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MULTIVARIATE VARIABLE SELECTION BY MEANS OF

NULL-BEAMFORMING

By Jian Zhang† and Elaheh Oftadeh†,∗

University of Kent†

This article extends the idea of principal component analysis
to multivariate variable selection for multivariate regression mod-
els, where regression coefficients of multiple responses on each pre-
dictor are treated as values derived from a random variable. The
proposed method, called principal variable analysis, aims at select
predictor variables with relatively higher coefficient variations. The
basic premise behind the proposal is to scan through a predictor vari-
able space with a series of forward filters named null-beamformers;
each is tailored to a particular region in the space and resistant to
interference effects originating from other regions. The new approach
attempts to explore the maximum amount of variation in the data
with a small number of principal variables. Applying the proposal to
simulated data and real cancer drug data, we show that it substan-
tially outperforms the existing methods in terms of sensitivity and
specificity. An asymptotic theory on selection consistency is estab-
lished under some regularity conditions.

1. Introduction. Multivariate regression analysis is a mainstay of sta-
tistical methodologies used in science. It concerns predicting or explain-
ing causal relationships of multiple related responses on a common set of
predictors. A classical example for demonstrating this usage is about the
analysis of Rohwer’s experiment, which aimed to predict children’ apti-
tude/achievement by the scores they received in paired-associate tests. In
this analysis, as multiple response variables three correlated kids’ aptitude
measurements were regressed to the scores obtained in five tests. Friendly
(2007) showed that such an analysis enhanced the original univariate anal-
ysis by taking the advantage of correlation structures between the response
variables.

The advance of high-throughput technology in science has generated high
dimensional data automatically with unprecedented pace. The high dimen-
sional data hold great promises for detecting sparse predictors, which may
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not be possible with small data. For example, in cancer research, various
cancer genomic data have been generated in recent years. The research aims
to understand biological processes, especially processes that relate to cancer
occurrence, and to identify biomarkers (a set of genes or DNA variants) for
cancer drug development. The particular question of interest in this paper
is about whether and how the responses of cancer cell lines to various drug
treatments can be predicted from gene activities in the cells. The data under
investigation contain the measurements of median inhibition concentrations
of drugs called IC50s in 586 cancer cell lines and expression levels of 13321
genes (Garnett et al., 2012). According to cancer encyclopedia, IC50 is a
concentration of drug that reduces a biochemical activity such as cell mul-
tiplication to 50 percent of its normal value in the absence of the inhibitor.
However, when the number of predictor variables is nearly as large as, or
larger than the number of observations, the ordinary least squares criterion
will not provide a satisfactory solution to the question. To cope with the
difficulty, we make a sparsity assumption on the model that there are only
a small number of true predictors useful for predicting response variables
among many candidates. Under this assumption, a remedy for the short-
comings of least squares is to modify the sum of squared errors criterion by
using penalties based on the magnitudes of regression coefficients. When the
penalty is increasing, estimates are zeroed out, and a subset model is then
identified and estimated. Such a remedy is particularly of interest when the
dimension p is large and candidate predictors are thought to contain many
redundant or irrelevant variables (George, 2000). The variable selection pro-
cedure LASSO (Tibshirani, 1996) followed this remedy. Over the past two
decades, much progress has been made along this direction (Fan and Li,
2001; Zou and Hastie, 2005; among others). Although the recent research
on variable selection mainly focuses on a univariate response setting, a few
multivariate methods have been developed (e.g., Peng et al.,2009; Rothman
et al., 2010; Chen and Huang, 2012; Sofer et al., 2014; Li et al., 2015).

Despite of the above progress, a few issues remain to be addressed. First,
most of these methods have been developed for independent samples. There
are various applications which have dependent samples. For instance, the
drug sensitivity values, IC50s, of cell lines can be dependent as cell lines
exhibit genetic relatedness when they are associated with the same types of
cancers (Garnett et.al, 2012). In multiple genome-wide association studies,
individual genotypes in a subject group are correlated (Zhou and Stephens,
2014). In neuroimaging, measurements from different sensors outside a brain
are dependent as they are generated from the same neuronal sources inside
the brain (Van Veen et al., 1997). In finance, returns of different stocks
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are correlated due to the so-called cross-sectional dependence (Froot, 1989).
Secondly, the existing methods mentioned above are mainly for estimating a
multivariate fixed effect regression model, where given its design matrix, the
response covariance structure is determined only by error terms. However,
in a multivariate random effect regression model, given its design matrix,
the response covariance depends not only on error terms but also on random
coefficients. Finally, most of the existing methods are not computationally
scalable to the analysis of large-scale data. This prohibits their applications
to big data.

Here, we address these issues by generalizing the idea of principal compo-
nent analysis to multivariate variable selection as follows. First, we develop
a novel method called principal variable analysis (PVA) to identify major
predictors that account for the maximum amount of variation in the data.
In the PVA, unlike the existing methods, we gauge the contribution of each
predictor to multiple responses by a variation index of the corresponding
regression coefficients. We select variables of relatively high variation index.
Such a treatment provides a principled way of combining information across
multiple responses. Let yj and xk be column vectors containing observations
on the jth response variable and the kth predictor respectively. In the PVA,
we estimate the variation index called predictive power for the kth predictor
by null-beamforming, i.e., minimizing the sample variance of the projected
data points wTyj , 1 ≤ j ≤ J with respect to the weighting vector w, sub-

ject to the constraint wTxk = 1 and to the nulling of significant predictors
identified in the previous steps. The null-beamforming takes advantage of
sample dependence by means of the data projection (i.e., the sample linear
combination) and reduce interferences with other predictors by using the
above variance minimization. The predictive power measures the amount
of information in a predictor for predicting multiple responses. The higher
the power, the more information about the responses the predictor contains.
Note that the projected data at each predictor may have varying background
noises. To adjust for this, we consider the signal-to-noise ratio (SNR) for
each predictor. The SNR values create a SNR map for the predictors. The
predictors can then be ranked and selected by thresholding the map. This
produces a list of highly ranked predictors called principal variables along
with their estimated regression coefficients. Based on these selected predic-
tors, a decomposition of the response covariance matrix can be made. In this
sense, the PVA is viewed as a generalized principal component analysis. As
the PVA can be implemented through parallel computing, it is scalable to
large-scale data. Secondly, following Fan and Lv (2008) and Wang (2009),
we establish an asymptotic theory underpinning the PVA, where a selection
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sparsistency property holds. Finally, we conduct a wide range of simulation
studies to evaluate the performance of the PVA compared to the existing
variable selection methods. The results demonstrate that in terms of sen-
sitivity and specificity the PVA can substantially outperform the existing
methods such as the multivariate group LASSO, the multivariate elastic-net,
the multivariate LASSO, the multivariate sparse group LASSO and among
others. We also apply our method to the cancer data mentioned above, iden-
tifying a novel gene network for predicting median inhibition concentrations
of drugs in cancer cell lines. Using the information extracted from the Hu-
man Protein Atlas Portal at http://www.proteinatlas.org/cancer, we show
that most of the identified genes have significantly high protein staining
levels at least in one or more than one of common cancers.

The remaining of the paper is organized as follows. The details of the pro-
posed methodology and algorithm are provided in Section 2. An asymptotic
theory on the proposed procedure is developed in Section 3. The simulation
studies and a real data application are presented in Section 4. The discussion
and conclusion are made in Section 5. The technical details and proofs can
be found in the Online Supplementary Material. Throughout the paper, we
denote by λmax(·) and λmin(·) the largest and smallest eigenvalues of a square
matrix respectively. For any matrix Fn, we define the spectral norm ||Fn||
as λ

1/2
max(F

T
nFn). For a sequence of real numbers {un}, we say Fn = O(un)

if ||Fn||/|un| is bounded from above and Fn = o(un) if ||Fn||/|un| tends to
zero as n tends to infinity.

2. Methodology. Suppose that we have observations on the (central-
ized) responses y1, y2, ..., yJ and on the same set of (centralized) predictors
with design values x1, x2, ..., xp, where each response is linked with the pre-
dictors through a regression model:

yj = β1jx1 + · · ·+ βpjxp + εj , 1 ≤ j ≤ J,(2.1)

where βkj is the (k, j)th unknown (random) regression coefficient and the
error term εj has zero mean and unknown variance 0 < σ2

εj < ∞. We letY =
Yn×J = (yij)n×J = (y1y2 · · ·yJ) and X = Xn×p = (xik)n×p = (x1 · · ·xp),
where yj and xk are the column vectors of n observations on the jth response
variable and the kth predictor respectively. Given observations (Y,X), we
want to identify these predictors of significant regression coefficients. For
this purpose, we reformulate the model (2.1) in the following matrix form:

Y = XB+ ε,(2.2)
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where B = Bp×J = (β1β2 · · ·βJ) and ε = εn×J = (ε1ε2 · · · εJ) with βj and
εj , respectively, containing the regression coefficients and the error terms re-
lated to the jth response variable. Note that B is random and X is fixed. It
can be shown that when p < n, the least square solution, B̂ = (XTX)−1XTY

gives the same coefficients as fitting univariate multiple regression models
to (yj ,X), 1 ≤ j ≤ J separately. Note that when we treat βkj , 1 ≤ j ≤ J
as correlated random coefficients, the response variables yj ’s will be depen-
dent on each other. On the other hand, the least square principle has been
designed for independent samples and not for dependent samples. There-
fore, the least square solution may not be efficient when observations on
the response variables yj ’s are dependent. To tackle the problem, we de-
fine a predictive power for each predictor based on the projected response
data below. The predictive power takes advantage of correlation structures
among the response variables as well as the sample dependence. Using the
predictive power, we are able to rank and select predictors.

