LOSS COVERAGE IN INSURANCE MARKETS: WHY ADVERSE SELECTION IS NOT ALWAYS A BAD THING

MingJie Hao, Dr. Pradip Tapadar, Mr. Guy Thomas
University of Kent, UK

Email: mh586@kent.ac.uk, P.Tapadar@kent.ac.uk, R.G.Thomas@kent.ac.uk

IAA COLLOQUIUM IN OSLO
Acknowledgement

Bursary from
- IAA-International Actuarial Association
- The Colloquium
Table of contents

- Background
- How does insurance work?
- Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage
- Summary and Further research
- References
Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
Table of contents

- **Background**
 - How does insurance work?
 - Risk classification Scheme

- **Adverse Selection**
Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme

- Adverse Selection

- Loss Coverage
Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme

- Adverse Selection

- Loss Coverage

- Demand function
 - Iso-elastic demand function

- Equilibrium Premium

- Results on adverse selection and loss coverage
Table of contents

- **Background**
 - How does insurance work?
 - Risk classification Scheme

- **Adverse Selection**

- **Loss Coverage**

- **Demand function**
 - Iso-elastic demand function

- **Equilibrium Premium**

- **Results on adverse selection and loss coverage**

- **Summary and Further research**
Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage
- Summary and Further research
- References
Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme

- Adverse Selection

- Loss Coverage

- Demand function
 - Iso-elastic demand function

- Equilibrium Premium

- Results on adverse selection and loss coverage

- Summary and Further research

- References
Background

How insurance works and risk classification scheme

Regulators

Restrict risk classification
E.g. European Gender Directive

π₁ = π₂ = ⋯ = πₙ = πₑ
Pooled Premium

Risk Classification

Risk-group 1
- Risk: μ₁

Risk-group 2
- Risk: μ₂

Risk-group n
- Risk: μₙ

π₁ → Insurers

π₂ → Insurers

πₙ → Insurers

Insurers

Fair Premium
πᵢ = μᵢ

M Hao (SMSAS-University of Kent)
Insurance Risk
IAA COLLOQUIUM IN OSLO
Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage
- Summary and Further research
- References
Adverse Selection

0, \pi_1, \pi_2, \pi_3, \pi_e, \ldots, \pi_7, \pi_8, \ldots, \pi_n, 1.
Adverse Selection

0, π₁, π₂, π₃, πₑ, ..., π₇, π₈, ..., πₙ, 1.

Typical definition

Purchasing decision is positively correlated with losses
-Chiappori and Salanie (2000) “Positive Correlation Test”
Adverse Selection

$0, \pi_1, \pi_2, \pi_3, \pi_e, \ldots, \pi_7, \pi_8, \ldots, \pi_n, 1.$

Typical definition

Purchasing decision is positively correlated with losses
- Chiappori and Salanie (2000) “Positive Correlation Test”

Empirical results are mixed and vary by market.
Adverse Selection

- $0, \pi_1, \pi_2, \pi_3, \pi_e, \ldots, \pi_7, \pi_8, \ldots, \pi_n, 1.$

Typical definition

Purchasing decision is positively correlated with losses
-Chiappori and Salanie (2000) “Positive Correlation Test”

Empirical results are mixed and vary by market.

<table>
<thead>
<tr>
<th>Insurance Type</th>
<th>Reference(s)</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Insurance</td>
<td>Cawley and Philipson (1999)</td>
<td>X</td>
</tr>
<tr>
<td>Auto Insurance</td>
<td>Chiappori and Salanie (2000)</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Cohen (2005)</td>
<td>O</td>
</tr>
<tr>
<td>Health Insurance</td>
<td>Cardon and Hendel (2001)</td>
<td>X</td>
</tr>
</tbody>
</table>
Adverse Selection

- Restricting risk classification \(\Rightarrow\) Policy is over-subscribed by high risks \textbf{BAD}?
Adverse Selection

- Restricting risk classification \Rightarrow Policy is over-subscribed by high risks **BAD**?
- **Good measure?**

Definition

Adverse Selection (AS) = expected claim per policy \[E[QL] \]
\[\text{expected loss per risk} = E[Q]E[L], \] (1)

Adverse Selection Ratio:

\[S = \frac{AS \text{ at pooled premium}}{\pi} \]
\[= \frac{AS \text{ at risk-differentiated premiums}}{1} \]
> 1 \Rightarrow **Adverse Selection**.

