty policy optimisation, which shows that the research evolves from simple

and unrealistic assumptions to more complex and realistic ones.

Fig. 1. Evolution of warranty policy optimisation

At the early stage, many researchers attempt to find the optimal price and warranty length,

assuming that the product is composed of only one component (see the most-left rectangle in

Fig. 1). At the same time, some other factors, such as production rate, market competition and

demand, etc., are also considered. Ladany and Shore (2007) address a method to determine the

optimal warranty period with considering the products lifetime and market demand. Lin, Wang,

and Chin (2009) optimise the price, warranty length and production rate of a one component

system dynamically. Wu, Chou, and Huang (2009) develop a decision model to determine the

optimal price, the length of warranty and the production rate to maximise profit based on the

pre-determined life cycle in a static demand market. Aggrawal, Anand, Singh, and Singh (2014)

present a method to optimise warranty price and the length of warranty for a product based

on a two-dimensional innovation diffusion model, and estimate the overall maximum profit

for the manufacturer. Wei, Zhao, and Li (2015) investigates the optimal strategies on product

price and the length of warranty of two products produced by two manufacturers and sold

by one dealer. Yazdian, Shahanaghi, and Makui (2016) jointly optimises the acquisition price,

re-manufacturing degree, selling price and the length of warranty of re-manufacturing products

under linear and non-linear demand functions. Lei, Liu, and Shum (2017) price warranty policy

of a single product dynamically with considering consumer learning, i.e. consumers’ demand

reacting on the warranty price change; and find warranty sales do not generate profit directly

though are profitable overall.

The one-component assumption of a single product may be too unrealistic. Researchers then

consider the assumption that a product is composed of multiple components (see the middle

rectangle in Fig. 1). Huang, Liu, and Murthy (2007) develop a model to determine the optimal

product reliability, price and warranty strategy to achieve the maximum total integrated profit

for a general repairable multi-component product sold under a free replacement-repair warranty

strategy. Matis, Jayaraman, and Rangan (2008) explore the optimal price and pro rate warranty

length for a multi-component product with considering the different repair options on the com-
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ponents. Bai and Pham (2006) investigate optimisation of warranty policies for single products

composed of multiple components. Liu, Wu, and Xie (2015) also investigate the warranty cost

for a single product consisting of multiple components; meanwhile, as an improvement, the fail-

ure interactions between the components are considered. Ahmadi (2016) addresses an optimal

replacement problem for complex multi-component systems by determining an optimal operat-

ing time which balances income and cost to maximizes the expected profit over a cycle. Adkins

and Paxson (2017) construct a general replacement model for a multi-component product with

considering the salvage value and depreciation in operating. Chen, Lo, and Weng (2017) seek to

maximize the total profit per item of a multi-component product through optimally determine

the production run length and the warranty period.

All of the literature mentioned above solely maximises the profit of individual products

produced by a manufacturer. Little research, however, has been devoted to optimizing warranty

policy of a set of products collectively. However, in real world, a manufacturer may assemble

different types of product by sharing some key components; then, the manufacturer has to deal

with the warranty policies for multiple products considered as multi-component systems, which

is the third stage of warranty policy optimisation research (see the most-right rectangle in Fig.

1) and investigated in this paper.

The warranty claim arrival processes of products may not be statistically independent because

the claims may have common causes such as similar design, same production lines and same

types of components installed in the products. For example, Apple, iPhone 6, iPhone 6 Plus

and iPad Mini 4, have the same type of CPU. If any design or quality problems happen on one

of the products, warranty claims of the other products will crop up during a short period.

As can be seen from the above literature review, however, little attention has been paid to

collectively optimise warranty policies for a portfolio of different products. This motivates us

to develop novel approaches to filling in the knowledge gap.

We propose to optimise warranty policy through maximising product profit. The method

collectively optimises the warranty price and the warranty length of a set of different products

whose warranty claims are statistically dependent, considering the uncertainty of the product

profit. The value-at-risk theory is borrowed to manage the uncertainty. The dependence is

modelled by copulas, a tool from the probability theory. The use of copulas provides a more

flexible tool to model more complicated dependence than a simple method such as covariance

estimation.

The novelty of this paper lies in the fact that it is the first attempt to collectively optimise

the warranty policies of a portfolio of products from a manufacturer’s perspective.

The rest sections of the paper are structured as follows. Section 2 lists the assumptions of

the optimisation problems. It also formulates the profits and warranty costs of individual prod-

ucts and portfolio of products, respectively. Section 3 investigates the existence of the optimal

solutions for the different optimisation problems and uses copulas to model the dependence

among warranty claims of different products. Section 4 offers numerical examples to illustrate
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the proposed methods and to validate the applicability of the proposed methods. Section 5

concludes the paper and proposes our future work.

2 Formulation of the problem

Assume a manufacturer offers non-renewing free replacement warranty (NFRW) policies.

Under an NFRW policy, the manufacturer provides its customers with repair or replacement at

no cost within the warranty period; the original warranty is not altered upon a failed item; and

the manufacturer only guarantees satisfactory service on the item within the original warranty

period. Assume that repair time is negligible and the repair is minimal repair. Products are new

at t = 0 when they are sold. The number of claims follows the non-homogeneous Poisson process

(NHPP). The numbers of warranty claims and the claim cost are statistically independent.

The notations in Table 1 are used throughout this paper.

Table 1
Notation table

Xk,i Cost of the ith warranty claim of product k

Nk(t) Number of warranty claims of product k within time interval (0, t)

Sk(t) Total cost of warranty claims of product k within time interval (0, t)

Pk Price of product k

Tk Warranty length of product k

P Vector of prices of products

T Vector of lengths of warranties

λk Parameter of the claim arrival process of product k

µk Expected cost per claim of product k, mean of Xk,i

σk Standard deviation of Xk,i

Mk Sales volume of product k, which is a function of Pk and Tk

M Vector of all sales volume

ωk Profit of product k, which is a function of Pk and Tk

Ω Total profit of the manufacturer’s products portfolio

2.1 The sales volume and profit

For a product, there are two critical marketing variables: the selling price and the warranty

length (Chen et al., 2017). The sales volume of a product is negatively related to its selling
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price and positively related to its warranty length. Denote Pk and Tk as the selling price Pk

and the warranty length Tk of product k, respectively. Both Pk and Tk can influence the sales

volume, Mk, and profit, ωk. In what follows, the profit of product k is the revenue deducting

the warranty cost, i.e. ωk = MkPk − Sk(Tk), where Sk(Tk) is the aggregated warranty cost of

product k within Tk.

