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Abstract

We give a new proof of the strong Arnold conjecture for 1-periodic solutions of Hamiltonian
systems on tori, that was first shown by C. Conley and E. Zehnder in 1983. Our proof uses
other methods and is shorter than the previous one. We first show that the E-cohomological
Conley index, that was introduced by the first author recently, has a natural module struc-
ture. This yields a new cup-length and a lower bound for the number of critical points of
functionals. Then an existence result for the E-cohomological Conley index, which applies
to the setting of the Arnold conjecture, paves the way to a new proof of it on tori.

1 Introduction
Motivated by questions of celestial mechanics from the beginning of the 20th century, Arnold
conjectured in the sixties that every Hamiltonian diffeomorphism on a compact symplectic man-
ifold (M,ω) has at least as many fixed points as a function on M has critical points. Let us
recall that a diffeomorphism ψ : M → M is called Hamiltonian if there exists a smooth map
H : R×M → R, H(t+ 1, x) = H(t, x), such that ψ = η1, where the family {ηt}t∈R satisfies

d

dt
ηt = XH(ηt)

η0 = id,
(1)

and XH stands for the time-dependent vector field given by

dH(·) = ω(XH , ·).

Consequently, p is a fixed point of ψ if and only if it is the initial condition of a 1-periodic solution
of (1), and so Arnold’s famous conjecture can be reformulated dynamically as follows.

Arnold Conjecture. The Hamiltonian system

ẋ(t) = XH(x(t)) (2)

has at least as many 1-periodic orbits as a function on M has critical points.

The aim of this paper is to point out a new approach to the Arnold conjecture which proves it
on tori, where it was first shown by C. Conley and A. Zehnder in [CZ83]. It will be future work
to investigate if our methods also apply to cases where the conjecture is still open. However,
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let us point out that, apart from these important applications, our methods are of independent
interest and can be outlined as follows.
In [St15] the first author introduced the E-cohomological Conley index for isolated invariant sets
of flows in Hilbert spaces. Roughly speaking, it is a generalisation of the classical Conley index for
flows on locally compact spaces by using E-cohomology, which is a generalised cohomology theory
for subsets of Hilbert spaces that was constructed by Abbondandolo in [Ab97] (cf. also [GG73]).
The first aim of this paper is to introduce a module structure for the E-cohomological Conley
index, which allows us to define a relative cup-length for triples of closed and bounded subsets
of Hilbert spaces. Secondly, we consider this numerical invariant for isolating neighbourhoods
of LS-flows in Hilbert spaces (cf. [GIP99], [Sty09]), and show that it is a lower bound for the
number of critical points of gradient flows as in classical Ljusternik-Schnirelman theory. Here we
substantially use the homotopy invariance of the E-cohomological Conley index that was recently
obtained by the first author in a joint work with Izydorek, Rot, Styborski and Vandervorst in
[IRSSV]. Thirdly, we introduce a Conley index for unbounded isolating neighbourhoods of LS-
flows, and prove a sufficient condition for its existence. To the best of our knowledge, no such
result has been obtained before in the literature. Finally, and most important, we show that this
sufficient condition is satisfied when dealing with the functionals in the setting of the Arnold
conjecture on T 2n. This yields an estimate from below for the number of contractible 1-periodic
solutions of (2) by one of our previous results, and the obtained bound is indeed the one that
Arnold conjectured. Let us point out that our proof of the Arnold conjecture not only differs
substantially from Conley and Zehnder’s, but it is also much shorter. A key step in our argument
is to show that we can use the homotopy invariance of the E-cohomological Conley index from
[IRSSV] to deform the Hamiltonian to a constant function which simplifies the computations
considerably.
This paper is organised with the intention of guiding the reader through our proof of the Arnold
conjecture in as straightforward a manner as possible. Therefore, in the second section, we only
introduce the material that is necessary to understand the basics of our approach and postpone
more technical proofs to Section 4. Our discussion of the Arnold conjecture can be found in
between, in the third section.
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well as Thomas Schick for clarifying remarks about our groups H∗0 (X).

