
Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

A Model of PCF in Guarded Type Theory

Marco Paviotti1

IT University of Copenhagen

Rasmus Ejlers Møgelberg2

IT University of Copenhagen

Lars Birkedal3

Dept. of Comp. Science, Aarhus University

Abstract

Guarded recursion is a form of recursion where recursive calls are guarded by delay modalities. Previous
work has shown how guarded recursion is useful for constructing logics for reasoning about programming
languages with advanced features, as well as for constructing and reasoning about elements of coinductive
types. In this paper we investigate how type theory with guarded recursion can be used as a metalanguage
for denotational semantics useful both for constructing models and for proving properties of these. We
do this by constructing a fairly intensional model of PCF and proving it computationally adequate. The
model construction is related to Escardo’s metric model for PCF, but here everything is carried out entirely
in type theory with guarded recursion, including the formulation of the operational semantics, the model
construction and the proof of adequacy.

Keywords: Denotational semantics, guarded recursion, type theory, PCF, synthetic domain theory

1 Introduction

Variations of type theory with guarded recursive types and guarded recursively

defined predicates have proved useful for giving abstract accounts of operationally-

based step-indexed models of programming languages with features that are chal-

lenging to model, such as recursive types and general references [1,4], countable

nondeterminism [5], and concurrency [11]. Following observations of Nakano [10]

and Atkey and McBride [2], guarded type theory also offers an attractive type-

based approach to (1) ensuring productivity of definitions of elements of coinductive

types [9], and (2) proving properties of elements of coinductive types [6]. One of

1 Email: mpav@itu.dk
2 Email: mogel@itu.dk
3 Email: birkedal@cs.au.dk

c©2015 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs
mailto:mpav@itu.dk
mailto:mogel@itu.dk
mailto:birkedal@cs.au.dk

Paviotti, Møgelberg, Birkedal

the key features of guarded type theory is a modality on types, denotes . and pro-

nounced later. This modality is used to guard recursive definitions and the intuition

is that elements of type .A are only available one time step from now.

In this paper, we initiate an exploration of the use of guarded type theory

for denotational semantics and use it to further test guarded type theory. More

specifically, we present a model of PCF in guarded dependent type theory. To do

so we, of course, need a way to represent possibly diverging computations in type

theory. Here we follow earlier work of Escardo [7] and Capretta [?] and use a lifting

monad L, which allows us to represent a possibly diverging computation of type

X by a function into L(X). In Capretta’s work, L is defined using coinductive

types. Here, instead, we use a guarded recursive type to define L. Using this

approach we get a fairly intensional model of PCF which, intuitively keeps track of

the number of computation steps, similar to [7]. We show this formally by proving

that the denotational model is adequate with respect to a step-counting operational

semantics. The definition of this step-counting operational semantics is delicate

— to be able to show adequacy the steps in the operational semantics have to

correspond to the abstract notion of time-steps used in the guarded type theory

via the . operator. Our adequacy result is related to one given by Escardo in [7].

To show adequacy, we define the operational semantics in guarded type theory and

also define a logical relation in guarded type theory to relate the operational and

denotational semantics. To carry out the logical relations proof, we make crucial use

of some novel features of guarded dependent type theory recently proposed in [6],

which, intuitively, allow us to reason now about elements that are only available

later.

The remainder of the paper is organized as follows. In Section 2 we recall

the core parts of guarded dependent type theory and the model thereof in the

topos of trees [4,6]. Then we define a step-counting operational semantics of PCF

in Section 3 and the denotational semantics is defined in Section 4. We prove

adequacy in Section 5. In Section 6 we use the topos of trees model of the guarded

type theory to summarize briefly what the results proved in guarded type theory

mean externally, in standard set theory. Finally, we conclude and discuss future

work in Section 7.

2 Guarded recursion

In this paper we work in a type theory with dependent types, natural numbers,

inductive types and guarded recursion. The presentation of the paper will be infor-

mal, but the results of the paper can be formalised in gDTTas presented in [6] (we

do not need the 2 modality of gDTT). We start by recalling the core of this type

theory (as described in [4]), introducing further constructions later on as needed.

A guarded recursive definition is a recursive definition where the recursive calls

are guarded by time steps. The time steps are introduced via a type modality .

pronounced ‘later’. If A is a type then .A is the type of elements of A available

only one time step from now. The type constructor . is an applicative functor in

the sense of [8], which means that there is a term next : A→ .A freezing an element

of A so that it can be used one time step from now, and a ‘later application’

2

Paviotti, Møgelberg, Birkedal

~ : .(A → B) → .A → .B written infix, satisfying next(f) ~ next(t) = next(f(t))

among other axioms (see also [3]). In particular, . extends to a functor mapping

f : A→ B to λx : .A. next(f) ~ x.

