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Abstract. In recent work with Lins and Nussbaum the first author gave an

algorithm that can detect the existence of a positive eigenvector for order-
preserving homogeneous maps on the standard positive cone. The main goal

of this paper is to determine the minimum number of iterations this algorithm

requires. It is known that this number is equal to the illumination number
of the unit ball, Bv, of the variation norm, ‖x‖v := maxi xi − mini xi on

V0 := {x ∈ Rn : xn = 0}. In this paper we will show that the illumination

number of Bv is equal to
( n
dn

2
e
)
, and hence provide a sharp lower bound for

the running time of the algorithm.

1. Introduction

The classical Perron-Frobenius theory concerns the spectral properties of square
nonnegative matrices. In recent decades this theory has been extended to a variety
of nonlinear maps that preserve a partial ordering induced by a cone, see [8] and
the references therein for an up-to-date account.

Of particular interest are order-preserving homogeneous maps f : Rn
≥0 → Rn

≥0,
where

Rn
≥0 := {x ∈ Rn : xi ≥ 0 for all i = 1, . . . , n}

is the standard positive cone. Recall that f : Rn
≥0 → Rn

≥0 is order-preserving if

f(x) ≤ f(y) whenever x ≤ y and x, y ∈ Rn
≥0. Here w ≤ z if z − w ∈ Rn

≥0.

Furthermore, f is said to be homogeneous if f(λx) = λf(x) for all λ ≥ 0 and
x ∈ Rn

≥0. Such maps arise in mathematical biology [10, 13] and in optimal control

and game theory [1, 12].
It is known [8, Corollary 5.4.2] that if f : Rn

≥0 → Rn
≥0 is a continuous, order-

preserving, homogeneous map, then there exists v ∈ Rn
≥0 such that

f(v) = r(f)v,

where

r(f) := lim
k→∞

‖fk‖1/kRn
≥0

is the cone spectral radius of f and

‖g‖Rn
≥0

:= sup{‖g(x)‖ : x ∈ Rn
≥0 and ‖x‖ ≤ 1}.
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Thus, as in the case of nonnegative matrices, continuous order-preserving homoge-
neous maps on Rn

≥0 have an eigenvector in the cone corresponding to the spectral
radius.

In many applications it is important to know if the map has a positive eigenvector,
i.e., an eigenvector that lies in the interior, Rn

>0 := {x ∈ Rn
≥0 : xi > 0 for i =

1, . . . , n}, of Rn
≥0. This appears to be a much more subtle problem. There exists

a variety of sufficient conditions in the literature, see [4], [5], [8, Chapter 6], and
[9]. Recently, Lemmens, Lins and Nussbaum [7, Section 5] gave an algorithm that
can confirm the existence of a positive eigenvector for continuous, order-preserving,
homogeneous maps f : Rn

≥0 → Rn
≥0. The main goal of this paper is to determine

the minimum number of iterations this algorithm needs to perform.

2. Preliminaries

Before we state the main result we give some more background. First let us
introduce some notation. Given a set S in a finite dimensional vector space V we
write S◦ to denote the interior of S, and ∂S to denote the boundary of S with
respect to the norm topology on V .

It is known that if f : Rn
≥0 → Rn

≥0 is an order-preserving homogeneous map and

there exists z ∈ Rn
>0 such that f(z) ∈ ∂Rn

≥0, then f(Rn
>0) ⊂ ∂Rn

≥0, see [8, Lemma

1.2.2]. Thus to analyse the existence of a positive eigenvector one may as well
consider order-preserving homogeneous maps f : Rn

>0 → Rn
>0. Moreover, on Rn

>0

we have Hilbert’s metric, dH , which is given by

dH(x, y) := log

(
max

i

xi
yi

)
− log

(
min
i

xi
yi

)
for x, y ∈ Rn

>0.

Note that dH is not a genuine metric, as dH(λx, µx) = 0 for all x ∈ Rn
>0 and

λ, µ > 0. In fact, dH(x, y) = 0 if and only if x = λy for some λ > 0. However, dH
is a metric on the set of rays in Rn

>0.
If f : Rn

>0 → Rn
>0 is order-preserving and homogeneous, then f is nonexpansive

under dH , i.e.,

dH(f(x), f(y)) ≤ dH(x, y) for all x, y ∈ Rn
>0,

see for example [8, Proposition 2.1.1]. In particular, order-preserving homogeneous
maps f : Rn

>0 → Rn
>0 are continuous on Rn

>0. Moreover, if x and y are eigenvectors
of f : Rn

>0 → Rn
>0 with f(x) = λx and f(y) = µy, then λ = µ, see [8, Corollary

5.2.2].
In [7, Theorem 5.1] the following necessary and sufficient conditions were ob-

tained for an order-preserving homogeneous map f : Rn
>0 → Rn

>0 to have a nonempty
set of eigenvectors, E(f) := {x ∈ Rn

>0 : x eigenvector of f}, which is bounded under
Hilbert’s metric.