M Hao (SMSAS-University of Kent)
Adverse Selection

- Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?
- Good measure?

Definition

Adverse Selection (AS) = \(\frac{\text{expected claim per policy}}{\text{expected loss per risk}} = \frac{E[QL]}{E[Q]E[L]}, \)

(1)

where \(Q \): quantity of insurance; \(L \): risk experience.
Adverse Selection

- Restricting risk classification ⇒ Policy is over-subscribed by high risks **BAD?**
- **Good measure?**

Definition

Adverse Selection (AS) = \(\frac{\text{expected claim per policy}}{\text{expected loss per risk}} = \frac{E[QL]}{E[Q]E[L]}, \) \hspace{1cm} (1)

where \(Q \): quantity of insurance; \(L \): risk experience.

Adverse Selection Ratio: \(S = \frac{\text{AS at pooled premium } \pi_e}{\text{AS at risk-differentiated premiums}} \) \hspace{1cm} (2)
Adverse Selection

- Restricting risk classification ⇒ Policy is over-subscribed by high risks BAD?
- Good measure?

Definition

Adverse Selection (AS) = \frac{\text{expected claim per policy}}{\text{expected loss per risk}} = \frac{E[QL]}{E[Q]E[L]}, \quad (1)

where \(Q \): quantity of insurance; \(L \): risk experience.

Adverse Selection Ratio: \(S = \frac{\text{AS at pooled premium } \pi e}{\text{AS at risk-differentiated premiums}} \quad (2) \)

> 1 ⇒ **Adverse Selection**.
Example

- A population of 1000
- Two risk groups
 - 200 high risks with risk 0.04
 - 800 low risks with risk 0.01
- No moral hazard
Example
Full risk classification
Example

Full risk classification

<table>
<thead>
<tr>
<th></th>
<th>Low risks</th>
<th>High risks</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>Total population</td>
<td>800</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>Expected population losses</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Break-even premiums (differentiated)</td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>Numbers insured</td>
<td>400</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>Adverse Selection Ratio (S)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

No adverse selection.
Example

Full risk classification

<table>
<thead>
<tr>
<th></th>
<th>Low risks</th>
<th>High risks</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>Total population</td>
<td>800</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>Expected population losses</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Break-even premiums</td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>(differentiated)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numbers insured</td>
<td>400</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>Adverse Selection Ratio (S)</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No adverse selection.
Example

Restriction on risk classification - Case 1

<table>
<thead>
<tr>
<th>Risk</th>
<th>Low risks</th>
<th>High risks</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>Total population</td>
<td>800</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>Expected population losses</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Break-even premiums</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Numbers insured</td>
<td>300</td>
<td>150</td>
<td>450</td>
</tr>
<tr>
<td>Adverse Selection Ratio (S)</td>
<td>1.25 > 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Moderate adverse selection
Example

Restriction on risk classification—Case 1

<table>
<thead>
<tr>
<th></th>
<th>Low risks</th>
<th>High risks</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>Total population</td>
<td>800</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>Expected population losses</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Break-even premiums (pooled)</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Numbers insured</td>
<td>300(400)</td>
<td>150(100)</td>
<td>450(500)</td>
</tr>
<tr>
<td>Adverse Selection Ratio (S)</td>
<td></td>
<td></td>
<td>1.25>1</td>
</tr>
</tbody>
</table>
Example

Restriction on risk classification - Case 1

<table>
<thead>
<tr>
<th></th>
<th>Low risks</th>
<th>High risks</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>Total population</td>
<td>800</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>Expected population losses</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Break-even premiums (pooled)</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Numbers insured</td>
<td>300(400)</td>
<td>150(100)</td>
<td>450(500)</td>
</tr>
</tbody>
</table>

Adverse Selection Ratio (S) 1.25 > 1

Moderate adverse selection
Example
Restriction on risk classification-Case 2
Example

Restriction on risk classification-Case 2

<table>
<thead>
<tr>
<th></th>
<th>Low risks</th>
<th>High risks</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>Total population</td>
<td>800</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>Expected population losses</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Break-even premiums (pooled)</td>
<td>0.02154</td>
<td>0.02154</td>
<td>0.02154</td>
</tr>
<tr>
<td>Numbers insured</td>
<td>200(400)</td>
<td>125(100)</td>
<td>325(500)</td>
</tr>
<tr>
<td>Adverse Selection Ratio (S)</td>
<td></td>
<td></td>
<td>1.3462>1</td>
</tr>
</tbody>
</table>

Heavier adverse selection suggests pooling is always bad. But is it?