Recursion on the level of terms is given by a fixed point operator fix : (.A →
A) → A satisfying f(next(fix(f))) = fix(f). Intuitively, fix can compute the fixed

point of any recursive definition, as long as that definition will only look at its

argument later. This fixed point combinator is particularly useful in connection

with guarded recursive types, i.e., types where the recursion variable occurs only

guarded under a . as, e.g., in the type of guarded streams:

StrgA ' A× . StrgA

The cons operation consg for StrgA has type A → . StrgA → StrgA. Hence, we can

define, e.g., constant streams as constant a = fix(λxs : . StrgA . consg a xs).

Guarded recursive types can be constructed using universes and fix as we now

describe [3]. We shall assume a universe type U closed under both binary and

dependent sums and products as usual, and containing a type of natural numbers.

We write N̂ for the code of natural numbers satisfying El(N̂) ' N and likewise

×̂ for the code of binary products satisfying El(A ×̂B) ' El(A) × El(B). The

universe is also closed under . in the sense that there exists an .̂ : .U → U satisfying

El(.̂(next(A))) ' .El(A). Using these, the type StrgN can be defined as El(ŜtrgN)

where ŜtrgN = fix(λB : .U.N̂×̂.̂B). Note that this satisfies the expected equality

because

El(ŜtrgN) ' El(N̂×̂.̂(next(ŜtrgN))) ' El(N̂)× El(.̂(next(ŜtrgN))) ' N× .El(ŜtrgN)

Likewise, guarded recursive (proof-relevant) predicates on a type A, i.e., terms of

type A→ U can be defined using fix as we shall see an example of in Section 5.

2.1 The topos of trees model

The type theory gDTT can be modelled in the topos of trees [4], i.e., the category

of presheaves over ω, the first infinite ordinal. Since this is a topos, it is a model of

extensional type theory. A closed type is modelled as a family of sets X(n) indexed

by natural numbers together with restriction maps rn : X(n + 1) → X(n). Under

the propositions-as-types interpretation, an element of X(n) should be thought of

as a proof that X is true after n computation steps. We say that X is true at stage

n if X(n) is inhabited. Note that if X is true at stage n, it is also true at stage

k for all k ≤ n. Thus, the intuition of this model is that a proposition is initially

considered true and can only be falsified by further computation.

In the topos of trees model, the . modality is interpreted as .X(0) = 1 and

.X(n + 1) = X(n), i.e., from the logical point of view, the . modality delays

evaluation of a proposition by one time step. For example, if 0 is the constantly

empty presheaf (corresponding to a false proposition), then .n0 is the proposition

that appears true for the first n computation steps and is falsified after n+ 1 steps.

3

Paviotti, Møgelberg, Birkedal

Γ, x : σ,∆ ` x : σ
(Val)

Γ, x : σ `M : τ

Γ ` (λx : σ.M) : σ → τ
(Lam)

Γ `M : σ → τ Γ ` N : σ

Γ `MN : τ
(App)

Γ `M : σ → σ

Γ ` Yσ M : σ
(Fix)

Γ ` n : nat
(Zero)

Γ `M : nat

Γ ` succ M : nat
(Succ)

Γ `M : nat

Γ ` pred M : nat
(Pred)

Γ ` L : nat Γ `M : σ Γ ` N : σ

Γ ` ifz L M N : σ
(IfZ)

Fig. 1. PCF typing rules

⇓ : TermPCF × N× (ValuePCF → U)→ U

v ⇓0 Q
def
== Q(v)

pred M ⇓k Q def
== M ⇓k λx.Σn : N.x = n and Q(n− 1)

succ M ⇓k Q def
== M ⇓k λx.Σn : N.x = n and Q(n+ 1)

Yσ M ⇓k+1 Q
def
== .(M(Yσ M) ⇓k′ Q)

MN ⇓k+m Q
def
== M ⇓k Q′

where Q′(λx.L) = L[N/x] ⇓m Q

ifz L M N ⇓k+m Q
def
== L ⇓k Q′

where Q′(0) = M ⇓n Q and Q′(v + 1) = N ⇓n Q

Fig. 2. Step-indexed Big-Step Operational Semantics for PCF

3 PCF

This section defines the syntax, typing judgements, and operational semantics of

PCF. These should be read as judgements in guarded type theory, but as stated

above we work informally in type theory, which here means that we ignore standard

problems of representing syntax up to α-equality. Note that this is a perpendicular

issue to the one we are trying to solve here.

Unlike the operational semantics to be defined below, the typing judgements of

PCF are defined in an entirely standard way, see Figure 1. In the figure, v ranges

over values of PCF, i.e., terms of the form v = n, where n is a natural number or

v = λx.M . Note that we distinguish notationally between a natural number n and

the corresponding PCF value n. We denote by Type
PCF

, TermPCFand ValuePCF the

types of PCF types, closed terms, and values of PCF.

3.1 Big-step semantics

The big-step operational semantics defined in Figure 2 is a relation between terms,

numbers and predicates on values. The statement M ⇓k Q should be read as M

evaluates in k steps to a value satisfying Q. The relation can either be defined

by a combination of guarded recursion and induction on M , or simply by ordinary

4

Paviotti, Møgelberg, Birkedal

induction first on k then on M .