In the literature, the sales volume of product k, Mk, is expressed by a function of product

price Pk and length of warranty Tk in different forms, including linear (Lin et al., 2009; Yazdian

et al., 2016) and non-linear ones (Huang et al., 2007; Ladany & Shore, 2007; Xie, Liao, & Zhu,

2014). For simplicity, a linearity form, introduced by Yazdian et al. (2016), is used in this paper.

The sales volume is defined by

Mk = Ak − βkPk + ηkTk, (1)

where Ak(> 0) is a constant relating to the market size of product k, and βk(> 0) and ηk(> 0)

are the price and length of warranty elasticities, respectively.

2.2 The distribution of the aggregated warranty cost

Suppose a manufacturer produces n products. The aggregated warranty cost of product k

follows a stochastic process {Sk(Tk)}Tk≥0 over the warranty period (0, Tk), which is expressed

by the following equation,

Sk(Tk) =
Nk(Tk)
∑

j=1

Xk,j, (2)

where Xk,j is the cost of the j-th claim of product k and Nk(Tk) is the number of claims

during (0, Tk). {Xk,1, Xk,2, . . . , Xk,j} are independent and identically distributed random vari-

ables which have finite values on the positive half-line R>0 with the probabilities P (Xk,j).

The cost of claims is assumed to follow the log-normal distribution. The counting process

Nk(Tk) is assumed to take a form of the NHPP with cumulative intensity MkΛk(Tk), and

P (Nk(Tk) = n) = (MkΛk(Tk))
n

n!
e−MkΛk(Tk). Nk(t) and Xk,i, are assumed to be statistically inde-

pendent.

The expected value of Sk(Tk) is given by

E[Sk(Tk)] = E[Nk(Tk)]E[Xk] =MkΛk(Tk)µk, (3)

and the variance of Sk(Tk) is given by

Var [Sk(Tk)] =E[Nk(Tk)]Var[Xk] + Var[Nk(Tk)]E[Xk]
2

=MkΛk(Tk)(Var[Xk] + E[Xk]
2)

=MkΛk(Tk)(σ
2
k + µ2

k), (4)
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where µk and σk are the mean and the variance of Xk, respectively.

Denote FSk and fSk as the probability density function (pdf) and the cumulative distri-

bution function (cdf) of Sk(Tk), respectively. The characteristic function of Xk is ϕXk(t) =
∫∞
−∞ fXk(x)e

itxdx, where i is a unit imaginary number. Denote ϕSk(t) as the characteristic

function of Sk. The probability generation function of Nk(Tk) is ψk(s) =
∑∞
n=0 s

npk,n, where

pk,n = Pr{N(Tk) = n}. According to the Levy-Khintchine formula, one can obtain

ϕSk(t) =
∞
∑

n=0

(ϕXk(t))
npk,n = eMkΛk(Tk)(ϕXk (t)−1). (5)

Then, the density of Sk(Tk) can be calculated through the inverse Fourier transform, that is

fSk(x) =
1

2π

∫ ∞

−∞
ϕSk(t)e

−itxdt =
1

2π

∫ ∞

−∞
eMkΛk(Tk)(ϕXk (t)−1)−itxdt.

Apparently, Sk(Tk) is non-negative. According to Luo and Shevchenko (2009), the probability

density and cumulative distribution function of Sk(Tk) are given by

fSk(z) =
2

π

∫ ∞

0
Re[ϕSk(t)]cos(tz)dt, (6)

and

FSk(z) =
2

π

∫ ∞

0
Re[ϕSk(t)]

sin(tz)

t
dt, (7)

respectively, where z ≥ 0.

In practice, computing the density and cumulative distribution through the Fourier transform

requires high computing power to deal with the underflow and overflow problems. Another

popular approach is to use an approximating distribution to avoid direct calculation of Eq. (7)

and Eq. (6). According to Bee (2016), if the distribution of Xk is subexponential, the compound

Sk(Tk) inherits the subexponentiality property from Xk. In this case, Xk is assumed to follow

the log-normal distribution, which is subexponential. Hence, Sk(Tk) is also subexponential, and

Xk and Sk(Tk) are tail equivalent. For details about the definition of tail equivalent, the reader

is referred to Bee (2016).

To make this paper concise, we use the log-normal distribution to approximate Sk(Tk).

2.3 Product profit

In this subsection, we derive the profit of products for different scenarios.

2.3.1 The profit of one product

The profit of product k is given by

ωk =MkPk − Sk(Tk). (8)
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Denote Fωk and fωk as the cdf and pdf of ωk, respectively. Then

Fωk(z)=P [ωk ≤ z]

=P [MkPk − Sk(Tk) ≤ z]

=P [Sk(Tk) ≥MkPk − z]

= 1− FSk(MkPk − z), (9)

which can be calculated on the basis of Eq. (7).