M Hao (SMSAS-University of Kent)
Example
Restriction on risk classification-Case 2

<table>
<thead>
<tr>
<th></th>
<th>Low risks</th>
<th>High risks</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>Total population</td>
<td>800</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>Expected population losses</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Break-even premiums (pooled)</td>
<td>0.02154</td>
<td>0.02154</td>
<td>0.02154</td>
</tr>
<tr>
<td>Numbers insured</td>
<td>200(400)</td>
<td>125(100)</td>
<td>325(500)</td>
</tr>
<tr>
<td>Adverse Selection Ratio (S)</td>
<td></td>
<td>1.3462 >1</td>
<td></td>
</tr>
</tbody>
</table>

Heavier adverse selection
Example

Restriction on risk classification—Case 2

<table>
<thead>
<tr>
<th></th>
<th>Low risks</th>
<th>High risks</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>Total population</td>
<td>800</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>Expected population losses</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Break-even premiums</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(pooled)</td>
<td>0.02154</td>
<td>0.02154</td>
<td>0.02154</td>
</tr>
<tr>
<td>Numbers insured</td>
<td>200(400)</td>
<td>125(100)</td>
<td>325(500)</td>
</tr>
<tr>
<td>Adverse Selection Ratio (S)</td>
<td></td>
<td></td>
<td>1.3462>1</td>
</tr>
</tbody>
</table>

Heavier adverse selection

Adverse selection suggests pooling is always bad. But is it?
Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage
- Summary and Further research
- References
Loss Coverage

Aim of insurance: provide protection for those who suffer losses.

▶ High risks most need insurance.

▶ Restriction on risk classification seems reasonable.

Thomas (2008, 2009) "Loss Coverage":

Definition

\[
\text{Loss Coverage (LC)} = \frac{\text{insured expected losses}}{\text{population expected losses}} \tag{3}
\]

Loss Coverage Ratio:

\[
C = \frac{\text{LC at a pooled premium } \pi_e}{\text{LC at a risk-differentiated premium } \pi_i} \tag{4}
\]

\[
> 1, \text{ Favorable!}
\]
Loss Coverage

- Aim of insurance: provide protection for those who suffer losses.
Aim of insurance: provide protection for those who suffer losses.

- High risks most need insurance.
- Restriction on risk classification seems reasonable.
Loss Coverage

- Aim of insurance: provide protection for those who suffer losses.
 - High risks most need insurance.
 - Restriction on risk classification seems reasonable.

\[
\text{Loss Coverage (LC)} = \frac{\text{insured expected losses}}{\text{population expected losses}}
\]

\[
\text{Loss Coverage Ratio: } C = \frac{\text{LC at a pooled premium } \pi}{\text{LC at a risk-differentiated premium } \pi_i} > 1, \text{ Favorable!}
\]
Loss Coverage

- Aim of insurance: provide protection for those who suffer losses.
 - High risks most need insurance.
 - Restriction on risk classification seems reasonable.

Definition

\[
\text{Loss Coverage (LC)} = \frac{\text{insured expected losses}}{\text{population expected losses}}
\]

\[C = \frac{\pi_e}{\pi_i}\] (4)

> Favorable!
Loss Coverage

- Aim of insurance: provide protection for those who suffer losses.
 - High risks most need insurance.
 - Restriction on risk classification seems reasonable.

Definition

\[
\text{Loss Coverage (LC)} = \frac{\text{insured expected losses}}{\text{population expected losses}} \tag{3}
\]

\[
\text{Loss Coverage Ratio: } C = \frac{\text{LC at a pooled premium } \pi_e}{\text{LC at at risk-differentiated premium } \pi_i} \tag{4}
\]

\[
> 1, \text{ Favorable!}
\]
Example
No restriction on risk classification
Example

No restriction on risk classification

<table>
<thead>
<tr>
<th></th>
<th>Low risks</th>
<th>High risks</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>Total population</td>
<td>800</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>Expected population losses</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Break-even premiums (differentiated)</td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>Numbers insured</td>
<td>400</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>Insured losses</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Loss coverage ratio (C)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Example