Figure 2 uses standard syntactic sugar, for example, only non-empty cases are

mentioned, e.g, v ⇓k Q is defined to be 0 in case k > 0, and the case of function

application should be read as

MN ⇓l Q def
==

∑
k,m : N.(k +m = l) and M ⇓k Q′

Note in particular that this means that Yσ M ⇓0 Q is always false.

As mentioned in the introduction, the formulation of the big-step operational

semantics is quite delicate – the wrong definition will make the adequacy theorem

false. First of all, the definition must ensure that the steps of PCF are synchronised

with the steps on the meta level. This is the reason for the use of . in the case of the

fixed point combinator. Secondly, the use of predicates on values on the right hand

side of ⇓ rather than simply values is necessary to ensure that the right hand side

is not looked at before the term is fully evaluated. For example, a naive definition

of the operational semantics using values on the right hand side and the rule

succ M ⇓k v def
== Σn : N.(v = n+ 1) and M ⇓k n

Would make succ (YN (λx : N.x)) ⇓42 0 false, but to obtain computational adequacy,

we need this statement to be true for the first 42 steps before being falsified. (For

an explanation of this point, see Remark 5.8 below.) In general, M ⇓k Q should be

defined in such a way that in the topos of trees model it is true at stage n (using

vocabulary from Section 2.1) iff either

• k < n and M evaluates in precisely k steps to a value satisfying Q, or

• k ≥ n and evaluation of M takes more than k steps.

In particular, if M diverges, then M ⇓k Q should be true at stages n ≤ k false for

n > k.

The use of predicates means that partial results of term evaluation are ignored,

and comparison of the result to the right hand side of ⇓ is postponed until evaluation

of the term is complete. The more standard big-step evaluation of terms to values

can be defined as

M ⇓k v def
== M ⇓k λv′.v′ = v

3.2 Small-step semantics

Figure 3 defines the small-step operational semantics. Just like the big step seman-

tics, the small step semantics counts unfoldings of fixed points. The small steps

semantics will be proved equivalent to the big-step semantics, but is introduced,

because it is more suitable for the proofs of soundness and computational adequacy.

Note the following easy lemma.

Lemma 3.1 The small-step semantics is deterministic: if M →k N and M →k′

N ′, then k = k′ and N = N ′.

The transitive closure of the small step semantics is defined using . to ensure

that the steps of PCF are synchronised with the steps of the meta language.

5

Paviotti, Møgelberg, Birkedal

(λx : σ.M)(N)→0 M [N/x]
(SLam)

Yσ M →1 M(Yσ M)
(SFix)

pred 0→0 0
(SPredZ)

pred n+ 1→0 n
(SPredN)

ifz 0 M N →0 M
(SIfZ)

ifz (n+ 1) M N →0 N
(SIfN)

M →k M ′

M(N)→k M ′(N)
(SApp)

M →k M ′

succ M →k succ M ′
(SSucc)

M →k M ′

pred M →k pred M ′
(SPred)

L→k L′

ifz L M N →k ifz L′ M N
(SIfZ)

Fig. 3. Step-Indexed Small Step semantics of PCF. In the rules, k can be 0 or 1.

Definition 3.2 Denote by →0
∗ the reflexive, transitive closure of →0. The closure

of the small step semantics, written M ⇒k Q is a relation between closed terms,

natural numbers, and predicates on closed terms, defined by induction on k as

M ⇒0 Q
def
== ΣN : TermPCF.M →0

∗ N and Q(N)

M ⇒k+1 Q
def
== ΣM ′,M ′′ : TermPCF.M →0

∗ M
′ and M ′ →1 M ′′ and .(M ′′ ⇒k Q)

Similarly to the case of the big-step semantics we define M ⇒k v
def
== M ⇒k

λN.v = N

We will now prove the correspondence between the big-step and the small step

operational semantics. First we need the following lemma.

Lemma 3.3 Let M,N be closed terms of type τ , and let Q : TermPCF → U.

(i) If M →0 N and N ⇓k Q then M ⇓k Q
(ii) If M →1 N and .(N ⇓k Q) then M ⇓k+1 Q

Proof sketch

(i) By induction on M →0 N . We consider che case ifz L M N →0 ifz L′ M N .

Assume ifz L′ M N ⇓k Q. By definition L′ ⇓k Q′. By induction hypothesis

L ⇓k Q′ and by definition ifz L M N ⇓k Q. All the other cases are similar.

(ii) By induction on M →1 N . The base case is Yσ M →1 M(Yσ M). Assume

.(M(Yσ M) ⇓k Q). Then by definition Yσ M ⇓k+1 Q. We consider now the

inductive cases pred M →1 pred M ′. Assume .(pred M ′ ⇓k Q). By definition

.(M ′ ⇓k λx.Q(x − 1)) and by induction hypothesis M ⇓k+1 λx.Q(x − 1). By

definition pred M ⇓k Q.