The expected value of ωk is

E[ωk] =Mk[Pk − Λk(Tk)µk], (10)

and the variance of ωk is

Var[ωk] = Var[Sk(t)] =MkΛk(Tk)(σ
2
k + µ2

k). (11)

2.3.2 The profit of a portfolio of products

The total profit of a portfolio consisting of N products is given by

Ω =
N
∑

k=1

ωk =
N
∑

k=1

[MkPk − Sk(Tk)]. (12)

The distribution of the profit of product portfolio can be expressed by

FΩ(z) = P{Ω ≤ z} = 1− F (N)(z), (13)

where F (N)(z) is the N -fold convolution of the distribution of ωk. The expected total profit is

E[Ω] =
N
∑

k=1

E[ωk] =
N
∑

k=1

Mk[Pk − Λk(Tk)µk]. (14)

As we mentioned in Section 1.2, the warranty claim arrival processes of the products produced

by the same manufacturer may be correlated. Hence the variance of the portfolio profit is related

to the correlation among the products. If the claim arrival processes of different products are

linearly correlated, the variance of Ω can be calculated based on the covariance matrix of the

portfolio, which is

Var[Ω] = I
T
V I, (15)
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where I
T = [1, 1, . . . , 1] and

V =



























Var(S1(T1)) Cov(S1(T1), S2(T2)) . . . Cov(S1(T1), Sn(Tn))

Cov(S2(T2), S1(T1)) Var(S2(T2)) . . . Cov(S2(T2), Sn(Tn))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Cov(Sn(Tn), S1(T1)) Cov(Sn(Tn), S2(T2)) . . . Var(Sn(Tn))



























, (16)

where Cov(Sk(Tk), Si(Ti)) = ρk,i
√

Var(Sk(Tk))Var(Si(Ti)), and ρk,i is the Pearson correlation

coefficient. The warranty costs of different products may have different types of dependence such

as a rank correlation or a tail-dependence. In such cases, the metrics that can only measure a

linear correlation may be inappropriate in the case where the relationship of the variables is

not linear. As such, we employ a powerful tool, copula, to model the dependence among the

products, which will be discussed in Section 3.3. According to Boubaker and Sghaier (2013),

Kendall’s tau and copula parameters, especially the parameters of the Archimedean copulas,

can be used as substitutes (and more comprehensive metrics) for measuring both the linear and

the nonlinear relationships in the covariance matrix in portfolio optimisation.

3 Mean-risk optimisation

In this paper, the mean-risk optimisation is used to maximise the expected profit under an

acceptable risk level. The objective functions are illustrated in Eq. (10) and Eq. (14) for one

product and multiple products scenarios, respectively. The constraints of optimisation problems

are given for different risk measures.

In the one product scenario, the manufacturer aims to maximise the following function:

E[ωk] =Mk[Pk − Λk(Tk)µk].

Suppose in this case, the NHPP following the cumulative intensity Λk(Tk) = akT
bk
k (where

bk > 1) are used. Then, the objective function is defined by

E[ωk] = AkPk − AkµkakT
bk
k − βkP

2
k + βkµkPkakT

bk
k + ηkPkTk − ηkµkakT

bk+1
k . (17)

In case both of Pk and Tk are decision variables, based on the properties of this function, we

have Proposition 1.

Proposition 1 Depending on whether Pk and Tk are known, one can prove the following re-

sults.

• If both of Pk and Tk are decision variables, the global maxima of E[ωk] does not exist.

• If Tk (or Pk) is the decision variable and Pk (or Tk) is known, the global maxima of the
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function E[ωk](Tk) (or E[ωk](Pk)) exists.

The proof of Proposition 1 is presented in the Appendix.

In a multiple product scenario, the objective function to be maximised is

E[Ω] =
N
∑

k=1

Mk(Pk − Λk(Tk)µk).

Since the prices and sales volumes are assumed to be mutually independent in this paper, Propo-

sition 1 is also valid in the multiple products scenario. The dependence among the warranty

claims of the products is reflected in the constraints of optimisations.

3.1 The risk measure

In finance, Artzner, Delbaen, Eber, and Heath (1999) define risk as the variability of the

future value of a position due to uncertain events. Babaei, Sepehri, and Babaei (2015) point out

that risk is used to characterise the situation in which a portfolio is exposed to vulnerabilities

and enforces losses to the institutions. Risk measures are introduced for the requirement of

quantifying the losses that may be incurred. The variance of a random variable is considered as

a risk measure by the overwhelming influential models of portfolio selection. However, since the

variance is a symmetric risk measure, researchers turn to using downside risk measures, such

as Value-at-Risk (VaR) and Conditional VaR (Expected Shortfall), which can reflect a better

notion of risk (Babaei et al., 2015). Furthermore, the variance as a risk measure is normally

applied under the assumption that the correlation is linear. Such an assumption is not imposed

in the VaR and CVaR theories. In this paper, we focus on maximising the profit under the

mean-risk framework, in which the risk may be measured by the variance, VaR or CVaR.

3.2 One product scenario

In the one product scenario, the manufacturer aims to maximise the expected profit of one

product at an acceptable risk level. The optimisation problems with different risk measures are

discussed in the following subsections.

3.2.1 Mean-variance framework

A mean-variance framework aims to maximise the expected profit of product k under a

given/acceptable value of variance. The optimisation problem is defined by

max E[ωk] =Mk[Pk − Λk(Tk)µk],

s.t. Var[ωk] =MkΛk(Tk)(σ
2
k + µ2

k) ≤ ψ,

Mk = Ak − βkPk + ηkTk ≥ 0,
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Pk > 0,

Tk ≥ LT ,

where ψ is the acceptable risk level of the manufacturer, and LT is the legal minimum limit of

the length of warranty, e.g. the manufacturers should provide at least 2-year warranty in Eu-

rope. According to Proposition 1, only one variable, either Pk or Tk, is treated as the decision

variable in optimisation. Regarding this mean-variance optimisation, for example, if Pk is the de-

cision variable, the constraint is Pk ≥
1
βk

(

Ak + ηkTk −
ψ

akT
bk
k

(σ2
k
+µ2

k
)

)

, and the objective function

can achieve the global maxima at Pk =
Ak+βkµkakT

bk
k

+ηkTk
2βk

. If 1
βk

(

Ak + ηkTk −
ψ

akT
bk
k

(σ2
k
+µ2

k
)

)

<

Ak+βkµkakT
bk
k

+ηkTk
2βk

, the objective function is maximized at Pk =
Ak+βkµkakT

bk
k

+ηkTk
2βk

, otherwise,

the objective function is maximized at Pk = 1
βk

(

Ak + ηkTk −
ψ

akT
bk
k

(σ2
k
+µ2

k
)

)

. Then, we have

Proposition 2.