2 The E-Cohomological Conley Index and Cup-Lengths

2.1 Module Structure for E-Cohomology
We begin this section by recalling the definition of E-cohomology from [Ab97], and to this aim
we let E be a separable real Hilbert space and E+, E− closed subspaces such that E = E+⊕E−.
We endow E+ with the weak topology, E− with the strong topology and henceforth we consider
E with the corresponding product topology.
In what follows we denote by H∗ Alexander-Spanier cohomology with compact supports, for
which we refer to [Sp66] and the nice survey in [Ab97, §1]. Moreover, we let V be the set of all
finite dimensional subspaces of E−, which is partially ordered by inclusion and directed.
If U, V,W ∈ V are such that W = V ⊕ U and dim(U) = 1, then we can decompose W into two
subspaces by setting
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W+ = {w ∈W : 〈w, u〉 ≥ 0}
W− = {w ∈W : 〈w, u〉 ≤ 0},

where u 6= 0 is a fixed element in U . Note that the choice of u corresponds to an orientation of
the one-dimensional space U , and changing this orientation swaps W+ and W−.
We set for a closed and bounded subset X of E

XW = X ∩ (E+ ×W ), X+
W = X ∩ (E+ ×W+), X−W = X ∩ (E+ ×W−)

and note that XW = X+
W ∪X

−
W as well as XV := X ∩ (E+ × V ) = X+

W ∩X
−
W .

If now A ⊂ X is closed, then we obtain a relative Meyer-Vietoris sequence

. . .→ Hk(X+
W , A

+
W )⊕Hk(X−W , A

−
W )→ Hk(XV , AV )

∆k
V,W−−−−→

→ Hk+1(XW , AW )→ Hk+1(X+
W , A

+
W )⊕Hk+1(X−W , A

−
W )→ . . . .

In the more general case that W = V ⊕ U and dim(U) = n > 0, we decompose U into n one-
dimensional subspaces U = U1 ⊕ · · · ⊕ Un and set Wi = V ⊕ U1 ⊕ · · · ⊕ Ui for 1 ≤ i ≤ n as well
as W0 = V . Then the previous construction yields n Mayer-Vietoris homomorphisms

∆k+i−1
Wi−1,Wi

: Hk+i−1(XWi−1
, AWi−1

)→ Hk+i(XWi
, AWi

)

and their composition is a homomorphism Hk(XV , AV ) → Hk+n(XW , AW ). Hence we have
constructed for any q ∈ Z and V,W ∈ V, V ⊂W , a homomorphism

∆q
V,W (X) : Hq+dim(V )(XV , AV )→ Hq+dim(W )(XW , AW ).

As noted in [Ab97, Prop. 2.2], these maps do not depend on the choice of the one-dimensional
subspaces Ui and their orientations. In summary, {Hq+dim(V )(XV , AV ),∆q

VW (X,A)} is a direct
system of abelian groups over the directed set V.
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Definition 2.1. Let A ⊂ X be closed and bounded subsets of E. The E-cohomology group of
index q ∈ Z of (X,A) is the direct limit

Hq
E(X,A) = lim

−→
V ∈V
{Hq+dim(V )(XV , AV ),∆q

V,W (X,A)},

and we set as usual Hq
E(X) := Hq

E(X, ∅).

The inclusions ιV,W : XV → XW for V,W ∈ V yield an inverse system {Hp(XV ), ι∗V,W } over V.
We define for p ∈ Z the group Hp

0 (X) as the inverse limit

Hp
0 (X) := lim

←−
V ∈V
{Hp(XV ), ι∗V,W }.

In what follows, we denote elements of Hp
0 (X) by [αV ]0 if αV ∈ Hp(XV ), and correspondingly

elements of Hq
E(X,A) by [αV ]E if αV ∈ Hq+dim(V )(XV , AV ).

Let us point out that H∗0 (X) is a ring if we define the product of [αV ]0 ∈ Hp
0 (X) and [βV ]0 ∈

Hq
0 (X) by

[αV ]0 ∪ [βV ]0 = [αV ∪ βV ]0 ∈ Hp+q
0 (X).

It is readily seen from the naturality of the cup product that this is a sensible definition.

Proposition 2.2. H∗E(X,A) is a right module over H∗0 (X), where the module multiplication is
induced by the cup product.

Proof. We define for [αV ]0 ∈ Hr
0 (X) and [βV ]E ∈ Hq

E(X,A)

[βV ]E ∪ [αV ]0 := [βV ∪ αV ]E ∈ Hq+r
E (X,A).

This product is well defined, as if βW = ∆q
V,WβV and αV = ι∗V,WαW , then

∆q+r
V,W (βV ∪ αV ) = ∆q+r

V,W (βV ∪ ι∗V,WαW ) = (∆q
V,WβV ) ∪ αW = βW ∪ αW ,

where we have used that the coboundary operators of the Mayer-Vietoris sequence commute with
products in multiplicative cohomology theories (cf. [tD08, Prop. 17.2.1]).