2

Lemma 3.4 Let M be a closed term and Q : ValuePCF → U a relation on values.

If M ⇒k (λN.N ⇓m Q) then M ⇓k+m Q

Proof. The proof is by induction on k. In the case where k = k′ + 1 we have

6

Paviotti, Møgelberg, Birkedal

as assumptions that M →0
∗ N and N →1 N ′ and .(N ′ ⇒k′+m (λN.N ⇓m Q)).

By induction we have .(N ′ ⇓k′+m Q) and now by Lemma 3.3 also M ⇓k+m Q as

desired. 2

Now we can state the correspondence. Note that we have to massage the predi-

cate of the ⇒ relation to make things type check properly.

Lemma 3.5 For all M : TermPCF and v : ValuePCF ,

M ⇓k v iff M ⇒k λN.N ⇓0 v

Proof. We consider implication from left to right in the case of the fix-point. As-

sume Yσ M ⇓k+1 v. By definition .(M(Yσ M) ⇓k v). By induction hypothesis

.(M(Yσ M) ⇒k λN.N ⇓0 v). Together with Yσ M →1 M(Yσ M) by definition

Yσ M ⇒k+1 λN.N ⇓0 v

The case from right to left follows from Lemma 3.4.

2

The following is the standard statement for operational correspondence and

follows directly from Lemma 3.5.

Corollary 3.6 M ⇓k v ⇔M ⇒k v

4 Denotational semantics

We now define the denotational semantics of PCF. For this, we use the guarded

recursive lifting monad on types, defined as the guarded recursive type

LA
def
== fixX.(A+ .X).

Let i : A+ .LA ∼= LA be the isomorphism, let θ : .LA→ LA be the right inclusion

composed with i and let η : A→ LA (the unit of the monad) denote the left inclusion

composed with i. Note that any element of LA is either of the form η(a) or θ(r).

We can describe the universal property of LA as follows. Define a .-algebra to

be a type B together with a map θB : .B → B. The lifting LA as defined above is

the free .-algebra on A. Given f : A→ B with B a .-algebra, the unique extension

of f to a homomorphism of .-algebras f̂ : LA→ B is defined as

f̂(η(a))
def
== f(a)

f̂(θ(r))
def
== θB(next(f̂) ~ r)

which can be formally expressed as a fixed point of a term of type .(LA → B) →
LA→ B.

The intuition the reader should have for L is that LA is the type of compu-

tations possibly returning an element of A, recording the number of steps used in

the computation. The unit η gives an inclusion of values into computations, the

composite δ = θ ◦ next : LA → LA is an operation that adds one time step to a

computation, and the bottom element ⊥ = fix(θ) is the diverging computation. In

fact, any .-algebra has a bottom element and an operation δ as defined above, and

homorphisms preserve this structure.

7

Paviotti, Møgelberg, Birkedal

Jx1 : σ1, · · · , xk : σk ` xiK(γ) = πiγ

JΓ ` n : natK(γ) = η(n)

JΓ ` Yσ MK(γ) = (fixJσK)(λx : .JσK.θσ(next(JMK(γ))) ~ x))

JΓ ` λx.MK(γ) = λx.JMK(γ, x)

JΓ `MNK(γ) = JMK(γ)JNK(γ)

JΓ ` succ MK(γ) = L(λx.x+ 1)(JMK(γ))

JΓ ` pred MK(γ) = L(λx.x− 1)(JMK(γ))

JΓ ` ifz L M NK(γ) = (̂ifz(JMK(γ), JNK(γ)))(JLK(γ))

Fig. 4. Interpretation of terms

4.1 Interpretation

The interpretation function J·K : Type
PCF
→ U is defined by induction.

JnatK def
== LN

Jτ → σK def
== JτK→ JσK

The denotation of every type is a .-algebra: the map θσ : .JσK→ JσK is defined by

induction on σ by

θσ→τ = λf : .(JσK→ JτK).λx : JσK.θτ (f ~ next(x))

Typing judgements Γ ` M : σ are interpreted as usual as functions from JΓK
to JσK, where the interpretation of contexts is defined as Jx1 : σ1, · · · , xk : σkK

def
==

Jσ1K× · · · × JσnK. Figure 4 defines the interpretation interpretation of judgements.

Below we often write JMK rather than JΓ ` M : σK. Natural numbers in PCF are

computations that produce a value in zero step, so we interpret them by using η.

In the case of Yσ we have by induction a map JMK(γ) of type JσK→ JσK. Morally,

JΓ ` Yσ MK(γ) should be the fixed point of JMK(γ) composed with δ, ensuring that

each unfolding of the fixed point is recorded as a step in the model, but to get the

types correct, we have to apply the functorial action of . to JMK(γ) and compose

with θ instead of δ. The intuition given above is captured in the following lemma.

