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Abstract

We consider a hybrid of functional and varying-coefficient regression models for the analysis

of mixed functional data. We propose a quantile estimation of this hybrid model as an alternative

to the least square approach. Under regularity conditions, we establish the asymptotic normality

of the proposed estimator. We show that the estimated slope function can attain the minimax

convergence rate as in functional linear regression. A Monte Carlo simulation study and a real

data application suggest that the proposed estimation is promising.
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1 Introduction

Over the past two decades, technological innovations in biology, chemistry, medicine, engineering,

economics and finance have produced large scale data with functions or images as the units of ob-

servation. The analysis of these functional datasets has stimulated extensive research on functional

regressions where the response variable or covariates are functions. See Ramsay and Silverman

(2005), Morris (2015) and Wang et al. (2015) for systematic reviews on this subject. As the

simplest form of functional data analysis, functional linear regression analysis has been intensively

studied and applied to solve a wide range of scientific problems. See Cardot et al. (1999, 2003),

Yao et al. (2005), Hall and Horowitz (2007), Cai and Hall (2006), Kato (2012) and among others.

The functional linear regression aims to model the relationship between a scalar response variable

and a functional covariate. But in practice, we often see that a scalar response is related not only

to functional covariate, but also to scalar covariates. For example, as we discuss in section 5, the

percentage of fat content of finely chopped pure meat depends not only on the spectrometric curve

but also on the corresponding percentages of protein content and water content. Functional regres-

sion models have been used to handle this problem, where a scalar response variable is regressed

to both functional covariates and scalar covariates. The partial functional linear model, a most

frequently used mixed data model, has attracted a lot of interests in the literature. For instance,

Shin (2009) considered a partial functional linear model, in which both the scalar covariates and the

functional covariate are linear. Zhang et al. (2007) introduced a measurement error partial func-

tional linear model. Various extensions of partial functional linear model have been proposed to

broaden the applicability of functional regression models with mixed data in the literature. For ex-

ample, Aneiros-Pérez and Vieu (2006) considered a semi-functional partial linear regression model

in which the scalar covariates are the linear component and the functional covariate is nonparamet-

ric component. Dabo-Niang and Guillas (2010) proposed a functional semiparametric model. This

model is similar to semi-functional partial linear model but with autocorrelated random errors. A

hybrid model of functional and varying coefficient regressions, as an important extension of partial

functional linear model is becoming popular in the literature. The model is defined in the following

form:

Y = α0(U) +XTα(U) +

∫
I
β(t)Z(t)dt+ ε, (1)

where Y is a scalar variable, X = (X1, X2, . . . , Xp)
T are p-dimensional random vector of scalar

covariates, U is a univariate scalar variable, α0(U) is a baseline function and α(U) = (α1(U), α2(U),

. . . , αp(U))T are unknown varying coefficient functions, Z(t) is a zero mean random functional

predictor defined on a compact interval I, β(t) is a square-integrable regression slope function, ε

is an error term with mean zero and variance σ2, and (X,U,Z(t)) and ε are independent. By the

hybrid model, we describe a functional linear relationship plus a varying interaction term between

the scalar covariates . It seems to be more sensible to characterize the dynamic feature in the
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varying interaction term which may exist in the data set. For example, as we discuss in section 5,

the fat content in a piece of finely chopped pure meat will depend on the water content, and the

dynamical pattern of this relationship is of importance. It would make much more sense to treat

the parameters of the protein content as functions of the water content than constants. So, we will

employe the above hybrid model to predict the percentage of fat content. The model is concerned

about a varying interaction term between the protein and water content. On the other hand, the

model is flexible as it takes the classical functional linear regression model and partial functional

linear model as special cases if let α(U) = 0, α0(U) = α0 and α(U) = α, α0(U) = α0 respectively.

Due to its flexibility to explore the dynamic features which may exist in the data, the hybrid model

of functional and varying coefficient regressions has been investigated intensively. Peng et al. (2015)

proposed a least squares-based spline approach to estimating the above hybrid model and provided

the asymptotic behavior of their estimation. Feng et al. (2016) proposed a profile least squares

estimation of the same model by use of functional principal component analysis and local linear

smoothing technique.

The least square estimation procedures in the aforementioned two papers are based on the

conditional mean of the response variable for the given set of covariates. As a result, there is lack

of information on the response variable at the various quantile values (for example, the lower or

upper quantiles). Furthermore, assumptions related to random errors in the least square estimators

are not always valid in reality. Even a few outlying data points may introduce undesirable artificial

features in the estimated functions. Here, to address these issues, we develop a novel and robust

estimation procedure called quantile estimation for the hybrid model, which can be interpreted

as the effect of covariates on the response variable at each quantile level. There are few studies

on quantile-regression-based estimation procedures for non-hybrid functional regression models. In

literature, Cardot et al. (2005) proposed a spline-based estimation for functional linear quantile

regression models. Chen and Müller (2012) proposed a method for conditional quantile analysis for

the generalized functional regression models. Kato (2012) studied estimation in functional linear

quantile regression model and showed that the rate of convergence for slope function estimator was

optimal in a minimax sense. Lu et al. (2014); Tang and Cheng (2014) also investigated the quantile

estimation of partially functional linear models and the asymptotic performance of the proposed

estimator.

In this paper, we focus on quantile estimation of the hybrid model between partially functional

linear regression and varying coefficient models. Our contributions to this area are as follows.

We develop the quantile estimators for the slope function, the baseline function and the varying

coefficients in the above hybrid model with mixed data. Under some regularity conditions, we

establish the asymptotic normality of the proposed estimators. We show that the global convergence

rates of the proposed slope function estimator can attain the same optimal minimax rate as in

functional linear regression. A Monte Carlo simulation study and a real application to spectrometric
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data show that the proposed estimation procedure has a few advantages over its competitors.

The article is organized as follows. The quantile estimation of the hybrid model between

partially functional regression and varying coefficients is developed in Section 2. The asymptotic

properties of the proposed quantile estimators are established in Section 3. The finite sample

performance of the proposed estimators is presented in Section 4. The proposed method is then

applied to the spectrometric data. Technical proofs are delayed to an Appendix.

2 Model and Estimation

2.1 Model

Given quantile level τ ∈ (0, 1), we consider the following hybrid quantile model of functional linear

regression and varying-coefficients for mixed functional data

Y = α0τ (U) +XTατ (U) +

∫
I
βτ (t)Z(t)dt+ ετ , (2)

where α0τ (U) is a unknown baseline function and ατ (U) = (α1τ (U), α2τ (U), . . . , αpτ (U))T are

unknown varying coefficient functions to be estimated, U ∈ [ul, ur], Z(t) is zero mean random

functional predictor defined on a compact interval I, βτ (t) is square-integrable regression slope

function, ετ is a random error whose τth quantile conditional on (X, U, Z(t)) being zero.

2.2 Estimation

Suppose that {(Yi,Xi, Ui, Zi(t)), i = 1, 2, . . . , n} is a random sample generated from model (2). We

estimate slope function βτ (t), baseline function α0τ (U) and varying coefficients ατ (U) in model

(2), by minimizing the following quantile loss function

n∑
i=1

ρτ

(
Yi − α0τ (Ui)−XT

i ατ (Ui)−
∫
I
βτ (t)Zi(t)dt

)
, (3)

where ρτ (s) = s{τ − I(s < 0)}.

To begin with, we note that
∫
I βτ (t)Zi(t)dt is simplified by expanding βτ (t) =

∑∞
k=1 bτkφk(t),

where φ1(t), φ2(t), . . . are orthonormal basis of square-integrable function on interval I. The ba-

sis φ1(t), φ2(t), . . . can be chosen independently of data (e.g., Fourier basis, Spline basis, etc).

Here, we adopt a principal component basis, constructed from the covariance function KZ(u, v) =

Cov(Z(u), Z(v)) of the random process Z(t) as follows. The spectral decomposition of KZ(u, v) is

given by

KZ(u, v) =
∞∑
k=1

λkφk(u)φk(v), (4)
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where the principal component basis φ1(t), φ2(t), . . . is a complete orthonormal sequence of eigen-

functions of the transformations KZ , with respective eigenvalues λ1 > λ2 > · · · > 0. By Karhunen-

Loève expansion, we have

Z(t) =
∞∑
k=1

ξkφk(t),

where ξk =
∫
I Z(t)φk(t)dt. Hence,

∫
I βτ (t)Z(t)dt =

∑∞
k=1 bτkξk. Correspondingly,

∫
I βτ (t)Zi(t)dt =∑∞

k=1 bτkξik, where ξik =
∫
I Zi(t)φk(t)dt. However, in practice, the value of ξk and ξik depend on

the value of φk(t), but the scalars λk and the functions φk(t) are unknown and must be replaced

by estimators in order to produce estimator of βτ (t). For this purpose, we consider the empirical

version of KZ(u, v) given by

K̂Z(u, v) =
1

n

n∑
i=1

Zi(u)Zi(v) =
n∑
k=1

λ̂kφ̂k(u)φ̂k(v),

where (λ̂k, φ̂k) are pairs of eigenvalues and eigenfunctions, ordered such that λ̂1 ≥ λ̂2 ≥ · · · λ̂n ≥ 0.