Proposition 2 If Tk (or Pk) is the decision variable, Pk (or Tk) is known and the power law

parameter bk > 1, then the optimal solution, which maximises the expected profit of product k

under a given variance level, exists.

The proof of Proposition 2 can be find in the Appendix.

3.2.2 Mean-VaR framework

In general, value-at-risk is the α-quantile of a distribution, where α is a given confidence

level. In this case, ωk is the profit of product k, we defined the VaRα(ωk) as the minimum profit

at the (1−α) level, i.e. there is a (1−α) probability that the profit of product k will be greater

than VaRα(ωk). The VaRα(ωk) can be expressed as

VaRα(ωk) = F−1
ωk

(α). (18)

According to Eq. (9),

VaRα(ωk) =MkPk − F−1
Sk

(1− α). (19)

Then, the optimisation problem can be defined by

max E[ωk] =Mk(Pk − Λk(Tk)µk),

s.t. VaRα(ωk) =MkPk − F−1
Sk

(1− α) ≥ φ,

Mk ≥ 0, Pk > 0, Tk ≥ LT ,

where α is a given confidence level, and φ is the minimum profit at the (1−α) confidence level

set by the manufacturer. If φ < 0, the maximum loss should be less than −φ at the (1 − α)

confidence level. If Pk is the decision variable and Tk is known, then MkPk in VaRα(ωk) =

MkPk − F−1
Sk

(1 − α) ≥ φ is a parabola with a negative coefficient on the quadratic term, and

F−1
Sk

(1− α) can be derived from the distribution of warranty cost Sk. If Tk is known, the mean
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and the variance of Sk are (Ak−βkPk+ ηkTk)Λk(Tk)µk and (Ak−βkPk+ ηkTk)Λk(Tk)(σ
2
k+µ

2
k),

respectively. Both of the quantities monotonously decrease with respect of Pk. F
−1
Sk

(1 − α)

decreases monotonously with Pk as well. As such, the feasible range of Pk is (max(0, Pl), Pu),

where Pl and Pu are defined by VaRα(ωk) =MkPk − F−1
Sk

(1− α) ≥ φ, respectively.

3.2.3 Mean-CVaR framework

Denote CVaRα(ωk) as the conditional value-at-risk, where α is a given probability. if the

profit exceeds the VaRα(ωk) on the left tail, CVaRα(ωk) is the expected profit of the product

k. In other word, CVaRα(ωk) is the expected profit of the product k in the worst α% of cases.

In this paper, CVaRα(ωk) is expressed as

CVaRα(ωk) =
1

α

∫ VaRα(ωk)

−∞
zfωk(z)dz, (20)

where fωk(z) is the pdf of ωk. The distribution of ωk is determined by the distribution of Sk.

Hence CVaRα(ωk) can be calculated by

CVaRα(ωk) =MkPk −
1

α

∫ +∞

F−1
Sk

(1−α)
zfSk(z)dz, (21)

where fSk(z) and F−1
Sk

(1 − α) are defined by Eq. (6) and Eq. (7), respectively. They can be

approximated by the log-normal distribution, as shown in Section 4. The optimisation problem

can therefore be expressed by

max E[ωk] =Mk(Pk − Λk(Tk)µk),

s.t. CVaRα(ωk) =MkPk −
1

α

∫ +∞

F−1
Sk

(1−α)
zfSk(z)dz ≥ δ,

Mk ≥ 0, Pk > 0, Tk ≥ LT,

where α is a given confidence level and δ is the acceptable minimum level of CVaRα(ωk) set by

the manufacturer.

Referring to Propositions 1 and 2, and the above discussions in Section 3.2.2 and 3.2.3, one

can obtain the following proposition.

Proposition 3 For Tk and Pk, if one of them is the decision variable and the other is known,

then the optimal solution, which maximises the expected profit of product k under a given value-

at-risk level or conditional value-at-risk level, exists.

3.3 Multiple product scenario

The preceding section investigates the scenarios of the optimisation problems of individual

products under a risk-informed consideration.

Assuming that a manufacturer produces N products, one can easily estimate the expected
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total profit through estimating and then summing the expected profit of each individual prod-

uct. Considering the uncertainty in estimation of the total profit of the N products, one may

consider the statistical dependence among the warranty claim arrival processes. In this section,

the portfolio optimisation is investigated under the mean-variance, mean-VaR and mean-CVaR

frameworks.

3.3.1 Mean-Variance framework

Under the mean-variance framework for the N products, the optimisation problem is defined

by

max E[Ω] =
N
∑

k=1

Mk(Pk − Λk(Tk)µk),

s.t. Var[Ω] =
N
∑

k=1

MkTkλk(σ
2
k + µ2

k) + 2
N
∑

i 6=j

ρi,j
√

MiMjTiTjλiλj(σ2
i + µ2

i )(σ
2
j + µ2

j) ≤ ψ.

In this optimisation problem, the dependence among the warranty claims of the different

products is measured with the Pearson correlation coefficient ρi,j, and the objective function is

the sum of the expected profits of the N products. According to Proposition 2, one can obtain

the following proposition.

Proposition 4 For T and P , if one of them is the decision variable vector and the other is

known, then the optimal solution, which maximises the expected total profit E[Ω] of the product

portfolio under a given variance level, exists.

3.3.2 Mean-VaR framework

Under the mean-VaR framework for the N products, the optimisation problem is defined by

max E[Ω] =
N
∑

k=1

Mk(Pk − Λk(Tk)µk),

s.t. VaRα[Ω] ≥ φ.

In practice, one may need to obtain the optimal solution. According to Babaei et al. (2015),

even though the definition of the VaR is intuitive and easy to interpret, calculating the VaR

of a portfolio is not easy. In financial mathematics, to calculate the portfolio VaR, there are

three commonly used methods, which are the variance-covariance, stochastic simulation, and

historical simulation methods. The variance-covariance method assumes that the risk factors

are jointly normally distributed. The normality assumption may not hold in our case and

therefore the variance-covariance method is not applicable. The VaR of the total profit of the

product portfolio will be calculated using the stochastic simulation method in this research.