Theorem 2.1. If f : Rn
>0 → Rn

>0 is an order-preserving homogeneous map, then
E(f) is nonempty and bounded under dH if and only if for each nonempty proper
subset J of {1, . . . , n} there exists xJ ∈ Rn

>0 such that

(2.1) max
j∈J

f(xJ)j
xJj

< min
j∈Jc

f(xJ)j
xJj

.

Note that the assertion is trivial in case n = 1, as each order-preserving ho-
mogeneous map f : R>0 → R>0 has a nonempty bounded set of eigenvectors. In
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case n ≥ 2 Theorem 2.1 yields the following simple algorithm for detecting positive
eigenvectors:

Algorithm 2.2. Let f : Rn
>0 → Rn

>0 be an order-preserving homogeneous map.
Repeat the following steps until every nonempty proper subset J of {1, . . . , n} has
been recorded.

Step 1: Randomly select x, with 0 < xj < 1 for all j, and compute f(x)j/xj
for all j ∈ {1, . . . , n}.

Step 2: Record all nonempty proper subsets J ⊂ {1, . . . , n} such that in-
equality (2.1) holds.

So, if this algorithm halts, then f has an eigenvector in Rn
>0. On the other hand,

if E(f) is empty or unbounded under dH , then the algorithm will never halt. Note
that a randomly chosen x in Step 1 can eliminate multiple subsets J in Step 2.
So, it is natural to ask for the least number of vectors required to fulfill the 2n − 2
inequalities in (2.1). This number corresponds to the minimum number of times
the algorithm has to perform Steps 1 and 2. In this paper we will show that one
needs at least (

n

dn/2e

)
vectors and this lower bound is sharp. Here dae is the smallest integer n ≥ a.
Likewise we shall write bac to denote the largest integer n ≤ a.

3. Connection with the illumination number

Recall that given a compact convex set C with nonempty interior in V , a vector
v ∈ V illuminates z ∈ ∂C if z + λv ∈ C◦ for all λ > 0 sufficiently small. A set S is
said to Illuminate C if for each z ∈ ∂C there exists v ∈ S such that v illuminates z.
The minimal size of illuminating set for C is called the illumination number of C
and is denoted i(C). There is a long-standing open conjecture which asserts that
i(C) ≤ 2n for every compact convex body in an n-dimensional vector space, see [2,
Chapter VI] for further details. It is easy to show, see for example [7, Lemma 4.1],
that if S illuminates every extreme point of C, then S illuminates C.

To proceed we need to discuss the connection between illumination numbers and
Theorem 2.1. Firstly, we note that if we let Σ0 := {x ∈ Rn

>0 : xn = 1}, then (Σ0, dH)
is a metric space. Given an order-preserving homogeneous map f : Rn

>0 → Rn
>0 we

can consider the normalised map gf : Σ0 → Σ0 given by

gf (x) :=
f(x)

f(x)n
for x ∈ Σ0.

The map gf is nonexpansive under dH on Σ0. Moreover, x ∈ Σ0 is a fixed point
of gf if and only if x is an eigenvector of f . Thus, if we let Fix(gf ) := {x ∈
Σ0 : gf (x) = x}, then Fix(gf ) is nonempty and bounded in (Σ0, dH) if and only if
E(f) is nonempty and bounded in (Rn

>0, dH).
It not hard to verify that the map Log : Σ0 → V0 given by

Log(x) := (log x1, . . . , log xn) for x = (x1, . . . , xn) ∈ Σ0

is an isometry from (Σ0, dH) onto (V0, ‖ · ‖v), where V0 := {x ∈ Rn : xn = 0} and

‖x‖v := max
i
xi −min

i
xi

is the variation norm.
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It follows that the map h : V0 → V0 satisfying h ◦Log = Log ◦ gf is nonexpansive
under the variation norm, and Fix(h) is nonempty and bounded in (V0, ‖ · ‖v) if
and only if Fix(gf ) is nonempty and bounded in (Σ0, dH).