We take (λ̂k, φ̂k(t)) as the estimator of (λk, φk(t)). The functions φ̂1(t), φ̂2(t), . . . , φ̂m(t) are known,

where m is a tuning parameter for “frequency cut-off”. By using the approximate expansion βτ (t) ≈∑m
k=1 b

′
τkφ̂k(t), we show that

∫
I βτ (t)Z(t)dt can be properly approximated by

∑m
k=1 b

′
τkξ̂k, where

ξ̂k =
∫
I Z(t)φ̂k(t)dt. Consequently,

∫
I βτ (t)Zi(t)dt ≈

∑m
k=1 b

′
τkξ̂ik, where ξ̂ik =

∫
I Zi(t)φ̂k(t)dt.

In order to approximate α0τ (U) and ατ (U) for U ∈ [ul, ur], we construct piecewise polynomial

estimators of α0τ (U) and ατ (U) of degree q̃. We divide [ul, ur] into Nn subintervals of equal length.

Then the length of every subinterval is 2h0 = (ur − ul)/Nn. Let Ik = [ul + 2(k − 1)h0, ul + 2kh0)

for 1 ≤ k ≤ Nn − 1 and INn = [ur − 2h0, ur]. Let uk denote the centre of the interval Ik and χk(u)

denote the indicator function of Ik, i.e.,

χk(u) =

1, u ∈ Ik
0, u /∈ Ik

.

To facilitate the presentation, we need some more notations as follows. Let

Bk(u) =
(
1, (u− uk)/h0, . . . , [(u− uk)/h0]q̃

)>
, k = 1, . . . , Nn,

B(u) = (χ1(u)B1(u)>, . . . , χNn(u)BNn(u)>)>,M(u) = diag(B(u)>, . . . ,B(u)>)>p×p.

Denote ωk = (ωk1, . . . , ωkq̃)
>, ω = (ω>1 , . . . ,ω

>
Nn

)>, γjk = (γjk1, . . . , γjkq̃)
>, γj = (γ>j1, . . . ,γ

>
jNn

)>,

γ = (γ>1 , . . . ,γ
>
p )>. We use B(U)>ω and M(U)>γ to approximate α0τ (U) and ατ (U), respec-

tively. Thus, quantile loss function in (3) can be approximated by the following target function

n∑
i=1

ρτ

(
Yi −B(Ui)

>ω −XT
i M(Ui)

>γ −
m∑
k=1

b′τkξ̂ik

)
. (5)
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The solution to Equation (5) can be obtained numerically by linear programming method (such

as Frisch-Newton Interior Point Method or Interior point method with preprocessing). For conve-

nience, let ω̂, γ̂, b̂′τk be the minimizer of Equation (5). Then, the estimator of βτ (t) is denoted by

β̂τ (t) =
∑m

k=1 b̂
′
τkφ̂k(t).

After estimating βτ (t), for a given u ∈ [ul, ur], when U tends to u, we employ the local linear

approximation α0τ (U) ≈ a0τ + b0τ (U − u),ατ (U) ≈ aτ + bτ (U − u). We can obtain estimators of

a0τ , b0τ ,aτ , bτ ,βτ by minimizing the following local weighted quantile loss function

n∑
i=1

ρτ

(
Yi − a0τ − b0τ (Ui − u)−XT

i {aτ + bτ (Ui − u)} −
m∑
k=1

b̂′τkξ̂ik

)
Kh(Ui − u). (6)

where Kh(·) = K(·/h)/h, K(·) is a kernel function and h is a bandwidth. The solution to Equa-

tion (6) can also be obtained numerically by linear programming method. For convenience, let

â0τ , b̂0τ , âτ , b̂τ be the minimizer of Equation (6). Then, the estimator of α0τ (u) and ατ (u) are

denoted by â0τ and âτ , respectively.

The above estimation procedure is summarized as follows:

Step 1: Compute ξ̂ik and φ̂k(t) by functional principal component analysis method (i = 1, . . . , n; k =

1, . . . ,m);

Step 2: Obtain ω̂, γ̂, b̂′τk by minimizing (5), then β̂τ (t) =
∑m

k=1 b̂
′
τkφ̂k(t);

Step 3: Obtain â0τ , b̂0τ , âτ , b̂τ by minimizing (6), then α̂0τ (u) = â0τ (u), α̂τ (u) = âτ (u).

Remark 1 The proposed estimation is designed for use in situations where functional predictors

are measured at a dense grid of regular space time points. For situations where this is not the case

it may be feasible to use sparse functional principal components analysis method (see Yao et al.,

2005) to produce the estimators (λ̂k, φ̂k).

Remark 2 The proposed procedure estimates the functional slope function and varying coefficients

by minimizing quantile loss function. In the next section, we show that β̂τ can result in a slope

function estimator which achieve the optimal rate of convergence as in functional linear regression

analysis.

2.3 Tuning parameter and bandwidth selection

To implement our estimation method, we need to choose the tuning parameter m,Nn and band-

width h. Theorem 1 and Theorem 2 imply that the selection of the tuning parameter m,Nn and
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bandwidth h are of crucial importance. An appropriate choice of m, Nn and h can result in good

estimators of the slope function and varying coefficients. We use Bayesian information criterion

(BIC) to select m and Nn. The BIC is given by

BIC(m,Nn) = log

{
n∑
i=1

ρτ

(
Yi −B(Ui)

>ω̂ −XT
i M(Ui)

>γ̂ −
m∑
k=1

b′τkξ̂ik

)}
+

(m+Nn) log n

n
.

The optimal m and Nn are selected by minimizing BIC. The bandwidth h can be selected by

leave-one-out cross-validation of the prediction error. More precisely, CV is defined as

CV (h) =
n∑
i=1

ρτ

(
Yi − α̂(−i)

0τ (Ui)−XT
i α̂

(−i)
τ (Ui)−

m∑
k=1

b̂′τkξ̂ik

)
,

α̂
(−i)
0τ (Ui) and α̂(−i)

τ (Ui) denote that the estimators of α0τ (Ui) and ατ (Ui) computed without ob-

servation i. We find the minimizer of CV (h), which is the selected value for h.

3 Asymptotic Properties

In this section we study asymptotic properties of the estimators proposed in Section 2. We first

introduce some notations for the brevity of presentation. Let fτ (·|x, u, z(t)) and Fτ (·|x, u, z(t))
denote the density function and cumulative distribution function of the error ετ condition on

(X, U, Z(t)) = (x, u, z(t)), respectively. Denote the marginal density function of the covariate U by

fU (·). Let G(u) = E{fτ (0|X, U, Z(t))(1,XT )T (1,XT )|U = u}, H(u) = E{(1,XT )T (1,XT )|U =

u}. For kernel function K(·), define µj =
∫
ujK(u)du and νj =

∫
ujK2(u)du, j = 0, 1, 2, . . . . We

use the symbol an � bn to denote that the ratio an/bn is bounded away from zero and infinity. Let

the symbol 〈·, ·〉 and ‖ · ‖ denote inner product and norm.

The following conditions are needed:

(C1) The covariate U has a bounded support Θ and its density function fU (·) is positive and has

a continuous second derivative.

(C2) K(·) is a nonnegative and symmetric density function with bounded support and satisfies a

Lipschitz condition.

(C3) Fτ (0|x, u, z(t)) = τ for all (x, u, z(t)), fτ (·|x, u, z(t)) is bounded away from zero and has a

continuous and uniformly bounded derivative. We also assume that there exist constants c0

and c1 such that 0 < c0 ≤ fτ (0|x, u, z(t)) ≤ c1 <∞.

(C4) Z(t) is square-integrable random function supported on the compact interval I, and has a

zero mean and finite fourth moment. We assume that for each j, E(ξ4
j ) ≤ B1λ

2
j for some

constant B1.
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(C5) The eigenvalues λj in the spectral decomposition (4) satisfy

B−1
2 j−β1 ≤ λj ≤ B2j

−β1 , λj − λj+1 ≥ B−1
2 j−(β1+1), j ≥ 1,

where β1 > 1, B2 > 0.

(C6) For the Fourier coefficients bτj of βτ (t), there exist constant B3, β2 > 8 + 3β1
2 such that

|bτj | ≤ B−1
3 j−β2 .

(C7) The baseline function α0τ (u) and varying function ατ (u) have continuous q̃ derivatives such

that |α(q̃)
0τ (u)−α(q̃)

0τ (u′)| ≤ B4|u−u′|ς and ‖α(q̃)
τ (u)−α(q̃)

τ (u′)‖ ≤ B4|u−u′|ς for ul ≤ u, u′ ≤ ur,
where 0 < ς ≤ 1 and B4 is a positive constant. Think of q = q̃ + ς as a measure of the

smoothness of the function α0τ (U) and ατ (U), q > (3β1 + 6β2 − 2)/4.

(C8) The tuning parameter m satisfies that m � n1/(β1+2β2) and Nn also satisfies that Nn �
n1/(β1+2β2) .

(C9) EX4
j <∞, j = 1, . . . , p.

(C10) E(X|U) = 0, E(Z(t)|U,X) = 0 and E(ξiξj |U,X) = 0 for i 6= j. For each i, E(ξ2
i |U,X) < B5λi

for some constant B5.

(C11) G(u) are non-singular for all u ∈ Θ.

Remark 1 Conditions C1-C11 are not the weakest possible conditions. They are imposed to

facilitate the proof of the following theorems. Conditions C1-C4, C7, C9 and C11 are required in

the context of nonfunctional varying coefficient partially linear model (see Kai et al., 2011), while

conditions C5, C6 and C8 are needed to cope with linear part corresponding to the functional

predictor Z(t) of varying coefficient partially functional linear regression model with mixed data.