Lemma 4.1 Let Γ `M : σ → σ then JYσ MK = δσ ◦ JM(Yσ M)K

We now explain the interpretation of ifz L M N . Define first a semantic

ifz : JσK→ JσK→ N→ JσK operation by

ifzx y 0
def
== x ifzx y (n+ 1)

def
== y

The operation ̂ifz : JσK → JσK → JnatK → JσK is defined by ̂ifz x y being the

extension of ifz x y to a homomorphism of .-algebras. As a direct consequence of

this definition we get

8

Paviotti, Møgelberg, Birkedal

Lemma 4.2 (i)

J λx : nat. ifz x M NK(θ(r)) = θ(next(J λx : nat. ifz x M NK(γ)) ~ r)

(ii) If JLK(γ) = δ(JL′K(γ)), then Jifz L M NK(γ) = δJifz L′ M NK(γ)

4.2 Soundness

The soundness theorem states that if a program M evaluates to a value v in k steps

then the interpretation of M is equal to the interpretation of v delayed k times

by the semantic delay operation δ. Thus the soundness theorem captures not just

extensional but also intensional behaviour of terms.

The theorem is proved using the small-step semantics. We first need a lemma

for the single step reduction.

Lemma 4.3 Let M be a closed term of type τ . If M →k N then JMK(∗) = δkJNK(∗)

Proof. The proof goes by induction on M →k N , and here we only consider two

cases. The case of Yσ M →1 M(Yσ M) follows from Lemma 4.1. In the case of

ifz M1 N1 N2 →1 ifz M2 N1 N2, the induction hypothesis gives JM1K = δ ◦ JM2K,
and now Lemma 4.2 applies proving the case. 2

We prove it now for ⇒k.

Lemma 4.4 Let M be a closed term of type τ , if M ⇒k N then JMK(∗) = δkJNK(∗)

Proof. By induction on k. The case k = 0 follows from Lemma 4.3. Assume

k = k′ + 1. By definition we have M →0
∗ M

′ and M ′ →1 M ′′ and .(M ′′ ⇒k′ N).

By repeated application of Lemma 4.3 we get JMK(∗) = JM ′K(∗) and JM ′K(∗) =

δ(JM ′′K(∗)).
By induction hypothesis we get .(JM ′′K(∗) = δk

′JNK(∗)). By gDTT rule

TY − COM. this implies next(JM ′′K(∗)) = next(δk
′JNK(∗))) and since δ = θ ◦ next,

this implies δJM ′′K(∗) = δkJNK(∗). By putting together the equations we get finally

JMK(∗) = δkJNK(∗). 2

The Soundness theorem follows from the fact that the small-step semantics is

equivalent to the big step, which is Corollary 3.6.

Theorem 4.5 (Soundness) Let M be a closed term of type τ , if M ⇓k v then

JMK(∗) = δkJvK(∗)

5 Computational Adequacy

In this section we prove that the denotational semantics is computationally ade-

quate with respect to the operational semantics. At a high level, we proceed in the

standard way, by constructing a logical relation Rσ between denotations JσK and

terms TermPCF and then proving that open terms and their denotation respect this

relation (Lemma 5.6 below). We define our logical relation in guarded dependent

9

Paviotti, Møgelberg, Birkedal

type theory, so formally, it will be a map into the universe U of types. Thus we work

with a proof-relevant logical relation, similar to what was recently done in work of

Benton et. al. [?].

To formulate the definition of the logical relations and also to carry out the proof

of the fundamental theorem of logical relations, we need some more sophisticated

features of gDTT, which we now recall.

5.1 Guarded Dependent Type Theory

We recall some key features of gDTT; see [6] for more details.

As mentioned in Section 2, the later functor . is an applicative functor. Guarded

dependent type theory extends the later application ~ : .(A → B) → .A → .B to

the dependent case using a new notion of delayed substitution: If Γ ` f : .Π(x : A).B

and Γ ` t : .A, then the term f ~ t has type . [x � t] .B, where [x � t] is a delayed

substitution. Note that since t has the type .A, and not A, then we cannot substitute

t for x in B. Intuitively, t will eventually reduce to some value nextu, and so the

resulting type should be .B[u/x]. But when t is an open term, then we cannot

perform this reduction, and thus cannot type this term. Hence we use the type

mentioned earlier . [x � t] .B, in whch x is bound in B. Definitional equality rules

allow us to simplify this type when t has form nextu, i.e.,

.[x � nextu].B ' .B[u/x]

as expected. Here we have just considered a single delayed substitution, in general,

we may have sequences of delayed substitutions (such as . [x � t, y � u] .C). De-

layed substitutions can also occur in terms, e.g., if Γ, x : A ` t : B and Γ ` u : .A,

then Γ ` next [x � u] .t : . [x � t] .B

Recall from Section 2 that next f ~ next t ≡ next(f(t)). We can use delayed

substitutions to express what a later application should be equal to, if one or both

of the arguments are not of the form next(u) (for some term u). In gDTT, given f of

type .(X → Y) and x of type .X, then f ~ x is equal to next [g � f, y � x] .(g(x)).