2.1. Predictive power and SNR. The concept of predictive power, de-
fined as the variance of a signal, is borrowed from the research field of
signal processing, where sensor observations yj , 1 ≤ j ≤ J are often as-
sumed weakly stationary with covariance matrix C = cov(yj) (van Veen
et al., 1997). In genetics, the above concept describes the pleiotropic ge-
netic effect of a single gene on multiple phenotypic traits, where multivari-
ate linear models have been developed to connect genetic variant data to
multiple quantitative traits (Chiu et al., 2017). In the multivariate regres-
sion setting, we view regression coefficients of multivariate response on a
predictor as values generated from a random variable. Similar to principal
component analysis, the importance of a predictor variable is measured by
variations in its regression coefficients. The larger the variability of these
regression coefficients (βkj)1≤j≤J at the kth predictor, the higher degree of
uncertainty in response variables is accounted for by the kth predictor. In
practice, however the regression coefficients (βkj)1≤j≤J (therefore its power

index
∑J

j=1(βkj − β̄k)
2/J with β̄k =

∑J
j=1 βkj/J) are unknown. We esti-

mate (βkj)1≤j≤J by projecting response data into the coefficient space of
the kth predictor along the direction w that can minimize interferences
with the other predictors and with the background noise. That is, for the
kth predictor variable, we estimate its regression coefficients by the pro-
jected data wT

kY along the direction wk = C−1xk/x
T
kC

−1xk, in which
var(wTyj) attains the minimum, subject to wTxk = 1 (Zhang and Liu,

2015). This gives an estimator wT
kY = xT

kC
−1Y/xT

kC
−1xk for (βkj)1≤j≤J .

If let C = constant × In, where In is an n × n identity matrix (i.e., ig-
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noring correlations in the sample and the regression coefficients), then the
above estimator reduces to a marginal multivariate least square estimator.
In the so-called beamforming, we let C be adaptive to the data, namely
C = cov(yj), in order to explore correlation structures in the sample and
regression coefficients. To explain why the above beamforming approach
can provide an interference-minimized estimator of the underlying power,
we assume that error term εj is independent of the p-dimensional regression
coefficient βj and with cov(εj) = Λ and cov(βj) = Σ = (σi1j1)p×p. Then, we

have C = XΣXT + Λ. Note that under the constraint wTxk = 1, we have

wTCw = var(wTyj) = σkk +





∑

i1 6=k,j1 6=k

σi1j1w
Txi1x

T
j1w+wTΛw





=̂ power of the kth predictor +w-dependent interference,

which yields

min{wTCw : wTxk = 1} = power of the kth predictor

+min{w-dependent interference : wTxk = 1}.

This implies that the constraint wTxk = 1 is a linear filter which allows
the power σkk of the kth predictor to pass through it, whereas interferences
with other predictors and with the background noise are reduced via the
minimization. So, min{wTCw : wTxk = 1} is an interference-minimized
estimator for the theoretical power σkk. A simple calculation shows that the
above estimated power, called the predictive power of the kth predictor, can
be expressed as

γk = min{var(wTyj) : w
Txk = 1} = (xT

kC
−1xk)

−1.

When observations on response variables are white noises of noise level σ2,
the predictive power of the kth predictor reduces to σ2wT

kwk. So we define
the SNR at the kth predictor by γk(σ

2wT
kwk)

−1.
Analogously, for a subset of predictors ν = {k1, k2, ..., km}, their joint

predictive power (called the predictive power matrix) can be defined by

γν =
(

xT
ν C

−1xν

)−1
, where the data matrix xν = (xk1 , ...,xkm) consists of

the observations on the predictors in ν and the columns in xν are assumed
linearly independent. Abusing the above notation, we let w and wν denote
n × m matrices below. Then, we can also define the SNR of predictor set
ν as SNRν = tr

(

γν(σ
2wT

ν wν)
−1

)

. Using the Lagrange multiplier, we can
show that γν is the covariance matrix of the projected data wT

ν Y along
interference-minimized directions wν = C−1xν(x

T
ν C

−1xν)
−1, in the sense
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that tr(γν) = min{tr(cov(wTY)) : wTxν = Im}, where tr(·) is the trace
operator and Im is an m×m identity matrix. Note that wTxν = Im define
m linear filters which null each other. The projection ofY along interference-
minimized directions gives an estimator, (xT

ν C
−1xν)

−1xT
ν C

−1Y, for random
coefficient matrix B. The above estimator will reduce to a marginal least
square estimator if let C = constant × In. As C is often not diagonal, a
better estimator of B can be obtained by estimating C from the data.

Predictors can be correlated. For example, in the cancer genomic data,
genes as predictors can be highly correlated if they are located in the same
pathway. Consequently, the predictive power of a predictor can be biased
by interferences with other predictors. To address this problem, we null the
previously identified predictors by adding more constraints on the linear
filter in each step. Let ω and ν be two non-overlapped subsets of the predic-
tors with sizes m1 and m respectively. To define a ω-nulled predictive power
matrix of ν, adding null constraints wTxω = 0m×m1

into the linear filters
wTxν = Im, we consider the following optimization problem:

min tr(wTCw), subject to wTxν = Im, wTxω = 0m×m1
.

Using the Lagrange multiplier again, we obtain the optimal weighting matrix

wν|ω = C−1xν∪ω

(

xT
ν∪ωC

−1xν∪ω

)−1
φν|ω,

where φν|ω = (Im,0)T with 0 being the m × m1 matrix of 0’s. The nulled

predictive power matrix γ(ν|ω) is then defined as wT
ν|ωCwν|ω, the covariance

matrix of the projected data along wν|ω. The nulled SNR SNRν|ω is defined

as tr
(

γν|ω(σ
2wT

ν|ωwν|ω)
−1

)

. It can be shown that γν|ω is equal to the upper

corner m×m block matrix of
(

xT
ν∪ωC

−1xν∪ω

)−1
.

2.2. Estimation of response covariance matrix. Note that the concept of
predictive power used above is based on an estimator of the response covari-
ance matrix, for example, the sample covariance matrix Ĉ =

∑J
j=1 yjy

T
j /J−

ȳȳT = (ĉij), where ȳ =
∑J

j=1 yj/J = (ȳ1, ..., ȳn)
T and ĉij =

∑J
t=1(yit −

ȳi)(yjt − ȳj)/J . As the sample covariance matrix is inconsistent with the
true one when the dimension n is larger than J , Bickel and Levina (2008)
amended it by thresholding its entries: Ĉh = Ĉ(τnJ) = (ĉijI(|ĉij | > hτnJ)),
where I(·) is the indicator and τnJ =

√

log(n)/J with the tuning constant
h ≥ 0. Under certain mixing conditions, Zhang and Liu (2015) showed that
the thresholded sample covariance matrix was consistent with the true one.
For a finite sample, the thresholded covariance matrix may still be degen-
erate when the dimension J is close to or smaller than the sample size n.
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So, following Ledoit and Wolf (2004), we further shrink the thresholded
covariance estimator to a diagonal matrix as follows:

Ĉhs =
b2n
d2n

µ̂nIn +
d2n − b2n

d2n
Ĉh,

where

b̄2n =
1

J2

J
∑

k=1

1

n

n
∑

i=1

n
∑

j=1

((yik − ȳi)(ykj − ȳj)− ĉij)
2I(|ĉij | > hτnJ),

µ̂n = < Ĉh, In >, d2n =< Ĉh − µ̂nIn, Ĉh − µ̂nIn >, b2n = min{b̄2n, d2n},

and < D1,D2 >= tr(D1D
T
2 )/n for any n × n matrices D1 and D2. Hav-

ing defined Ĉhs, we estimate the power matrices γν and γν|ω by γ̂ν =

(xνĈhsxν)
−1 and γ̂ν|ω = φT

ν|ω(x
T
ν∪ωĈhsxν∪ω)

−1φν|ω respectively. Similarly,
the ω-nulled SNR can be estimated by

ˆSNRν|ω ∝ tr
(

γ̂ν|ω(ŵ
T
ν|ωŵν|ω)

−1
)

,(2.3)

where ŵν|ω = Ĉ
−1
hs xν∪ω

(

xT
ν∪ωĈ

−1
hs xν∪ω

)−1
φν|ω.