Let now Ω ⊂ E be closed and bounded and such that X ⊂ Ω. The inclusions jV : XV → ΩV
induce homomorphisms j∗V : Hp(ΩV ) → Hp(XV ) for V ∈ V, and it is readily seen that they
actually yield a ring homomorphism

j∗ : H∗0 (Ω)→ H∗0 (X).

Consequently, we obtain the following corollary from Proposition 2.2.

Corollary 2.3. For every X ⊂ Ω ⊂ E, H∗E(X,A) is a right H∗0 (Ω)-module.

Henceforth we denote the module product of α ∈ Hr
0 (Ω) and β ∈ Hp

E(X,A) by

β ∪ α ∈ Hp+r
E (X,A).

We conclude this section with the following crucial definition.

Definition 2.4. Let A ⊂ X ⊂ Ω be closed and bounded subsets of E. The relative cup-length
CL(Ω;X,A) is defined as follows:
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• If H∗E(X,A) = 0, we set

CL(Ω;X,A) = 0.

• If H∗E(X,A) 6= 0 but β ∪ α = 0 for every β ∈ H∗E(X,A) and α ∈ H>0
0 (Ω), then we set

CL(Ω;X,A) = 1.

• If there are k ≥ 2, β0 ∈ H∗E(X,A) and α1, α2, . . . , αk−1 ∈ H>0
0 (Ω) such that

β0 ∪ α1 ∪ . . . ∪ αk−1 6= 0

but

β ∪ γ1 ∪ . . . ∪ γk = 0

for all β ∈ H∗E(X,A), γ1, γ2, . . . , γk ∈ H>0
0 (Ω), then

CL(Ω;X,A) = k.

2.2 The E-Cohomological Conley Index and Critical Points
The first aim of this section is to introduce the E-cohomological Conley index and to define a
module structure for it. Let E be a real separable Hilbert space and L : E → E an invertible
selfadjoint operator for which there exists a sequence {En}n∈N of finite dimensional subspaces of
E such that L(En) = En, En ⊂ En+1 and

⋃
n∈NEn = E. Let U ⊂ E be open. Following [GIP99],

we call a vector field F : U ⊂ E → E, F (u) = Lu+K(u) an LS-vector field if K : U ⊂ E → E
is a locally Lipschitz compact operator. Note that every LS-vector field generates a local flow
ηt satisfying

d

dt
ηt = −F ◦ ηt, η0 = id,

which we call an LS-flow.
Let us now assume that η is an LS-flow on U , and let us denote by

Inv(Ω, η) = {x ∈ Ω : ηt(x) ∈ Ω, t ∈ R}

the maximal η-invariant subset of Ω ⊂ U .

Definition 2.5. A closed and bounded set Ω ⊂ U is called an isolating neighbourhood of η if
Inv(Ω, η) ⊂ int(Ω), where int(Ω) denotes the interior of Ω.

Let now Ω be an isolating neighbourhood of η and S := Inv(Ω, η).

Definition 2.6. We call a closed and bounded pair (X,A) of subsets of Ω an index pair for S if

• A is positively invariant with respect to X, i.e. given x ∈ A and t > 0 with η[0,t](x) ⊂ X,
then η[0,t](x) ∈ A.

• S = Inv(X \A, η) ⊂ int(X \A),
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• if y ∈ X, t > 0 and η(t, y) /∈ X, then there exists t′ > t such that η[0,t′](y) ⊂ X and
η(t′, y) ∈ A.

It was shown in [IRSSV, Lemma 2.7] that every isolated invariant set S has an index pair.
Note that the space E splits as E = E+⊕E−, where E± are the spectral subspaces with respect
to the positive and negative part of the spectrum of L. Henceforth, we let H∗E(X,A) be the E-
cohomology groups with respect to this decomposition. The following crucial result was proved
in [IRSSV, Prop. 2.8].

Proposition 2.7. If Ω is an isolating neighbourhood of η, S = Inv(Ω, η) and (X,A), (X ′, A′) are
index pairs for S such that X,X ′ ⊂ Ω, then the groups H∗E(X,A) and H∗E(X ′, A′) are isomorphic.

Hence the next definition is sensible (cf. [IRSSV, Def. 2.9]).

Definition 2.8. The E-cohomological Conley index of S is defined by

chE(S) = H∗E(X,A),

where (X,A) is an index pair for S.

If we want to emphasize the isolating neighbourhood Ω instead of the isolated invariant set S,
we will also write chE(Ω) to denote the E-cohomological Conley index.
When taking the module structure from §2 into account, it is readily seen by arguing as in
[IRSSV, Prop. 2.8] that H∗E(X,A) and H∗E(X ′, A′) are actually isomorphic as H∗0 (Ω)-modules.
Hence we obtain as a consequence of Proposition 2.7 the following important result.