And conditions C5, C6 and C8 are quite usual in functional linear regression model (see Cai and

Hall, 2006; Hall and Horowitz, 2007). Condition C10 is a technical condition for description of the

correlation between scalar covariate X and U and functional covariate Z(t).

Theorem 1. Suppose that the regularity conditions C1-C11 hold, then∫
I
(β̂τ (t)− βτ (t))2dt = Op

(
n
− 2β2−1
β1+2β2

)
. (7)

Theorem 2. Suppose that the regularity conditions C1-C11 hold. If h → 0, nh → ∞ and

nh/ log(1/h)→∞ as n→∞, then

√
nh

[(
α̂0τ (u)− α0τ (u)

α̂τ (u)−ατ (u)

)
− µ2h2

2

(
α
′′
0τ (u)

α
′′
τ (u)

)]
L−→ N

(
0,
ν0τ(1− τ)

fU (u)
G−1(u)H(u)G−1(u)

)
. (8)
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Remark 2 Our results shows that we can obtain the same rate of convergence as for the estimator

in functional linear regressionwhich are optimal in the minimax sense (see Hall and Horowitz, 2007).

Under the condition about kernel bandwidth h in Theorem 2, we can get the asymptotic normality

of estimators of baseline function and varying coefficient functions.

4 Simulation Studies

In this section, we implement simulation studies to investigate the performance of the proposed

estimation methods. The data sets are generated from the following model:

Yi = α1(Ui)X1i + α2(Ui)X2i +

∫
I
β(t)Zi(t)dt+ εi, i = 1, 2, . . . , n.

For the functional linear component, we take the same form as Hall and Horowitz (2007), that

is, I = [0, 1], β(t) =
∑50

k=1 bkφk(t) and Zi(t) =
∑50

k=1 ϑkWikφk(t), where φ1(t) = 1, φk(t) =√
2 cos[(k − 1)πt] for k ≥ 2, b1 = 0.3, bk = 4(−1)k+1k−2 for k ≥ 2, and ϑk = (−1)k+1k−1, Wik are

independent and identically distributed uniform random variables on (−
√

3,
√

3). For the varying

coefficient component, we let α1(U) = sin(2πU), α2(U) = sin(6πU), the covariate U is uniformly

distributed on (0, 1), X1, X2 are independent and identically distributed normal random variables

with mean 0 and variance 1. Furthermore, U and X1, X2 are independent.

In our simulation, we consider four cases for error terms ε: N(0, 0.52), standard Cauchy, t(3)

and mixture of normals 0.9N(0, 0.52) + 0.1N(0, 52). We also consider three choices for the number

of samples n = 200, 400 and 600. Each Zi(t) is observed at 100 equally space points on [0, 1].

In order to evaluate the performance of estimators of different method, we compare the profile

least squares (PLS) method (see Feng et al., 2016) and our quantile regression (QR) method. We

focus on τ = 0.25, 0.5 and 0.75 in quantile regression. The Epanechnikov kernel is used in the

simulations. We use the BIC criterion and cross-validation procedure as described in section 2.3

to select the tuning parameters Nn, m and bandwidth h. All simulations are replicated for 1000

times.

Performance of estimator of functional slope function β(t) is assessed using the square root of

the integrated squared errors (RISE) defined as

RISE
{
β̂(t)

}
=

{∫ 1

0

[
β̂(t)− β(t)

]2
dt

} 1
2

,

while performance of the estimate of varying coefficient functions α1(U) and α2(U) are assessed
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using the square root of mean average squared errors (RASE) defined as

RASE {α̂1(U)} =

{
1

100

100∑
i=1

[α̂1(ui)− α1(ui)]
2

} 1
2

and

RASE {α̂2(U)} =

{
1

100

100∑
i=1

[α̂2(ui)− α2(ui)]
2

} 1
2

.

where ui, i = 1, 2, · · · , 100 are 100 equally space points on interval [0, 1].

To save space we only show the BIC and CV scores for different tuning parameters and band-

width under t(3) distribution error with n = 400, τ = 0.5. Table 1 presents BIC scores for different

Nn and m. The minimum BIC score is emphasized with boldface font. Table 2 presents CV scores

for different bandwidths. The optimal bandwidth h is obtained by leave-one-out cross-validation

for given optimal m. The minimum CV score is also emphasized with boldface font.

Table 1: The BIC scores of different tuning parameters with t(3) distribution error for τ = 0.5,

n = 400

m

Nn 1 2 3 4 5 6 7 8 9 10

1 5.974 5.933 5.926 5.937 5.944 5.954 5.964 5.975 5.985 5.995

2 5.960 5.919 5.907 5.917 5.920 5.931 5.941 5.952 5.961 5.972

3 5.933 5.888 5.887 5.897 5.903 5.914 5.925 5.935 5.946 5.954

4 5.949 5.895 5.894 5.904 5.911 5.921 5.932 5.942 5.952 5.962

5 5.928 5.880 5.882 5.890 5.900 5.910 5.921 5.931 5.940 5.949

6 5.943 5.896 5.893 5.903 5.907 5.918 5.929 5.939 5.950 5.959

7 5.932 5.885 5.885 5.894 5.903 5.913 5.924 5.934 5.943 5.950

8 5.933 5.881 5.887 5.895 5.904 5.914 5.925 5.935 5.945 5.953

9 5.939 5.891 5.886 5.896 5.905 5.916 5.926 5.937 5.947 5.956

10 5.941 5.895 5.901 5.911 5.921 5.931 5.941 5.952 5.962 5.968

Table 3-6 list RISEs of β̂(t) and RASEs of α̂1(U) and α̂2(U) under different error terms. There

is a general tendency for RISE of β̂(t) and RASE of α̂1(U) and α̂2(U) to decrease as sample

sizes increases. From Table 3, we can see that both PLS estimators and QR estimators have

small RISEs and RASEs under normal error terms. QR estimators are slightly worse than PLS

estimators as expected. When the error term follows heavy-tailed distributions, Table 4-6 illustrate
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Table 2: The CV scores of bandwidths with t(3) distribution error for τ = 0.5, n = 400.

h

0.032 0.048 0.064 0.080 0.096 0.111 0.127 0.143 0.159 0.175

CV 0.596 0.584 0.581 0.578 0.578 0.577 0.579 0.580 0.580 0.582

that QR estimators is robust and more efficient than PLS estimators. Specifically, when the error

follows standard Cauchy distribution, PLS estimators have very large RISEs and RASEs while QR

estimators have reasonably small RISEs and RASEs. This is because PLS fails when the error

variance is infinite.

Table 3: RISEs and RASEs with standard deviations(in parentheses) with normal distribution

error N(0, 0.52)

n Method β̂(t) α̂1(U) α̂2(U)

200 PLS 0.1467(0.0454) 0.0306(0.0232) 0.0387(0.0176)

QR(0.25) 0.1693(0.0801) 0.0497(0.0375) 0.0621(0.0307)

QR(0.50) 0.1700(0.0504) 0.0498(0.0169) 0.0696(0.0277)

QR(0.75) 0.1639(0.0544) 0.0527(0.0351) 0.0701(0.0409)

400 PLS 0.1351(0.0298) 0.0097(0.0044) 0.0181(0.0062)

QR(0.25) 0.1427(0.0327) 0.0176(0.0076) 0.0296(0.0120)

QR(0.50) 0.1435(0.0508) 0.0132(0.0065) 0.0250(0.0128)

QR(0.75) 0.1440(0.0324) 0.0099(0.0067) 0.0272(0.0097)

600 PLS 0.1303(0.0239) 0.0060(0.0025) 0.0148(0.0041)

QR(0.25) 0.1353(0.0255) 0.0112(0.0042) 0.0224(0.0065)

QR(0.50) 0.1232(0.0306) 0.0132(0.0045) 0.0155(0.0055)

QR(0.75) 0.1335(0.0242) 0.0125(0.0052) 0.0194(0.0066)

To evaluate reliability of the estimators, we construct pointwise confidence intervals based on

the asymptotic normalities. To save space we describe the construction of confidence intervals of

α1(u) and α2(u) for u = 0.2, 0.4, 0.6 and 0.8 under t(3) distribution only. It follows from (8)that

approximate 100(1−α)% confidence intervals for α1(u) and α2(u) can be expressed respectively as

follows:

α̂1(u)− µ2h
2

2
α̂
′′
1(u)± z1−α/2

√
ν0τ(1− τ)

f̂U (u)nh
(Ĝ
−1

(u)Ĥ(u)Ĝ
−1

(u))
1/2
11
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Table 4: RISEs and RASEs with standard deviations(in parentheses) with standard Cauchy distri-

bution error

n Method β̂(t) α̂1(U) α̂2(U)

200 PLS 3905.88(48553.82) 1721.01(9514.03) 8141.77(1050.17)

QR(0.25) 1.3376(0.0561) 0.5719(1.5715) 1.0221(1.5855)

QR(0.50) 1.3365(0.0515) 0.7491(1.0359) 1.2059(1.4219)

QR(0.75) 1.3386(0.0462) 0.4610(0.7657) 1.4677(1.4366)

400 PLS 3581.39(3188.14) 1424.86(4157.33) 3406.98(1408.77)

QR(0.25) 0.3271(0.0252) 0.1171(0.0780) 0.2120(0.0970)