In [7, Theorem 3.4] the following result concerning fixed point sets of nonexpan-
sive maps on finite dimensional normed spaces was proved.

Theorem 3.1. If h : V → V is a nonexpansive map on a finite dimensional
normed space V , then Fix(h) is nonempty and bounded if and only if there ex-
ist w1, . . . , wm ∈ V such that {f(wi) − wi : i = 1, . . . ,m} illuminates the unit ball
of V .

For n ≥ 2, the unit ball Bv of (V0, ‖ · ‖v) has 2n − 2 extreme points, which are
given by

(3.1) ext(Bv) := {vI+ : ∅ 6= I ⊆ {1, . . . , n− 1}} ∪ {vI− : ∅ 6= I ⊆ {1, . . . , n− 1}},
where (vI+)i = 1 if i ∈ I and 0 otherwise, and (vI−)i = −1 if i ∈ I and 0 otherwise.
See [11, §2] for details.

In [7] the equivalence in Theorem 2.1 was obtained by using Theorem 3.1 and
showing that there exists x1, . . . , xm ∈ Rn

>0 that fulfill the 2n − 2 inequalities in
(2.1) if and only if there exist y1, . . . , ym ∈ V0 that illuminate the 2n − 2 extreme
points of the unit ball Bv. Thus, i(Bv) provides a sharp lower bound for the number
of times one needs to repeat Steps 1 and 2 in Algorithm 2.2. In the next section
we will show the following result concerning i(Bv).

Theorem 3.2. If Bv is the unit ball of (V0, ‖ · ‖v) and n ≥ 2, then

i(Bv) =

(
n

dn/2e

)
.

4. Proof of Theorem 3.2

Note that the map (x1, . . . , xn) ∈ V0 7→ (x1, . . . , xn−1) ∈ Rn−1 is an isometry
from (V0, ‖ · ‖v) onto (Rn−1, ‖ · ‖H), where

‖x‖H :=
(

max
i
xi

)
∨ 0−

(
min
i
xi

)
∧ 0.

Here a∧ b := min(a, b) and a∨ b := max(a, b). Note also that if BH is the unit ball
in (Rn−1, ‖ · ‖H), then

ext(BH) =
(
{0, 1}n−1 ∪ {0,−1}n−1

)
\ {(0, . . . , 0)}

and
i(BH) = i(Bv).

For notational simplicity we will work with BH instead of Bv.
The following two subsets,

E+ := {0, 1}n−1 \ {(0, . . . , 0)} and E− := {0,−1}n−1 \ {(0, . . . , 0)},
of ext(BH) play a key role in the argument. On ext(BH) we have the usual partial
ordering x ≤ y if y − x ∈ Rn−1

≥0 , which gives rise to two finite partially ordered sets

(E+,≤) and (E−,≤).
Recall that subset A of a partially ordered set (P,�) is called an antichain if

x, y ∈ A and x � y implies x = y. A chain C in (P,�) is a totally ordered subset,
if for each x, y ∈ C we have that either x � y or y � x. The length of a chain C is
the number of distinct elements in C.



ON THE COMPLEXITY OF DETECTING POSITIVE EIGENVECTORS 5

Lemma 4.1. Let A be an antichain in (E+,≤) or in (E−,≤). If x 6= y in A are
illuminated by v and w, respectively, then v 6= w.

Proof. Suppose that A is antichain in (E+,≤) and x 6= y are in A. Then there
exist i 6= j such that 0 = xi < yi = 1 and 0 = yj < xj = 1. Now suppose by way
of contradiction that z illuminates x and y. So, ‖x+ λz‖H < 1 and ‖y+ λz‖H < 1
for all λ > 0 sufficiently small. Suppose first that zi ≤ zj . Then for λ > 0 small,

1 + λzj = xj + λzj ≤ ‖x+ λz‖H < 1,

and hence zj < 0. So, zi ≤ zj < 0. But then

1 + λ(zj − zi) = xj + λzj − λzi ≤ ‖x+ λz‖H < 1,

which is impossible. On the other hand, if zj ≤ zi, then 1 + λzi ≤ ‖y + λz‖H < 1,
so that zj ≤ zi < 0. But then

1 + λ(zi − zj) = yi + λzi − λzj ≤ ‖y + λz‖H < 1,

which again is impossible. Thus, z cannot illuminate both x and y.
The argument for the case where A is antichain in (E−,≤) is similar. �

Lemma 4.2. If x, y ∈ ext(BH) are such that xi = 1 and yi = −1 for some i, then
one needs two distinct vectors to illuminate x and y.

