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Abstract. Previous work has shown that nanocrystalline samples of lithium tantalate and titan-

ate prepared by high-energy milling show unusually high lithium ion conductivity.  Here, we 

report an X-ray absorption spectroscopy (XAS) study at the Ti K-edge and the Ta L3 edge of 

samples that have been milled for various lengths of time.  For both systems the results show 

that milling creates amorphous material whose quantity increases with the milling time.  The 

more extensive data for the tantalate shows that milling for only 30 minutes generates ~25% 

amorphous content in the sample.  The content rises to ~60% after 16 hours.  It is suggested 

that it is the motion of the lithium ions through the amorphous content that provides the mech-

anism for the high ionic conductivity. 

1. Introduction 

There are numerous reports in the literature that atomic migration in nanocrystals is unusually 
fast compared to the parent bulk material.  In ionic materials the origin for enhanced diffusion 
has been assigned to atomic disorder along interfaces and surfaces [1-4], however, in many 
cases, the experimental data are ambiguous.  The data for the binary and ternary oxides is par-
ticularly varied and is very dependent on the method of sample preparation [5-9] as this con-
trols the microstructure of the material.  A simple and rapid method of producing relatively 
large quantities of nanomaterials is high-energy ball-milling [10-13].  However, it is now 
clear that for simple binary oxides, like alumina, Al2O3 [14] and zirconia, ZrO2 [15] it pro-
duces samples that have a large (tens of per cent) amorphous content; the nanocrystalline core 
is surrounded by a shell of amorphous material.  The effect on the atomic migration of this 
microstructure is not clear.  In contrast, ball-milled ternary oxides can show unusually en-
hanced ionic mobility. 

The first ternary ball-milled system that was studied in any depth was lithium niobate, 
LiNbO3, and the samples exhibited very high lithium ion diffusivity and conductivity [16-18]; 
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Figure 1:  The Ta L3-edge EXAFS of 
LiTaO3.  Upper – normalised EXAFS. 
Lower – Fourier transform 

the material in bulk crystalline form is normally regarded as an insulator.  7Li nuclear magnet-
ic resonance (NMR) studies of ball-milled LiNbO3 with particle sizes down to 16 nm showed 
lithium ion mobility was increased by several orders of magnitude [16].  Nb K-edge X-ray 
absorption spectroscopy (XAS) of ball-milled LiNbO3 showed a highly attenuated Extended 
X-ray Absorption Fine Structure (EXAFS) indicative of a significant amorphous content [17].  
A very thorough study by Heitjans and co-workers [18] of ball-milled and sol-gel prepared 
LiNbO3 using a wide range of techniques confirmed the amorphous nature of the surface of 
the nanocrystals and that this was the origin of the high lithium ion mobility. 

Currently there is intense interest in improving the performance of lithium-ion batteries 
and a necessary requirement of components is high lithium ion mobility [19].  Hence the ob-
servations for ball-milled LiNbO3 have led to the study of other similar materials.  Ball-milled 
LiTaO3 with a particle size of about 20 nm exhibits an ionic conductivity five orders of mag-
nitude higher than bulk crystals [20].  Similarly ball-milling Li 2TiO3 [21, 22] increases the 
lithium ion conductivity by some three orders of magnitude.  As in the case of LiNbO3 the 
increased lithium ion diffusion is assigned to the generation of amorphous material.  In this 
contribution we confirm and quantify the presence of amorphous material in these two mate-
rials using XAS measurements. 
 
2. Methodology 

2.1 Materials 

Micron sized commercial powders of 
Li 2TiO3 and LiTaO3 were ball-milled using 
the procedures described in previous papers 
[20-22].  For Li2TiO3 only two samples 
were studied; micron powder and after 8 
hours milling.  In the case of LiTaO3 micron 
powder and samples after 0.5, 1, 4, 8 and 16 
hours of milling were investigated.  For the 
XAS measurements the powders were 
mixed with cellulose diluent and pressed 
into 13 mm diameter pellets. 
 
2.2 XAS measurements 

XAS scans were collected for the 
appropriate edge (Ti K-edge and Ta L3-
edge) at room temperature on beam line 
B18 at the Diamond Light Source [23].  
Data collection used transmission mode 
with ion chamber detectors.  Continuous 
scanning (QEXAFS) was employed; an 
individual scan required 180 s and several 
scans were performed to improve the signal-
to-noise ratio.  The synchrotron energy and 
current were 3 GeV and 300 mA, 
respectively.  The beam size at the sample 
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was 700 × 700 microns.  Powdered sam-
ples were mixed with cellulose as a dilu-
ent and pressed into 13 mm diameter pel-
lets.  The spectra were normalized in 
Athena and fitted to scattering models in 
R-space produced by FEFF in Artemis 
[24]. 
 