QR(0.50) 0.3267(0.0243) 0.1128(0.0704) 0.1636(0.0917)

QR(0.75) 0.3270(0.0254) 0.1052(0.0764) 0.2469(0.1155)

600 PLS 3562.84(2362.09) 1232.55(2475.53) 2467.62(1017.32)

QR(0.25) 0.3229(0.0188) 0.0649(0.0376) 0.1572(0.0535)

QR(0.50) 0.3232(0.0191) 0.0658(0.0336) 0.1048(0.0433)

QR(0.75) 0.3212(0.0194) 0.0651(0.0360) 0.1816(0.0509)

Table 5: RISEs and RASEs with standard deviations(in parentheses) with t(3) distribution error

n Method β̂(t) α̂1(U) α̂2(U)

200 PLS 0.4117(0.1256) 0.2841(0.2858) 0.2874(0.2771)

QR(0.25) 0.3887(0.0970) 0.1988(0.1692) 0.2184(0.1236)

QR(0.50) 0.3864(0.0952) 0.1221(0.0725) 0.1778(0.0953)

QR(0.75) 0.3937(0.1027) 0.1728(0.1109) 0.2075(0.0851)

400 PLS 0.3830(0.0693) 0.1024(0.0831) 0.1149(0.0777)

QR(0.25) 0.3528(0.0673) 0.0678(0.0325) 0.1081(0.0517)

QR(0.50) 0.3511(0.0626) 0.0483(0.0287) 0.1034(0.0340)

QR(0.75) 0.3550(0.0687) 0.0833(0.0473) 0.1020(0.0476)

600 PLS 0.3690(0.0573) 0.0577(0.0943) 0.1005(0.0595)

QR(0.25) 0.2422(0.0517) 0.0324(0.0203) 0.0799(0.0304)

QR(0.50) 0.2414(0.0518) 0.0298(0.0140) 0.0868(0.0247)

QR(0.75) 0.2427(0.0534) 0.0294(0.0242) 0.0673(0.0284)
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Table 6: RISEs and RASEs with standard deviations(in parentheses) with mixture of normals

distribution error 0.9N(0, 0.52) + 0.1N(0, 52)

n Method β̂(t) α̂1(U) α̂2(U)

200 PLS 0.3453(0.2300) 0.7864(0.5148) 0.4973(0.2728)

QR(0.25) 0.1762(0.0613) 0.2014(0.2410) 0.3733(0.2463)

QR(0.50) 0.1727(0.0547) 0.1397(0.1259) 0.2320(0.2606)

QR(0.75) 0.1738(0.0561) 0.3598(0.2676) 0.2495(0.3166)

400 PLS 0.2208(0.0927) 0.1746(0.1377) 0.1756(0.2161)

QR(0.25) 0.1411(0.0319) 0.0620(0.0955) 0.0640(0.0871)

QR(0.50) 0.1410(0.0312) 0.0200(0.0121) 0.0298(0.0150)

QR(0.75) 0.1422(0.0320) 0.0322(0.0210) 0.0396(0.0226)

600 PLS 0.1957(0.0897) 0.0989(0.0719) 0.0976(0.0574)

QR(0.25) 0.1354(0.0259) 0.0212(0.0132) 0.0236(0.0100)

QR(0.50) 0.1349(0.0261) 0.0110(0.0044) 0.0213(0.0071)

QR(0.75) 0.1356(0.0259) 0.0207(0.0102) 0.0238(0.0121)

and

α̂2(u)− µ2h
2

2
α̂
′′
2(u)± z1−α/2

√
ν0τ(1− τ)

f̂U (u)nh
(Ĝ
−1

(u)Ĥ(u)Ĝ
−1

(u))
1/2
22 ,

where z1−α/2 is the (1−α/2)th quantile of the standard Gaussian distribution, (Ĝ
−1

(u)Ĥ(u)Ĝ
−1

(u))
1/2
11

and (Ĝ
−1

(u)Ĥ(u)Ĝ
−1

(u))
1/2
22 are the (1, 1)th and (2, 2)th entries of the matrix (Ĝ

−1
(u)Ĥ(u)Ĝ

−1
(u))1/2,

α̂
′′
1(u) and α̂

′′
2(u) are local polynomial estimators of α

′′
1(u) and α

′′
2(u), f̂U (u) is a kernel density

estimator of U , and Ĝ(u) and Ĥ(u) are estimators of G(u) and H(u). The average coverage

probabilities of 90% confidence intervals are listed in Table 7. From Table 7, we can see that the

simulation results confirm the asymptotic properties: the coverage probabilities approach to the

nominal value as sample size increase. The performance with small sample size may be poor, and

the estimation of α
′′
1(u), α

′′
2(u), Ĝ(u) and Ĥ(u) has a large impact on the performance especially

when sample size is small. This is not surprising since some of these quantities are more difficult

to estimate than the functions of interest.

We also plot the estimators of α1(U)and α2(U) and 90% pointwise confidence intervals. To

save space we only show results of the estimators and 90% pointwise confidence intervals under

t(3) distribution error with n = 400, τ = 0.5. Figure 1 shows the true functions of α1(U) and

α2(U) together with some of their estimators and 90% pointwise confidence intervals under t(3)

distribution error with n = 400, τ = 0.5. The true functions of β(t) and its pointwise medians,
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Table 7: Average coverage probabilities of 90% confidence intervals with t(3) distribution error

α1(u) α2(u)

τ n u = 0.2 u = 0.4 u = 0.6 u = 0.8 u = 0.2 u = 0.4 u = 0.6 u = 0.8

0.25 200 0.763 0.750 0.775 0.752 0.700 0.734 0.705 0.726

400 0.847 0.842 0.858 0.84 0.832 0.792 0.798 0.813

600 0.905 0.899 0.900 0.897 0.887 0.883 0.888 0.882

0.5 200 0.765 0.775 0.778 0.772 0.692 0.689 0.750 0.798

400 0.881 0.861 0.866 0.830 0.870 0.845 0.851 0.888

600 0.914 0.886 0.887 0.911 0.905 0.923 0.910 0.912

0.75 200 0.751 0.739 0.764 0.744 0.784 0.726 0.735 0.783

400 0.831 0.847 0.863 0.855 0.819 0.794 0.802 0.841

600 0.923 0.912 0.902 0.895 0.904 0.876 0.888 0.902

5% and 95% quantiles of the 1000 simulations are also plotted in Figure 1(c). We can see that

the estimated curves (dotted line) is close to the true curve (solid line). Overall, Our proposed

estimation methods shows better performance even with infinite variance errors. The simulation

studies indicate that the proposed estimation procedure in Section 2 is effective in the varying

coefficient partially functional linear regression model with mixed data.

5 A real application

In this section, we apply the proposed method to analyze the spectrometric data which are available

from http://lib.stat.cmu.edu/datasets/tecator. These data are obtained for 215 pieces of

pure meat. Each data sample contains fat, protein, water contents and spectrometric curve. The

three contents measured in percent, are determined by analytic chemistry. Spectrometric curve

consist of 100 wavelengths absorbance spectrum records. Our aim is to predict the fat content Y

from the spectrometric curve Z(t) and the corresponding percentages of protein content X and

water content U . To capture interaction effect between the corresponding percentages of protein

content X and water content U and find more accurately the underlying relationship between the

response variable and the covariates, we consider hybrid model between partially functional linear

regression with varying coefficients. Specifically, we consider the following model:

Y = α0(U) +Xα1(U) +

∫ 1050

850
β(t)Z(t)dt+ ε.

In order to evaluate the predictive ability of the model, we use only part of the data with data

selection performed in the same way as in Aneiros-Pérez and Vieu (2006). We randomly select

14
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Figure 1: Plots of the true functions and their estimators when the error term follows t(3) distri-

bution, the sample size n = 400 and τ = 0.5. Solid lines stand for the true functions. Dotted lines

in (a) and (b) correspond to the pointwise estimated of α1(U) and α2(U), respectively. Dotted

lines in (c) correspond to the pointwise medians of β(t). Dashed lines in (a) and (b) correspond

to the 90% pointwise confidence intervals of α1(U) and α2(U), respectively. Dashed lines in (c)

correspond to the pointwise 5% and 95% quantiles of β(t).
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165 observations as training sample I and the remaining 50 observations as testing sample J . We

use three kinds of different models to predict the fat content of a meat sample. One is semi-

functional partial linear model (see Aneiros-Pérez and Vieu, 2006), another is partial functional

linear regression model (see Shin, 2009) and the third is our model. For semi-functional partial

linear model and partial functional linear regression, we employ their methods to the data. For our

model, we apply profile least squares estimation method to the data. The criteria used on the test

sample J in order to compare the skill of the different models is mean quadratic error of prediction
1
50

∑
j∈J(Yj − Ŷj)2/VarJ(Y ). The process is replicated for 500 times. The different models used

and the corresponding values of this criteria are shown in Table 8.

Table 8: Means and standard errors (in parentheses) of test prediction error for different models

Models Test prediction error

(i)Y = Uθ1 +Xθ2 + g (Z(t)) + ε 0.0168(0.0063)

(ii)Y = µ+ Uθ1 +Xθ2 +
∫ 1050

850 β(t)Z(t)dt+ ε 0.0075(0.0045)

(iii)Y = α0(U) +Xα1(U) +
∫ 1050

850 β(t)Z(t)dt+ ε 0.0061(0.0035)

We observe that the mean and standard error of the prediction mean quadratic error in model

(iii) is the smallest among the three models. The model (iii) improves more than 63.6% upon the

model (i) and more than 18.5% upon the model (ii) in terms of prediction mean quadratic error.

