| ALK | Aurora kinase | BIRC5 | CHK1 | |---|--|--|--| | Target expressed in tumour samples (protein & mRNA levels), activating mutations and amplification present in tumour tissue. ALK activates MAPK, JAK/STAT andPI3K AKTpathways; ALK interacts and regulates MYCN. ALK accelerates MYCN-induced neuroblastoma but on its own does not induce tumour formation. In vitro and in vivo efficacy data (in xenografts and GEMM) for crizotinib and other inhibitors. ALK mutations and amplifications are proposed as predictive biomarkers. Combination with chemotherapy and TORC1/2 inhibitors. Resistance to crizotinib can be overcome by higher doses or combination with TORC1/2 inhibitors. | mRNA over expression in tumour samples correlates with poor outcome. AURKA is required for the growth of MYCN amplified neuroblastoma cells. In vitro and in vivo efficacy data (xenografts and GEMM) for CCT137690 and MLN8237. MYCN amplification suggested as potential predictive biomarker. Potential combinations suggested with HDAC inhibitors (vorinostat). | mRNA and protein over expression described. Target validated in vitro with shRNA. In vitro efficacy data for YM155. Potential predictive biomarkers could be ABCB1 negativity (its over expression is a mechanism of resistance) or 17q gain. | Target expressed in MYCN-driven neuroblastoma. RNAi target validation. In vitro and in vivo efficacy data for CCT244747, CCT245737, AZD7762 and MK-8776 (SCH 900776). Data available about combination with chemotherapeutic DNA-damaging agents and WEE1 inhibitors. | | mTORC1/2 | BET | MEK | CDK4/6 | |--|--|---|---| | Pathway activation present in tumour samples. Target validation with shRNA. In vitro and in vivo efficacy data (in xenografts and GEMM) for torin, AZD8055 and rapalogues (TORC1 inhibitors alone); also dual PI3K/TORC inhibitors. Predictive biomarker: MYCN-driven tumours. Combinations with ALK inhibitors. | BRD4 validated as target. MYCN transcription can be disrupted by bromodomain inhibition. In vitro and in vivo efficacy for JQ1 and GSK1324726A. Potential predictive biomarker: MYCN amplification. | Activating mutations rare at diagnosis but frequent at relapse (78%). In vitro and in vivo efficacy data for selumetinib, trametinib and cobimetinib. Potential predictive biomarker: activating mutations in the MAPK/MEK pathway. | CCND1 and CDK4 amplification and over expression of CDK4 and CDK6 in neuroblastoma. siRNA validation of the target in vitro. In vitro and in vivo efficacy data for palbociclib and ribociclib. | Abbreviations: ALK – Anaplastic lymphoma kinase; GEMM – genetically engineered murine model. Table 1: Available evidence summarized following the same criteria used at the NDDS workshop (presence of the target, *in vitro* and *in vivo* target validation, *in vitro* and *in vivo* pharmacological efficacy, availability of predictive biomarkers, potential combinations explored and resistance mechanisms. This table aims to summarize available evidence but is not a systematic review.