3 Results and discussion 

3.1 LiTaO3 XAS measurements 

All the spectra were analysed to yield the 
details of the local structure, i.e. bond 
lengths, R, Debye-Waller factors, ı, etc.; 
the qualitative information is, however, 
best represented by the Fourier transform 
(FT) of the k3 weighted normalised EX-
AFS and these will be mostly used in this short paper.  The data for three samples are shown 
in Figure 1.  There is an attenuation of the EXAFS at high k leading to a reduction in the 
peaks in the corresponding Fourier transform, particularly the Ta-Ta correlation at 3.8 Å.  We 
have analysed the effect in two ways; as a change in the Debye-Waller factor due to disorder 
and as the effect of an amorphous content.  A full analysis with FEFF allowing all the key pa-
rameters to float gave very good fits to the spectra.  The parameters that changed significantly 
with milling time were the Debye-Waller factors, ı, for the Ta-O, Ta-O and Ta-Ta correla-
tions at 1.9, 2.0 and 3.8 Å, respectively.  These are plotted in Figure 2 in the form of ı2 versus 
milling time.  It can be seen that for all the correlations ı2 almost doubles after only 30 
minutes milling.  This suggests that even this relatively brief milling causes a distortion of the 
local structure around the Ta ions.  After 30 minutes the Ta-O Debye-Waller factors show on-
ly a gradual change whereas the Ta-Ta correlation, which is significantly larger, continues to 
increase steeply with milling time.  An explanation of these effects is that milling after 30 
minutes causes little changes to the local Ta-O octahedra but the relative arrangement of the 
octahedra continues to change.  This would be expected given that the strong Coulomb inter-
action between Ta5+ and O2- will maintain a relatively rigid local structure.  This explanation 
is also consistent with the shape of the 7Li NMR quadrupolar powder patterns observed for a 
sample milled for 30 min, see ref. [20].  After 30 min of milling most of the local electric field 
gradients in the direct neighbourhood of the Li nuclei are still comparable to those in un-
milled, coarse-grained LiTaO3 [20].  

An alternative, but not contra-
dictory, approach is to assume the at-
tenuation of the EXAFS is due to the 
ball-milling generating amorphous ma-
terial, as in the analysis of the EXAFS 
of ZrO2 [15].  This would be mainly 
reflected in the peak height of the Ta-
Ta shell in the Fourier transform.  As-
suming that the commercial powder 
prior to milling is 100% crystalline 

Table 1 
Milling 

Time/Hour 
Estimated Amorphous Content 

LiTaO3 Li2TiO3 
0 0% 0% 

0.5 ~ 25%  
1 ~ 41%  
4 ~ 44%  
8 ~ 55% ~25% 
16 ~ 60%  
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then the height of the Ta-Ta peak in the 
Fourier transform is representative of a 
sample with no amorphous content.  
Hence the relative height of this peak in 
the milled samples can be used to esti-
mate the degree of crystallinity, i.e. the 
amorphous content.  The results of this 
rather crude, but useful, analysis are 
shown in Table 1.  This analysis also re-
veals that milling for as little as 30 
minutes drastically affects the sample 
and generated ~25 % amorphous materi-
al. 

3.2 Li2TiO3 XAS measurements 

We have fewer data for this system but 
they follow the same pattern as those for 
LiTaO3.  The EXAFS results are shown 
in Figure 3.  Again, ball-milling attenu-
ates the EXAFS and there is a decrease in 
the height of the Ti-Ti peak in the Fouri-
er transform.  The same analysis used for 
LiTaO3 suggests the ball-milled sample 
contains 25% amorphous material. 

It would be unwise to assume that 
the apparent quantitative differences be-
tween the titanate and tantalate after 8 
hours ball-milling are meaningful.  Other 
factors, such as the relative hardness of 
the tow materials, would need to be con-
sidered. 
 
4. Conclusions 

There are clear similarities between the current XAS results for LiTaO3 and Li2TiO3 and the 
data for LiNbO3 reported in earlier papers [17, 18].  Hence, a reasonable general explanation 
of the results for these two systems is that ball -milling is creating nanoparticles that have a 
crystalline core with an amorphous shell. 

The more extensive study of LiTaO3 is particularly interesting as it shows that ball-
milling for only 30 minutes dramatically attenuates the EXAFS spectrum, indicating a highly 
disordered sample.  This parallels the conductivity measurements of a sample ball-milled for 
30 minutes where the magnitude is four orders higher than that for an un-milled sample [20].  
However, the conductivity studies revealed some subtle dependence of the microstructure on 
the time of ball-milling.  The longer the milling time the more difficult it is to recover crystal-
linity by thermal annealing. 

Finally, it is interesting to compare the results for the current systems and other oxides 
with similar data for binary fluorides.  XAS studies of ball-milled binary fluorides, like CaF2 
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and BaF2 show virtually no attenuation of the EXAFS spectra, suggesting a very small, if any, 
amorphous content [25].  The difference is presumably a reflection of the greater strength of 
metal-fluorine bonds compared to metal-oxygen bonds. 
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