2.3. Principal variable analysis. We are now ready to describe the PVA
for multivariate variable selection. Although we focus on the SNR-based
PVA below, the power-based PVA can also be defined similarly.

Initialization: To start with, find 1 ≤ k1 ≤ p at which the SNR attains
the maximum. Set ω0 = ∅ and ω1 = {k1}.

Forward nulling: In the iteration m, m ≥ 2, let ωm−1 denote the set of
predictors selected in the first m − 1 iterations. For any predictor k not in
ωm−1, using the formula (2.3), we calculate the nulled SNR, ˆSNR{k}|ωm−1

, as
well as an estimated optimal projection direction ŵ. We then find km 6∈ ωm−1

in which ˆSNR{k}|ωm−1
attains the maximum.

Updating and stopping criteria: After a number of iterations, the
nulled SNR values will start leveling off, which indicates that the remaining
predictors have no predictive power for the response. This motivates us to
set the following stopping criteria in the mth iteration: Make a scree plot
of the nulled SNR values and identify an elbow point. The elbow point
partitions the remaining predictors into two subsets, namely upper set and
lower set. The lower set, containing those predictors with SNR values lower
than the elbow point, is uninformative about the responses. To test the
hypothesis that the upper set is uninformative, we calculate the mean µl
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and standard deviation θl for the lower subset. The hypothesis is accepted if
the maximum nulled SNR value, ˆSNRmax = max{ ˆSNRk|ωm−1

: k 6∈ ωm−1}, of
the upper set falls into the following confidence interval, | ˆSNRmax−µl| ≤ c0θl,
where c0 is a tuning constant. We set the default value c0 = 5. Applying the
central limit theorem to the SNR values in the lower set, the above interval
can be shown to have the asymptotic confidence level of 1 − 5.73 × 10−7

after multiple testing adjustment. The iteration will be terminated when
the upper subset is uninformative. Otherwise, we update ωm−1 and xωm−1

by letting ωm = {km} ∪ ωm−1 and xωm = (xkm ,xωm−1
), and the iteration

will continue. Note that our simulations (not shown here) did indicate that
the performance of PVA was not very sensitive to the choice of c0 when it
took values between 3 and 5.

2.4. Predictive network. Statistical connectivity patterns in the selected
predictors are a hallmark feature for connecting pleiotropic traits such as
drug inhibitory concentrations to genetic variants in genetics and for study-
ing functional networks in neuroscience (Chiu et al., 2017; Park and Kriston,
2013). Here, to quantify such patterns, we compute the regression coefficient-
based Pearson correlation coefficient for each pair of the selected predictors.
The details are as follows. Suppose that q predictors are selected by the
PVA. Based on the multivariate least squares, we obtain B̂0, an estimator
of the q×J regression coefficient matrix for these predictors. For any pair of
rows (i, j) in B̂0, we calculate Fisher’s z-transformation of their correlation
coefficient rij zij = 0.5 ln ((1− rij)/(1 + rij)) . For rows i < j, we want to
test whether zij (i.e., rij) is significantly away from 0. There are q(q − 1)/2
such tests in total. Note that if the underlying correlation coefficient is zero,
then zij ≈ N(0, 1/(J − 3)) in distribution. After Bonferroni correction to
multiple testing, we can claim that zij is significantly away from zero if√
J − 3|zij | > zα/2, where zα/2 is the critical value of N(0, 1) at the level

α/2 = 0.01/q(q − 1). For example, for our cancer data in Section 4 below,
we obtained q = 37, J = 131 and therefore zα/2 = 4.33. We are now ready
to construct a predictive network with q nodes, each stands for a selected
predictor (a row in B̂0). We assign an edge to link nodes i and j if zij is
significantly away from zero.

3. Theory. In this section, we develop an asymptotic theory for ex-
plaining why the PVA can separate what are called active predictors from
non-active ones. Its proofs are deferred to the Appendix B, the Online Sup-
plementary Material. Here, a predictor is said to be active if it has a positive
power. As before, assume that B and ε in the model (2.2) are independent
and that the covariance matrices of yj , βj and εj , denoted by C = (cij)n×n,
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Σ = (σij)p×p and Λ respectively, are independent of index j. Then, we have
C = XΣXT +Λ. Assume that Λ is positively definite. For ease of presenta-
tion, we consider the special case, where Λ = σ2In and xT

k xk = n, 1 ≤ k ≤ n.
If Λ 6= σ2In, we can change Y and X by the transformations Λ−1/2Y

and Λ−1/2X (under which the predictive power is invariant), followed by
rescaling Λ−1/2X and B (see Zhang and Liu, 2015). Then a general theory
can be derived from the special case. We denote the full predictor set by
[1 : p] = {1, 2, · · · , p} corresponding to x1, · · · ,xp, and the true predictor
set by ν0. Let ν = {k1, · · · , kp1} denote any subset of [1 : p] with size |ν|. The
(k1, · · · , kp1)th columns of X forms a data matrix xν for the predictor set
ν. If let eν be a p× p1 selection matrix in which for 1 ≤ j ≤ p1, its (kj , j)th
entry takes value of 1 and the other entries take values of 0, then we can
write xν = Xeν . Let σ

2
k denote σkk in Σ, which shows the underlying power

at the kth predictor. We begin with an ideal setting where C is known. This
includes the case of J = ∞ in which we can estimate C exactly.

3.1. PVA with known C. To establish lower bounds for the SNRs, we
need the condition below.

(C0). There exists a permutation on yj , 1 ≤ j ≤ J so that the resulted
sequence is strictly stationary with marginal covariance matrix C and that
(yj ,X) follows model (2.2). The error term εj and the p-dimensional regres-
sion coefficient βj are independent of each other.

Note that under Condition (C0), yj ’s (therefore εj ’s) can be mutually
dependent on each other.

Proposition 3.1. Under Condition (C0), SNRν ≥ 1 holds for any ν ⊆
[1 : p] of the size |ν| ≤ n and SNRν|ω ≥ 1 holds for any ν, ω ⊆ [1 : p] of the
size |ν ∪ ω| ≤ n. The lower bound is attained when all predictors in [1 : p]
are not active.

The above proposition shows that the SNR-based map has a sharp lower
bound of 1 when Λ = σ2In. However, when Λ 6= σ2In, we apply the propo-
sition to (Λ−1/2Y,Λ−1/2X) to obtain a Λ-dependent lower bound for the
SNR values.

To investigate the asymptotic properties of the power-based and the SNR-
based maps, let Aν0 = C − xν0e

T
ν0Σeν0x

T
ν0 , the remainder of C after sub-

tracting the term xν0e
T
ν0Σeν0x

T
ν0 . In the next proposition, we shows that the

power at ν0 can be written as the underlying power plus the interferences
with the predictors not in ν0 and with the white noise. These interferences
can be negligible if predictors outside ν0 have zero powers.
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Proposition 3.2. If both eTν0Σeν0 and Aν0 are invertible and xν0 has a
full column rank, then the predictive power matrix

γν0 = eTν0Σeν0 +
(

xT
ν0A

−1
ν0 xν0

)−1
.

If σ2
k = 0, k 6∈ ν0 and λmin(x

T
ν0xν0/n) is bounded below from zero as the

sample size n tends to infinity, then γν0 = eTν0Σeν0 +O(n−1).

The above proposition shows a local consistency of the predictive power
with the underlying power eTν0Σeν0 at ν0. To establish a global consistency of
the whole power map, we need a few more notations below. For any subsets
ν and ν0 of predictors, if Aν0 is invertible, then we define the coherence (i.e.,
collinearity) matrices between xν and xν0 :

Rνν = xT
ν A

−1
ν0 xν/n, Rνν0 = xT

ν A
−1
ν0 xν0/n, Rν0ν0 = xT

ν0A
−1
ν0 xν0/n.

Suppose that for ν0 = {k1, ..., kp0} and for any ν ⊆ ν0, we can find j[1:m] =
{j1, ..., jm} ⊆ {1, ..., p0} such that ν = {kj : j ∈ j[1:m]}. Let eν⊳ν0 be a
|ν0| × |ν| indicator matrix with the (jl, l)th entry equal to 1, 1 ≤ l ≤ |ν|
and with other entries equal to zeros. Using eν⊳ν0 , we select sub-columns
from xν0 to form xν , namely xν = xν0eν⊳ν0 . To identify active predictors,
we impose the following regularity conditions on the covariance structures
of response variables and predictors, where X is treated as deterministic.
If we treat X as a random design matrix, some parallel conditions can be
assumed through replacing O(·) by Op(·) in the following conditions.

(C1). There are a constant 0 < r ≤ 1 and a set of active predictors ν0 of
size |ν0| ≤ rn such that xν0 is of full column rank and that eTν0Σeν0 and Aν0

are invertible.
(C2). For ν0 and r in Condition (C1), as n tends to infinity, there is a

constant 0 ≤ α0 < 1 such that uniformly for any set ν ⊆ [1 : p] with |ν| ≤ rn,
Rνν = O(nα0) and R−1

νν = O(nα0).
(C3). For ν0 and r in Condition (C1), as n tends to infinity, uniformly

for any ν ⊆ [1 : p] \ ν0 with the size |ν| ≤ rn, (Rνν −Rνν0R
−1
ν0ν0Rν0ν)

−1 =
O(nα0).