No restriction on risk classification

<table>
<thead>
<tr>
<th></th>
<th>Low risks</th>
<th>High risks</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>Total population</td>
<td>800</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>Expected population losses</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Break-even premiums</td>
<td>differentiated</td>
<td>0.01</td>
<td>0.04</td>
</tr>
<tr>
<td>Numbers insured</td>
<td>400</td>
<td>100</td>
<td>500</td>
</tr>
<tr>
<td>Insured losses</td>
<td>4</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Loss coverage ratio (C)</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

No adverse selection.
Example
Restriction on risk classification-Case 1
Example

Restriction on risk classification - Case 1

<table>
<thead>
<tr>
<th></th>
<th>Low risks</th>
<th>High risks</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>Total population</td>
<td>800</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>Expected population losses</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Break-even premiums (pooled)</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>Numbers insured</td>
<td>300(400)</td>
<td>150(100)</td>
<td>450(500)</td>
</tr>
<tr>
<td>Insured losses</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Loss coverage ratio (C)</td>
<td></td>
<td></td>
<td>1.125>1</td>
</tr>
</tbody>
</table>
Example

Restriction on risk classification—Case 1

<table>
<thead>
<tr>
<th></th>
<th>Low risks</th>
<th>High risks</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>Total population</td>
<td>800</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>Expected population losses</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Break-even premiums</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>(pooled)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Numbers insured</td>
<td>300(400)</td>
<td>150(100)</td>
<td>450(500)</td>
</tr>
<tr>
<td>Insured losses</td>
<td>3</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>Loss coverage ratio (C)</td>
<td></td>
<td></td>
<td>1.125>1</td>
</tr>
</tbody>
</table>

Moderate adverse selection \(S = 1.25\) but **favorable loss coverage.**
Example
Restriction on risk classification-Case 2
Example

Restriction on risk classification - Case 2

<table>
<thead>
<tr>
<th></th>
<th>Low risks</th>
<th>High risks</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>Total population</td>
<td>800</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>Expected population losses</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Break-even premiums (pooled)</td>
<td>0.02154</td>
<td>0.02154</td>
<td>0.02154</td>
</tr>
<tr>
<td>Numbers insured</td>
<td>200(400)</td>
<td>125(100)</td>
<td>325(500)</td>
</tr>
<tr>
<td>Insured losses</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Loss coverage ratio ((C))</td>
<td></td>
<td></td>
<td>0.875<1</td>
</tr>
</tbody>
</table>

Heavier adverse selection \((S = 1.3462)\) and worse loss coverage. Loss coverage might be a better measure!

M Hao (SMSAS-University of Kent)
Example

Restriction on risk classification—Case 2

<table>
<thead>
<tr>
<th>Risk</th>
<th>Low risks</th>
<th>High risks</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>Total population</td>
<td>800</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>Expected population losses</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Break-even premiums (pooled)</td>
<td>0.02154</td>
<td>0.02154</td>
<td>0.02154</td>
</tr>
<tr>
<td>Numbers insured</td>
<td>200(400)</td>
<td>125(100)</td>
<td>325(500)</td>
</tr>
<tr>
<td>Insured losses</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Loss coverage ratio (C)</td>
<td></td>
<td></td>
<td>0.875<1</td>
</tr>
</tbody>
</table>

Heavier adverse selection (S = 1.3462) and worse loss coverage.
Example

Restriction on risk classification-Case 2

<table>
<thead>
<tr>
<th></th>
<th>Low risks</th>
<th>High risks</th>
<th>Aggregate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk</td>
<td>0.01</td>
<td>0.04</td>
<td>0.016</td>
</tr>
<tr>
<td>Total population</td>
<td>800</td>
<td>200</td>
<td>1000</td>
</tr>
<tr>
<td>Expected population losses</td>
<td>8</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Break-even premiums (pooled)</td>
<td>0.02154</td>
<td>0.02154</td>
<td>0.02154</td>
</tr>
<tr>
<td>Numbers insured</td>
<td>200(400)</td>
<td>125(100)</td>
<td>325(500)</td>
</tr>
<tr>
<td>Insured losses</td>
<td>2</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

Loss coverage ratio \((C)\)\: 0.875<1

Heavier adverse selection \((S = 1.3462)\) and worse loss coverage. Loss coverage might be a better measure!
Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage
- Summary and Further research
- References
Demand Function

Definition

\[d(\mu, \pi) : \text{the proportional demand for insurance for risk} \ \mu \ \text{at premium} \ \pi. \]
Demand Function

Definition

d(\mu, \pi) : the proportional demand for insurance for risk \mu at premium \pi.