The historical simulation method will be investigated in our future work. To conduct an exact

and efficient simulation, copula, an important tool in the probability theory is borrowed.

Copulas are widely used in constructing multivariate distributions and formalising the de-

pendence structures between random variables, whatever discrete or continuous. Abe Sklar
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first introduced the notion of copula in 1959 (Sklar, 1959). In recent years, copulas have at-

tracted considerable attention in both theoretical and application aspects. Sklar’s theorem

states that any cumulative distribution function of a random vector can be written in terms of

marginal distribution functions and a copula that describes the dependence structure between

the variables (Sklar, 1959). Assume (X1, ..., Xd) is a given vector of random variables, its cumu-

lative distribution function is H(x1, ..., xd) = P (X1 ≤ x1, ..., Xd ≤ xd)), and its marginals are

Fk(xk) = P (Xk ≤ xk), where k = 1, ...d. Sklar proved that H(x1, ..., xd) = C(F1(x1), ..., Fd(xd)),

where C(.) is a copula. Copulas are useful in statistical applications because they allow one

to estimate the marginals and the copula separately when modelling and estimating the dis-

tribution of a random vector. It has recently been used in modelling warranty claims (S. Wu,

2014a).

Denote the joint distribution of the products’ number of claims by

H(z1, z2, . . . , zk) = C(FN1(z1), FN2(z2), . . . , FNk(zk)), (22)

where C(.) is a copula, and FNk is the CDF of the number of claims of product k. The density

of the joint distribution is given by

h(z1, z2, . . . , zN) = c(FN1(z1), FN2(z2), . . . , FNk(zk))
n
∏

k=1

fNk(zk), (23)

where c(.) is the density of copula C(.).

Then, the joint distribution of the products’ profits can be simulated based on Eq. (6), Eq.

(7), Eq. (22) and Eq. (23).

Let FΩ(z) be the distribution of the total profit of the products, where Ω =
∑N
k=1 ωk. In a

copula-based model, the VaR of the total profit can be calculated through simulation. It is clear

that calculating FΩ(z) is mainly a numerical issue (Bernard & Vanduffel, 2015).

3.3.3 Mean-CVaR framework

Under the mean-CVaR framework, the optimisation problem is defined by

max E[Ω] =
N
∑

k=1

Mk(Pk − Λk(Tk)µk),

s.t. CVaRα[Ω] ≥ δ.

This optimisation problem implies that the manufacturer aims to maximise the total profit

under the constraint that the expected extreme profit at confidence level α is not less than δ.

This constraint can also be expressed by the copula and marginal distributions.

Based on the property of the above objective function and Proposition 3, one can derive the

following proposition

Proposition 5 For T and P , if one of them is the decision variable vector and the other is

13



known, then the optimal solution, which maximises the expected total profit E[Ω] of the product

portfolio under a given value-at-risk level or conditional value-at-risk level, exists.

4 Numerical examples

4.1 One product scenario

Assume that the cost of each warranty claim of one product, X1, follows a log-normal distri-

bution with mean µ1 = 200 and standard deviation σ = 40; assume the warranty claim arrival

process is a Non-homogeneous Poisson process with cumulative intensity Λ1(T1) = 0.004T 1.04
1 ;

and the sales volume of this product is defined by M1 = 1, 000−0.2P1+0.13T1. In Table 2, Lµ1

Table 2
Parameters for one product

Log-normal

µ1 = 200 σ1 = 40 Lµ1 = 5.2787 Lσ1 = 0.1980

NHPP

a = 0.004 b = 1.04

Sales volume

A1 = 1, 000 β1 = 0.2 η1 = 0.13

and Lσ1 are logarithmised mean and standard deviation respectively, and they are calculated

by

Lµ1 = ln









µ1
√

1 +
σ2
1

µ21









,

and

Lσ1 =

√

√

√

√ln

(

1 +
σ2
1

µ2
1

)

.

4.1.1 Mean-Variance

Under the mean-variance framework, the optimisation problem is

max E[ω1] = (1, 000− 0.2P1 + 0.13T1)(P1 − 0.004T 1.04
1 × 200)

s.t. Var[ω1] = (1, 000− 0.2P1 + 0.13T1)× 0.004T 1.04
1 × (2002 + 402) ≤ ψ.

Suppose T1 = 720. The above objective function is parabola and has the global maximum

E[ω1] = 1, 113, 257.59 at P1 = 3, 108.70 with the corresponding sales volume M1 = 472. Mean-

while, the feasible range of P1 is [5, 468− 0.000032ψ, 5, 468], which means: P1 = 3, 108.70 is the

optimal solution if the variance limitation ψ ≥ 147, 103, 140.52.
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If P1 is known, for example, let P1 = 3, 000. The global maxima is E[ω1] = 1, 200, 600

when T1 ≈ 32. The sales volume and the variance of total profit at T1 ≈ 32 are M1 = 404

and Var[ω1] = 2, 472, 080.61, respectively. Furthermore, the function of Var[ω1] monotonously

increases with T1. Hence, if the variance of the total profit is less than ψ with ψ ≥ 2, 472, 080.61,

T1 = 32 is the optimal solution. However, in practice, the length of warranty is regulated by

the authorities, such as at least 2 years warranty is required in Europe, this regulation may

also be considered in optimisation.

4.1.2 Mean-VaR

Under the mean-VaR framework, given that the confidence level α = 0.05, the optimisation

problem is

max E[ω1] = (1, 000− 0.2P1 + 0.13T1)(P1 − 200× 0.004T 1.04
1 )

s.t. VaR0.05(ω1) = (1, 000− 0.2P1 + 0.13T1)P1 − F−1
S1

(0.95) ≥ φ.

In this scenario, the effects of P1 and T1 on VaR0.05 should be investigated. However, the closed

form of the cdf of S1 is difficult to obtain, and we cannot obtain the close form of F−1
S1

(0.95)

either. Then a log-normal distribution with mean, E[S1] = 0.8T 1.04
1 × (1, 000− 0.2P1 + 0.13T1),

and variance, Var[S1] = 166.4T 1.04
1 × (1, 000 − 0.2P1 + 0.13T1), is used to approximate the

distribution FS1(x).