(C4). For ν0 and r in Condition (C1), as n tends to infinity, uniformly for
any ν ⊆ [1 : p] \ ν0 with the size |ν| ≤ rn, xT

ν0A
−2
ν0 xν = ζ0x

T
ν0A

−1
ν0 xν +O(1),

where ζ0 and O(1) are independent of ν.

Remark 3.1. Condition (C1) says that there are no redundant predic-
tors in ν0. Condition (C2) implies that ||Rνν0 || ≤ ||Rνν ||1/2||Rν0ν0 ||1/2 =
O(nα0). Note that for ν ⊆ [1 : p]\ν0, R−1

νν /n = (xT
ν A

−1
ν0 xν)

−1 is the residual
power of ν after selecting ν0. So, Condition (C2) says that the residual power
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of ν is of order n−1+α0 = o(1), which is negligible. Similarly, Condition (C3)
says that ν0-adjusted residual power of ν is also negligible.

Conditions (C1) to (C3) are the assumptions commonly used in the large
sample theory for linear regression models (e.g., Wang, 2009). To verify
Conditions (C1)∼(C3), we refer readers to Fan and Lv (2008) and Wang
(2009) under the assumptions that σ2

k = 0, k 6∈ ν0and that X is assumed to
be a random matrix satisfying some moment conditions and that the growth
of the dimension p is not too fast compared to the sample size n. For ex-
ample, following Fan and Lv (2008), we assume that X has a concentration
property, i.e., for some constant c1, any u > 0 and ν ⊆ [1 : p], |ν| ≤ rn,

P
(

λmax(Rνν) > u or λmin(Rνν) < u−1
)

≤ c1 exp(−nu/c1).

Letting Ωn = {ν : ν ⊆ [1 : p], |ν| ≤ [rn]}, where [rn] stands for the integer
part of rn, we have

max
ν∈Ωn

λmax(Rνν) = max
ν∈Ωn,|ν|=[rn]

λmax(Rνν),

min
ν∈Ωn

λmin(Rνν) = min
ν∈Ωn,|ν|=[rn]

λmin(Rνν)

and hence as log(p) ≤ nα0/c1 − 1 + log(r) + (1− 1/n) log(n), n and p tend
to infinity,

P

(

max
ν∈Ωn

λmax(Rνν) > nα0 or min
ν∈Ωn

λmin(Rνν) < n−α0

)

≤ c1

(

p

[rn]

)

exp
(

−n1+α0/c1
)

≤ (pe/n)n exp
(

−n1+α0/c1
)

≤ c1/n → 0,

This implies that Condition (C2) holds with an overwhelming probability.
Analogously, Condition (C3) holds if xν and xν0 are asymptotically, uni-
formly noncoherent with respect to ν ⊆ [1 : p] \ ν0, in the sense that Rνν0 =
o(1). Condition (C4) is a technical condition which holds when σ2

k = 0 (or
sufficiently close to zero in a sense), k 6∈ ν0.

We now in position to state a theorem on the global sparsistency property
of the power map. In the theorem, we show that for an active predictor, the
predictive power has a positive limit whereas for a non-active predictor, the
predictive power tends to zero. This allows us to separate active predictors
from non-active ones by thresholding the power map.

Theorem 3.1. Suppose that there exist constants 0 ≤ α1 ≤ (1− 3α0)/2
and c2 > 0, c2n

−α1 ≤ λmin

(

eTν0Σeν0
)

≤ λmax

(

eTν0Σeν0
)

= O(1). Let Σν⊳ν0 =
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(

eTν⊳ν0

(

eTν0Σeν0
)−1

eν⊳ν0

)−1
, a partial covariance matrix of ν with respect to

ν0. Then, under Conditions (C0)∼ (C3), as n tends to infinity, we have:

(i) Uniformly for any ν ⊆ ν0 with |ν| ≤ rn,

γν = Σν⊳ν0 + n−1Σν⊳ν0e
T
ν⊳ν0

(

eTν0Σeν0
)−1

R−1
ν0ν0

(

eTν0Σeν0
)−1

eν⊳ν0Σν⊳ν0

+O(n−2+2α0+4α1)

= Σν⊳ν0 +O(n−1+α0+2α1).

(ii) Uniformly for any ν ⊆ [1 : p] \ ν0 with |ν| ≤ rn,

γν = n−1
(

Rνν −Rνν0R
−1
ν0ν0Rν0ν

)−1
+O(n−2+4α0+α1) = O(n−1+α0).

(iii) Uniformly for any ν = ν1 ∪ ν2 with ν1 ⊆ ν0 and ν2 ⊆ [1 : p] \ ν0 and
|ν| ≤ rn, γν can be partitioned into

γν =

(

γ11ν γ12ν
γ21ν γ22ν

)

with

γ11ν = Σν1⊳ν0 +O(n−1+3α0+2α1),

γ12ν = −n−1Σν1⊳ν0e
T
ν1⊳ν0

(

eTν0Σeν0
)−1

R−1
ν0ν0Rν0ν2

×
(

Rν2ν2 −Rν2ν0R
−1
ν0ν0Rν0ν2

)−1
+ o(n−1+2α0+α1)

= O(n−1+2α0+α1),

γ21ν = −n−1
(

Rν2ν2 −Rν2ν0R
−1
ν0ν0Rν0ν2

)−1
Rν2ν0R

−1
ν0ν0

×
(

eTν0Σeν0
)−1

eν1⊳ν0Σν1⊳ν0 + o(n−1+2α0+α1)

= O(n−1+2α0+α1),

γ22ν = n−1
(

Rν2ν2 −Rν2ν0R
−1
ν0ν0Rν0ν2

)−1
+O(n−2+4α0+2α1)

= O(n−1+α0).

The above theorem also indicates that compared to the underlying power
matrix, eTν Σeν , the predictive power matrix γν may be not consistent if
the collinearity between a pair of the predictors does not converge to zero
as n tends infinity. This can be seen from the derivation of the predictive
power at the predictor kj ∈ ν0 below. Let σkj [−kj ] denote (σkjki : i 6= j),

the jth row in eTν0Σeν0 excluding the jth coordinate. Let σ[−kj ]kj denote
(σkikj : i 6= j), the jth column in Σ excluding the jth coordinate. Let
σ[−kj ][−kj ] denote the remaining matrix after removing the jth row and the
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jth column from eTν0Σeν0 . Then, the (j, j)th entry in
(

eTν0Σeν0
)−1

is equal to
(

σ2
kj

− σkj [−kj ]σ
−1
[−kj ][−kj ]

σ[−kj ]kj

)−1
. The following corollary says that un-

der Condition (C1), the predictor kj does have positive predictive power
although the power has deteriorated due to the interferences with other pre-
dictors. Therefore, if we employ the estimated predictive power to screen
predictors and if Ĉ is consistent with C, then under Conditions (C0)∼(C3),
the screening procedure can have a sure screening property that for an ap-
propriately chosen threshold, all predictors in ν0 can be detected with a
probability approaching to one.

Corollary 3.1. Under the conditions in Theorem 3.1, as n tends in-
finity, we have:

(i) Uniformly for any kj ∈ ν0, the predictive power of the predictor kj can
be expressed as

γkj = σ2
kj

− σkj [−kj ]σ
−1
[−kj ][−kj ]

σ[−kj ]kj +O(n−1+α0+2α1).

(ii) Uniformly for any k 6∈ ν0, the predictive power of the predictor k can
be expressed as γk = O(n−1+α0).

Let a be the current predictor under investigation and ν1 ∪ ν2 be the
predictors identified in the previous steps by PVA, with the size |ν1 ∪ ν2| <
rn, where 0 < r ≤ 1, ν1 ⊆ ν0 and ν2 ⊆ [1 : p] \ ν0. For a = kj ∈ ν0, let
ea⊳ν0 = e{a}⊳ν0 , a |ν0|-dimensional column vector with the jthe coordinate
equal to 1 and other coordinates equal to zero. In the next theorem, we
show that the global sparsistency property continues holds for the nulled
predictive power and that the nulling can improve the accuracy of power
estimation.

Theorem 3.2. Suppose that there exist constants 0 ≤ α1 ≤ (1− 6α0)/5
and c2 > 0, c2n

−α1 ≤ λmin

(

eTν0Σeν0
)

≤ λmax

(

eTν0Σeν0
)

= O(1). Then,
under Conditions (C0)∼(C3), as n tends to infinity, we have:

(i) Uniformly for a ∈ [1 : p] \ ν0 and a 6∈ ν1 ∪ ν2 with |ν1 ∪ ν2| < rn,
the (ν1 ∪ ν2)-nulled predictive power of a admits the form γa|ν1∪ν2 =
O(n−1+α0).