Corollary 2.9. The cup-length CL(Ω;X,A) does not depend on the choice of the index pair
(X,A) such that X ⊂ Ω.

Consequently, we can define

CL(Ω, S) := CL(Ω;X,A),

where (X,A) is any index pair such that X ⊂ Ω. As S is uniquely determined by Ω and the flow
η, we will sometimes denote this cup-length by CL(Ω, η) if we want to emphasize η.
Before we come to the main theorem of this section, we want to state the following important
result for later reference. It follows from the corresponding Theorem 2.12 in [IRSSV] when taking
the module structure of H∗E into account.

Theorem 2.10. If {ηλ, λ ∈ [0, 1]} is a continuous family of LS-flows on U such that Ω ⊂ U is
an isolating neighbourhood of ηλ for every λ ∈ [0, 1], then

CL(Ω, η0) = CL(Ω, η1).

Let us now assume that η is the gradient flow with respect to a differentiable functional f : U → R,
i.e. the map F : U ⊂ E → E is of the form F = ∇f . Let Ω be an isolating neighbourhood of η
and S = Inv(Ω, η). We denote by Crit(f,Ω) the set of critical values of f |Ω and can now state
the first important result of this paper.

Theorem 2.11. If f has only finitely many critical points in Ω, then the number of critical
values of f |Ω is bounded below by the cup-length of Ω with respect to S, i.e.

# Crit(f,Ω) ≥ CL(Ω, S). (3)

Note that by Theorem 2.11, the right hand side in (3) is obviously also a lower bound for the
number of critical points of f in Ω. We will prove Theorem 2.11 in Section 4.
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2.3 Unbounded isolating neighbourhoods
Let us recall that we required an isolating neighbourhood in Definition 2.5 to be closed and
bounded. For our proof of the Arnold conjecture, we need to broaden our point of view and now
consider also unbounded isolating neighbourhoods. As before, we assume that η is an LS-flow
on the open subset U of the separable real Hilbert space E.

Definition 2.12. A closed and unbounded set Ω ⊂ U is called an unbounded isolating neigh-
bourhood of η if Inv(Ω, η) ⊂ int(Ω).

Note that, in general, the Conley index is not well defined for an unbounded isolating neigh-
bourhood Ω. However, if the invariant set S = Inv(Ω, η) is bounded, then it is contained in a
ball of radius R′ and ΩR := Ω ∩ B(R) is an isolating neighbourhood of η for every R ≥ R′. It
follows from Proposition 2.7 that chE(ΩR) is independent of R ≥ R′, which we define as the
E-cohomological Conley index chE(Ω) of Ω. The aim of this section is to introduce a sufficient
condition for an invariant set to be bounded.

Definition 2.13. Let F : U ⊂ E → E be an LS-vector field. We say that F satisfies the weak
boundedness condition (wBD) on Ω ⊂ U if there exists ε > 0 such that

F−1(B(ε)) ∩ Ω

is bounded. Moreover, F : I × U → E is a (wBD)-homotopy on Ω if⋃
s∈[0,1]

F−1
s (B(ε)) ∩ Ω

is bounded, where Fs := F (s, ·) : U ⊂ E → E.
If, in addition, F = ∇f for a C1-functional, or Fλ = ∇fλ for a continuous map f : I × U → R
of C1 functionals, then we say that F is a gradient (wBD)- vector field, or a gradient (wBD)-
homotopy on Ω, respectively.

Let us point out that we use the name weak boundedness condition in order to distinguish it
from the stronger and more commonly used boundedness condition (BD), which requires that
the preimage of any bounded set is bounded. Actually, a map between finite dimensional spaces
is (BD) if and only if it is proper, however, in an infinite dimensional setting (BD) implies that
the map is proper, but there are proper maps which are not (BD)(see [BF04, p.4-5]).

Proposition 2.14. Let η be an LS-flow on U that is generated by a gradient vector field which
is (wBD) on a closed set Ω ⊂ U . Then the invariant set Inv(Ω, η) is bounded. Moreover, if
F : I × U → E is a gradient (wBD)-homotopy on Ω and ηλ, λ ∈ I, the corresponding LS-flows,
then the invariant sets Inv(Ω, ηλ) are uniformly bounded.

We have already used in Theorem 2.10 that chE(Ω, ηλ) is independent of λ if Ω is an isolating
neighbourhood of ηλ for all λ ∈ I, which was shown in [IRSSV, Thm, 2.12]. If we now combine
this fact with the previous Proposition, we obtain the following important corollary.