So, the model (iii) is a competitive one for such data.

Finally, profile least squares estimation method is used in our model to analyze the normality of

the residuals. The norm quantile-quantile of the residuals is shown in Figure 2 (a), from which we

can see apparently that the residuals cannot follow normal distribution. We also make a Shapiro-

Wilk hypothesis test to judge the normality of the residuals. By Shapiro-Wilk test, we find that

the p value is less than 5.497×10−5. This reminds us further that the error cannot be normal, and

the mean regression based on least square is unsuitable here. So, our quantile regression method

with τ = 0, 25, 0.5 and 0.75 is used here to analyze interaction effect between the corresponding

percentages of protein content X and water content U . The kernel used in the real analysis is

K(u) = 0.75(1 − u2)I[0,1](u). The bandwidths and tuning parameters are chosen as h = 5.8,

Nn = 7 ,m = 13 for τ = 0.25 and h = 6.7, Nn = 7, m = 17 for τ = 0.5 and h = 7.2, Nn = 3,

m = 11 for τ = 0.75. To save space we present results with τ = 0.5. The estimator and 90%

pointwise confidence intervals of nonparametric function α1(U) with τ = 0.5 is presented in Figure

2 (b). Figure 2 (b) indicates that the interaction effect between protein content X and water

content U is negative and decreases as the water content U increases, which shows that interaction

effect between protein content X and water content U is nonlinear. We also construct pointwise
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estimated interaction effect function α1(U) at τ = 0.25, 0.5 and 0.75 and show it in Figure 2(c).

Both estimators show similar values and trends. It is apparent that the interaction effect between

water content and protein content is negative for small U and then tend to stable for large U when τ

increase. For example, the stable point is about 65 for τ = 0.5 and is about 50 for τ = 0.75. These

findings are helpful to uncover and understand the underlying interaction relationship between

water content and protein content.
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Figure 2: (a) QQ plot of the residual for profile least squares estimation method. (b) Pointwise

estimated interaction effect function α1(U) for τ = 0.5 is shown as solid line. Pointwise 90%

confidence intervals are given as dashed lines. (c) Solid, dashed and dotted lines corresponding to

the pointwise estimated interaction effect function for τ = 0.25, 0.5 and 0.75, respectively.

6 Conclusion

We have proposed a quantile estimation of a hybrid of functional regression and varying coefficient

models for the analysis of the spectrometric data. We have established an asymptotic theory for

the proposed estimation. We have conducted a Monte Carlo study to demonstrate the advantage

of the proposed procedure over the existing least squares-based approaches.
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Appendix

Proof. The proof of Theorem 1 will require some notations and Lemmas. We first introduce

some notations. Let Ai = (ξi1, . . . , ξim)>, Âi = (ξ̂i1, . . . , ξ̂im)>, Λ = diag(λ1, . . . , λm), βτ =

(bτ1, . . . , bτm)>, β′τ = (b′τ1, . . . , b
′
τm)>, P n =

∑n
i=1M(Ui)XiX

>
i M(Ui)

>, V i1 = n−1/2Λ−1/2Âi,

V i2 = (Nn/n)1/2B(Ui), V i3 = P
−1/2
n M(Ui)Xi and

F 0τ =
(
α0τ (u1), . . . , hq0α

(q)
0τ (u1)/q!, . . . , α0τ (uNn), . . . , hq0α

(q)
0τ (uNn)/q!

)>
,

F τ =
(
ατ (u1), . . . , hq0α

(q)
τ (u1)/q!, . . . ,ατ (uNn), . . . , hq0α

(q)
τ (uNn)/q!

)>
.

Set θ1 = n1/2Λ1/2(β′τ − βτ ), θ2 = (n/Nn)1/2(ω − F 0τ ), θ3 = P
1/2
n (γ − F τ ), θ = (θ>1 ,θ

>
2 ,θ

>
3 )>,

V i = (V >i1,V
>
i2,V

>
i3)>, Wi = α0τ (Ui)−B(Ui)

>F 0τ+X>i
(
ατ (Ui)−M(Ui)

>F τ

)
+
∑∞

j=m+1 bτjξij+∑m
j=1 bτj(ξij − ξ̂ij), I = {(Zi(t), Xi, Ui)}, ψτ (s) = τ − I(s < 0), Sn,i(θ) = ρτ (Wi + ετi − V >i θ) −

ρτ (Wi + ετi), Sn(θ) =
∑n

i=1 Sn,i(θ), Γn(θ) = E{Sn,i(θ)|I}, Γn(θ) =
∑n

i=1 Γn,i(θ), Rn,i(θ) =

Sn,i(θ)− Γn,i(θ) + V >i θψτ (ετi), Rn(θ) =
∑n

i=1Rn,i(θ). For convenience, we use the symbol An =

Op(an) (or op(an)) to denote that the every element of matrix An is Op(an) (or op(an)).

Lemma A.1. Suppose {`n(θ) : θ ∈ Θ} is a sequence of convex function and can be written as
1
2θ
>Fθ+U>n θ+Gn+rn(θ), where F is symmetric and positive definite, Un is stochastically bounded

sequence of random vectors, Gn is arbitrary sequence, and rn(θ) tends to zero in probability for each

θ. Let θn be the argmin of `n(θ), then θn is only op(1) away from γn = −F−1Un, the argmin of
1
2θ
>Fθ + U>n θ +Gn. If also Un

L−→ U , then θn
L−→ −F−1U .

Proof. This lemma comes from the result by Hjort and Pollard (2011).

Lemma A.2. Let (X1, Y1), · · · , (Xn, Yn) be independent and identically distributed random

vectors, where Xi and Yi are scalar random variables. Assume that E(|Y |m) < ∞ and that

supx
∫
|y|mf(x, y)dy < ∞, where f denote the joint density of (X, Y ). Let K(·) be a bounded

positive function with a bounded support and satisfying a Lipschitz condition. Then

sup
x∈Ω

∣∣∣∣∣ 1

nh

n∑
i=1

[K(h−1(Xi − x))Yi − EK(h−1(Xi − x))Yi]

∣∣∣∣∣ = Op

(
log1/2(1/h)√

nh

)
,

provide that n2ε−1h→∞ for some ε < 1− r−1.

Proof. This lemma comes from the result by Mack and Silverman (1982).

Lemma A.3. Let X1, . . . , Xn be arbitrary scalar random variables such that max1≤i≤n E(|Xi|r) <
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∞ for some r ≥ 1. Then, we have

E( max
1≤i≤n

|Xi|) ≤ Crn1/r,

where Cr is a constant depending only on r and max1≤i≤n E(|Xi|r).

Proof. This lemma comes from lemma 2.2.2 Van Der Vaart and Wellner (1996).

Lemma A.4. There exist positive constants κ1 and κ2 such that, except on an event whose

probability tends to zero, all the eigenvalues of
∑n

i=1 V i2V
>
i2 fall between κ1 and κ2.

Proof. Observe that
∑n

i=1 V i2V
>
i2 can be denoted by diag(Ψ1, . . . ,ΨNn), where ΨNn =

(υkij)(q+1)×(q+1), υkij = (Nn/n)
∑n

s=1[(Us − uk)/h0]i+jI|Us−uk|≤h0 , i, j = 1, . . . , q; k = 1, . . . , Nn.

Let Ψ̃Nn = (υ̃kij)(q+1)×(q+1), υ̃kij = ((ur − ul)/2)
∫
|u|≤1 u

i+jk(uk + h0u)du. For any ε > 0, there

exist constant c5 > 0, such that

∞∑
n=1

Nn∑
k=1

P{|υkij − υ̃kij | > ε} ≤ c5

∞∑
n=1

(nN4
n + n2N3

n)/(ε4n4) <∞,

By Borel-Cantelli lemma, we have

υkij − υ̃kij → 0 a.s. i, j = 1, . . . , q; k = 1, . . . , Nn

Let Ψ̂Nn = (υ̂ij)(q+1)×(q+1) with υ̂ij =
∫
|u|≤1 u

i+jdu. It is easy to prove that Ψ̂Nn is positive definite.

Thus, there exist positive constants κ1 and κ2 such that all the eigenvalues of
∑n

i=1 V i2V
>
i2 fall

between κ1 and κ2.

Lemma A.5. Under assumptions C4-C9, it holds that m1/2(log n) maxi ‖V i‖ = op(1).