(ii) Uniformly for a ∈ ν0 and a 6∈ ν1 ∪ ν2 with |ν1 ∪ ν2| < rn, the (ν1 ∪ ν2)-
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nulled predictive power of predictor a admits the form

γa|ν1∪ν2 =
(

eTa⊳ν0Σ
−1
ν0\ν1

ea⊳ν0

)−1

+n−1eTa⊳ν0

(

eTν0Σeν0
)−1

Ψ
(

eTν0Σeν0
)−1

ea⊳ν0

+O(n−2+6α0+5α1),

where

Σν1⊳ν0 =
(

eTν1⊳ν0

(

eTν0Σeν0
)−1

eν1⊳ν0

)−1
,

Σ−1
ν0\ν1

=
(

eTν0Σeν0
)−1/2

Pν0\ν1

(

eTν0Σeν0
)−1/2

,

Pν0\ν1 = I|ν0| −
(

eTν0Σeν0
)−1/2

eν1⊳ν0Σν1⊳ν0e
T
ν1⊳ν0

(

eTν0Σeν0
)−1/2

,

Fν2 = Rν2ν2 −Rν2ν0R
−1
ν0ν0Rν0ν2 ,

Φ = R−1
ν0ν0 +R−1

ν0ν0Rν0ν2F
−1
ν2 Rν2ν0R

−1
ν0ν0 ,

Ψ =
(

I|ν0| − eν1⊳ν0Σν1⊳ν0e
T
ν1⊳ν0

(

eTν0Σeν0
)−1

)

Φ

(

I|ν0| − eν1⊳ν0Σν1⊳ν0e
T
ν1⊳ν0

(

eTν0Σeν0
)−1

)T
.

Here, abusing the notation, we let Σ−1
ν0\ν1

denote the generalized inverse
of Σν0\ν1 . Note that Pν0\ν1 is a projection matrix of the ν1-nulled precision
space spanned by predictors ν0 \ ν1. Therefore, Σν0\ν1 can be viewed as an

ν1-nulled projected precision matrix for ν0 \ ν1 and eTa⊳ν0Σ
−1
ν0\ν1

ea⊳ν0 can be
viewed as a weighted, ν1-nulled precision for predictor a. It can be seen that
for a ∈ ν0,

(

eTa⊳ν0Σ
−1
ν0\ν1

ea⊳ν0

)−1
= λmin

(

(

eTa⊳ν0Σ
−1
ν0\ν1

ea⊳ν0

)−1
)

≥ λmin

(

(

eT{a}∪ν1

(

eTν0Σeν0
)−1

e{a}∪ν1

)−1
)

=
(

λmax

(

eT{a}∪ν1

(

eTν0Σeν0
)−1

e{a}∪ν1

))−1

≥
(

λmax

(

(

eTν0Σeν0
)−1

))−1

= λmin

(

eTν0Σeν0
)

≥ c2n
−α1 .

The last inequality above follows from the assumption on the growth rate of

eTν0Σeν0 . Note also that when a = kj ,
(

eTa⊳ν0

(

eTν0Σeν0
)−1

ea⊳ν0

)−1
= σ2

kj
−

σkj [−kj ]σ
−1
[−kj ][−kj ]

σ[−kj ]kj ]. Therefore, it follows from the definition of γa|ν1∪ν2 ,
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Corollary 3.1 and Theorem 3.1 that γa ≤ γa|ν1∪ν2 and that both γa and
γa|ν1∪ν2 can be asymptotically less than or equal to σ2

kj
due to interferences

with other predictors. Furthermore, we have a sharp result as follows.

Corollary 3.2. Under conditions in Theorem 3.1, as n tends to infin-
ity, we have:

(i) Uniformly for a ∈ [1 : p] \ ν0 and |ν1 ∪ ν2| < rn, both γa and γa|ν1∪ν2
converge to zero in the rate of O(n−1+α0).

(ii) Uniformly for a ∈ ν0 and |ν1 ∪ ν2| < rn, γa
γa|ν1∪ν2

=
(

1− fa|ν1
)

(1 +

o(1)) < 1, where gaν1 = eTν1⊳ν0

(

eTν0Σeν0
)−1

ea⊳ν0 and

fa|ν1 =
gTaν1

(

eTν1⊳ν0

(

eTν0Σeν0
)−1

eν1⊳ν0

)−1
gaν1

eTa⊳ν0

(

eTν0Σeν0
)−1

ea⊳ν0

.

The power-based variable screening may not be efficient due to the in-
homogeneous power background σ2wT

kwk. This calls for the SNR-based
variable screening. We show that active predictors can be asymptoticaaly
separated from non-active ones by means of the nulled-SNR.

Theorem 3.3. Under the conditions in Theorem 3.2 and Condition
(C4), as n tends to infinity, we have:

(i) Uniformly for a ∈ [1 : p] \ ν0 and a 6∈ ν1 ∪ ν2 with |ν1 ∪ ν2| < rn,
SNRa|ν1∪ν2 = 1

ζ0σ2 +O(n−2+5α0+2α1) > 0.

(ii) Uniformly for a ∈ ν0 and a 6∈ ν1 ∪ ν2 with |ν1 ∪ ν2| < rn,

SNRa|ν1∪ν2 =
neTa⊳ν0Σ

−1
ν0\ν1

ea⊳ν0

σ2ζ0eTa⊳ν0Σ
−1
ν0\ν1

ΦΣ−1
ν0\ν1

ea⊳ν0(1 + o(1))

+

(

eTa⊳ν0Σ
−1
ν0\ν1

ea⊳ν0

)2
eTa⊳ν0

(

eTν0Σeν0
)−1

Ψ
(

eTν0Σeν0
)−1

ea⊳ν0

σ2ζ0eTa⊳ν0Σ
−1
ν0\ν1

ΦΣ−1
ν0\ν1

ea⊳ν0(1 + o(1))

→ ∞,

where Σ−1
ν0\ν1

, Φ and Ψ are defined in Theorem 3.2.

3.2. PVA with estimated C. To state a sparsistency property for the
case of unknown C, we need the following two conditions used by Fan et al.
(2011). In the first one, we regularize the tail behavior of yj .
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(C5): There exist positive constants κ1 and τ1 such that for any u > 0,
1 ≤ j ≤ J,

max
1≤i≤n

P (|yij | > u) ≤ exp(1− τ1u
κ1)

and max1≤i≤nE|yi1|4η0 < +∞, where η0 > 1 is a constant.

In the second condition, we assume that there exists a permutation π
on {1, ..., J} so that yπ(j), 1 ≤ j ≤ J are strong mixing. Let Fk0

0 and F∞
k

denote the σ-algebras generated by {yπ(j) : 0 ≤ j ≤ k0} and {yπ(j) : j ≥ k}
respectively. Define the mixing coefficient

α(k) = sup
A∈F

k0
0

,B∈F∞
k

|P (A)P (B)− P (AB)|.

The mixing coefficient α(k) quantifies the degree of the dependence of the
process {yπ(j)} at lag k. We assume that α(k) is decreasing exponentially
fast as lag k is increasing, i.e.,

(C6): There exist positive constants κ2 and τ2 such that α(k) ≤ exp(−τ2k
κ2).

Note that (C5) holds if yij ’s are Gaussian. And (C6) holds if there exist
1 = j0 < j1 < · · · < jm = J such that {yj}1≤j≤J can be divided into
mutually independent segments {yj}jk−1≤j<jk , 1 ≤ k ≤ m.

Note that in Lemma 4, the Appendix B of the Online Supplementary
Material, under Conditions (C1)∼(C6), we show that the optimal shrinkage
covariance estimator Ĉhs is consistent with the true covariance C. This
allows us to extend Theorems 1∼3 to the case where unknownC is estimated
by Ĉhs.

Theorem 3.4. Suppose that conditions in Theorem 3.1 and Conditions
(C5)∼(C6) hold and that τnJn

2 = o(1) as both n and J tend to infinity.
Then, we have:

(i) Uniformly for any ν ⊆ ν0 with |ν| ≤ rn, γ̂ν = Σν⊳ν0+Op(n
−1+α0+2α1+

n2τnJ), where Σν⊳ν0 =
(

eTν⊳ν0

(

eTν0Σeν0
)−1

eν⊳ν0

)−1
.

(ii) Uniformly for any ν ⊆ [1 : p] \ ν0 with |ν| ≤ rn, γ̂ν = Op(n
−1+α0 +

n2τnJ).
(iii) Uniformly for any ν = ν1 ∪ ν2 with ν1 ⊆ ν0 and ν2 ⊆ [1 : p] \ ν0 of size

|ν| ≤ rn,

γ̂ν =

(

γ̂11ν γ̂12ν
γ̂21ν γ̂22ν

)

,
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where

γ̂11ν = Σν1⊳ν0 +Op(n
−1+α0+2α1 + n2τnJ),

γ̂12ν = Op(n
−1+α0+2α1 + n2τnJ), γ̂21ν = Op(n

−1+α0+2α1 + n2τnJ),

γ̂22ν = Op(n
−1+α0 + n2τnJ),

where Σν1⊳ν0 =
(

eTν1|ν0

(

eTν0Σeν0
)−1

eν1|ν0

)−1
.