Initially, we focus on the situation that T1 is known. According to Section 4.1.1, if T1 = 720,

the objective function has a global maximum E[ω1] = 1, 113, 257.59 at P1 = 3, 108.70. then we

have

VaR0.05(ω1) = (1, 093.6− 0.2P1)P1 − F−1
S1

(0.95). (24)

If the constraint on VaR0.05(ω1) is not considered, the feasible range of P1 is [0, 5, 468]. Within

this range, the relationship between P1 and the first term in Eq. (24), i.e. the revenue (1, 093.6−

0.2P1)P1, is illustrated in Fig. 2. The relationship between P1 and the second term F−1
S1

(0.95)

in Eq. (24), i.e. the right tail 5% VaR of warranty cost, is shown in Fig. 3. The relationship

between P1 and VaR0.05(ω1) is illustrated in Fig. 4.

Fig. 3 reveals that the right tail 5% VaR of warranty cost monotonically decreases with P1

within the feasible range of P1. Then, the relationship between VaR0.05(ω1) and P1 is determined

by the total revenue which is a quadratic function of P1. Hence, with the optimal constraint,

one can derive a feasible range of P1, (pl1, pu1), where pl1 and pu1 are determined by φ.

In accordance with the market behaviour, one may set market price P1, said P1 = 3, 000.

The optimal length of warranty T1 can then be determined and one can obtain

VaR0.05(ω1) = 3, 000× (400 + 0.13T1)− F−1
S1

(0.95). (25)

Fig. 5 and Fig. 6 reveal the effects of T1 on the right tail 5% VaR of the warranty cost and

VaR0.05(ω1). The values of T1 in these figures are discrete values from 2 years (720 days) to

10 years (3,600 days) with half of a year step (180 days). Then the optimal constraint gives a
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Fig. 2. Total revenue (on the Y -axis) against price P1 (on the X-axis).

Fig. 3. Right tail 5% VaR of warranty cost (on the Y -axis) against P1 (on the X-axis).

feasible range of T1, [720, tu], where tu is determined by φ.

4.1.3 Mean-CVaR

Under the mean-CVaR framework, the objective function is the same as that under the

mean-VaR framework, but the constraint is given by

CVaR0.05(ω1) = (1, 000− 0.2P1 + 0.13T1)P1 −
1

0.05

∫ +∞

F−1
S1

(0.95)
zfS1(z)dz ≥ δ. (26)

The first term of Eq. (26) also is the total revenue of Product 1, and the second term is the

right tail 5% CVaR of the total warranty cost of Product 1. fS1 can also be approximated by

the log-normal distribution.

If T1 = 720 is known, the relationship between P1 and CVaR0.05(ω1) is illustrated in Fig. 7.
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Fig. 4. VaR0.05(ω1) (on the Y -axis) against P1 (on the X-axis).

Fig. 5. Right tail 5% VaR of warranty cost (on the Y -axis) against T1 (on the X-axis).

The feasible range of P1 under the constraint is [cpl, cpu], where both cpl and cpu are determined

by δ.

If P1 = 3, 000 is known and T1 = 720 + 180v (for v = 1, 2, ..., 16), the relationship between

T1 and CVaR0.05(ω1) is illustrated in Fig. 8. Then the feasible range of T1 under the constraint

is [720, ctu] where ctu is determined by δ.

4.2 Three product scenario

Assume 7 types of components are installed in 3 products, each of which is composed of 4

or 5 components, as illustrated in Table 3. The components in each product are structured in

series, which implies: if a component in an product item fails, the item fails.

Assume that the claim arrival processes of the components are NHPPs with a cumulative
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Fig. 6. VaR0.05(ω1) (on the Y -axis) against T1 (on the X-axis).

Fig. 7. CVaR1 (on the Y -axis) against P1 (on the X-axis).

Table 3
Components of products

Components

Product C1 C2 C3 C4 C5 C6 C7

Product1 X X X X X

Product2 X X X X

Product3 X X X X

failure intensity, Λ(t) = atb. The parameters in the claim arrival process models and the war-

ranty claim costs of the components are presented in Table 4. Then, the claim arrival processes

of the products are NHPPs. As such their intensities are given by Λ1(t) = a1t
b1 +a2t

b2 +a4t
b4 +

a5t
b5 + a6t

b6 , Λ2(t) = a1t
b1 + a3t

b3 + a5t
b5 + a6t

b6 and Λ3(t) = a1t
b1 + a4t

b4 + a6t
b6 + a7t

b7 ,
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Fig. 8. CVaR0.05(ω1) (on the Y -axis) against P1 (on the X-axis).

Table 4
Parameters of Components

Components a b Cost of each claim

C1 0.0037 1.02 100

C2 0.0037 1.01 120

C3 0.0028 1.02 80

C4 0.0028 1.02 90

C5 0.0024 1.03 65

C6 0.0019 1.03 60

C7 0.0014 1.04 50

respectively.

According to the above setting, one can generate three data sets, each of which contains

claim times and cost of claims of Mk items of product k. These three data sets are correlated,

based on which we can estimate the correlation parameters of our model.

Assume all products have 2-year (720 days) warranty, i.e. T1 = T2 = T3 = 720. The products’

sales volume and warranty cost parameter are then given in Table 5.

The expected warranty cost of the three products are, E[S1] = 879.73 × (1, 093.6 − 0.2P1),

E[S2] = 601.65 × (2, 079.2 − 0.5P2) and E[ω3] = 572.91 × (2, 672 − 0.6P3), respectively. The

variances of the warranty costs of the three products are Var[ω1] = 83, 376.02×(1, 093.6−0.2P1),

Var[ω2] = 49, 020.67×(2, 079.2−0.5P2) and Var[ω3] = 48, 238.49×(2, 672−0.6P3), respectively.

Based on these expected values and variances, the warranty cost distributions, FS1(z1), FS2(z2)

and FS3(z3), can be approximated.