Corollary 2.15. Let F : I × U → E be a gradient (wBD)-homotopy on Ω and ηλ, λ ∈ I, the
corresponding LS-flows. Suppose that Ω is an unbounded isolating neighbourhood for every ηλ.
Then the E-cohomological Conley index chE(Ω, ηλ) is well defined and independent of λ.

We shall prove Proposition 2.14 below in Section 4. Although the proof relies on the assumption
that the flow is of gradient type, we believe that this assumptions can be weakened to pseudo-
gradient flows as in [Ra86, Appendix A]. However, this is not needed in the present paper.
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3 The Arnold Conjecture on the Torus T 2n

Let T 2n denote the standard Torus of dimension 2n and ω0 its standard symplectic structure.
Let H ∈ C2(S1 × T 2n,R) be a 1-periodic Hamiltonian and XH the induced vecor field on T 2n

given by

dH(·) = ω(XH , ·).

We consider the Hamiltonian equation

ẋ(t) = XH(x(t)), (4)

and the aim of this section is to prove the following deep theorem.

Theorem 3.1 (Strong Arnold conjecture on T 2n). For every C2-Hamiltonian on T 2n there exist
at least 2n+ 1 contractible solutions of (4).

The above theorem was first proved by Conley and Zehnder in [CZ83] (cf. also [HZ94]). Let
us point out that our proof is considerably shorter. The main point of our argument is to use
Theorem 2.11 as well as the continuation principle from Theorem 2.10 to reduce the problem to
the case of a trivial Hamiltonian.
Let us further emphasize that there is a serious reason to look for new proofs of Theorem 3.1.
For example, the strong Arnold conjecture is still open on T 2n×CPm where a similar analytical
setting might be introduced. To the best of our knowledge, the previous methods only work to
some extent in this case (see, however, [Oh90] for partial results), and therefore it is worthwhile
to develop new approaches.

3.1 The Analytical Setting
Before proving Theorem 3.1, let us first recall the analytical setting from [HZ94]. We start
with the case of R2n and consider the space of smooth loops C∞(S1,R2n) in R2n. If we set
ek(t) := etk2πJ , k ∈ Z, where J is the standard symplectic matrix, then any x ∈ C∞(S1,R2n) is
represented by its Fourier-series

x(t) =
∑
k∈Z

xkek(t). (5)

The Sobolev space H
1
2 (S1,R2n) is the Hilbert space which is obtained as the completion of

C∞(S1,R2n) with respect to the scalar product

〈x, y〉s = 〈x0, y0〉+ 2π
∑
k∈Z
|k|〈xk, yk〉.

There is an orthogonal decomposition

H
1
2 (S1,R2n) = Z0 ⊕ Z− ⊕ Z+

into a 2n-dimensional subspace Z0 and closed infinite-dimensional subspaces Z+ and Z− which
correspond to k = 0, k > 0 and k < 0 in the Fourier-series expansion (5), respectively. In what
follows, we denote by P0, P+ and P− the corresponding orthogonal projections.
Now let H ∈ C2(S1 × R2n,R) be a Hamiltonian such that |H(x)| ≤ C · |x|2 at infinity and
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such that the second spatial derivative H ′′ is globally bounded. We define a functional ΦH :
C∞(S1,R2n)→ R by the formula

ΦH(x) = a(x)− b(x) :=
1

2

∫ 1

0

〈−Jẋ(t), x(t)〉 dt−
∫ 1

0

H(t, x(t)) dt. (6)

The importance of ΦH comes from the fact that the critical points of ΦH are periodic solutions
of the Hamilton equation (4). It is easy to see that ΦH extends to H

1
2 (S1,R2n), and

∇ΦH = L+K (7)

where L = ∇a = P+ − P− is a selfadjoint Fredholm operator and K = −∇b = −j∗∇H is a
compact map because of the compactness of the adjoint j∗ : L2 → H

1
2 of the inclusion.

On a general manifold, it is a delicate problem to define spaces H
1
2 (S1,M) as H

1
2 (S1,R2n)

contains non-continuous functions which consequently have no local meaning. However, for a
torus one can overcome this problem by using the universal covering R2n → T 2n = R2n/Z2n.
Then smooth Hamiltonians on T 2n are in one-to-one correspondence with Z2n-invariant smooth
Hamiltonians on R2n, where Z2n acts on R2n by translations. By a slight abuse of notation, we
will denote by H both the Hamiltonian on the torus and the Hamiltonian lifted to R2n. Note
that the lifted Hamiltonian on R2n is Z2n-invariant and therefore its second spatial derivative is
bounded and it obviously satisfies the growth condition mentioned above. Now the corresponding
functional ΦH in (6) is Z2n-invariant as well, and therefore it descends to a functional on the
quotient space

M := Z0/Z2n × Z+ × Z− = T 2n × Z+ × Z−.