The above theorem implies that the sparsistency property holds for the
estimated predictor power γ̂a. Using γ̂a, we can screen the predictors with
a pre-specified threshold, say n−1+α0 log(n), obtaining an estimated set of
active predictors, ν̂d = {1 ≤ a ≤ p : γ̂a > n−1+α0 log(n)}. We can prove the
following sure screening property for ν̂d.

Corollary 3.3. Under the conditions in Theorem 3.4, if α1 < min{(1−
α0)/3, (1 − 3α0)/2}, n2+α0τnJ = o(1) and n2+α1τnJ = o(1), then as both n
and J tend to infinity, P (ν0 = ν̂d) → 1.

Letting ν1 ⊆ ν0 and ν2 ⊆ [1 : p] \ ν0, in the next theorem, we show that
the sparsistency property holds for the estimated nulled-predictive powers.

Theorem 3.5. Suppose that the conditions in Theorem 3.2 and (C5)∼(C6)
hold and that τnJn

2 = o(1) as both n and J tend to infinity. Then, we have:

(i) Uniformly for a ∈ [1 : p] \ ν0, a 6∈ ν1 ∪ ν2 and |ν1 ∪ ν2| < rn, the
(ν1 ∪ ν2)-nulled predictive power of a admits the form

γ̂a|ν1∪ν2 = n−1
(

Raa −Raν0R
−1
ν0ν0Rν0a −

(

Raν2 −Raν0R
−1
ν0ν0Rν0ν2

)

×
(

Rν2ν2 −Rν2ν0R
−1
ν0ν0Rν0ν2

)−1 (
Rν2a −Rν2ν0R

−1
ν0ν0Rν0a

)

)−1

+Op(n
−2+4α0+2α1 + n2τnJ).

(ii) Uniformly for a ∈ ν0 \ ν1 and |ν1 ∪ ν2| < rn, the (ν1 ∪ ν2)-nulled
predictive power of a admits the form

γ̂a|ν1∪ν2 =
(

eTa⊳ν0Σ
−1
ν0\ν1

ea⊳ν0

)−1
+Op(n

−2+6α0+5α1 + n2τnJ)

+n−1eTa⊳ν0

(

eTν0Σeν0
)−1

Ψ
(

eTν0Σeν0
)−1

ea⊳ν0 ,

where Σ−1
ν0\ν1

and Ψ are defined in Theorem 3.2.
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The above theorem implies that uniformly for a ∈ ν0 \ ν1 and |ν1 ∪ ν2| <
rn, the (ν1 ∪ ν2)-nulled predictive power of a admits the form γa|ν1∪ν2 =
(

eTa⊳ν0Σ
−1
ν0\ν1

ea⊳ν0

)−1
+O(n−1+3α0+2α1 + n2τnJ). This shows that the spar-

sistency property holds for the nulled-power-based PVA. We further show
that the sparsistency property also holds for the SNR-based PVA.

Theorem 3.6. Suppose that the conditions in Theorem 3.3 and Condi-
tions (C5)∼(C6) hold and that τnJn

2 = o(1) as both n and J tend to infinity.
Then, we have:

(i) Uniformly for a ∈ [1 : p] \ ν0, a 6∈ ν1 ∪ ν2 and |ν1 ∪ ν2| < rn, the
(ν1 ∪ ν2)-nulled predictive power of a admits the form ˆSNRa|ν1∪ν2 =
1

ζ0σ2 +Op(n
−2+4α0+2α1 + n2τnJ).

(ii) Uniformly for a ∈ ν0 \ ν1 and |ν1 ∪ ν2| < rn, the (ν1 ∪ ν2)-nulled SNR
of predictor a admits the form

ˆSNRa|ν1∪ν2 =
neTa⊳ν0Σ

−1
ν0\ν1

ea⊳ν0

σ2η0eTa⊳ν0Σ
−1
ν0\ν1

ΦΣ−1
ν0\ν1

ea⊳ν0(1 + o(1))
+Op(n

2τnJ)

+

(

eTa⊳ν0Σ
−1
ν0\ν1

ea⊳ν0

)2
eTa⊳ν0

(

eTν0Σeν0
)−1

Ψ
(

eTν0Σeν0
)−1

ea⊳ν0

σ2ζ0eTa⊳ν0Σ
−1
ν0\ν1

ΦΣ−1
ν0\ν1

ea⊳ν0(1 + o(1))
,

where Σ−1
ν0\ν1

, Ψ and Φ are defined in Theorem 3.3.

Note that for a ∈ ν0 \ ν1 and |ν1 ∪ ν2| < rn,

λmin

(

eTa⊳ν0Σ
−1
ν0\ν1

ea⊳ν0

)

≥ λmin

(

eT{a}∪ν1

(

eTν0Σeν0
)−1

e{a}∪ν1

)

≥
(

λmax

(

eTν0Σeν0
))−1

,

which is bounded below from zero as λmax

(

eTν0Σeν0
)

= O(1). It can also be
shown that σ2ζ0e

T
a⊳ν0Σ

−1
ν0\ν1

ΦΣ−1
ν0\ν1

ea⊳ν0 = O(n3α0+2α1). Consequently, the

leading term in Theorem 3.6 (ii) tends to infinity as n1−3α0−2α1 tends to
infinity. In contrast, for a 6∈ ν0, ˆSNRa|ν1∪ν2 converges to a constant as stated
in Theorem 3.6 (i). Compared to Theorem 3.4, we can see that Theorem 3.6
provides a sharper contrast between active and non-active predictors.

As in Subsection 3.3, let ωm̂ denote the set of predictors derived from the
(SNR-based) PVA. We have the following selection consistency for ωm̂.

Corollary 3.4. Under the conditions in Theorem 3.6, as both n and J
tend to infinity, we have the selection consistency in the sense that P (ωm̂ =
ν0) → 1.
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4. Numerical results. In this section, we assess the performance of
the PVA in identifying active predictors using synthetic and real data. As
our simulations suggest that the SNR-based PVA performs better than the
power-based PVA, we consider only four versions of the SNR-based PVA be-
low corresponding the four different estimators of C, namely, Ledoit-Wolf’s
shrinkage estimator and the optimal shrinkage of thresholded estimator Ĉhs

with h = 0.01, 0.005, 0.001.

4.1. Synthetic data. We compare the sensitivity of the PVA to those im-
plemented in the R-packages ’glmnet’ (Friedman, Hastie, Simon, Tibshirani,
version 2.1), ’lsgl’ (Vincent, version 1.3.5) and ’mrce’ (Rothman, version
2.1): the multivariate group LASSO (MGL), the multivariate elastic-net
(MENET), the multivariate LASSO (ML), the multivariate group sparse
LASSO (MGSL) and multivariate regression with covariance estimation
(MRCE) when all these procedures fix their specificity values approximately
at the same level as the PVA. A brief introduction to these methods can be
found in the Appendix A, the Online Supplementary Material.

Specificity and sensitivity are defined as the survival rates of true ac-
tive predictors and of true non-active predictors respectively in screening,
namely SEND = |T̂ ∩ T |/|T | and SPED = |T̂ c ∩ T c|/|T c|, where T and T c

are respectively the sets of true active predictors and of true non-active pre-
dictors, T̂ and T̂ c are their estimators, and the symbol | · | denotes the size
of a set. Note that if |T̂ | ≤ m and T ∪ T c = T̂ ∪ T̂ c = {1, 2, ..., p}, then we
have

SPED =
|T̂ c − T̂ c ∩ T |

|T c| ≥ p−m− |T |
p− |T | .

So the specificity SEND is close to 1 when p ≫ |T |+m. This holds for most
of our simulations, for example for m = 42, p = 2000, |T | = 37, we have
SPED ≥ 0.978.

Setting 4.1 (B was uncorrelated both within rows and between rows):
Modifying a simulation setting in Rothman et al. (2010), we obtained 50
datasets of (Y,X) from the model (2.2). Each dataset was generated in
the following steps. First, we drew an i.i.d. sample of size np from the
standard normal N(0, 1) to form an n × p matrix X. Secondly, we drew
n independent auto-regressive row-vectors from the J-dimensional multi-
variate normal NJ(0, E0), where E0 = (0.7|i−j|)J×J . We stacked these row
vectors to generate an n × J error term matrix ε. Thirdly, we generated
B = (βkj)p×J = s0B0, where s0 was a scale factor, B0 = (bkj)p×J , bkj =
ηkjukj , with ηkj and ukj independently sampled from the Bernoulli distri-
bution Bin(0.1) (0.1 is the success probability) and the uniform distribution
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U(s1, s2) respectively. We considered combinations of (n, p, J, p0, α, s0, s1, s2)
with n = 50, p = 100, 1000, J = 20, p0 = 5, α = 0, 1, s0 = 0.45, 0.6,
(s1, s2) = (−1, 1), (0.5, 1) and (1, 2). Note that α = 0 and 1 corresponded to
row-wisely uncorrelated and row-wisely correlated Bs respectively. We let
(s1, s2) = (−1, 1), (0.5, 1) and (1, 2) to represent three scenarios of B: (i)
rows with non-zero entries were oscillates around (thus not well separated
from) the background 0; (ii) rows with non-zero entries were uniformly big-
ger than (thus separated from) 0 by amounts not less than 0.5s0; (iii) rows
with non-zero entries were uniformly bigger than (thus separated from) 0
by amounts not less than s0. Then, we randomly selected a subset Sp0 of
size p0 from integers from 1 to p and for any j, set βkj = 0 when k 6∈ Sp0 .
Finally, we let Y = XB+ ε.