To model the dependence among the products, one may construct a trivariate copula. In
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Table 5
Parameters of 3 products

Parameters of sales volume Parameters of warranty cost

Ak βk ηk µk σk

Product 1 1,000 0.2 0.13 89.36 21.99

Product 2 2,000 0.5 0.11 78.22 15.95

Product 3 2,600 0.6 0.10 79.04 20.20

practice, there are many different copula families existing, a suitable copula can be constructed

or selected in two steps. In the first step, referring to the physical situation of the products or

the features of empirical operating, a proper copula family can be selected. For example, if the

dependence is linear, a copula from the elliptical family can be selected; and if a rank correlation

is found in the data, a copula from the Archimedean family can be selected. Additionally, the

form of marginal distribution, the tail-dependence, etc. all can influence copula selection. In

the second step, the goodness-of-fit of the initially selected copulas can be compared by mean

squared errors, Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC).

The details of copula selection in warranty data analysis will be investigated in future research.

In this case, considering the non-elliptical marginal distributions and the potential upper

tail-dependence, a trivariate Gumbel copula is simply constructed as an example. Then the

joint distribution of the number of claims is

H(z1, z2, z3)=C(u1, u2, u3; θ1, θ2)

= exp{−[(−lnu1)
θ1 + [(−lnu2)

θ2 + (−lnu3)
θ2 ]

θ1
θ2 ]

1
θ1 }, (27)

where u1 = FN1(z1), u2 = FN2(z2) and u3 = FN3(z3). With simulation, θ1 = 1
1−0.59

≈ 2.44 and

θ2 =
1

1−0.71
= 3.45.

The density of the joint distribution is given by

h(z1, z2, z3) = c(u1, u2, u3)fN1(z1)fN2(z2)fN3(z3). (28)

The cumulative distribution function of the total number of claims of the three products,

N = N1 +N2 +N3, of the manufacturer is given by,

FN (z) =
z
∑

z1=0,z2≤z−z1

h(z1, z2, z − z1 − z2) (29)

The VaR and the CVaR of the total profit Ω can be determined based on Eqs. (27), (28),

and (29). In Table 6, the VaR0.05 and the CVaR0.05 of the total profit Ω with different values

of θ2 and θ1 are presented.

In Table 6, θ1 represents the correlation between the profit of Products 1 and the profit of
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Table 6
The VaR and CVaR of Ω with different dependences

P1 = 3, 173.86, P2 = 2, 380.02, P3 = 2, 513.12

Copula parameter θ1 = 1, θ2 = 1 θ1 = 2.44, θ2 = 3.25 θ1 = 2.44, θ2 = 4 θ1 = 3, θ2 = 4

VaR0.05(Ω) 4,884,922 4,859,833 4,859,018 4,858,978

CVaR0.05(Ω) 4,873,141 4,855,315 4,854,950 4,853,788

Products 2 and 3; and θ2 represents the correlation between the profits of Products 2 and 3. In

the second column, θ1 = θ2 = 1 implies that the profits of the three products are not correlated;

and in the following 3 columns, larger values of θ1 and θ2 indicate a stronger correlations. The

VaR0.05 and the CVaR0.05 of the total profit Ω in the dependent scenarios (Column 3, 4 and 5) are

larger than that in the independent scenario (Column 2); and in the dependent scenarios these

two values increase with the correlations among the profits of products being stronger. This

result implies: if a manufacturer ignores the dependence among warranty claims of products, it

will underestimate the upcoming total warranty cost. Such ignorance may cause bias in decision

making.

5 Conclusions

In the real world, a manufacturer normally produces many different products that have

common components installed. Consequently, the frequencies of warranty claims of different

products are statistically dependent, which conflicts the fact that the existing methods in the

literature solely focus on individual products and ignore the claim dependence.

This paper proposes a method to collectively optimise warranty policy for a portfolio of

different products. Using the value-at-rick theory, it attempts to maximise the total profit of a

set of products through optimising the warranty price and the warranty length. The numerical

example shows that the dependence problem can be properly addressed with the proposed

method.

The paper only investigates the optimisation of warranty policy for a portfolio of products

covered by a one-dimensional warranty policy. That is, the warranty only covers one dimension,

which can be either the usage or the age dimension, but not both. For some products (see Ye

and Murthy (2016), for example), however, a warranty policy may cover both age and usage

(e.g., the warranty of a car may cover both age and mileage), which is called a two-dimensional

warranty policy. Our future work aims to investigate the optimisation problem for products

with a two-dimensional warranty coverage.

21



Acknowledgement

The second author acknowledges support from grant number ES/L011859/1, from The Busi-

ness and Local Government Data Research Centre, funded by the Economic and Social Research

Council to provide researchers and analysts with secure data services.

References

Adkins, R., & Paxson, D. (2017). Replacement decisions with multiple stochastic values and

depreciation. European Journal of Operational Research, 257 (1), 174-184.

Aggrawal, D., Anand, A., Singh, O., & Singh, J. (2014). Profit maximization by virtue of price

and warranty length optimization. Journal of High Technology Management Research,

25 (1), 1-8.

Ahmadi, R. (2016). An optimal replacement policy for complex multi-component

systems. International Journal of Production Research, 54 (17), 5303-5316. doi:

10.1080/00207543.2016.1173252

Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent measures of risk. Mathe-

matical Finance, 9 (3), 203-228.

Babaei, S., Sepehri, M., & Babaei, E. (2015). Multi-objective portfolio optimization considering

the dependence structure of asset returns. European Journal of Operational Research,

244 (2), 525-539.

Bai, J., & Pham, H. (2006). Cost analysis on renewable full-service warranties for multi-

component systems. European Journal of Operational Research, 168 (2 SPEC. ISS.),

492-508.

Bee, M. (2016). Density approximations and var computation for compound poisson-lognormal

distributions. Communications in Statistics: Simulation and Computation, 1-17.

Bernard, C., & Vanduffel, S. (2015). A new approach to assessing model risk in high dimensions.

Journal of Banking and Finance, 58 , 166-178.

Boubaker, H., & Sghaier, N. (2013). Portfolio optimization in the presence of dependent

financial returns with long memory: A copula based approach. Journal of Banking and

Finance, 37 (2), 361-377.