Proof. Note that

‖V i1‖ = n−1/2

√√√√ m∑
j=1

λ−1
j ξ̂2

ij ≤ n
−1/2

√√√√2

m∑
j=1

λ−1
j ξ2

ij + 2

m∑
j=1

λ−1
j 〈Zi, φ̂j − φj〉2. (9)

Using Lemma A.3 and E(λ−1
j ξ2

ij) = 1, we deduce that maxi λ
−1
j ξ2

ij = Op(n
1/2). By Lemma 5.1 of

Hall and Horowitz (2007), we have

〈Zi, φ̂j − φj〉 =
∑
k 6=j

(λ̂j − λk)−1ξik

∫
∆φ̂jφk + ξij

∫
(φ̂j − φj)φj

where ∆ = K̂Z −KZ and
∫
fg denotes

∫
f(t)g(t)dt. Thus,

〈Zi, φ̂j − φj〉2 ≤ 2

∑
k 6=j

(λ̂j − λk)−2ξ2
ik

∥∥∥∥∫ ∆φ̂j

∥∥∥∥2

+ 2ξ2
ij

(∫
(φ̂j − φj)φj

)2

(10)
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Since supj≥1 |λ̂j−λj | ≤ |‖∆‖| = Op(n
−1/2), we deduce that |λ̂j−λk| ≤ 2|λj−λk|(1+op(1)), where

op(1) uniformly for 1 ≤ j ≤ m and k 6= j. Hence

m∑
j=1

λ−1
j

∑
k 6=j

(λ̂j − λk)−2ξ2
ik

∥∥∥∥∫ ∆φ̂j

∥∥∥∥2

≤ 4|‖∆‖|2
m∑
j=1

λ−1
j

∑
k 6=j

(λj − λk)−2ξ2
ik

 (1 + op(1))

Since

|‖∆‖|2
m∑
j=1

λ−1
j

∑
k 6=j

(λj − λk)−2E

(
max
i
ξ2
ik

) ≤ Cn1/2|‖∆‖|2
m∑
j=1

λ−1
j

∑
k 6=j

(λj − λk)−2λk


= O(n−1/2m2β1+3),

we deduce that

m∑
j=1

λ−1
j

∑
k 6=j

(λ̂j − λk)−2 max
i
ξ2
ik

∥∥∥∥∫ ∆φ̂j

∥∥∥∥2

= O(n−1/2m2β1+3). (11)

Using (5.27) of Cai and Hall (2006), we have
∫

(φ̂j − φj)φj = Op(n
−1j2) uniformly for 1 ≤ j ≤ m.

By Lemma A.3 and assumptions C5 and C6, we have

m∑
j=1

λ−1
j max

i
ξ2
ij

(∫
(φ̂j − φj)φj

)2

= Op

n1/2n−2
m∑
j=1

j4

 = Op(n
−3/2m5). (12)

Combining (10)-(12), we can get

max
i

m∑
j=1

λ−1
j 〈Zi, φ̂j − φj〉

2 = O(n−1/2m2β1+3 + n−3/2m5).

Combining (9) and (12), we obtain that

max
i
‖V i1‖ = Op

(
n−1/2(n1/4m1/2 + n−1/4mβ1+3/2 + n−3/4m5/2)

)
. (13)

Since ‖B(Ui)‖ and ‖M(Ui)‖ are bounded, we have maxi ‖V i2‖ = Op

(
N

1/2
n n−1/2

)
. By assumption

C9 and Lemma A.3, we have maxi ‖Xi‖ = Op(n
1/4). Thus, maxi ‖M(Ui)Xi‖ = Op(n

1/4). Since

P n/n→P E{M(U)XX>M(U)>}, we have maxi ‖V i3‖ = P
−1/2
n maxi ‖M(Ui)Xi‖ = Op

(
n−1/4

)
.

Hence, by Assumption C8, we obtain

m1/2(log n) max
i
‖V i‖ ≤ m1/2(log n)

(
max
i
‖V i1‖+ max

i
‖V i2‖+ max

i
‖V i3‖

)
= Op

(
log n

(
n−1/4m+ n−3/4mβ1+2 + n−5/4m3 +N1/2

n n−1/2m1/2 + n−1/4m1/2
))

= op(1).
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Lemma A.6. Under assumptions C4-C9, it holds that maxi |Wi| = op(1).

Proof. Using Lemma A.3 and E(λ−1
j ξ2

ij) = 1 <∞, we deduce that maxi |ξij | = Op(λ
1/2
j n1/4).

By Assumptions C5, C6 and C8, we have

max
i
|
∞∑

j=m+1

bτjξij | ≤
∞∑

j=m+1

bτj max
i
|ξij | = Op(

∞∑
j=m+1

j−β2j−β1/2n1/4) = op(1).

Using Lemma A.3 and assumption C4, we have maxi ‖Zi‖ = Op(n
1/4). Using (5.21) and (5.22) of

Cai and Hall (2006), we have ‖φ̂j − φj‖2 = Op(n
−1j2) uniformly for 1 ≤ j ≤ m. By Assumptions

C6 and C8, we have

max
i
|
m∑
j=1

bτj(ξij − ξ̂ij)| ≤
m∑
j=1

bτj max
i
〈Zi, φ̂j − φj〉 ≤

m∑
j=1

bτj max
i
‖Zi‖‖φ̂j − φj‖

= Op

n−1/4
m∑
j=1

j1−β2

 = op(1).

By Assumptions C7, it holds that maxi |α0τ (Ui) − B(Ui)
>F 0τ | = O(hq0) = O(N−qn ) = op(1),

maxi |X>i
(
ατ (Ui)−M(Ui)

>F τ

)
| ≤ maxi ‖Xi‖maxi ‖ατ (Ui)−M(Ui)

>F τ‖ = O(hq0n
1/4) = op(1).

Thus, we have maxi |Wi| = maxi |α0τ (Ui) − B(Ui)
>F 0τ | + maxi |X>i

(
ατ (Ui)−M(Ui)

>F τ

)
| +

maxi |
∑m

j=1 bτj(ξij − ξ̂ij)|+ maxi |
∑∞

j=m+1 bτjξij | = op(1).

Lemma A.7. Under assumptions C4-C9, for any sufficient large L, it holds that

sup
‖θ‖≤L

|Rn(m1/2θ)| = op(1).

Proof. Note that

Rn,i(θ) = Sn,i(θ)− Γn,i(θ) + V >i θψτ (ετi) =

∫ Wi−m1/2V >i θ

Wi

[ψτ (ετi + t)− ψτ (ετi)] dt

− E

{∫ Wi−m1/2V >i θ

Wi

[ψτ (ετi + t)− ψτ (ετi)] dt|I

}

Let Mn = sup‖θ‖≤L |Rn(m1/2θ)|. Using Lemma A.5, we deduce that

(log n)Mn ≤ 4Lm1/2(log n) max
i
‖V i‖ = op(1).

Using Lemma A.5 and Lemma A.6, we have maxi sup‖θ‖≤L(|Wi|+m1/2|V >i θ|) = op(1). Then, we
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deduce that

n∑
i=1

Var(Rn,i(θ)|I) ≤
n∑
i=1

E

{∫ Wi−m1/2V >i θ

Wi

[ψτ (ετi + t)− ψτ (ετi)] dt

}2

|I


≤

n∑
i=1

m1/2|V >i θ|
∫ Wi+m

1/2|V >i θ|

Wi−m1/2|V >i θ|
E
(

[ψτ (ετi + t)− ψτ (ετi)]
2 |I
)

dt

≤
n∑
i=1

m1/2|V >i θ|
∫ Wi+m

1/2|V >i θ|

Wi−m1/2|V >i θ|
E (I(−t < ετi < t)|I) dt

≤ 2m1/2 max
i
|V >i θ|

n∑
i=1

fτ (0|Xi, Ui, Zi(t))[W
2
i +m(V >i θ)2][1 + op(1)].

Since supj≥1 |λ̂j − λj | ≤ |‖∆‖| = Op(n
−1/2), we deduce that

1

2
λj [(1 + op(1)] ≤ λ̂j ≤

3

2
λj [(1 + op(1)], j = 1, . . . ,m. (14)

By Lemma A.4, we deduce that
n∑
i=1

(V >i2θ2)2 ≤ κ2

m∑
j=1

θ2
2j ,

where θ = (θ1,1, . . . , θ1,m, θ2,1, . . . , θ2,2qNn , θ3,1, . . . , θ3,2pqNn)>. By assumption C1, there exist con-

stant C1 such that

n∑
i=1

fτ (0|Xi, Ui, Zi(t))(V
>
i θ)2 ≤ 3c1

n∑
i=1

(V >i1θ1)2 + 3c1

n∑
i=1

(V >i2θ2)2 + 3c1

n∑
i=1

(V >i3θ3)2

≤ 3c1

m∑
j=1

λ−1
j λ̂jθ

2
1j + 3c1κ2

m∑
j=1

θ2
2j + 3c1

m∑
j=1

θ2
3j

≤ C1‖θ‖2.

By Assumptions C5, C6 and C8, we have

E
n∑
i=1

 ∞∑
j=m+1

bτjξij

2

=
n∑
i=1

m∑
j=1

b2τjλj = O(nm1−β1−2β2)

and

E
n∑
i=1

 m∑
j=1

bτj(ξij − ξ̂ij)

2

≤
n∑
i=1

m
m∑
j=1

b2τj(ξij − ξ̂ij)2 ≤
n∑
i=1

m
m∑
j=1

b2τj max
i
‖Zi‖2‖φ̂j − φj‖2

= O(m).
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By Assumptions C7, it holds that
∑n

i=1(α0τ (Ui)−B(Ui)
>F 0τ )2 = O(nh2q

0 ) = O(nN−2q
n ) = Op(m),∑n

i=1[X>i
(
ατ (Ui)−M(Ui)

>F τ

)
]2 ≤ maxi ‖Xi‖2 maxi ‖ατ (Ui)−M(Ui)

>F τ‖2 = O(N−2q
n n3/2) =

Op(m). Thus, we have
∑n

i=1W
2
i = Op(m). Let

Dn =
n∑
i=1

sup
‖θ‖≤L

Var(Rn,i(θ)|I).

There exist a constant C2 such that

Dn ≤ C2m
3/2 max

i
|V >i θ|[1 + op(1)] ≤ C2Lm

3/2 max
i
‖V i‖[1 + op(1)].