Setting 4.2 (B was uncorrelated within rows but correlated between rows):
We adopted Setting 4.1 except that we multiplied the above B0 by a matrix
factor Bf = (0.6|k−j|)p×p, resulting in new B = s0BfB0 with correlations
between non-zero rows.

Setting 4.3 (B was weakly correlated within rows): We generated 50 datasets
of (Y,X) from the model (2.2) for each combination of (n, p, J, p0), where
n = 42, 88, 150 is the sample size, p = 2000 is the regression dimension,
J = 20, 34, 131 is the dimension of the response variable, and p0 = 37, 50, 70
is the number of true active predictors underpinning the model. Each dataset
was generated in the following steps. We began with calculating a J×J sam-
ple covariance matrix Ω by using the n×J weakly correlated sub-data matrix
of the imputed IC50 data. Given Ω, we randomly generated p row-vectors
from a J-dimensional normal NJ(0,Ω), stacking them together to form a
matrix B. We then modified entries of B so that the resulting matrix con-
tained exactly p0 non-zero rows which would be taken as p0 active predictors
later. See Section C, the Online Supplementary Material for further details.
To obtain matrix X, we let F 0 be the p × p sample covariance matrix of
the gene expressions in our cancer drug data mentioned in the Introduction.
Given F 0, we then generated n iid row vectors from a multivariate normal
Np(0,F 0), stacking them together to form matrix X. We generated the error
term matrix, ε, by sampling from Nn(0, σ

2In) J times as its column vectors,
where σ2 = 0.1. Finally, we obtained Y by setting Y = XB+ ε.

Setting 4.4 (B was strongly correlated within rows): Similar to Setting 4.3,
we generated 50 datasets of (Y,X) from the model (2.2) for each combina-
tion of (n, p, J, p0), where n = 42, 88, 150 is the sample size, p = 2000 is the
regression dimension, J = 20, 34, 131 is the dimension of the response vari-
able, and p0 = 37, 50, 70 is the number of true active predictors underpinning
the model. Each dataset was generated in the same steps as Setting 4.3, ex-



22 J. ZHANG ET AL.

cept that matrix Ω was replaced by one with high correlation coefficients.
See Section C, the Online Supplementary Material for further details.

Setting 4.5 (B was moderately correlated within rows): Similar to Setting
4.3, we generated 50 datasets of (Y,X) from the model (2.2) for each combi-
nation of (n, p, J, p0), where n = 20, 42, p = 2000, J = 131, and p0 = 20, 37.
Here, Ω was generated from the n non-missing rows of the IC50 data while
X was produced by use of the gene expression data corresponding to the
above n non-missing rows. The error term matrix was generated by sampling
from Nn(0, σ

2In) J times as before but with σ2 = 0.0645. See Section C, the
Online Supplementary Material for further details.

For each combination of (n, p, J, p0, s0, s1, s2) in Settings 4.1 and 4.2, we
applied the PVA, MGL, MENET, ML, MSGL and MRCE to each of 50
datasets respectively and calculated their sensitivity values when the speci-
ficity value was fixed approximately at the same level. Note that in Settings
4.3 to 4.5, it was too time-consuming to run MRCE on a PC. In light of
this, we skipped MRCE in our comparison in these settings. For the MGL,
MENET, ML, MSGL and MRCE, we adjusted their penalty coefficients to
achieve approximately the same specificity as that of the PVA. These sen-
sitivity and specificity values were summarized using box-plots as shown in
Figures 1 and 2. In these figures sh0, hs1, hs2 and hs3 correspond to PVA
based on the shrunk and thresholded covariance estimators with tuning con-
stants h = 0, 0.01, 0.005, 0.001 respectively. And mgl, menet, mrce, ml, msgl
stand for the multivariate group LASSO, the multivariate elastic-net, the
multivariate regression with covariance estimation, the multivariate LASSO
and the multivariate sparse group LASSO respectively.

The results indicated that the PVA substantially outperformed the MGL,
MENET, ML, MSGL and MRCE in terms of sensitivity and specificity in
all the scenarios under consideration. In Settings 4.1 and 4.2, the results
suggested that the performances of the MGL, MENET, ML, MGSL and
MRCE had deteriorated sharply when the separation between active and
non-active predictors, in terms of regression coefficients, was decreasing. In
contrast, the performance of the PVA was much more robust than the other
procedures to interferences between active and non-active predictors. This
was due to interferences being minimized through the optimization in the
null-beamforming. This explained why the PVA substantially outperformed
the other procedures as the separation between active and non-active pre-
dictors was decreasing. For example, for the oscillated case where p = 1000,
(n, J, p0, s0, s1, s2) = (50, 20, 5, 0.45,−1, 1), the average percentage sensitiv-
ity improvements of PVA(hs3) over the MGL, MENET, MRCE, ML and
MSGL were respectively 130%, 190%, 202%, 343% and 853% when the speci-
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ficity values were fixed roughly at the same level. In contrast, for the well-
separated case where p = 1000, (n, J, p0, s0, s1, s2) = (50, 20, 5, 0.45, 1, 2),
the average percentage sensitivity improvements of the PVA(hs3) over the
MGL, MENET, MRCE, ML and MSGL were respectively 42%, 44%, 98%,
12% and 35% when the specificity values were also fixed roughly at the
same level. Only in the well-separated case, the other five procedures had
competitive performances with the PVA. A similar conclusion can be made
for the other settings. For example, for p = 2000, (n, J, p0) = (88, 20, 50),
(150, 20, 50), (88, 34, 50), (150, 34, 50) in Setting 4.4, when the specificity val-
ues were fixed roughly at the same level, compared to the MGL, on average
the sensitivity values of the PVA(hs3) were increased by 74%, 97%, 136%,
and 237% respectively. Compared to the MENET, on average the sensi-
tivity values were increased by 312%, 478%, 443% and 968% respectively.
In comparison to the ML, on average the sensitivity values were increased
by 103%, 133%, 163% and 250% respectively. In comparison to the MSGL,
on average the sensitivity values were increased by 53%, 85%, 110% and
169%. The results also suggested that the sensitivity improvements of the
PVA(hs3) over the other procedures were decreasing when p0 changed from
50 to 70, although they were still large. This was expected as the model
complexity increased but the sample size did not increase. In Setting 4.3,
we considered a weakly correlated regression coefficient matrix B. With the
same combinations of (n, p, J, p0) as before, compared to highly correlated
B setting, the improvements over the other procedures reduced but they
were also substantial. This reflected a fact that the higher the correlations
in columns or rows of B, the stronger intra-correlations the response variable
would receive. Therefore, more accurate variable selection would be derived
from the PVA as it could explore correlation structures in the data better
than the other methods. The results also indicated that the sensitivity im-
provements of the PVA over the other procedures were increasing in J and
n. The similar result was also obtained in Setting 4.5.

We recorded the running times of performing the above procedures on
each of the 50 datasets in each setting. The results, displayed in Section D,
the Online Supplementary Material, showed that on average the PVA was
run much faster than the ML and MSGL and was also very competitive with
the MGL and MENET when we applied them to these datasets in terms of
log-CPU-times in seconds.

4.2. Cancer drug data. Cancer drugs exert their function through bind-
ing to one or more protein targets (Wang et al., 2014). Early “one gene, one
drug, one cancer” paradigm considers the role of individual genes and their
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changes in drug-perturbed states, which largely ignore a target’s cellular and
physiological context. Meanwhile, cancer gene-centric methods largely ignore
the multi-factor-driven attribute of cancer diseases at the cellular level. With
the generation of rich data resources for genome-wide gene expressions and
drug- and cancer-induced perturbations, data integrative approaches such as
PVA try to provide systematic insights into mechanisms of drugs and cancers
in a “multiple genes, multiple drugs, multiple types of cancers” paradigm.