Chen, C.-K., Lo, C.-C., & Weng, T.-C. (2017). Optimal production run length and warranty

period for an imperfect production system under selling price dependent on warranty

period. European Journal of Operational Research, 259 (2), 401-412.

Huang, H.-Z., Liu, Z.-J., & Murthy, D. (2007). Optimal reliability, warranty and price for new

products. IIE Transactions , 39 (8), 819–827.

Ladany, S., & Shore, H. (2007). Profit maximizing warranty period with sales expressed by a

demand function. Quality and Reliability Engineering International , 23 (3), 291-301.

22



Lei, Y., Liu, Q., & Shum, S. (2017). Warranty pricing with consumer learning. European

Journal of Operational Research, 263 (2), 596–610.

Lin, P.-C., Wang, J., & Chin, S.-S. (2009). Dynamic optimisation of price, warranty length

and production rate. International Journal of Systems Science, 40 (4), 411–420.

Liu, B., Wu, J., & Xie, M. (2015). Cost analysis for multi-component system with failure

interaction under renewing free-replacement warranty. European Journal of Operational

Research, 243 (3), 874–882.

Luo, X., & Shevchenko, P. V. (2009). Computing tails of compound distributions using direct

numerical integration. Journal of Computational Finance, 13 (2), 73-111.

Matis, T. I., Jayaraman, R., & Rangan, A. (2008). Optimal price and pro rata decisions

for combined warranty policies with different repair options. IIE Transactions , 40 (10),

984–991.
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Appendix

Proof of Proposition 1.

Proof. The Hessian matrix of E[ωk] is

Hf(Pk,Tk) =









−2βk akbkβkµkT
bk−1
k + ηk

akbkβkµkT
bk−1
k + ηk −akbkµkT

bk−2
k [(bk − 1)(Ak − βkPk + ηkTk) + 2ηkTk]









,

and the eigenvalues of HE[ωk] are

x1 =− {2βk + akbkµkT
b−2[(bk − 1)Ak − (bk − 1)βkPk + (bk + 1)ηkTk]}

+
√

{2βk − akbkµkT b−2[(bk − 1)Ak − (bk − 1)βkPk + (bk + 1)ηkTk]}2 + 4(akbkβkµkT b−1 + ηk)2
,

and

x2 =− {2βk + akbkµkT
b−2[(bk − 1)Ak − (bk − 1)βkPk + (bk + 1)ηkTk]}

−
√

{2βk − akbkµkT b−2[(bk − 1)Ak − (bk − 1)βkPk + (bk + 1)ηkTk]}2 + 4(akbkβkµkT b−1 + ηk)2
,

respectively. It can be seen that x1 > 0 and x2 < 0. As such, the Hessian matrix is indefinite.

As a result, the global minima of E[ωk] does not exist.

Similarly, the Hessian matrix of Var[ωk] is

HVar[ωk] =









0 −βk(σ
2
k + µ2

k)akbkT
bk−1
k

−βk(σ
2
k + µ2

k)akbkT
bk−1
k akbk(σ

2
k + µ2

k)[2ηkT
bk−1
k + (Ak − βkPk + ηkTk)(bk − 1)T bk−2

k ]









,

and the eigenvalues of HVar[ωk] are x1 = akbkT
bk−1
k (σ2

k+µ
2
k)ηk+akbkT

bk−1
k (σ2

k+µ
2
k)
√

η2k + β2
k > 0

and x2 = akbkT
bk−1
k (σ2

k + µ2
k)ηk − akbkT

bk−1
k (σ2

k + µ2
k)
√

η2k + β2
k < 0, which implies that the

Hessian matrix is indefinite and the feasible region of (Pk, Tk) defined by the constraint is

therefore infinite.

Consequently, the global maxima of the objective function does not exist. �

Proof of Proposition 2.

Proof. If Pk is known, the first order derivative of the objective function E[ωk](Tk) is given

by
dE[ωk](Tk)

dTk
= −ηkµkak(bk + 1)T bkk − (Ak − βkPk)µkakbkT

bk−1
k + ηkPk,
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and the second order derivative of E[ωk](Tk) is given by

d2E[ωk](Tk)

dT 2
k

= −akbkµkT
bk−2
k [(bk − 1)(Ak − βkPk + ηkTk) + 2ηkTk] < 0,

as a result, the function E[ωk](Tk) is concave for Tk ≥ 0.

If Pk is known, the first order derivative of Var[ωk](Tk) is

dVar[ωk](Tk)

dTk
= ak(σ

2
k + µ2

k)[ηkT
bk
k + (Ak − βkPk + ηkTk)bkT

bk−1
k ] > 0,

and the second order derivative of Var[ωk](Tk) is

d2Var[ωk](Tk)

dT 2
k

= akbk(σ
2
k + µ2

k)[2ηkT
bk−1
k + (Ak − βkPk + ηkTk)(bk − 1)T bk−2

k ] > 0,

which implies that the function Var[ωk](Tk) is convex and monotonously increases for Tk ≥ 0

and that the feasible range of Tk defined by Var[ωk](Tk) ≤ ψ is finite. Hence, when Pk is known.

As a result, the solution of the optimisation problem exists.

If Tk is known, the first order derivative of the objective function E[ωk](Pk) is given by

dE[ωk](Pk)

dPk
= Ak − 2βkPk + βkµkakT

bk
k + ηkTk;

and the second order derivative of the objective function E[ωk](Pk) is given by

d2E[ωk](Pk)

dP 2
k

= −2βk < 0.

The fact that the second order derivative is negative implies: the objective function E[ωk](Pk)

achieves the global maxima at Pk =
Ak+βkµkakT

bk
k

+ηkTk
2βk

. If Tk is known, the constraint is Pk ≥
Ak+ηkTk−

ψ

akT
bk
k

(σ2
k
+µ2

k
)

βk
. Hence, the optimal solution exists if Tk is known. �

Proposition 3, 4, 5, 6 and 7 can be established based on Propositions 1 and 2.
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