3.2 Proof of Theorem 3.1
We suppose as in the previous section that H ∈ C2(S1 × T 2n,R) is a given Hamiltonian. Let
us note at first that F = ∇ΦH in (7) is an LS-vector field, even though the operator L is not
invertible. Indeed, if we write F = L̂ + K̂ := (L + P0) + (K − P0), where P0 is the orthogonal
projection onto the finite dimensional kernel of L as introduced above, then F is the sum of an
invertible selfadjoint operator and a compact map.
Since we want to apply the E-cohomological Conley index, we need to work with an open
subset of a Hilbert space rather than a Hilbert manifold. For that reason, let us embedM into
Ê = R4n × Z+ × Z− in such a way that every S1 in T 2n = S1 × . . .× S1 is mapped to the unit
circle in R2. We consider the open set

U := D2n
0 × Z+ × Z− ⊂ Ê

of Ê, where D0 = {(x, y) ∈ R2 : 0 < x2 + y2 < 4} is a punctured disc of radius 2 in R2, and we
let π : N →M be the standard projection to T 2n on D2n

0 and the identity on Z+ and Z−. The
map ΦH can be extended to U by

ΨH(x) = ΦH(π(x)) +

2n∑
i=1

(1− ri(x))2,

where ri(x) denotes the polar coordinate in R2 of the projection of x ∈ U to the i-th component
of (R2)2n. Note that the extension is done in such a way that ΨH and ΦH have the same critical
points. We denote by K̃ the compact operator which is the sum of K̂ and ∇(

∑2n
i=1(1− ri(x))2).

9



Now Theorem 3.1 can be obtained as follows. We note first that ∇ΨH = L̂+ K̃ is an LS-vector
field, and the negative and positive spectral subspaces of the selfadjoint isomorphism L̂ are given
by

E+ = R4 ⊕ Z+, E− = Z−.

We consider the family {Hλ = (1−λ)H : λ ∈ [0, 1]} of Hamiltonians, and obtain a corresponding
family of functionals Ψλ : U → R. Let us denote by F̂λ := ∇Ψλ : U ⊂ Ê → Ê the corresponding
family of LS-vector fields defined on the unbounded open subset U of Ê.

Lemma 3.2. For every bounded set B ⊂ Ê the set
⋃
λ∈[0,1] F̂

−1
λ (B) ⊂ U is bounded. In partic-

ular, F̂ is a (wBD)-homotopy on every Ω ⊂ U .

Proof. Suppose on the contrary that there exists a sequence {(λn, xn)} ⊂ I × U and a constant
c > 0 such that ||xn|| → ∞ and ||F̂λn(xn)|| < c. As P+xn and P−xn are orthogonal for all n,
we have

c > ||F̂λn
(xn)|| ≥ 1

2
||P+xn||+

1

2
||P−xn|| − ||K̃λn

(xn)||.

Since the family {Hλn
} is uniformly bounded and 0 < ri < 2 we see that the norm ||K̃λn

(xn)||
is bounded. On the other hand, if ||xn|| → ∞, then ||P+xn|| → ∞ or ||P−xn|| → ∞, which is a
contradiction.

Let now ηλ be the flow on U generated by F̂λ. Clearly,

Ω = A2n × Z+ × Z−,

where
A :=

{
(x, y) ∈ R2 :

1

2
≤
√
x2 + y2 ≤ 3

2

}
,

is an unbounded isolating neighbourhood for ηλ for every λ in the sense of Definition 2.12. By
Corollary 2.15 and Lemma 3.2, the E-cohomological Conley index ch(Ω, ηλ) is well defined and
independent of λ. However, for λ = 1 the flow corresponds to the trivial Hamiltonian H ≡ 0,
and consequently we now want to compute the cup-length for η1. We note at first that the pair

(X,A) := (A2n ×B(Z+)×B(Z−), A2n ×B(Z+)× ∂B(Z−))

is an index pair, and if V ⊂ Z− is of finite dimension, then

(XV , AV ) = (A2n ×B(Z+)×B(V ), A2n ×B(Z+)× ∂B(V )),

where B(V ) denotes the unit ball in V . Hence we get for k ∈ Z

Hk(XV , AV ) = Hk(XV /AV ) = Hk(S(V ) ∧ T 2n) = Hk−dim(V )(T 2n),

where S(V ) denotes the unit sphere in V . Moreover, if W ⊃ V is another finite dimensional
subspace, then the Mayer-Vietoris homomorphism ∆k

V,W mapping

Hk+dim(V )(XV , AV ) = Hk+dim(V )(S(V ) ∧ T 2n)

to
Hk+dim(W )(XW , AW ) = Hk+dim(W )(S(W ) ∧ T 2n)

is by definition just the suspension isomorphism. Hence we obtain
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H∗E(X,A) = H∗(T 2n).