It is assumed to have the following properties:

- \frac{\partial}{\partial \pi} d(\mu, \pi) < 0 : a decreasing function of premium.
Demand Function

Definition

\[d(\mu, \pi) : \text{the proportional demand for insurance for risk } \mu \text{ at premium } \pi. \]

It is assumed to have the following properties:

- \(\frac{\partial}{\partial \pi} d(\mu, \pi) < 0 : \) a decreasing function of premium.
- \(d(\mu_1, \pi) < d(\mu_2, \pi) : \) the proportional demand is greater for the higher risk-group.

Demand elasticity:

\[\epsilon(\mu, \pi) = -\frac{\partial}{\partial \pi} \frac{d(\mu, \pi)}{d(\mu, \pi)} \]

i.e. sensitivity of demand to premium changes.
Demand Function

Definition

\(d(\mu, \pi) \) : the proportional demand for insurance for risk \(\mu \) at premium \(\pi \).

It is assumed to have the following properties:

- \(\frac{\partial}{\partial \pi} d(\mu, \pi) < 0 \) : a decreasing function of premium.
- \(d(\mu_1, \pi) < d(\mu_2, \pi) \) : the proportional demand is greater for the higher risk-group.

Definition

Demand elasticity: \(\epsilon(\mu, \pi) = - \frac{\partial d(\mu, \pi)}{d(\mu, \pi)} / \frac{\partial \pi}{\pi} \) i.e. sensitivity of demand to premium changes.
Demand Function

Iso-elastic demand function

\[\varepsilon(\mu, \pi) = \lambda, \text{ i.e. constant} \]

(5)
Iso-elastic demand function

\[\epsilon(\mu, \pi) = \lambda, \text{ i.e. constant} \] \hspace{1cm} (5)

\[d(\mu, \pi) = \tau \left[\frac{\pi}{\mu} \right]^{-\lambda}. \] \hspace{1cm} (6)
Iso-elastic demand function

$\tau = 1, \mu = 0.01, \lambda = 0.4, 0.8$ and 1.2
Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage
- Summary and Further research
- References
Equilibrium premium, π_e, ensures a zero expected total profit,
Equilibrium Premium

Equilibrium premium, π_e, ensures a zero expected total profit, i.e.

$$d(\mu_1, \pi_e)(\pi_e - \mu_1)p_1 + d(\mu_2, \pi_e)(\pi_e - \mu_2)p_2 = 0. \quad (7)$$
Equilibrium Premium

Equilibrium premium, π_e, ensures a zero expected total profit, i.e.

$$d(\mu_1, \pi_e)(\pi_e - \mu_1)p_1 + d(\mu_2, \pi_e)(\pi_e - \mu_2)p_2 = 0.$$ \hspace{1cm} (7)

“Profit” from low risk-group = “Loss” from high risk-group
Equilibrium Premium

Equilibrium premium, π_e, ensures a zero expected total profit, i.e.

$$d(\mu_1, \pi_e)(\pi_e - \mu_1)p_1 + d(\mu_2, \pi_e)(\pi_e - \mu_2)p_2 = 0. \quad (7)$$

“Profit” from low risk-group = “Loss” from high risk-group

$$d(\mu_i, \pi_e) = \tau_i \left(\frac{\pi_e}{\mu_i} \right)^{-\lambda_i} , \quad i = 1, 2 \quad (8)$$
Equilibrium Premium

Equilibrium premium, π_e, ensures a zero expected total profit, i.e.

$$d(\mu_1, \pi_e)(\pi_e - \mu_1)p_1 + d(\mu_2, \pi_e)(\pi_e - \mu_2)p_2 = 0. \quad (7)$$

“Profit” from low risk-group = “Loss” from high risk-group

$$d(\mu_i, \pi_e) = \tau_i \left[\frac{\pi_e}{\mu_i} \right]^{-\lambda_i}, \quad i = 1, 2$$