Proof. Suppose w illuminates x and y. Then 1 +λwi = xi +λwi ≤ ‖x+λw‖H < 1
for all λ > 0 sufficiently small, and hence wi < 0. But also 1−λwi = −(yi +λwi) ≤
‖y + λw‖H < 1 for all λ > 0 sufficiently small. This implies that wi > 0, which is
impossible. Thus, one needs at least two vectors to illuminate x and y. �

Corollary 4.3. If BH is the unit ball of (Rn−1, ‖ · ‖H) and n ≥ 2, then

i(BH) ≥
(

n

dn/2e

)
.

Proof. For 1 ≤ k,m ≤ n− 1 define the antichians A+(k) := {x ∈ E+ :
∑

i xi = k}
and A−(m) := {x ∈ E− :

∑
i xi = −m}. If n > 1 is odd, then we can take

k := (n− 1)/2 and m := (n+ 1)/2 and conclude from Lemmas 4.1 and 4.2 that we
need at least (

n− 1
n−1
2

)
+

(
n− 1
n+1
2

)
=

(
n

dn2 e

)
distinct vectors to illuminate the extreme points in A+(k) ∪ A−(m), as for each
x ∈ A+(k) and y ∈ A−(m) there exists an i such that xi = 1 and yi = −1.

Likewise if n > 1 is even, we can take k = m = dn−12 e, and deduce from Lemmas
4.1 and 4.2 that we need at least(

n− 1

dn−12 e

)
+

(
n− 1

dn−12 e

)
=

(
n− 1

bn−12 c

)
+

(
n− 1

dn−12 e

)
=

(
n
n
2

)
distinct vectors to illuminate the extreme points in A+(k) ∪ A−(m).

This completes the proof. �

Lemma 4.4. If C is a chain in (E+,≤) or in (E−,≤), then there exists w that
illuminates each element of C.
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Proof. Let C be a chain in (E+,≤) or in (E−,≤). We call a chain c1 ≤ c2 ≤ . . . ≤ cm
in (E+,≤) or in (E−,≤) maximal if it has length n−1. The chain C is contained in
a maximal chain. As each coordinate permutation is an isometry of (Rn−1, ‖ · ‖H)
and the map x 7→ −x is an isometry of (Rn−1, ‖ · ‖H), we may assume without loss
of generality that C is contained in the maximal chain,

C∗ : (1, 0, 0, . . . , 0) ≤ (1, 1, 0, . . . , 0) ≤ . . . ≤ (1, 1, . . . , 1, 0) ≤ (1, 1, 1, . . . , 1).

Let w ∈ Rn−1 be such that w1 < w2 < . . . < wn−1 < 0. Now if x is the k-th
element in the maximal chain and k < n− 1, then for all λ > 0 sufficiently small

‖x+ λw‖H =
(

max
i
xi + λwi

)
∨ 0−

(
min
i
xi + λwi

)
∧ 0 = 1 + λwk − λwk+1 < 1.

On the other hand, if x = (1, 1, . . . , 1), then clearly ‖x + λw‖H = 1 + λwn−1 < 1
for all λ > 0 small. Thus w illuminates each element of C∗ and we are done. �

To proceed we need to recall a few classical results in the combinatorics of finite
partially ordered sets, see [6, Sections 9.1 and 9.2]. Firstly, we recall Dilworth’s
Theorem, which says that if the maximum size of an antichain in a finite partially
ordered set (P,�) is r, then P can be partitioned into r disjoint chains. In the case
where the partially ordered set is ({0, 1}d,≤), one can combine this result with
Sperner’s Theorem, which says that the maximum size of antichain in ({0, 1}d,≤)

is
(

d
dd/2e

)
. Thus, ({0, 1}d,≤) can be partitioned into

(
d
dd/2e

)
disjoint chains.

To obtain our result we need some more detailed information about the par-
titions. In particular, we need a result by De Bruijn,Tengbergen, Kruyswijk [3]
concerning symmetric chains, see also [6, Theorem 9.3]. A chain x1 ≤ . . . ≤ xk in
({0, 1}d,≤) is said to be symmetric if

(a) (
∑d

j=1 x
m
j ) + 1 =

∑d
j=1 x

m+1
j for all 1 ≤ m < k, i.e., xm+1 is an immediate

successor of xm,

(b)
∑d

j=1 x
k
j = d−

∑d
j=1 x

1
j .

Theorem 4.5 (De Bruijn,Tengbergen, Kruyswijk). The poset ({0, 1}d,≤) can be

partitioned into
(

d
dd/2e

)
disjoint symmetric chains.