Finally, to find the cup-length, we note at first that for our isolating neighbourhood Ω, R′ ≥ 2,
and any finite dimensional subspace V ⊂ Z−

H∗(ΩR
′

V ) = Hk(A2n ×B(Z+;R′)×B(V ;R′)) = H∗(T 2n),

where B(Z+;R′) and B(V ;R′) denote the balls of radius R′. Hence CL(ΩR
′
, η1) is just the

ordinary cup-length of the torus T 2n, which is 2n+ 1. Now let R > 0 be so large that ΩR is an
isolating neighbourhood of ηλ for all λ ∈ I. We obtain from Theorem 2.10 that CL(ΩR, η0) =
2n + 1. By Theorem 2.11, this is a lower bound for the number of critical points of ΦH in ΩR,
and so we have proved the Arnold conjecture on T 2n.

4 Proof of Theorem 2.11 and Proposition 2.14
In this section we prove Theorem 2.11 and Proposition 2.14. In what follows, we will use that
if F : U ⊂ E → E is an LS-vector field such that F = ∇f for a functional f : U → R,
and {ηt(x) : t ∈ R} is a trajectory such that ηt(x) ∈ Ω for all t ∈ R and some bounded set
Ω ⊂ U , then the limits α(x) and ω(x) are contained in the set of critical points of f . This
is, for example, a simple consequence of the property (C) of gradient LS-vector fields that was
discussed in [IRSSV].

4.1 Proof of Theorem 2.11
We will need the following two properties of the cup-length CL that we introduced in Definition
2.4. As the proofs are purely algebraic, we leave it to the reader to check that they follow by
obvious modifications from [DGU11, Lemma 2.2 & 2.3].

Lemma 4.1. If B ⊂ A ⊂ X ⊂ Y are closed and bounded subsets of E, then

CL(Y ;X,B) ≤ CL(Y ;X,A) + CL(Y ;A,B).

Lemma 4.2. If A ⊂ X ⊂ Y1 ⊂ Y2 are closed and bounded subsets of E, then

CL(Y2;X,A) ≤ CL(Y1;X,A).

Now let us consider an isolating neighbourhood Ω for the flow η generated by the gradient of the
function f : U → R in Theorem 2.11. As we suppose that there are only finitely many critical
points of f in Ω, the set of critical values Crit(f,Ω) is finite as well, say, c1 < . . . < ck. Let
Mi ⊂ Ω denote the set of stationary points with values ci, and set for 1 ≤ i ≤ j ≤ k

Mij = {x ∈ Ω : ω(x) ∪ α(x) ⊂Mi ∪Mi+1 ∪ . . . ∪Mj},

where α(x) and ω(x) denote as above the α and ω limits of x ∈ E under the flow η. Note
that M1k consists of all the critical points of f inside Ω and all the orbits connecting them.
Consequently,

M1k = Inv(Ω, η).

Now let (X,A) be an index pair for M1k.
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Lemma 4.3 (Morse filtration). There exist sets

X0 = A ⊂ X1 ⊂ . . . ⊂ Xk = X

such that (Xj , Xi−1) is an index pair for Mij.

Proof. We let bi ∈ (ci, ci+1), i = 1, . . . , k − 1 be regular values of f , set bk = ∞, and define
X0 = A as well as Xi := X ∩ f−1(−∞, bi], i = 1, . . . , k. Then it is readily seen that (Xj , Xi−1)
is an index pair for Mij as Mij consists of all critical points x such that f(x) ∈ {ci, . . . , cj} and
all the orbits connecting them.