Definitional equality rules allow us to simplify such terms when one or both of f or

x is of the form nextu. For example, next [g � next(f), y � x] .(g(x)) is definitionally

equal to next [y � x] .(f(x)). Similarly for delayed substitutions in types.

5.2 Logical Relation

In this section we define a logical relation to prove the adequacy theorem. This

relation is a function to U.

We introduce the following notation:

Notation 1 Let R : A → B → U be a relation from A to B, t of type .A and u

of type .B. Define t .R u
def
== . [x � t, y � u] .(x R y)

Note that (next(t) .R next(u)) ' .(tRu).

Lemma 5.1 The mapping λR. .R : (A → B → U) → .A → .B → U is contrac-

tive, i.e., can be factored as F ◦next for some F : .(A→ B → U)→ .A→ .B → U.

10

Paviotti, Møgelberg, Birkedal

Proof. Define F (S)x y = .̂(S ~ x~ y). 2

Definition 5.2 [Logical Relation] The logical relation Rτ : JτK × TermPCF → U is

inductively defined on types.

η(v) Rnat M
def
== M ⇓0 v

θnat(r) Rnat M
def
== ΣM ′,M ′′ : TermPCF.M →0

∗ M
′ and M ′ →1 M ′′ and r .Rnat next(M ′′)

f Rτ→σ M
def
== Πα : JτK, N : TermPCF.α Rτ N =⇒ f(α) Rσ (MN)

The definition of Rnat is by guarded recursion using Lemma 5.1.

We now prove a series of lemmas needed for the proof of computational adequacy.

The first states that the applicative functor action ~ respects the logical relation.

Lemma 5.3 If r .Rτ next(L) and f .Rτ→σ next(M) then (f ~ r) .Rσ next(ML)

Proof. Assume r .Rτ next(L) and f .Rτ→σ next(M) which by repeatedly unfold-

ing is

. [g � f] .(g Rτ→σ M) ' . [g � f] .(Π(y : JσK)(L : TermPCF).y Rτ L→ g(y) Rσ ML)

Applying this to r, next(L) and r .Rnat next(L) gives

. [g � f, y � r] .(g(y) Rσ ML), which can be reduced by type equalities to

next [g � f, y � r] .(g(y)) .Rσ next(ML) ' (f ~ r) .Rσ next(ML)

by distributing the next and applying the substitutions. 2

The following lemma generalises the second case of Rnat to all types.

Lemma 5.4 Let α of type .JσK and two terms N and M , if (α .Rσ next(N)) and

M →1 N then θσ(α) Rσ M

Proof. The proof is by induction on σ. The base case σ = nat is by definition of

Rnat .

For the induction step, suppose α of type .Jτ1 → τ2K, and M , N are closed

terms such that α .Rτ1→τ2 next(N) and M →1 N . We must show that if β : Jτ1K,
P : TermPCF and β Rτ1 P then (θτ1→τ2(α))(β) Rτ2 (MP).

So suppose β Rτ1 P , and thus also .(β Rτ1 P) which is equal to

next(β) .Rτ1 next(P). By applying Lemma 5.3 to this and α .Rτ1→τ2 next(N)

we get

α~ (next(β)) .Rτ2 next(NP)

Since M →1 N also MP →1 NP , and thus, by the induction hypothesis for τ2,

θτ2(α ~ (next(β))) Rτ2 MP . Since by definition θτ1→τ2(α) ~ β = θτ2(α ~ next(β)),

this proves the case. 2

Lemma 5.5 If α Rσ M and M →0 N then α Rσ N

Proof. The proof is by induction on σ. We show the case σ = nat. We proceed

by case analysis on α. We show the case when α = θnat(r). From the assumption

11

Paviotti, Møgelberg, Birkedal

α Rσ M we have that there exists M ′ and M ′′ such that M →0
∗ M

′ and M ′ →1 M ′′

and α .Rnat next(M ′′). By determinism of the small-step semantics (Lemma 3.1)

the reduction M →0
∗ M

′ must factor as M → N →0
∗ M

′ and thus α Rnat N as

desired. 2

We can now finally prove the fundamental lemma, which can be thought of as a

strengthened induction hypothesis for computational adequacy, generalised to open

terms.

Lemma 5.6 (Fundamental Lemma) Let Γ ` t : τ , suppose Γ ≡ x1 : τ1, · · · , x :

τ and ti : τi, αi : JτiK and αi RJτiK ti for i ∈ {1, . . . , n}, then JtK(α) Rτ t[x := t]

Proof. The proof is by induction on the height of the typing judgement, and we

just show the two most difficult cases.