Let us now prove the main result of the paper.

Proof of Theorem 3.2. First recall that by Corollary 4.3 it suffices to show that
i(BH) ≤

(
n
dn2 e
)
, as i(Bv) = i(BH). In other words, we only need to show that

ext(BH) can be illuminated by
(

n
dn2 e
)

vectors.

There are two cases to consider: n ≥ 2 even, and n ≥ 2 odd.
Let us first consider the case where n ≥ 2 is even. By Dilworth’s Theorem and

Sperner’s Theorem we know that the partially ordered set ({0, 1}n−1,≤) can be

partitioned into
( n−1
dn−1

2 e
)

disjoint chains. This implies that each of the partially

ordered sets (E+,≤) and (E−,≤) can be partitioned into
( n−1
dn−1

2 e
)

disjoint chains.

It now follows from Lemma 4.4 that we need at most(
n− 1

dn−12 e

)
+

(
n− 1

dn−12 e

)
=

(
n− 1

bn−12 c

)
+

(
n− 1

dn−12 e

)
=

(
n
n
2

)
distinct vectors to illuminate ext(BH). This implies that i(Bv) = i(BH) ≤

(
n
n
2

)
.

Now suppose that n ≥ 2 is odd. By Theorem 4.5 we know that ({0, 1}n−1,≤)

can be partitioned into
(n−1

n−1
2

)
disjoint symmetric chains.
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Let us consider such a symmetric chain decomposition, and let

Ak := {x ∈ {0, 1}n−1 :
∑

i xi = k},

which is an antichain of size
(
n−1
k

)
. Each element of A(n+1)/2 is contained in a

distinct symmetric chain, and each of these chain contains an x ∈ {0, 1}n−1 with∑
i xi = (n − 1)/2. Thus, the symmetric chain decomposition of ({0, 1}n−1,≤)

consists of (
n− 1
n+1
2

)
chains containing a vector x with

∑
i xi = (n+ 1)/2, and(

n− 1
n−1
2

)
−
(
n− 1
n+1
2

)
chains consisting of a single vector x with

∑
i xi = (n− 1)/2.

By deleting (0, 0, . . . , 0) from {0, 1}n−1 we obtain a partition of (E+,≤) into
disjoint chains. Let S be the set of vectors in E+ which form a singleton chain and∑

i xi = (n− 1)/2. So,

|S| =
(
n− 1
n−1
2

)
−
(
n− 1
n+1
2

)
.

Now pair each x ∈ E+ with x′ ∈ E−, where x′i = 0 if xi = 1, and x′i = −1 if
xi = 0. In this way we obtain a partition of (E−,≤) into disjoint chains with |S|
chains consisting of a single vector. In other words, for each x ∈ S we have that
x′ ∈ E− forms a singleton chain in the chain decomposition of (E−,≤).

We know from Lemma 4.4 that we can illuminate the
(n−1

n+1
2

)
chains in (E+,≤)

containing a vector x with
∑

i xi = (n + 1)/2 using
(n−1

n+1
2

)
vectors. Likewise, we

can illuminate the corresponding
(n−1

n+1
2

)
chains in (E−,≤) with

(n−1
n+1
2

)
vectors. So,

it remains to illuminate the singleton chains in (E+,≤) and (E−,≤).
Note that if we can illuminate each pair {x, x′}, with x ∈ S and x′ the corre-

sponding vector in E−, by a single vector, then we need at most

2

(
n− 1
n+1
2

)
+

(
n− 1
n−1
2

)
−
(
n− 1
n+1
2

)
=

(
n− 1
n−1
2

)
+

(
n− 1
n+1
2

)
=

(
n

dn2 e

)
vectors to illuminate ext(BH), and hence i(Bv) = i(BH) ≤

(
n
dn2 e
)

if n ≥ 2 is odd.

To see how this can be done we consider such a pair {x, x′} with x ∈ S and let
I := {i : xi = 1} and J := {i : xi = 0}. So, I = {i : x′i = 0} and J = {i : x′i = −1}.
Now let w ∈ Rn−1 be such that wi < 0 for all i ∈ I and wi > 0 for all i ∈ J . Then
for all λ > 0 sufficiently small,

‖x+ λw‖H = max
i∈I

(1 + λwi)− 0 < 1

and

‖x′ + λw‖H = 0−min
i∈J

(−1 + λwi) < 1.

This shows that w illuminates x and x′, which completes the proof. �
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