If we now apply Lemma 4.1 k times, we get

CL(Ω;X,A) ≤
k∑
i=1

CL(Ω;Xi, Xi−1). (8)

On the other hand, (Xi, Xi−1) is an index pair forMii, which is a set consisting of a finite number
of stationary points. Therefore we can choose an isolating neighbourhood Ωi for Mii, where Ωi
is a disjoint union of discs. If now (X ′i, X

′
i−1) is an index pair for Mii such that X ′i ⊂ Ωi, then

by Corollary 2.9 and Lemma 4.2

CL(Ω;Xi, Xi−1) = CL(Ω;X ′i, X
′
i−1) ≤ CL(Ωi;X

′
i, X

′
i−1) ≤ 1

where the last inequality follows from the fact that the groups Hq>0
0 (Ωi) are trivial. Hence, by

(8),

CL(Ω;X,A) ≤ k

and Theorem 2.11 is shown, as k is the number of critical values of f in Ω.

4.2 Proof of Proposition 2.14
We note at first the following simple lemma.

Lemma 4.4. Let Λ be a compact space of parameters and let {Fλ = L+Kλ}λ∈Λ be a continuous
family of LS-vector fields Fλ : U ⊂ E → E. If

⋃
λ∈Λ

F−1
λ (0) ⊂ U is bounded, then it is compact.

Proof. Let {xi}i∈N be a sequence in
⋃
λ∈Λ

F−1
λ (0). As L is Fredholm, there exists a linear bounded

operator T : E → E and a linear compact operator C : E → E such that TL = IE + C. Hence

0 = TF (xi) = xi + Cxi + TKλi(xi), i ∈ N,

and so xi = −(C + TKλi)(xi). As C + TKλi and Λ are compact, we see that {xi}i∈N contains
a convergent subsequence. Consequently, we have shown that

⋃
λ∈Λ

F−1
λ (0) is relatively compact,

and as it is closed, we see that it is compact.

Our proof of Proposition 2.14 now follows standard arguments in Morse theory. The reader may
compare our argument with the compactness proof in [Sch93, pp. 56-57].
By assumption (wBD), there exists ε > 0 such that Y := F−1(B(ε)) ∩ Ω is bounded. Suppose
that r0 > 0 is such that Y ⊂ B(r0). Now let X := Inv(Ω, η) ⊂ U be the invariant set for the
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negative gradient flow of f which is given by all critical points of f and the flow lines between
them. For proving Proposition 2.14, we need to show that it is bounded. As this is certainly true
if X ⊂ B(r0), we can assume that X \B(r0) 6= ∅ and consider a point x ∈ X such that x 6∈ B(r0).
Let now u : R→ E be the trajectory of the flow starting at x, and let y ∈ ω(x) ⊂ Crit(f). Note
that y ∈ Y ⊂ B(r0) as F (y) = 0.
Let t0 ∈ (−∞, 0) such that u(t0) ∈ ∂B(r0) but u(t) 6∈ ∂B(r0) for all t ∈ (t0, 0). Then

‖x− y‖ ≤ ‖y − u(t0)‖+ ‖u(t0)− x‖ ≤ 2r0 +

∫ 0

t0

|u̇(s)|ds

and we see that we need to find a bound on
∫ 0

t0
|u̇(s)|ds which is independent of u. If we set

l(s) =
∫ s
t0
|u̇(s)|ds, then

dl

ds
(s) = |u̇(s)| = |∇f(u(s))|,

d(f(u(s)))

ds
(s) = −|∇f(u(s))|2

and so

dl

ds
(s) ≤ −1

ε

d(f(u(s)))

ds
(s)

for every s ∈ (t0, 0], where we use that u(s) /∈ B(r0) ⊃ Y and so |∇f(u(s))| ≥ ε for these values
of s. Therefore

‖x− y‖ ≤ 2r0 +

∫ 0

t0

|u̇(s)| ds = 2r0 +

∫ 0

t0

dl

ds
(s) ds

≤ 2r0 −
1

ε

∫ 0

t0

d(f(u(s)))

ds
(s) ds = 2r0 +

1

ε
[f(u(t0))− f(u(0))].

As f decreases along flow lines,

2r0 +
1

ε
[f(u(t0))− f(u(0))] ≤ 2r0 +

1

ε
[f(z)− f(y)],

where z ∈ α(x). As the set of critical points of f in Ω is a subset of the bounded set Y , it is
compact by Lemma 4.4, and so there exists r1 > 0 such that

r1 ≥
1

ε
|f(x1)− f(x2)|

for all critical points x1 and x2 of f in Ω. Hence X ⊂ B(0, R) for R := 2r0 + r1 which shows
that X is bounded as r0 and r1 were chosen independently of x ∈ X.
To see that the second part of the Proposition is true, note that if we have a continuous family
parametrised by a compact space Λ, then by the definition of (wBD)-homotopy and Lemma 4.4,
r0 and r1 can be chosen independently of λ ∈ Λ.
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