In this section we performed PVA(hs3) on such a kind of dataset first dis-
cussed in Garnett et.al(2012). The dataset contains gene expression levels
of 13321 genes and median inhibitory concentrations (IC50s) of 131 drugs
across 586 cell lines. Among these cell lines, only 42 had complete records
of their response to 131 drugs. Here, we considered only the 42 completed
cell lines. The challenging problem of imputing remaining cell lines will be
addressed in a separate work. Letting X be log-gene-expression levels and
Y be IC50 values of 42 completely observed cell lines, we considered the
model (2.2) for (Y,X) with the sample size n = 42, the number of pre-
dictors p = 13321 and the dimension of the response variable J = 131. As
p ≫ n and p ≫ J , the model estimation was ill-posed. To reduce the num-
ber of predictors, we performed PVA(hs3)-based variable selection on the
dataset, identifying 37 active predictors (i.e., genes) for the response vari-
able (i.e., IC50s). We then fitted a reduced multivariate regression model to
the dataset by restricting the predictors to the selected, obtaining an esti-
mated vector of the 131-dimensional regression coefficients for each selected
gene. Surprisingly, although the selected genes were uncorrelated in their
expression levels, they were strongly correlated when they reacted to can-
cer drugs as shown in the Appendix E, the Online Supplementary Material.
This suggests that these genes are potentially correlated in a high function
level (e.g., protein level).

Following the procedure in Subsection 2.4, we constructed a predictive
network, displayed in Figure 3, for the selected genes based on their regres-
sion coefficients across 131 drugs. The network was strongly connected as
there always existed a path from any node to any other node.

To reveal the potential roles of these selected genes played in cancer drug
sensitivity, we investigated their protein stainings in 20 common cancers
as the protein products would dictate their functions (Stewart and Wild,
2014). The tables in the Appendix F, the Online Supplementary Material
provide such information gathered from the Human Protein Atlas Portal
at http://www.proteinatlas.org/cancer. In these tables, as in the Portal,
we classified the protein expression/staining levels into 4 categories: high,
medium, low and not detected. We assigned the scores of 3, 2, 1 and 0 to
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the 4 categories respectively. If a gene did not play a role in a cancer, it
would receive a score of zero as its protein staining at that cancer would
be hardly detectable. We found 34 of the selected genes, which had positive
staining levels on at least one of these cancers. This implied that these genes
might play certain functional roles in growths of some of these cancers. In
the Portal, there was no information available on the remaining 3 of the
selected genes.

5. Discussion and Conclusion. In this paper, we have developed a
novel approach called PVA for multivariate variable selection. Unlike the
classical principal component analysis, in the PVA we project the data of
the response variable along a direction in restricted eigenvector space deter-
mined by each predictor. The restricted eigenvalues called predictive powers
are then used to rank predictors. The highly ranked predictors are called
principal variables. By the PVA, we try to find a small number of princi-
pal variables to explain the maximum amount of variation in the data. We
have established a sparsistency theory for both the power-based and the
SNR-based mapping: Under certain sparsity and regularity conditions, true
active predictors are asymptotically separable from non-active predictors in
terms of their power or SNR values when the sample size and the dimen-
sion of the response variable tend to infinite. We have also shown that the
nulled-predictor power has a higher value than a non-nulled predictor power.
This has explained why the PVA can outperform the existing multivariate
variable selection procedures in the literature. We have conducted a wide
range of simulation studies to compare the PVA with the multivariate group
LASSO, the multivariate elastic-net, the multivariate LASSO, the multivari-
ate sparse group LASSO and the MRCE. The simulation results have shown
that the PVA can substantially perform better than its competitors in all
the scenarios under considerations while the PVA is scalable to the data
size by iteratively calculating the power or SNR values. A limitation of the
theory we have developed is that we need assumptions of stationarity and
sparsity. However, the stationarity can be largely reduced if using local non-
parametric regression models where only a local stationarity is required. The
simulation studies in Settings 1∼4 have shown that even when the response
covariance matrix is not sparse or when J is much smaller than n, PVA can
still have a superior performance than the existing methods.

To demonstrate the usage of the PVA in practice, we have conducted PVA
on a cancer drug dataset and identified a list of principal genes and the re-
lated network to predict the drug’s sensitivity to cancers in a “multiple genes,
multiple drugs, multiple types of cancers” paradigm. The correlations of the
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selected genes in the RNA expression levels are largely different from those
in their functional levels (their contributions to the IC50 values). The results
have been further validated by the protein expression levels of these genes
in 20 common cancers. We should mention that we have applied the cross-
validation-based multivariate group LASSO and the multivariate elastic-net
to the same dataset. Unfortunately, we have ended up with a few thousand
genes being selected, which were very difficult to interpret in practice.

We note that the PVA depends on the covariance matrix estimation for
the response variable. In this paper, we opt for the thresholded and the
shrinkage estimators as well as their hybrid version. The performance of
PVA does not change much by using the alternative covariance estimators
discussed in Cai and Liu (2011).
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SUPPLEMENTARY MATERIAL

This supplementary material provides the proofs of all propositions, corol-
laries and theorems in Section 3 as well as some extra numerical results and
codes for Section 4.
(http://www.e-publications.org/ims/support/download/pvasupple.pdf).
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Fig 1: Box plots of sensitivity and specificity. (a)∼(l) and (m)∼(x) are for Set-
tings 4.1 and 4.2 respectively. (a) and (m): (n, p, J, p0, s0, s1, s2) = (50, 100, 20,
5, 0.45,−1, 1). (b) and (n): (n, p, J, p0, s0, s1, s2) = (50, 100, 20, 5, 0.6,−1, 1).
(c) and (o): (n, p, J, p0, s0, s1, s2) = (50, 1000, 20, 5, 0.45,−1, 1). (d) and
(p): (n, p, J, p0, s0, s1, s2) = (50, 1000, 20, 5, 0.6,−1, 1). (e) and (q): (n, p,
J, p0, s0, s1, s2) = (50, 100, 20, 5, 0.45, 0.5, 1). (f) and (r): (n, p, J, p0, s0, s1, s2)
= (50, 100, 20, 5, 0.6, 0.5, 1). (g) and (s): (n, p, J, p0, s0, s1, s2) = (50, 1000, 20,
5, 0.45, 0.5, 1). (h) and (t): (n, p, J, p0, s0, s1, s2) = (50, 1000, 20, 5, 0.6, 0.5, 1).
(i) and (u): (n, p, J, p0, s0, s1, s2) = (50, 100, 20, 5, 0.45, 1, 2). (j) and (v):
(n, p, J, p0, s0, s1, s2) = (50, 100, 20, 5, 0.6, 1, 2). (k) and (w): (n, p, J, p0, s0, s1, s2)
= (50, 1000, 20, 5, 0.45, 1, 2). (l) and (x): (n, p, J, p0, s0, s1, s2) = (50, 1000, 20, 5,
0.6, 1, 2). In each panel, from the left to the right, the odd columns are for sen-
sitivity while the even columns are for specificity. In each panel, box-plots from
the left to the right are for sh0, hs1, hs2, hs3, mgl, menet, mrce, ml and msgl
respectively.
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(b) LCW, (n, J, p0) =
(150, 20, 50)
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(c) LCW, (n, J, p0) =
(88, 34, 50)
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(d) LCW, (n, J, p0) =
(150, 34, 50)
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(e) LCW, (n, J, p0) =
(88, 20, 70)
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(f) LCW, (n, J, p0) =
(150, 20, 70)
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(g) LCW, (n, J, p0) =
(88, 34, 70)
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(h) LCW, (n, J, p0) =
(150, 34, 70)
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(i) HCW, (n, J, p0) =
(88, 20, 50)
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(j) HCW, (n, J, p0) =
(150, 20, 50)
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(k) HCW, (n, J, p0) =
(88, 34, 50)

0

25

50

75

100

sh_o hs1 hs2 hs3 mgl menet ml msgl
Method

V
al

ue sen
spe

(l) HCW, (n, J, p0) =
(150, 34, 50)
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(m) HCW, (n, J, p0) =
(88, 20, 70)
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(n) HCW, (n, J, p0) =
(150, 20, 70)
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(o) HCW, (n, J, p0) =
(88, 34, 70)
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(p) HCW, (n, J, p0) =
(150, 34, 70)
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(q) MCW,(n, J, p0) =
(42, 131, 20)
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(r) MCW, (n, J, p0) =
(42, 131, 37)
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(s) MCW, (n, J, p0) =
(20, 131, 20)
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(t) MCW, (n, J, p0) =
(20, 131, 37)
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Fig 2: Box plots of sensitivity and specificity for Setting 4.3 (Low correlations within
rows, short for LCW), Setting 4.4 (High correlations within rows, short for HCW)
and Setting 4.5 (Moderated correlations within rows, short for MCW) when p =
2000 and c0 = 5. Here, we adopt the same notations as in Figure 4.1.
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Fig 3: A network of the 37 selected genes based on their regression coefficients across 131
drugs. The size (called degree) of each node is proportional to the number of connections
of that node with other nodes. The thickness of each edge represents the magnitude of the
correlation coefficient between the nodes linked by this edge. The higher the correlation
coefficient, the thicker the edge is. The largest degree 22 and the smallest degree 3 were
attained by gene QKI and gene STX7 respectively.
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