Let |c| = max1≤im |ci| for a vector c = (c1, . . . , cm)>. Set G = {θ, ‖θ‖ ≤ L}. Let G be divided into

Jn disjoint parts G1, . . . , GJn such that for any gk ∈ Gk, 1 ≤ k ≤ Jn and any sufficient small ε > 0,

except on an event whose probability tends to zero,

sup
θ∈Gk

|Rn(m1/2θ)−Rn(m1/2gk)| ≤ 4c−1
0 sup
θ∈Gk

n∑
i=1

fτ (0|Xi, Ui, Zi(t))m
1/2|V >i (θ − gk)|

≤ C3 sup
θ∈Gk

n∑
i=1

m1/2|V >i (θ − gk)| ≤ C3 sup
θ∈Gk

m1/2n1/2‖θ − gk‖

≤ C3 sup
θ∈Gk

m1/2n1/2|θ − gk| < ε/2.

where C3 is a constant. This can be done with Jn = (4C3Ln
1/2m/ε)m+(q̃+1)(p+1)Nn . Using Bernstein

inequality, we have

P

(
sup
θ∈Gk

m−1|Rn(m1/2θ)| ≥ ε|I

)
≤

Jn∑
k=1

P
(
|Rn(m1/2gk)| ≥ mε/2|I

)
≤ 2Jn exp

(
−ε2m2/(8Dn + 4mεNn)

)
= op(1).

Therefore,

P

(
sup
θ∈Gk

m−1|Rn(m1/2θ)| ≥ ε

)
= op(1).

We complete the proof of Lemma A.7.

Lemma A.8. Suppose that assumptions C1-C11 hold, we have ‖θ̂‖ = Op(m
1/2).
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Proof. Note that

Γn(m1/2θ)

=
n∑
i=1

∫ Wi−m1/2V >i θ

Wi

E [ψτ (ετi + t)|I] dt

=
1

2

n∑
i=1

fτ (0|Xi, Ui, Zi(t))[(Wi −m1/2V >i θ)2 −W 2
i ][1 + op(1)]

≥ c0m

(
1

4
‖θ‖2 +

n∑
i=1

(
V >i1θ1V

>
i2θ2 + V >i1θ1V

>
i3θ3 + V >i2θ2V

>
i3θ3

)
−m−1

n∑
i=1

W 2
i

)
[1 + op(1)].

Set Ṽ i1 = n−1/2Λ−1/2Ai. By Assumptions 1 and 5 and the fact that ‖B(Ui)‖ is bounded, there

exist constant C4 > 0 such that

E

(
n∑
i=1

Ṽ
>
i1θ1V

>
i2θ2

)2

= E

n∑
i=1

(
Ṽ
>
i1θ1V

>
i2θ2

)2
+ 2E

∑
i 6=j

(
E(Ṽ i1|U,X)>θ1V

>
j2θ2

)
=

n∑
i=1

E
(
Ṽ
>
i1θ1V

>
i2θ2

)2
≤ Nn‖θ1‖2‖θ2‖2E

(
‖Ṽ i1‖2‖B(Ui)‖2

)
≤ C3n

−1mNn = o(1),

E

(
n∑
i=1

Ṽ
>
i1θ1V

>
i3θ3

)2

= E
n∑
i=1

(
Ṽ
>
i1θ1V

>
i3θ3

)2
+ 2

∑
i 6=j

E
(

E(Ṽ i1|U,X)>θ1V
>
j3θ3

)
=

n∑
i=1

E
(
Ṽ
>
i1θ1V

>
i3θ3

)2
≤

n∑
i=1

‖θ1‖2‖θ2‖2E
(
‖Ṽ i1‖2‖V i3‖2

)
≤ C3n

−1/2m = o(1),

E

(
n∑
i=1

V >i2θ2V
>
i3θ3

)2

= E

n∑
i=1

(
V >i2θ2V

>
i3θ3

)2
+ 2

∑
i 6=j

E
(
Ṽ
>
i2θ2E(V i3|U)>θ3

)
=

n∑
i=1

E
(
V >i2θ2V

>
i3θ3

)2
≤

n∑
i=1

‖θ2‖2‖θ3‖2E
(
‖V i2‖2‖V i3‖2

)
≤ C3n

−1/2Nn = o(1).
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Using the fact that ‖φ̂j − φj‖2 = Op(n
−1j2) uniformly for 1 ≤ j ≤ m, we deduce that

|
n∑
i=1

(V i1 − Ṽ i1)>θ1V
>
i2θ2|

≤

(
n∑
i=1

‖(V i1 − Ṽ i1)‖2
)1/2

‖θ1‖

(
n∑
i=1

(V >i2θ2)2

)1/2

≤ C4

n−1m

n∑
i=1

m∑
j=1

λ−1
j (ξij − ξ̂ij)2

1/2

‖θ1‖N1/2
n max

i
‖B(Ui)‖‖θ2‖

≤ C4

n−1m

n∑
i=1

m∑
j=1

λ−1
j max

i
‖Xi‖2‖φ̂j − φj‖2

1/2

‖θ1‖N1/2
n max

i
‖B(Ui)‖‖θ2‖

= Op

(
n−1/2m4+β1N1/2

n

)
= op(1),

where C4 is a constant. Similarly,

|
n∑
i=1

(V i1 − Ṽ i1)>θ1V
>
i3θ3| = Op

(
n−1/2m4+β1n1/4

)
= op(1),

Thus,
∑n

i=1 V
>
i1θ1V

>
i2θ2 = op(1),

∑n
i=1 V

>
i1θ1V

>
i3θ3 = op(1). Observe that

∑n
i=1 V

>
i2θ2V

>
i3θ3 =

n−1/2N
1/2
n P

−1/2
n

∑n
i=1B(Ui)

>θ2X
>
i M(Ui)

>θ3 and E
(∑n

i=1B(Ui)
>θ2X

>
i M(Ui)

>θ3

)2
= O(n).

Thus,
∑n

i=1 V
>
i2θ2V

>
i3θ3 = Op(n

−1/2N
1/2
n ) = op(1). Hence, for sufficient large L, we have

inf
‖θ‖=L

Γn(m1/2θ) ≥ 1

4
c0mL

2[1 + op(1)].

Note that

E


(
m1/2

n∑
i=1

Ṽ
>
i θψ(ετi)

)2

|I

 ≤ 3m

{
n∑
i=1

(V >i1θ1)2 +

n∑
i=1

(V >i2θ2)2 +

n∑
i=1

(V >i3θ3)2

}
≤ C5m‖θ‖2[1 + op(1)].

where C5 is a constant. Thus, sup‖θ‖≤L |m
1/2
∑n

i=1 Ṽ
>
i θψ(ετi)| = Op(m

1/2). For sufficient large

L, we deduce that

inf
‖θ‖=L

Sn(m1/2θ) = inf
‖θ‖=L

(
Γn(θ)−m1/2

n∑
i=1

V >i θψτ (ετi) +Rn(θ)

)
≥ 1

4
c0mL

2[1 + op(1)].(15)

Note that the minimizer of Equation (5) is also the minimizer of the following function

n∑
i=1

{
ρτ

(
ετi + V >i θ +Wi

)
− ρτ (ετi +Wi)

}
. (16)
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By the convexity of ρτ and (15), we deduce that

P

{
inf
‖θ‖≤L

(
n∑
i=1

[
ρτ

(
ετi + V >i θ +Wi

)
− ρτ (ετi +Wi)

])
> 0

}
→ 1.

Thus, P (‖θ̂‖ ≤ Lm1/2)→ 1, that is, ‖θ̂‖ = Op(m
1/2). We complete the proof of Lemma A.8.

Proof of Theorem 1. Let

T1 =

∫
I

{
m∑
k=1

(b̂′τk − bτk)φ̂k(t)

}2

dt, T2 =

∫
I

{
m∑
k=1

bτk

(
φ̂k(t)− φk(t)

)}2

dt

and

T3 =

∫
I

( ∞∑
k=m+1

bτkφk(t)

)2

dt.

We can get

∫
I

(
β̂τ (t)− βτ (t)

)2
dt =

∫
I

(
m∑
k=1

b̂′τkφ̂k(t)−
∞∑
k=1

bτkφk(t)

)2

dt

=

∫
I

(
m∑
k=1

b̂′τkφ̂k(t)−
m∑
k=1

bτkφk(t)−
∞∑

k=m+1

bτkφk(t)

)2

dt

≤ 4T1 + 4T2 + 2T3. (17)

Furthermore, using the fact
∫
I{φk(t)− φ̂k(t)}

2dt = Op(n
−1k2) uniformly for k = 1, · · · ,m, we have

T2 ≤ m

∫
I

m∑
k=1

b2τk

(
φ̂k(t)− φk(t)

)2
dt = Op

(
m

m∑
k=1

b2τkn
−1k2

)
≤ Op

(
n−1m

m∑
k=1

k2−2β2

)

= Op

(
n
−β1+2β2−1

β1+2β2

)
, (18)

T3 =

∞∑
k=m+1

b2τk ≤
∞∑

k=m+1

B−2
3 k−2β2 = Op

(
n
− 2β2−1
β1+2β2

)
. (19)

By Lemma A.8, we obtain ‖θ̂1‖ = Op(m
1/2). Thus,

T1 =

∫
I

{
m∑
k=1

(b̂′τk − bτk)φ̂k(t)

}2

dt =

m∑
k=1

(b̂′τk − bτk)2 ≤ n−1λ−1
m ‖n1/2Λ1/2(β̂

′
τ − βτ )‖2

= Op

(
n−1m1+β1

)
= Op

(
n
− 2β2−1
β1+2β2

)
. (20)
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Conjoining (17)-(20), we deduce that∫
I

(
β̂τ (t)− βτ (t)

)2
dt = Op

(
n
− 2β2−1
β1+2β2

)
+Op

(
n
−β1+2β2−1

β1+2β2

)
+Op

(
n
− 2β2−1
β1+2β2

)
= Op

(
n
− 2β2−1
β1+2β2

)
.