If $\lambda_1 = \lambda_2 = \lambda$,

\[\text{(Fair-premium demand-share)} \]
Equilibrium Premium

Equilibrium premium, π_e, ensures a zero expected total profit, i.e.

$$d(\mu_1, \pi_e)(\pi_e - \mu_1)p_1 + d(\mu_2, \pi_e)(\pi_e - \mu_2)p_2 = 0.$$ \hspace{1cm} (7)

“Profit” from low risk-group = “Loss” from high risk-group

$$d(\mu_i, \pi_e) = \tau_i \left[\frac{\pi_e}{\mu_i} \right]^{-\lambda_i}, \; i = 1, 2$$

If $\lambda_1 = \lambda_2 = \lambda$,

$$\pi_e = \frac{\alpha_1 \mu_1^{\lambda+1} + \alpha_2 \mu_2^{\lambda+1}}{\alpha_1 \mu_1^\lambda + \alpha_2 \mu_2^\lambda},$$ \hspace{1cm} (8)

where

$$\alpha_i = \frac{\tau_i \rho_i}{\tau_1 \rho_1 + \tau_2 \rho_2}, \; i = 1, 2$$ \hspace{1cm} (9)

(Fair-premium demand-share)
Unique equilibrium premium

\[p_1 = 9000, \tau_1 = 1, \mu_1 = 0.01; p_2 = 1000, \tau_2 = 1, \mu_2 = 0.04, \lambda_1 = \lambda_2 = 1 \]
Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage
- Summary and Further research
- References
Results on adverse selection and loss coverage

Results on adverse selection

\[S = \pi e^{\alpha_1 \mu_1} + \alpha_2 \mu_2. \]

(10)
Results on adverse selection

Adverse Selection Ratio

\[S = \frac{\pi e}{\alpha_1 \mu_1 + \alpha_2 \mu_2}. \] \hspace{1cm} (10)

\[\alpha_i = \frac{\tau_i p_i}{\tau_1 p_1 + \tau_2 p_2}, \quad i = 1, 2 \]

(Fair-premium demand-share)
Results: Adverse Selection Ratio (S)

\[\rho_1 = 9000, \tau_1 = 1, \mu_1 = 0.01; \rho_2 = 1000, \tau_2 = 1, \mu_2 = 0.04 \]
Results on loss coverage

Loss Coverage Ratio

\[C = \frac{1}{\pi e^\lambda} \frac{\alpha_1 \mu_1^{\lambda+1} + \alpha_2 \mu_2^{\lambda+1}}{\alpha_1 \mu_1 + \alpha_2 \mu_2}. \] (11)
Results: Loss Coverage Ratio (C)

\[p_1 = 9000, \tau_1 = 1, \mu_1 = 0.01; p_2 = 1000, \tau_2 = 1, \mu_2 = 0.04 \]
Results: Loss Coverage Ratio (C)

\[p_1 = 9000, \tau_1 = 1, \mu_1 = 0.01; p_2 = 1000, \tau_2 = 1, \mu_2 = 0.03, 0.04, 0.05, 0.08 \]
Table of contents

- Background
 - How does insurance work?
 - Risk classification Scheme
- Adverse Selection
- Loss Coverage
- Demand function
 - Iso-elastic demand function
- Equilibrium Premium
- Results on adverse selection and loss coverage
- Summary and Further research
- References
Summary

When there is restriction on risk classification, a pooled premium π is charged across all risk-groups. Adverse selection may not be a good measure. Loss coverage is an alternative metric. Adverse selection is not always a bad thing! A moderate level of adverse selection can increase loss coverage.
Summary

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
Summary

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
- There will always be adverse selection \Rightarrow Adverse selection may not be a good measure.
Summary

- When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.
- There will always be adverse selection \Rightarrow Adverse selection may not be a good measure.
- Loss coverage is an alternative metric.
When there is restriction on risk classification, a pooled premium π_e is charged across all risk-groups.

There will always be adverse selection \Rightarrow Adverse selection may not be a good measure.

Loss coverage is an alternative metric.

Adverse selection is not always a bad thing! A moderate level of adverse selection can increase loss coverage.
Further Research

- Other/more general demand e.g. $d(\mu, \pi) = \tau e^{1-(\frac{\pi}{\mu})^\lambda}$.
- Loose restriction on demand elasticities.
- Partial restriction on risk classification.

References

Questions?
Questions?

Thank you!