We start off by the case Γ ` Yσ M : σ. The argument is by guarded recursion:

we assume

.(JYσ MK(α) Rσ (Yσ M)([x := t])) (1)

and prove JYσ MK(α) Rσ (Yσ M)([x := t]). By induction hypothesis we know

JMK(α) Rσ→σ M [x := t], hence we derive .(JMK(α) Rσ→σ M [x := t]), i.e.,

.(Πα : JσK.N : TermPCF. α Rσ N ⇒ JMK(α)(α) Rσ (M [x := t]N)) (2)

Applying (2) to (1) we get

.(JMK(α)(JYσ MK(α)) Rσ (M [x := t](Yσ M [x := t])))

which is equal as types to

.(JM(Yσ M)K(α) Rσ (M(Yσ M))[x := t]

' next(JM(Yσ M)K(α)) .Rσ next((M(Yσ M))[x := t])

Thus, by Lemma 5.4

θσ(next(JM(Yσ M)K(α))) Rσ (Yσ M)([x := t])

and as δσ = θσ ◦ next, by Lemma 4.1

JYσ MK(α) Rσ (Yσ M)([x := t])

as desired.

Now the case of Γ ` ifz L M N : σ. This case can be shown by showing that

Jλx. ifz x M NK(α) Rnat→σ (λx. ifz x M N)[x := t]

and then applying this to the induction hypothesis JLK(α) Rnat L[x := t]. The

argument is by guarded recursion. Assume

.(Jλx. ifz x M NK(α) Rnat→σ (λx. ifz x M N)[x := t]) (3)

12

Paviotti, Møgelberg, Birkedal

We must show that if β : JnatK, L : TermPCF and β Rnat L then

Jλx. ifz x M NK(α)(β) Rσ ((λx. ifz x M N)[x := t](L))

We proceed by case analysis on β. The interesting case is β = θnat(r). Here r is of

type .JnatK and L : TermPCF. The hypothesis θnat(r) Rnat L states that there exist

L′, L′′ : TermPCF s.t. L→0
∗ L
′, L′ →1 L′′ and

r .Rnat next(L′′) (4)

Since (3) is equal to

(next(Jλx. ifz x M NK(α))) .Rnat→σ next((λx. ifz x M N)[x := t])

We can apply Lemma 5.3 to that and (4) to get

(next(Jλx. ifz x M NK(α)) ~ r) .Rσ next((ifz L′′ M [x := t] N [x := t]))

By Lemma 5.4 with L′ →1 L′′ this implies

θσ(next(Jλx. ifz x M NK(α)) ~ r) Rσ next((ifz L′ M [x := t] N [x := t]))

and by Lemma 4.2 along with repeated application of Lemma 5.5 this implies

Jλx. ifz x M NK(α)(β) Rσ (λx. ifz x M N)[x := t](L)

thus getting what we wanted. 2

We have now all the pieces in place to prove adequacy.

Theorem 5.7 (Computational Adequacy) If M is a closed term of type nat

then M ⇓k v iff JMK(∗) = δkJvK

Proof. The left to right implication is soundness (Theorem 4.5). For the right

to left implication note first that the Fundamental Lemma (Lemma 5.6) implies

δkJvK Rnat M . An easy induction on k then proves that M ⇓k v. 2

Remark 5.8 In the topos of trees model JnatK(n) ∼= {1, . . . , n}×N+ {⊥}. Values

are modelled as elements of the form (1, k) and δ is defined as δ(j, k) = (j + 1, k) if

j < n and δ(n, k) = ⊥. Thus, if a term M diverges, then JMK(∗) = δkJvK holds at

stage n whenever k > n explaining the need for M ⇓k v to be true also at stage n

when k > n.

6 The external viewpoint

The adequacy theorem is a statement formulated entirely in gDTT, relating two

notions of semantics also formulated entirely in gDTT. While we believe that gDTT
is a natural setting to do semantics in, and that the result therefore is interesting in

its own right, it is still natural to as what we proved in the “real world”. One way

of formulating this question more precisely is to use the interpretation of gDTT in

13

Paviotti, Møgelberg, Birkedal

the topos of trees (henceforth denoted by L−M). For example, the sets of PCF types,

terms and values are inductively defined types, which are interpreted as constant

presheaves over the corresponding sets of types, terms and values. Types of PCF as

understood in set theory, thus correspond bijectively to global element of LType
PCF
M,

which by composing with the interpretation of PCF defined in gDTT gives rise to

an object in the topos of trees. Likewise, a PCF term gives rise to a morphism in

the topos of trees. Thus, essentially by composing the interpretation of PCF given

above with the interpretation of gDTT, we get an interpretation of PCF into the

topos of trees, which we will denote by J−Kext.
We denote by M ⇓kext v the usual external formulation of the big-step semantics

for PCF (see e.g. [7]).

Lemma 6.1 The type LM ⇓k QM is globally inhabited iff there exists a value v such

that M ⇓kext v and LQ(v)M is globally inhabited.

The lemma can be proved by induction over first k then M .

As a special case, Theorem 5.7 states that LM ⇓k vM is inhabited by a global

element iff LJMK(∗) = δkJvKM is inhabited by a global element. Since the topos of

trees is a model of extensional type theory, the latter holds precisely when JMKext =

δkJvKext.