This completes the proof of Theorem 1.

Proof of Theorem 2. Let ri = I(εiτ ≤ 0)−τ and r∗i (u) = I(εiτ ≤ −si(u)−ϕi)−τ , where si(u) =

α0τ (Ui)−α0τ (u)−α′0τ (u)(Ui−u)+XT
i {ατ (Ui)−ατ (u)−α′τ (u)(Ui−u)} and ϕi =

∑∞
k=m+1 bτkξik+∑m

k=1 bτk(ξik − ξ̂ik) +
∑m

k=1(bτk − b̂′τk)ξ̂ik. Denote Ki(u) = K{(Ui − u)/h}, θ∗ =
√
nh{a0τ −

α0τ (u), {aτ −ατ (u)}T , h{b0τ −α′0τ (u)}, h{bτ −α′τ (u)}T }T , and X∗i (u) = {1,XT
i ,

Ui−u
h ,XT

i
Ui−u
h }

T .

Seen from (2), we deduce that

Yi − a0τ − b0τ (Ui − u)−XT
i {aτ + bτ (Ui − u)} −

m∑
k=1

b̂′τkξ̂ik

= α0τ (Ui) +XT
i ατ (Ui) + ϕi + ετi − a0τ − b0τ (Ui − u)−XT

i {aτ + bτ (Ui − u)}

= ϕi + ετi + si(u)− ηi(u).

where ηi(u) = {X∗i (u)}Tθ∗/
√
nh. Then, θ∗ is also the minimizer of function

Ln(θ∗) =
n∑
i=1

(ρτ {ετi + ϕi + si(u)− ηi(u)} − ρτ {εiτ + ϕi + si(u)})Ki(u).

By the identity of Knight (1998)

ρτ (u− v)− ρτ (u) = v{I(u ≤ 0)− τ}+

∫ v

0
{I(u ≤ t)− I(u ≤ 0)} dt, (21)

we can get

Ln(θ∗) =

n∑
i=1

{
ηi(u) [I(εiτ ≤ −si(u)− ϕi)− τ ] +

∫ ηi(u)

0
{I(εiτ ≤ −si(u)− ϕi + t)

− I(εiτ ≤ −si(u)− ϕi)}dt
}
Ki(u)

=

n∑
i=1

{
ηi(u)r∗i (u) +

∫ ηi(u)

0
{I(εiτ ≤ −si(u)− ϕi + t)− I(εiτ ≤ −si(u)− ϕi)}dt

}
Ki(u)

= {S∗n(u)}Tθ∗ +R∗n(θ∗),

where

S∗n(u) =
1√
nh

n∑
i=1

r∗i (u)X∗i (u)Ki(u)
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and

R∗n(θ∗) =
n∑
i=1

Ki(u)

∫ ηi(u)

0
{I(εiτ ≤ −si(u)− ϕi + t)− I(εiτ ≤ −si(u)− ϕi)}dt.

By assumptions C5-C8 and Theorem 1, there exist constant C6 such that

E|
∞∑

k=m+1

bτkξik| ≤
∞∑

k=m+1

|bτk|E|ξik| ≤
∞∑

k=m+1

|bτk|
{

Eξ2
ik

}1/2 ≤
∞∑

k=m+1

C6k
−(β2+

β1
2

) = C6n
−β1+2β2−2

2(β1+2β2) ,

|
m∑
k=1

bτk(ξik − ξ̂ik)| ≤
m∑
k=1

bτk〈Zi, φ̂k − φk〉 ≤
m∑
k=1

bτk‖Zi‖‖φ̂k − φk‖

= Op

(
n−1/2

m∑
k=1

k1−β2

)
= Op

(
n−

1
2

)
and

|
m∑
k=1

(bτk − b̂′τk)ξ̂ik| ≤
m∑
k=1

|bτk − b̂′τk|〈Zi, φ̂k〉 ≤ m1/2(
m∑
k=1

|bτk − b̂′τk|2)1/2

= Op

(
n
− β2−1
β1+2β2

)
.

Thus,

ϕi = Op

(
n
− β2−1
β1+2β2

)
uniformly for i = 1, . . . , n.

Consider the conditional expectation of R∗n(θ∗), we have

E
{
R∗n(θ∗)|X, U, Z̃

}
=

n∑
i=1

Ki(u)

∫ ηi(u)

0
{Fτ (−si(u)− ϕi + t|X, U, Z(t))− Fτ (−si(u)− ϕi|X, U, Z(t))}dt

=
1

2
θ∗T

{
1

nh0
fτ (−si(u)− ϕi|X, U, Z(t))

n∑
i=1

Ki(u){X∗i (u)}{X∗i (u)}T
}
θ∗ + op(1).

Using similar calculations, we can get Var
{
R∗n(θ∗)|X, U, Z̃

}
= op(1). Therefore, we obtain

R∗n(θ∗) = E
{
R∗n(θ∗)|X, U, Z̃

}
+ op(1)

=
1

2
θ∗T

{
1

nh

n∑
i=1

Ki(u)fτ (−si(u)− ϕi|X, U, Z(t)){X∗i (u)}{X∗i (u)}T
}
θ∗ + op(1)

=
1

2
θ∗TQn(u)θ∗ + op(1),
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where Qn(u) = 1
nh

∑n
i=1Ki(u)fτ (−si(u) − ϕi|X, U, Z(t)){X∗i (u)}{X∗i (u)}T . By Lemma A.2, we

have

Qn(u) = E{Qn(u)}+Op(log1/2(1/h)/
√
nh)

= E
{

E
{
fτ (0|X, U, Z(t)){X∗i (u)}{X∗i (u)}T |U = u

}}
+Op(log1/2(1/h)/

√
nh)

= fU (u)G(u) +Op

(
h2 + n

− β2−1
β1+2β2 + log1/2(1/h)/

√
nh

)
.

Thus, Ln(θ∗) can be written as

Ln(θ∗) = {Ŝn(u)}Tθ∗ +
1

2
fU (u)θ∗TG(u)θ∗ +Op

(
h2 + n

− β2−1
β1+2β2 + log1/2(1/h)/

√
nh

)
,

where Ŝn(u) = 1√
nh

∑n
i=1 r

∗
i (u)X∗i (u)Ki(u). Since Ln(θ∗) is convex function, following from

Lemma A.1, the minimizer of Ln(θ∗) can be written as

θ̂
∗

= −f−1
U (u){G(u)}−1Ŝn(u) +Op

(
h2 + n

− β2−1
β1+2β2 + log1/2(1/h)/

√
nh

)
, (22)

where θ̂
∗

=
√
nh
{
â0τ − α0τ (u), {âτ −ατ (u)}T

}T
.

Let Sn1(u) = 1√
nh

∑n
i=1Ki(u)ri

{
1,XT

i

}T
. By simple calculations, It is easy to show that

E{Sn1(u)} = 0 and Var{Sn1(u)} = τ(1 − τ)fU (u)ν0H(u). By the Cramér-Wald device, it is

quite easy to show that the central limit theorem for Sn1(u) holds. According to the central limit

theorem, we have

Sn1(u)
L−→ N (0, τ(1− τ)fU (u)ν0H(u)) .

Furthermore, we have

Var{Sn1(u)− Ŝn(u)|X, U, Z(t)}

= Var

{
1√
nh

n∑
i=1

Ki(u)(r∗i (u)− ri)
{

1,XT
i

}T}

≤ 1

nh

n∑
i=1

(Ki(u))2 (1,XT
i

)T (
1,XT

i

)
{Fτ (|si(u) + ϕi||X, U, Z(t))− Fτ (0|X, U, Z(t))}

= op(1).

Thus, Var{Sn1(u)− Ŝn(u)} = o(1). By Slutsky’s theorem, we can obtain

Ŝn(u)− E
(
Ŝn(u)

)
L−→ N (0, τ(1− τ)fU (u)ν0H(u)) . (23)
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Now consider the expectation of Ŝn(u). Note that

E

{
1√
nh
Ŝn(u)|X, U, Z(t)

}
=

1

nh

n∑
i=1

{Fτ (−si(u)− ϕi|X, U, Z(t))− Fτ (0|X, U, Z(t))}Ki(u)
(
1,XT

i

)T
= − 1

nh

n∑
i=1

fτ (0|X, U, Z(t))Ki(u)si(u){1 + o(1))
(
1,XT

i

)T
.

Therefore,

E

{
1√
nh
Ŝn(u)

}
= E

{
E

{
1√
nh
Ŝn(u)|X, U, Z(t)

}}
= −µ2h

2

2
fU (u)G(u)

(
α′′0τ (u)

α′′τ (u)

)
+ op(h

2). (24)

Seen from (22), (23) and (24), (8) holds. This completes the proof of Theorem 2.
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