Theorem 6.2 (Computational Adequacy, externally) If ` M : σ with σ a

ground type, then M ⇓kext v iff JMKext(∗) = δkJvKext

7 Discussion and Future Work

In earlier work, it has been shown how guarded type theory can be used to give

abstract accounts of operationally-based step-indexed models [4,11]. There the op-

erational semantics of the programming language under consideration is also defined

inside guarded type theory, but there are no explicit counting of steps (indeed, part

of the point is to avoid the steps). Instead, the operational semantics is defined

by the transitive closure of a single-step relation — and, importantly, the transitive

closure is defined by a fixed point using guarded recursion. Thus some readers might

be surprised why we use a step-counting operational semantics here. The reason is

simply that we want to show, in the type theory, that the denotational semantics

is adequate with respect to an operational semantics and since the denotational

semantics is intensional and steps thus matter, we also need to count steps in the

operational semantics to formulate adequacy.

In previous work [4] we have studied the internal topos logic of the topos of

trees model of guarded recursion and used this for reasoning about advanced pro-

gramming languages. In this paper, we could have likewise chosen to reason in

topos logic rather than type theory. We believe that the proofs of soundness and

computational adequacy would have gone through also in this setting, but the in-

teraction between the . type modality and the existential quantifiers in the topos

of trees, makes this an unnatural choice. For example, one can prove the statement

∃k.∃v.Ynat (λx.x) ⇓k v in the internal logic using guarded recursion as follows:

assume .(∃k.∃v.Ynat (λx.x) ⇓k v). Because nat is total and inhabited we can pull

out the existentials by Theorem 2.7.4 in [4] and derive ∃k.∃v..(Ynat (λx.x) ⇓k v)

14

Paviotti, Møgelberg, Birkedal

which implies ∃k.∃v.Ynat (λx.x) ⇓k v. The same statement in type theory is not

derivable as can be proved in the topos of trees. Intuitively the difference is the

constructiveness of the dependent sum, which allows us to extract the witnesses k

and n.

In future work, we would like to explore models of FPC (i.e., a PCF extended

with recursive types) and also investigate how to define a more extensional model by

quotienting the present intensional model. The latter would be related to Escardo’s

results in [7].

References

[1] Andrew W Appel, Paul-André Melliès, Christopher D Richards, and Jérôme Vouillon. A very modal
model of a modern, major, general type system. In POPL, pages 109–122, 2007.

[2] Robert Atkey and Conor McBride. Productive coprogramming with guarded recursion. In ICFP, pages
197–208, 2013.

[3] Nick Benton, Martin Hofmann, and Vivek Nigam. Abstract effects and proof-relevant logical relations.
In POPL, 2014.

[4] Lars Birkedal and Rasmus Ejlers Møgelberg. Intensional type theory with guarded recursive types qua
fixed points on universes. In LICS, pages 213–222, 2013.

[5] Lars Birkedal, Rasmus Ejlers Møgelberg, Jan Schwinghammer, and Kristian Støvring. First steps in
synthetic guarded domain theory: step-indexing in the topos of trees. LMCS, 8(4), 2012.

[6] Ales Bizjak, Lars Birkedal, and Marino Miculan. A model of countable nondeterminism in guarded
type theory. In RTA-TLCA, pages 108–123, 2014.

[7] Aleš Bizjak, Hans Bugge Grathwohl, Ranald Clouston, Rasmus Ejlers Møgelberg, and Lars Birkedal.
Guarded dependent type theory with coinductive types, 2015. Submitted for publication. Extended
version available at http://users-cs.au.dk/abizjak/documents/trs/gdtt-ext.pdf.

[8] Venanzio Capretta. General recursion via coinductive types. Logical Methods in Computer Science,
1(2), 2005.

[9] M.H. Escardo. A metric model of PCF. Laboratory for Foundations of Computer Science, University
of Edinburgh,
http://www.dcs.st-and.ac.uk/~mhe/, April 1999.

[10] C. McBride and R. Paterson. Applicative programming with effects. Journal of Functional
Programming, 18(1), 2008.

[11] Rasmus Ejlers Møgelberg. A type theory for productive coprogramming via guarded recursion. In
CSL-LICS, 2014.

[12] Hiroshi Nakano. A modality for recursion. In LICS, pages 255–266, 2000.

[13] Kasper Svendsen and Lars Birkedal. Impredicative concurrent abstract predicates. In ESOP, 2014.

15

http://users-cs.au.dk/abizjak/documents/trs/gdtt-ext.pdf

	Introduction
	Guarded recursion
	The topos of trees model

	PCF
	Big-step semantics
	Small-step semantics

	Denotational semantics
	Interpretation
	Soundness

	Computational Adequacy
	Guarded Dependent Type Theory
	Logical Relation

	The external viewpoint
	Discussion and Future Work
	References

